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Abstract

We introduce and develop a set-based semantics for asynchronous TeamLTL. We consider two

canonical logics in this setting: the extensions of TeamLTL by the Boolean disjunction and by the

Boolean negation. We relate the new semantics with the original semantics based on multisets and

establish one of the first positive complexity theoretic results in the temporal team semantics setting.

In particular we show that both logics enjoy normal forms that can be utilised to obtain results

related to expressivity and complexity (decidability) of the new logics.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Hyperproperties, Linear Temporal Logic, Team Semantics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.60

Related Version Full Version: https://arxiv.org/abs/2304.10915 [13]

Funding Juha Kontinen: Supported by the Academy of Finland grant 345634.

Max Sandström: Supported by the Academy of Finland grant 322795.

Jonni Virtema: Supported by the Academy of Finland grant 345634 and the DFG grant VI 1045/1-1.

1 Introduction

Linear temporal logic (LTL) is one of the most prominent logics for the specification and

verification of reactive and concurrent systems. The core idea in model checking, as introduced

in 1977 by Amir Pnueli [22], is to specify the correctness of a program as a set of infinite

sequences, called traces, which define the acceptable executions of the system. In LTL-model

checking one is concerned with trace sets that are definable by an LTL-formula. Ordinary

LTL and its progeny are well suited for specification and verification of trace properties.

These are properties of systems that can be checked by going through all executions of the

system in isolation. A canonical example here is termination; a system terminates if each

run of the system terminates. However not all properties of interest are trace properties.

Many properties that are of prime interest, e.g., in information flow security, require a richer

framework. The term hyperproperty was coined by Clarkson and Schneider [3] to refer to

properties which relate multiple execution traces. A canonical example is bounded termination;

one cannot check whether a system terminates in bounded time by only checking traces in

isolation. Checking hyperproperties is vital in information flow security where dependencies

between secret inputs and publicly observable outputs of a system are considered potential

security violations. Commonly known properties of that type are noninterference [24, 20] and

observational determinism [30]. Hyperproperties are not limited to the area of information

flow control; e.g., distributivity and other system properties like fault tolerance can be

expressed as hyperproperties [5].
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60:2 Set Semantics for Asynchronous TeamLTL: Expressivity and Complexity

During the past decade, the need for being able to formally specify hyperproperties has

led to the creation of families of new logics for this purpose, since LTL and other established

temporal logics can only specify trace properties. The two main families of the new logics

are the so-called hyperlogics and logics that adopt team semantics. In the former approach

temporal logics such as LTL, computation tree logic (CTL), and quantified propositional

temporal logic (QPTL) are extended with explicit trace and path quantification, resulting

in logics like HyperLTL [2], HyperCTL∗ [2], and HyperQPTL [23, 4]. The latter approach

(which we adopt here) is to lift the semantics of temporal logics to sets of traces directly by

adopting team semantics yielding logics such as TeamLTL [15, 7] and TeamCTL [14, 7].

Krebs et al. [15] introduced two versions of LTL with team semantics: a synchronous

semantics and an asynchronous variant that differ on how the evolution of time is linked

between computation traces when temporal operators are evaluated. In the synchronous

semantics time proceeds in lock-step, while in the asynchronous variant time proceeds

independently on each trace. For example the formula “F terminate” (here F denotes the

future-operator and “terminate” is a proposition depicting that a trace has terminated)

defines the hyperproperty “bounded termination” under synchronous semantics, while it

expresses the trace property “termination” under asynchronous semantics. The elegant

definition of bounded termination exemplifies one of the main distinguishing factors of team

logics from hyperlogics; namely the ability to refer directly to unbounded number of traces.

Each hyperlogic-formula has a fixed number of trace quantifiers that delineate the traces

involved in the evaluation of the formula. Another distinguishing feature of team logics lies in

their ability to enrich the logical language with novel atomic formulae for stating properties

of teams. The most prominent of these are the dependence atom dep(x̄, ȳ) (stating that the

values of the variables x̄ functionally determine the values of ȳ) and inclusion atom x̄ ⊆ ȳ

(expressing the inclusion dependency that all the values occurring for x̄ must also occur as a

value for ȳ).

As an example, let o1, . . . , on be public observables and assume that c reveals confidential

information. The atom (o1, . . . on, c) ⊆ (o1, . . . on,¬c) expresses a form of non-inference by

stating that an observer cannot infer the value of the confidential bit from the outputs.

While HyperLTL and other hyperlogics have been studied extensively, many of the basic

properties of TeamLTL are still not well understood. Krebs et al.[15] showed that synchronous

TeamLTL and HyperLTL are incomparable in expressivity and that the asynchronous variant

collapses to LTL. Not much was known about the complexity aspects of TeamLTL until

Lück [18] showed that the complexity of satisfiability and model checking of synchronous

TeamLTL with Boolean negation ∼ is equivalent to the decision problem of third-order

arithmetic. Subsequently, Virtema et al. [29] embarked for a more fine-grained analysis of

the complexity of synchronous TeamLTL and discovered a decidable syntactic fragment (the

so-called left-flat fragment) and established that already a very weak access to the Boolean

negation suffices for undecidability. They also showed that synchronous TeamLTL and its

extensions can be translated to HyperQPTL+, which is an extension of HyperLTL by (non-

uniform) quantification of propositions. Kontinen and Sandström [12] defined translations

between extensions of TeamLTL and the three-variable fragment of first-order team logic to

utilize the better understanding of first-order team semantics. They also showed that any

logic effectively residing between synchronous TeamLTL extended with the Boolean negation

and second-order logic inherits the complexity properties of the extension of TeamLTL with

the Boolean negation. Finally, Gutsfeld et al. [7] reimagined the setting of temporal team

semantics to be able to model richer forms of (a)synchronicity by developing the notion

of time-evaluation functions. In addition to reimagining the framework, they discovered



J. Kontinen, M. Sandström, and J. Virtema 60:3

decidable logics which however relied on restraining time-evaluation functions to be either k-

context-bounded or k-synchronous. It is worth noting that recently asynchronous hyperlogics

have been considered also in several other articles (see, e.g., [8, 1]).

Almost all complexity theoretic results previously obtained for TeamLTL have been

negative, and the few positive results have required drastic restrictions in syntax or semantics.

In this article we take a take a fresh look at expressive extensions of asynchronous TeamLTL.

Recent works on synchronous TeamLTL have revealed that quite modest extensions of

synchronous TeamLTL are undecidable. Thus, our study of asynchronous TeamLTL partly

stems from our desire to discover decidable but expressive logics for hyperproperties. Until

now, all the papers on temporal team semantics have explicitly or implicitly adopted a

semantics based on multisets of traces. In the team semantics literature, this often carries

the name strict semantics, in contrast to lax semantics which is de-facto set-based semantics.

In database theory, it is ubiquitous that tasks that are computationally easy under set

based semantics become untractable in the multiset case. In the team semantics setting

this can be already seen in the model checking problem of propositional inclusion logic

PL(⊆) which is P-complete under lax semantics, but NP-complete under strict semantics

[10]. Our new set-based framework offers a setting that drops the accuracy that accompanies

adoption of multiset semantics in favour of better computational properties. Consider

the following formula expressing a form of strong non-inference in parallel computation:

G((o1, ..., on, c) ⊆ (o1, ..., on,¬c)), where o1, ..., on are observable outputs and c is confidential.

In the synchronous setting, the formula expresses that during a synchronous computation,

at any given time, an observer cannot infer the value of the secret c from the outputs. In

the asynchronous setting, the formula states a stronger property that the above property

holds for all computations (not only synchronous). In the multiset setting the number of

parallel computation nodes is fixed, while in the new lax semantics, we drop that restriction,

and consider an undefined number of computation nodes. The condition is stronger in lax

semantics; and intuitively easier to falsify, which makes model checking in practice easier.

Our contribution. We introduce and develop a set-based semantics for asynchronous Team-

LTL, which we name lax semantics and write TeamLTLl. We consider two canonical logics

in this setting: the extensions of TeamLTLl by the Boolean disjunction TeamLTLl(6) and

by the Boolean negation TeamLTLl(∼). By developing the basic theory of lax asynchronous

TeamLTL, we discover some fascinating connections between the strict and lax semantics. We

discover that both of the logics enjoy normal forms that can be utilised to obtain expressivity

and complexity results. Tables 1 and 2 summarise our results. For comparison, Table 3

summarises the known results on complexity of synchronous TeamLTL.

2 Preliminaries

Fix a set AP of atomic propositions. The set of formulae of LTL (over AP) is generated

by the grammar: φ ::= p ♣ ¬p ♣ φ ∨ φ ♣ φ ∧ φ ♣ φ ♣ Gφ ♣ φUφ, where p ∈ AP. We

adopt the convention that formulae are given in negation normal form, i.e., ¬ is allowed

only in front of atomic propositions. Note that this is an expressively complete set of

LTL-formulae. The logical constants ⊤,⊥ and the operators F and W can be defined in the

usual way: ⊥ := p ∧ ¬p, ⊤ := p ∨ ¬p, Fφ := ⊤ Uφ, and φWψ := (φUψ) ∨ Gφ. Note also

the equivalences ¬ φ ≡ ¬φ, ¬ Fφ ≡ G ¬φ, and ¬(φUψ) ≡ (¬φW(¬ψ ∧ ¬φ)).

A trace t over AP is an infinite sequence from (2AP)ω. For a natural number i ∈ N, we

denote by t[i] the (i+ 1)th letter of t and by t[i,∞] the postfix (t[j])j≥i of t. Semantics of

LTL is defined in the usual manner (see e.g., [21]). For example, t ♣= p iff p ∈ t[0] and t ♣= φ

iff t[1,∞] ♣= φ. The truth value of a formula φ on a trace t is denoted by JφKt ∈ ¶0, 1♢.

MFCS 2023
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Table 1 Expressivity hierarchy of the asynchronous logics considered in the paper. Logics with

lax or strict semantics are here referred with the superscripts l and s, respectively. For the definitions

of left flatness, quasi flatness, and left downward closure, we refer to Definitions 7 and 13. †: This

follows since only TeamLTLl(6) is downward closed (cf. Theorem 8 and Definition 13). Theorem 8

implies that for TeamLTL(∼)-formulae in quasi-flat form the strict and lax semantics coincide.

TeamLTLs/l left-flat–TeamLTLs(6)
Cor.12

< TeamLTLs(6)

<

Ex. 6

≡

Thm. 8

TeamLTLl(6)
Thm. 10

≡ left-flat–TeamLTLl(6)
†

< quasi-flat–TeamLTLs/l(∼)

≡

Thm. 14

left-dc–TeamLTLl(∼)

Table 2 Complexity results of this paper. All results are completeness results if not otherwise

specified. PL(∼) refers to the propositional fragment of TeamLTL(∼) which embeds also to

left-dc-TeamLTLl(∼). †: All PSPACE-completeness results for satisfiability in strict semantics

and TeamLTLl follow directly from classical LTL by downward closure and singleton equivalence

similar to [15, Proposition 5.4]. ATIME-ALT(exp, poly) refers to alternating exponential time with

polynomially many alternations while TOWER(poly) refers to problems that can be decided by a

deterministic TM in time bounded by an exponential tower of 2’s of polynomial height.

Logic Complexity of References

(asynchronous semantics) model checking satisfiability

LTL PSPACE PSPACE [25]

PL(∼) ATIME-ALT(exp, poly) ATIME-ALT(exp, poly) [9]

TeamLTLl/s PSPACE PSPACE [15], Theorem 5

left-flat-TeamLTLs/l(6) PSPACE PSPACE Theorem 17

TeamLTLl(6) PSPACE PSPACE Theorem 17

TeamLTLs(6) ??? PSPACE †

TeamLTLs(dep) NEXPTIME-hard PSPACE [15]

left-dc-TeamLTLl(∼) in TOWER(poly) in TOWER(poly) Theorem 17

Table 3 Complexity results for synchronous strict semantics. All results are completeness results

if not otherwise specified. †: All PSPACE-completeness results for satisfiability follow directly from

classical LTL by downward closure and singleton equivalence similar to [15, Proposition 5.4].

Logic Complexity of References

(sync. strict semantics) model checking satisfiability

TeamLTL PSPACE PSPACE [15]

left-flat-TeamLTL(6) in EXPSPACE PSPACE [29]

TeamLTL(dep) NEXPTIME-hard PSPACE [15]

TeamLTL(6) ??? PSPACE †

TeamLTL(6, ⊆) Σ0

1-hard Σ0

1-hard [29]

TeamLTL(∼) third-order arithmetic third-order arithmetic [18]
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Next we present the so-called asynchronous team semantics for LTL introduced in [15].

In [15], the release operator was defined slightly erroneously; we fix the issue here by taking

G as primitive and defining R using G and U. Informally, a multiset of traces T is a collection

of traces with possible repetitions. Formally, we represent T as a set of pairs (i, t), where i is

an index (from some suitable large set) and t is a trace. We stipulate that the elements of

a multiset have distinct indices. From now on, we will always omit the index and write t

instead of (i, t). For multisets T and S, T ⊎S denotes the disjoint union of T and S (obtained

by stipulating that traces in S and T have disjoint sets of indices). Note that all the functions

f with domain T are actually of the form f((i, t)) and may map different copies of the trace

t differently. A team (multiteam, resp.) is a set (multiset, resp.) of traces. If f : T → N is a

function, we define the updated team T [f,∞] := ¶t[f(t),∞] ♣ t ∈ T♢, where f determines for

each trace a point in time it updates to. For functions f and f ′ as above, we write f ′ < f , if

f ′(t) < f(t) for all t ∈ T . The underlying team support(T ) := ¶t ♣ (i, t) ∈ T♢ of a multiteam

T is called the support of T .

▶ Definition 1 (Team Semantics for LTL). Let T be a multiteam, and φ and ψ LTL-formulae.

The asynchronous team semantics of TeamLTL is defined as follows.

T ♣= l ⇔ t ♣= l for all t ∈ T, where l ∈ ¶p,¬p ♣ p ∈ AP♢ is a literal

T ♣= φ ∧ ψ ⇔ T ♣= φ and T ♣= ψ

T ♣= φ ∨ ψ ⇔ ∃T1, T2 s.t. T1 ⊎ T2 = T and T1 ♣= φ and T2 ♣= ψ

T ♣= φ ⇔ T [1,∞] ♣= φ, where 1 is the constant function t 7→ 1

T ♣= Gφ ⇔ ∀f : T → N T [f,∞] ♣= φ

T ♣= φUψ ⇔ ∃f : T → N T [f,∞] ♣= ψ and ∀f ′ < f : T ′[f ′,∞] ♣= φ,

where T ′ := ¶t ∈ T ♣ f(t) ̸= 0♢

The synchronous variant of the semantics is obtained by allowing f to range only over

constant functions. We take the asynchronous semantics as the standard semantics and write

TeamLTL for asynchronous TeamLTL.

We also consider the Boolean disjunction 6 and Boolean negation ∼ interpreted as usual:

T ♣= φ6 ψ iff (T ♣= φ or T ♣= ψ), and T ♣= ∼ φ iff T ̸♣= φ.

Next we define some important semantic properties of formulae studied in the literature.

A logic has one of the properties if every formula of the logic has the property. It is easy to

check that TeamLTL has all the properties listed [15] whereas its extension with the Boolean

disjunction has all but flatness and the extension with Boolean negation has none.

(Downward closure) If T ♣= φ and S ⊆ T , then S ♣= φ.

(Empty team property) ∅ ♣= φ.

(Flatness) T ♣= φ iff ¶t♢ ♣= φ for all t ∈ T .

(Singleton equivalence) ¶t♢ ♣= φ iff t ♣= φ.

We will now justify our choice of semantics. The semantic rules for literals, conjunction,

and disjunction are the standard ones in team semantics, and which have been motivated

numerous times in the literature [26]. Two important properties for the logic to have, for it to

be a conservative extension of LTL, are flatness and singleton equivalence. These properties

also motivated the original definition of asynchronous TeamLTL [15]. The given semantics

for is the only possible one that satisfies flatness. The same is true for F (i.e., ⊤ Uφ) and

G; moreover the semantics clearly capture the intuitive meanings of asynchronously in the

future and asynchronously globally, respectively. The given semantics for U preserves flatness

MFCS 2023
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and singleton equivalence, and adequately captures the intuitive meaning of asynchronous

until. The framework of asynchronous TeamLTL then allows us to define different variants

of the familiar temporal operators. E.g., φW1 ψ := Gφ ∨ φUψ and φW2 ψ := Gφ6 φUψ

define different variants of weak until; the first of which is flat, while the second is not.

T ♣= φW1 ψ ⇔ ∃T1, T2 s.t. T1 ⊎ T2 = T, T1 ♣= Gφ and T2 ♣= φUψ

T ♣= φW2 ψ ⇔ T ♣= Gφ or T ♣= φUψ

Similarly φR1 ψ := ψU((ψ ∧φ) ∨ Gψ) and φR2 ψ := ψU((ψ ∧φ) 6 Gψ) give rise to different

variants of release. Moreover, with ∼ one can define additional dual operators.

A defining feature of team semantics is the ability to enrich logics with novel atomic

statements describing properties of teams in a modular fashion. For example, de-

pendence atoms dep(φ1, . . . , φn, ψ) and inclusion atoms φ1, . . . , φn ⊆ ψ1, . . . , ψn, with

φ1, . . . , φn, ψ, ψ1, . . . , ψn being LTL-formulae, have been studied extensively in first-order

and modal team semantics. The dependence atom states that the truth value of ψ is func-

tionally determined by that of φ1, . . . , φn whereas the inclusion atom states that each value

combination of φ1, . . . , φn must also occur as a value combination for ψ1, . . . , ψn. Formally:

T ♣= dep(φ1, . . . , φn, ψ) iff ∀t, t′ ∈ T :


∧

1≤j≤n

JφjKt = JφjKt′


⇒ JψKt = JψKt′

T ♣= φ1, . . . , φn ⊆ ψ1, . . . , ψn iff ∀t ∈ T ∃t′ ∈ T :
∧

1≤j≤n

JφjKt = JψjKt′

Consider the following exemplary formula: G dep(i1, i2, o) ∨ G dep(i2, i3, o). The formula

states that the executions of the system can be decomposed into two parts; in the first part,

the output o is determined by the inputs i1 and i2, and in the second part, o is determined

by the inputs i2 and i3.

If A is a collection of atoms and connectives, TeamLTL(A) denotes the extension of

TeamLTL with the atoms and connectives in A. It is straightforward to see (in analogy

to the modal team semantics setting [11]) that any dependency such as the ones above

is determined by a finite set of n-ary Boolean relations. Let B be a set of n-ary Boolean

relations. We define the property [φ1, . . . , φn]B for an n-tuple (φ1, . . . , φn) of LTL-formulae:

T ♣= [φ1, . . . , φn]B iff ¶(Jφ1Kt, . . . , JφnKt) ♣ t ∈ T♢ ∈ B.

Expressions of the form [φ1, . . . , φn]B are generalised atoms. It was shown in [29] that, in the

synchronous setting, TeamLTL(∼) is expressively complete with respect to all generalised

atoms, whereas the extension of TeamLTL(6) with the so-called flattening operator can

express any downwards closed generalised atoms. These results readily extend to the

asynchronous setting. Moreover the flattening operator renders itself unnecessary due to

flatness of asynchronous TeamLTL. The results imply, e.g, that the (downwards closed)

dependence atoms can be expressed in both of the logics TeamLTL(∼) and TeamLTL(6),

and inclusion atoms in turn are expressible in TeamLTL(∼). The proof of the following

theorem is essentially the same as the proof of [28, Proposition 17]. Below L ≡ L′ denotes

the equiexpressivity of the logics L and L′.

▶ Theorem 2. Let A, D be the sets of all generalised atoms, and all downward closed gener-

alised atoms. Then TeamLTL(D,6) ≡ TeamLTL(6) and TeamLTL(A,∼) ≡ TeamLTL(∼).
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3 Set-based semantics for TeamLTL

Next we define a relaxed version of the asynchronous semantics. We call it lax semantics

as it corresponds to the so-called lax semantics of first-order team semantics (see e.g., [6]).

From now on we refer to the semantics of Definition 1 as strict semantics. The possibility of

considering lax semantics for TeamLTL was suggested by Lück already in [19] but the full

definition was not given. Intuitively, lax semantics can always be obtained from a strict one

by checking what strict semantics would yield if multiteams were enriched with unbounded

many copies of each of its traces. One of the defining features of lax semantics is that it is

unable to distinguish multiplicities, which is formalised by Proposition 4 below.

We need some notation for the new definition. We write P(N)+ to denote P(N) \ ¶∅♢.

For a team T and function f : T → P(N)+, we set T [f,∞] := ¶t[s,∞] ♣ t ∈ T, s ∈ f(t)♢. For

T ′ ⊆ T , f : T → P(N)+, and f ′ : T ′ → P(N)+, we define that f ′ < f if and only if

∀t ∈ T ′: min(f ′(t)) ≤ min(f(t)) and, if max(f(t)) exists, max(f ′(t)) < max(f(t)).

▶ Definition 3 (TeamLTLl). Let T be a team, and φ and ψ TeamLTL-formulae. The lax

semantics is defined as follows. We only list the cases that differ from the strict semantics.

T ♣=l φ ∨ ψ ⇔ ∃T1, T2 s.t. T1 ∪ T2 = T and T1 ♣= φ and T2 ♣= ψ

T ♣=l Gφ ⇔ ∀f : T → P(N)+ it holds that T [f,∞] ♣=l φ

T ♣=l φUψ ⇔ ∃f : T → P(N)+ such that T [f,∞] ♣=l ψ and

∀f ′ : T ′ → P(N)+s.t. f ′ < f , it holds that T ′[f ′,∞] ♣=l φ or T ′ = ∅,

where T ′ := ¶t ∈ T ♣ max(f(t)) ̸= 0♢

In the context we will be considering in this article, the subformulae φ in the definition of the

until operator U always have the empty team property and thus we disregard the possibility

that the team T ′ is empty in our proofs, as that case follows from the empty team property.

The above set-based semantics can also be viewed in terms of multisets. In that case

functions f are quantified uniformly, i.e. we restrict our consideration to functions where

f(i, t) = f(j, t). Furthermore, the semantics for disjunction is defined in a way that omits

references to multiplicities. In order to relate our new logics to the old multiteam based ones,

we extend the lax semantics to multiteams T by stipulating that T ♣=l φ iff support(T ) ♣=l φ.

The following proposition shows that TeamLTLl(∼) satisfies the so-called locality property,

see full version of this article [13] for the proof. For a trace t over AP′ and AP ⊆ AP′,

the reduction of t to AP, t↾AP, is a sequence from (2AP)ω such that p ∈ t[i] if and only if

p ∈ t↾AP[i], for all p ∈ AP and i ∈ N. For a team T over AP′ we define the reduction of T to

AP by T↾AP = ¶t↾AP ♣ t ∈ T♢.

▶ Proposition 4. Let T be a team and φ a TeamLTLl(∼)-formula with variables in AP.

Now T ♣=l φ iff T↾AP ♣=l φ.

The next theorem displays that lax semantics enjoys the same fundamental properties

as its strict counterpart. The proof via a straightforward induction, see full version of this

article [13] for details.

▶ Theorem 5. TeamLTLl satisfies downward closure, empty team property, singleton equi-

valence, and flatness.

The following example establishes that the new lax semantics differs from the strict

semantics, and that in the old semantics multiplicities matter. Moreover, we obtain

TeamLTLl < TeamLTLl(6) by showing that the latter is not flat.

MFCS 2023
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▶ Example 6. Let φ be the formula G(p 6 q), T1 := ¶t♢ and T2 := ¶(1, t), (2, t)♢, where

t := ¶p♢¶q♢ω. It is easy to check that T1 ♣= φ but T1 ̸♣=l φ (which is witnessed by

T [f,∞] ̸♣=l p 6 q for f(t) := ¶0, 1♢). Likewise T2 ̸♣= φ. Moreover ¶si♢ ♣=l φ, for i ∈ ¶1, 2♢,

but ¶s1, s2♢ ̸♣=l φ, where s1 := ¶p♢ω and s2 := ¶q♢ω.

We will also consider the following fragments of TeamLTL(6) and TeamLTL(∼).

▶ Definition 7. A formula φ of TeamLTL(6) is called left-flat, if in all of its subformulae of

the form Gψ and ψU θ, the subformula ψ is an LTL-formula. A formula φ of TeamLTL(∼,6)

is called left-downward closed, if in all of its subformulae of the form Gψ and ψU θ, the

subformula ψ is an TeamLTL(6)-formula.

We will later show that the above syntactic restriction for flatness could be replaced by

a semantic restriction (see Corollary 11). The proof of the following theorem is in the full

version of this article [13].

▶ Theorem 8. For all φ ∈ TeamLTLl(6) the following two claims hold:

1. φ is downward closed and has the empty team property, and

2. if φ is left-flat, then T ♣= φ iff support(T ) ♣=l φ for all multiteams T .

The restriction to left-flat formulae in case (2) above is necessary by Example 6.

4 Normal Forms for TeamLTL with Boolean Disjunction and Negation

In this section we develop normal forms for our logics, which we then utilise to obtain strong

expressivity and complexity results.

▶ Definition 9. A formula φ is in 6-disjunctive normal form if it is of the form >i∈I αi,

where αi are LTL-formulae.

Every formula of TeamLTLl(6) can be transformed into an equivalent 6-disjunctive

normal form. This result is similar to the one proved in [27] for team-based modal logic

ML(6). In the following ♣φ♣ denotes the the length of the formula φ.

▶ Theorem 10. Every φ ∈ TeamLTLl(6) is logically equivalent to a formula φ∗ = >i∈I αi
in 6-disjunctive normal form, where ♣αi♣ ≤ ♣φ♣ and ♣I♣ = 2k, where k is the number of 6

in φ.

Proof. The proof proceeds by induction on the structure of formulae. Note that atomic

formulae are already in the normal form and that the case for 6 is trivial. The remaining

cases are defined as follows:

(ψ ∧ θ)∗ := >
i∈I,j∈J

(αψi ∧ αθj ) (ψ ∨ θ)∗ := >
i∈I,j∈J

(αψi ∨ αθj )

( ψ)∗ :=>
i∈I

α
ψ
i (Gψ)∗ :=>

i∈I

Gαψi

(ψU θ)∗ := >
i∈I,j∈J

(αψi Uαθj ).

where αψi and αθj are the flat formulae in the disjunctive normal forms of ψ and θ respectively,

and I and J are the respective index sets.

Suppose φ = ψ∧ θ and that ψ ≡ >i∈I α
ψ
i and θ ≡ >i∈J α

θ
j (induction hypothesis). Now

T ♣=l φ if and only if T ♣=l ψ and T ♣=l θ. The latter holds, if and only if T ♣=l α
ψ
k and

T ♣=l αθk′ , for some k and k′. This can be equivalently expressed as T ♣=l >i,j(α
ψ
i ∧ αθj ), i.e.

T ♣=l φ∗.
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Suppose φ = ψ∨ θ and that ψ ≡ >i∈I α
ψ
i and θ ≡ >i∈J α

θ
j . By definition T ♣=l φ if and

only if there exists T ′ ∪T ′′ = T such that T ′ ♣=l ψ and T ′′ ♣=l θ. By the induction hypothesis

the latter is equivalent with T ′ ♣=l >i∈I α
ψ
i and T ′′ ♣=l >j∈J α

θ
j . By definition this holds if

and only if there are k′ and k′′ such that T ′ ♣=l α
ψ
k′ and T ′′ ♣=l αθk′′ , which is equivalent with

T ♣=l α
ψ
k′ ∨αθk′′ for some k′ and k′′, by definition. Equivalently then T ♣=l >i∈I,j∈J (αψi ∨αθj ).

Suppose φ = ψ and that ψ ≡ >i∈I α
ψ
i . By definition T ♣=l φ is equivalent with

T [1,∞] ♣=l ψ. By the induction hypothesis the latter holds if and only if T [1,∞] ♣=l >i∈I α
ψ
i ,

which by definition is equivalent with T [1,∞] ♣=l α
ψ
k for some k ∈ I. The latter holds if and

only if T ♣=l α
ψ
k for some k ∈ I, which is equivalent with T ♣=l >i∈I α

ψ
i .

Suppose φ = Gψ and that ψ ≡ >i∈I α
ψ
i . Suppose that T ♣=l φ. By definition for

all functions f : T → P(N)+ it holds that T [f,∞] ♣=l ψ. By the induction hypothesis

T [f,∞] ♣=l >i∈I α
ψ
i for all f . Especially this holds for the total function defined for every

t ∈ T by fmax(t) := N. Thus T [fmax,∞] ♣=l α
ψ
k for some k. By downward closure it holds

that T [f ′,∞] ♣=l α
ψ
k for all f ′ : T → P(N)+. Hence T ♣=l Gαψk , and thus T ♣=l >i∈I Gαψi .

The other direction is analogous.

Suppose φ = ψU θ and that ψ ≡ >i∈I α
ψ
i and θ ≡ >j∈J α

θ
j . Suppose T ♣=l φ. By

definition there exists a function f : T → P(N)+ such that T [f,∞] ♣=l θ and for all functions

f ′ : T ′ → P(N)+ such that f ′ < f , T ′[f ′,∞] ♣=l ψ, where T ′ := ¶t ∈ T ♣ f(t) ̸= 0♢. Hence

by the induction hypothesis T [f,∞] ♣=l >j∈J α
θ
j , which is equivalent with T [f,∞] ♣=l αθk

for some k ∈ J , and, for the function fmax(t) := ¶n ∈ N ♣ n < m, for some m ∈ f(t)♢

(which is well-defined, as f(t) is non-empty for t ∈ T ′), it holds that T [fmax,∞] ♣=l >i∈I α
ψ
i ,

which in turn is equivalent with T [fmax,∞] ♣=l α
ψ
k′ for some k′ ∈ I. By downward closure

the latter holds for all intermediary functions, and thus T ♣=l α
ψ
k′ Uαθk and finally T ♣=l

>i∈I,j∈J(αθi Uαψj ) as wanted. The converse is analogous.

For showing the size estimates stated in the theorem, it suffices to note that our translation

to 6-disjunctive normal from can be equivalently stated: φ ≡ >i∈I α
ψ
i = >f∈F φ

f , where

F is the set of all selection functions f that select, separately for each occurrence, either

the left disjunct ψ or the right disjunct θ of each subformula of the form ψ 6 θ of φ, and

φf denotes the formula obtained from φ by substituting each occurrence of a subformula of

type (ψ 6 θ) by f(ψ 6 θ). The size estimates follow immediately from this observation. ◀

Proofs for the following two corollaries can be found in the full version of this article [13].

▶ Corollary 11. For every flat TeamLTLl(6)-formula there exists an equivalent TeamLTLl-

formula.

▶ Corollary 12. TeamLTLl(6) < TeamLTL(6).

A normal form, similar to the one in Theorem 10, can also be obtained for TeamLTL(∼).

However, since the extension is not downward closed, it only holds for a specific fragment of

the logic. The following normal form has been introduced and used in [17, 16] to analyse the

complexity of modal team logic and FO2 in the team semantics context. Below φd denotes a

formula obtained by transforming ¬φ into negation normal form in the standard way in LTL.

▶ Definition 13. A formula φ is quasi-flat if φ is of the form: >i∈I(αi∧
∧

j∈Ji
∃βi,j), where

αi and βi,j are LTL-formulae, and ∃βi,j is an abbreviation for the formula ∼ βdi,j.

Note that, for LTL-formulae α and β, we have T ♣=l α if and only if t ♣= α, for all t ∈ T .

Moreover T ♣=l ∃β, if and only if there exists some trace t ∈ T such that t ♣= β.

MFCS 2023
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▶ Theorem 14. Every left-downward closed formula φ ∈ TeamLTLl(∼,6) is logically

equivalent to a quasi-flat formula φ∗.

Proof. Proof by induction over the structure of φ. Atoms are flat, and hence are in the

normal form. The translations and the proofs of correctness for the cases of conjunction,

disjunction, and Boolean negation are analogous to the simpler modal framework of [17, 16].

Suppose φ = ψ ∧ θ and assume that ψ is equivalent to >i∈I(α
ψ
i ∧

∧

j∈Ji
∃βψi,j) and θ

to >i∈I′(αθi ∧
∧

j∈J′

i

∃βθi,j). By the distributive laws of conjunction and disjunction, φ is

clearly equivalent to

>
i∈I,k∈I′

(αψi ∧ αθk ∧
∧

j∈Ji

∃βψi,j ∧
∧

j∈J′

k

∃βθk,j).

Suppose φ = ψ ∨ θ. By the induction hypothesis and an argument analogous to the

disjunction case of the proof of Theorem 10, φ is equivalent to

>
i∈I,k∈I′

(

(αψi ∧
∧

j∈Ji

∃βψi,j) ∨ (αθk ∧
∧

j∈J′

k

∃βθk,j)
)

. (1)

The above formula expresses that T can be split into two parts: T1 in which each trace

satisfies αi and the subformulae βi,j are satisfied by some traces, and T2 in which each trace

satisfies αk and the subformulae βk,j are satisfied by some traces. But this is equivalent

to saying that T can be split into two parts: T1 in which each trace satisfies αi, and T2 in

which each trace satisfies αk; and the subformulae αi ∧ βi,j and αk ∧ βk,j are satisfied by

some traces in T , and thus the formula (1) is equivalent with

>
i∈I,k∈I′

(

(αψi ∨ αθk) ∧
∧

j∈Ji

∃(αψi ∧ β
ψ
i,j) ∧

∧

j∈J′

k

∃(αθj ∧ βθk,j)
)

that is in the normal form.

Suppose φ = ∼ψ and assume that ψ is equivalent to >i∈I(αi ∧
∧

j∈Ji
∃βi,j). Now φ is

clearly equivalent to
∧

i∈I(∃α
d
i 6 >j∈Ji

βdi,j). This formula can be expanded back to the

normal form with exponential blow-up using the distributivity law of propositional logic.

Suppose φ = ψ and assume that ψ is equivalent to >i∈I(αi ∧
∧

j∈Ji
∃βi,j). It is now

easy to check that φ is equivalent to >i∈I( αi ∧
∧

j∈Ji
∃ βi,j).

Suppose φ = Gψ. Since φ is left-downward closed, ψ is equivalent with a formula of the

form >i αi, which can be transformed to the normal form by Theorem 10.

Suppose φ = ψU θ. By assumption φ is left-downward closed hence ψ is equivalent

with a formula of the form >i∈I α
ψ
i (by the previous theorem) and θ is equivalent to

>k∈I′(αθk ∧
∧

j∈Jk
∃βθk,j). Now using the fact that ψ is downward closed, it is easy to see

that φ is logically equivalent with the formula:

>
i∈I,k∈I′

(

α
ψ
i U(αθk ∧

∧

j∈Jk

∃βψk,j)
)

. (2)

It now suffices to show that the disjuncts (for any i ∈ I, k ∈ I ′) of (2) can be equivalently

expressed as:

(

α
ψ
i Uαθk ∧

∧

j∈Jk

∃(αψi U(αθk ∧ β
ψ
k,j)

)

. (3)

We will show the logical implication from (3) to (2). Assume

T ♣=l
(

α
ψ
i Uαθk ∧

∧

j∈Jk

∃(αψi U(αθk ∧ β
ψ
k,j)

)

.
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Let f be such that T [f,∞] ♣=l αθk and that T [g,∞] ♣=l α
ψ
i , for all g < f . In order to show

T ♣=l α
ψ
i U(αθk ∧

∧

j∈Jk

∃βψk,j), (4)

we need to make sure that traces witnessing the truth of the formulae ∃βψk,j can be found

in T [f,∞]. Here we can use the assumption that T ♣=l
∧

j∈Jk
∃(αψi U(αθk ∧ β

ψ
k,j)) implying

that for each j ∈ Jk there exists tj ∈ T such that tj ♣= α
ψ
i U(αθk ∧ β

ψ
k,j). Let now nj be such

that tj [nj ,∞] ♣= αθk ∧ β
ψ
k,j and that tj [l,∞] ♣= α

ψ
i for all l < nj . Now by the flatness of the

formulae αψi , α
θ
k, and β

ψ
k,j , the function f ′ defined by

f ′(t) :=

{

f(t) ∪ ¶tj [nj ,∞]♢ if t = tj , for some j ∈ Jk

f(t) otherwise

witnesses (4). The converse is proved analogously. ◀

The following example indicates that the restriction to left-downward closed formulae

is necessary for the proof to work in the above theorem. An alternate proof that does not

require the restriction to left-downward closed formulae may still exist.

▶ Example 15. Let φ be the formula G(∃p1 6 ∃p2) and T := ¶t♢, where t := (¶p1♢¶p2♢)ω.

It is now easy to check that T ♣=l φ but T ̸♣=l G ∃pi for i ∈ ¶1, 2♢.

5 Computational Properties

In this section we analyse the computational properties of the logics studied in the previous

section. We focus on the complexity of the model checking and satisfiability problems.

For the model checking problem one has to determine whether a team of traces generated

by a given finite Kripke structure satisfies a given formula. We consider Kripke structures of

the form K := (W,R, η, w0), where W is a finite set of states, R ⊆ W 2 a left-total transition

relation, η : W → 2AP a labelling function, and w0 ∈ W an initial state of W . A path σ

through K is an infinite sequence σ ∈ Wω such that σ[0] := w0 and (σ[i], σ[i + 1]) ∈ R

for every i ≥ 0. The trace of σ is defined as t(σ) := η(σ[0])η(σ[1]) · · · ∈ (2AP)ω. A Kripke

structure K then generates the trace set Traces(K) := ¶t(σ) ♣ σ is a path through K♢.

▶ Definition 16. The model checking problem of a logic L is the following decision problem:

Given a formula φ ∈ L and a Kripke structure K over AP, determine whether Traces(K) ♣= φ,

The (countable) satisfiability problem of a logic L is the following decision problem: Given a

formula φ ∈ L, determine whether T ♣= φ for some (countable) T ̸= ∅.

Below we will use the fact that the model checking and satisfiability problems of LTL

are PSPACE-complete [25]. Furthermore, we use the facts that the satisfiability problem of

propositional team logic PL(∼) is ATIME-ALT(exp,poly)-complete [9], and that the com-

plexity of modal team logic is complete for the class TOWER(poly) := TIME(expnO(1)(1)),

where exp0(1) := 1 and expk+1(1) := 2exp
k

(1) [17, 16].

▶ Theorem 17.

1. The model checking and satisfiability problems of TeamLTLl(6) are PSPACE-complete.

2. The model checking and satisfiability problems of the left-flat fragment of TeamLTL(6)

are PSPACE-complete.
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3. The model checking problem of the left-downward closed fragment of TeamLTLl(∼,6) is

PSPACE-hard and it is contained in TOWER(poly).

4. The satisfiability problem of the left-downward closed fragment of TeamLTLl(∼,6) is

ATIME-ALT(exp,poly)-hard and it is contained in TOWER(poly).

Proof. Let us first consider the proofs of claims 1 and 2. Note that PSPACE-hardness holds

already for LTL-formulae, hence it suffices to show containment in PSPACE. Furthermore,

note that 2 follows immediately from 1 and Theorem 8. Assume a formula φ ∈ TeamLTLl(6)

and a Kripke structure K is given as input. By Theorem 10, φ is logically equivalent with a

formula of the form >f∈F φ
f , where f varies over selection functions selecting, separately

for each occurrence, either the left disjunct ψ or the right disjunct θ of each subformula of

the form ψ6 θ of φ. Now, without constructing the full formula >f∈F φ
f , using polynomial

space with respect to the size of φ it is possible to check whether Traces(K) ♣= φf for some

f ∈ F . Hence the upper bound follows from the fact that LTL model checking is in PSPACE.

The upper bound for satisfiability follows analogously.

Let us then consider the proof of claim (4). The proof of claim (3) is analogous. For

the lower bound it suffices to note that propositional team logic PL(∼) is a fragment of

the left-downward closed fragment of TeamLTLl(∼,6) and hence its satisfiability problem

can be trivially reduced to the satisfiability problem of the left-downward closed fragment.

Therefore ATIME-ALT(exp,poly)-hardness follows by the result of [9].

For the upper bound we first transform an input formula φ into an equivalent quasi-flat

formula of the form >i∈I(αi ∧
∧

j∈Ji
∃βi,j). Analogously to [17, 16], this formula can be

computed in time TIME(expO(♣ϕ♣)(1)). It is now easy to see that the quasi-flat formula is

satisfiable iff there exists i ∈ I, such that SAT(αi ∧ βi,j) = 1 for all j ∈ Ji. Since LTL-

satisfiability checking is contained in PSPACE ⊆ TIME(2n
O(1)

), the overall complexity of

the above procedure is in TIME(exp(♣ϕ♣O(1))(1)). ◀

6 Conclusion

We introduced a novel set-based semantics for asynchronous TeamLTL. We showed several

results on the expressive power and complexity of the extensions of TeamLTLl by the Boolean

disjunction TeamLTLl(6) and by the Boolean negation TeamLTLl(∼). In particular, our

results show that the complexity properties of the former logic are comparable to that of LTL

and that the left-downward closed fragment of the latter has also decidable model-checking

and satisfiability problems. See Table 1 on page 4 for an overview of our expressivity results

and Table 2 for our complexity results. We obtained these results on TeamLTLl(6) and

TeamLTLl(∼) via normal forms that also allowed us to relate the expressive power of these

logics to the corresponding logics in the strict semantics. Our results show that, while the

synchronous TeamLTL can be viewed as a fragment of second-order logic, the asynchronous

TeamLTL(6) under the lax semantics is a sublogic of HyperLTL (see [2] for a definition).

Furthermore, our decidability results show, e.g, that it will probably be possible to devise a

complete proof system for the logic. The full version of this article [13] relates and applies

our results to recently defined logics whose asynchronicity is formalised via time evaluation

functions [7]. We conclude with open questions:

Does Theorem 14 extend to all formulae of TeamLTLl(∼)? Note that any quasi-flat–

TeamLTL(∼)-formula can be rewritten in HyperLTL.

Can the result (iii) of Theorem 17 be accompanied by an matching lower bound (i.e.,

TOWER(poly)-hardness result)?



J. Kontinen, M. Sandström, and J. Virtema 60:13

Can a syntactic characterisation (similar to Corollary 11) be obtained for the downward

closed fragment of TeamLTLl(∼)? We believe that TeamLTLl(6) is a promising candidate,

as its extensions with infinite conjunctions and disjunctions suffices for all downward

closed properties of teams.

What is the complexity of model checking for TeamLTL(6) under the strict semantics?
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