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Predicting Human-Robot Team Performance

Based on Cognitive Fatigue

Yuhui Wan and Chengxu Zhou

Abstract—Human-robot systems are increasingly employed
across various industries, such as transportation, military, emer-
gency response, and manufacturing. During human-robot collab-
oration, cognitive fatigue accumulation significantly impacts the
human operator’s performance, particularly in teleoperation and
shared autonomy. This fatigue accumulation can be dangerous
and may lead to incidents in robot operations. Consequently,
modelling human performance is crucial for understanding and
evaluating human-robot systems for risk mitigation and efficiency
enhancement. In this work, we propose a prediction model for
human-robot teams based on Fitts’ Law and the SAFTE model.
The model takes into account the operator’s cognitive fatigue
level and mission requirements to predict whether the operator
is suitable for executing the mission and the time required for
the human-robot team to complete it. Furthermore, we present
a case study on a hypothetical scenario, drawing upon human
study data, to assess the model’s applicability.

Index Terms—human-robot collaboration, cognitive fatigue,
performance prediction, robot safety

I. INTRODUCTION

Predicting the performance of a robot for a specific task

with given parameters is often straightforward. However, in

the context of human-robot teaming, accurately predicting

performance becomes a highly non-intuitive task due to the

influence of human factors, particularly cognitive fatigue.

Modelling human-robot team performance while accounting

for cognitive fatigue presents significant challenges due to the

inherent uncertainty in human behaviour, but doing so could

yield valuable insights for a wide range of applications.

Fatigue is a well-known risk factor in the operation of

machinery, including vehicles and robots. The Federal Avi-

ation Administration (FAA) reports that 21% of the Aviation

Safety Reporting System (ASRS) reports mention pilot or crew

fatigue, with 3.8% of these cases directly attributing incidents

to fatigue [1]. Similarly, the U.S. National Highway Traffic

Safety Administration (NHTSA) estimates that driving under

fatigue has caused 100, 000 crashes, leading to over 1, 500
fatalities and 71, 000 personal injuries [1]. While research on

operator fatigue in the transportation industry is extensive,

similar studies in robotics are limited. Nonetheless, avail-

able evidence highlights the dangers of fatigue accumulation

in robotic operations. For example, a study analysing 237
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robotics incidents found that 63.27% of these cases were

directly caused by excessive action stemming from a lack of

workforce, night shifts, insufficient relaxation, or fatigue [2].

Furthermore, 31.39% of the root causes for unsafe behaviour

in robot operation cases were attributable to night shifts or

fatigue accumulation.

Human-robot teams are increasingly tasked with mission-

critical operations, such as search and rescue, fire fighting,

and Explosive Ordnance Disposal. Consequently, determining

whether a human operator is fit for a mission and accurately

predicting the mission’s duration are crucial factors in the

decision-making process. To address these concerns, we pro-

pose a performance prediction model that accounts for the

cognitive effectiveness of robot operators by incorporating

their fatigue levels. In particular, our model computes cogni-

tive fatigue based on task demand and the homeostatic sleep

condition, enabling the prediction of an operator’s cognitive

effectiveness.

The operator’s effectiveness level can also be employed

to enhance the human-robot team’s performance prediction.

Existing methods typically separate system performance and

user experience into distinct evaluations [3], [4]. However,

the fatigue of human operators can significantly impact the

system’s overall performance during missions. Therefore, in-

tegrating the cognitive effectiveness level with the operator’s

skill level is essential for accurately predicting human-robot

team performance.

Our proposed model combines the Sleep, Activity, Fatigue,

and Task Effectiveness (SAFTE) model [5] with the extended

Fitts’ Law [4], as depicted in Fig. 1. The SAFTE model

integrates the homeostatic sleep process, circadian rhythm, and

sleep inertia to generate a human’s cognitive effectiveness. In



this study, we first employ the task demand model, calculated

using task difficulty derived from the extended Fitts’ Law,

to refine the cognitive effectiveness model by amplifying

the attention capacity depletion rate based on task demand.

The resulting effectiveness is then utilised to determine an

operator’s suitability for operating a robot. The operator’s skill

level is generated using standard tasks proposed within the

extended Fitts’ Law. By incorporating the operator’s skill level,

cognitive effectiveness, and mission requirements, mission

performance (time) can be predicted with greater accuracy.

Our contribution to the field lies in the development of

a novel performance prediction model that considers both

the cognitive fatigue of human operators and their skill

level, resulting in a more accurate representation of human-

robot team performance. By employing the proposed model,

stakeholders can make more informed decisions regarding

mission assignments and optimise the efficiency and safety

of mission-critical operations. Furthermore, this research sets

the stage for future studies on the effects of fatigue on human-

robot team performance, further enhancing the practicality and

applicability of robotics in various domains.

This article is structured as follows. In Section II, we review

related works in the fields of human-robot collaboration and

human cognitive fatigue models. Next, Section III presents

our proposed model for predicting task performance while

accounting for cognitive fatigue. Subsequently, we provide a

case study on a hypothetical scenario in Section IV to assess

the effectiveness of our model, followed by a discussion of

the results in Section V. Finally, we conclude the article in

Section VI, summarising our findings and discussing potential

future directions for this research area.

II. RELATED WORKS

A. Evaluation of Human-Robot Collaboration

Fully autonomous systems for open missions may not be

feasible in the near future, thus necessitating efficient human-

robot collaboration at various levels. Substantial efforts have

been made over the years to advance human-robot collab-

oration [6], [7]. The development of new technologies and

interfaces has led to the necessity of evaluating and predicting

the performance of these collaborations for effective real-world

mission applications. Some research focuses on evaluating

the robot itself [8], while others concentrate on the interface

side [9], [10]. Additionally, certain studies have attempted to

incorporate human factors into the overall system performance

evaluation [3], [4], [11], [12].

One study proposes a task-based framework, which con-

siders successful and unsuccessful motions along with user

opinions [11]. Other evaluation methods analyse the workload

on participants in robot teleoperation using the NASA Task

Load Index (NASA-TLX) and other customised scales [3], [4].

These scales provide a comprehensive view of user experience

and workload, which can prove valuable in enhancing system

design. Although workload plays a crucial role in system

performance by inducing fatigue in human operators, few

studies have investigated the impact of workload on human

mental fatigue and performance in robot operation.

Accurate modelling of task difficulty is vital for predicting

system performance in a given task. Task difficulty is directly

related to the demand placed on a human operator and

affects the fatigue accumulation rate during the task [13]–[17].

Consequently, a precise model for task difficulty is essential

for both task performance modelling and fatigue modelling. In

psychology, Fitts’ Law [18] is a well-known tool for predicting

human-computer system performance. It estimates the time

required for tasks based on a task difficulty model. However,

the original Fitts’ Law is only one-dimensional, limiting its

application outside human-computer interaction. Various mod-

ifications have been made to Fitts’ Law, particularly concern-

ing its task difficulty model. Some researchers have extended

the task difficulty model to higher dimensions [19], [20]. Our

previous study refines the task difficulty model to make it

more suitable for robot teleoperation tasks [4]. However, to

the best of our knowledge, no research has leveraged such

task difficulty models to generate task demand and cognitive

fatigue levels in human operators for robot teleoperation.

B. Modelling Human Fatigue

Fatigue is a significant factor affecting human performance

in human-robot collaboration. Physical fatigue plays a crucial

role in human-robot co-manipulation [21], while cognitive

fatigue mainly influences human-robot teleoperation [22], [23].

1) Measurement-Based Approaches: Cognitive fatigue can

be affected by numerous factors. Some research approaches

fatigue estimation by continuously monitoring human and

environmental activities [24]–[28]. A notable study provides a

comprehensive model of human fatigue, incorporating numer-

ous measured elements such as temperature, noise, circadian

rhythms, and other environmental factors [24]. This model

also accounts for the accumulative property of fatigue during

tasks and proposes a dynamic fatigue detection model using

Dynamic Bayesian Networks (DBN). Building on this work,

various other fatigue detection models for driving in a dynamic

manner have been developed, including those based on Hidden

Markov Models (HMM) [25], DBN [26], and deep learning

[27]. Although these models are comprehensive, they require

a large amount of sensor data from both humans and the

environment, which can be impractical for real-world mission

applications.

2) Bio-mathematical Model: Bio-mathematical model ap-

proaches estimate human performance based on different

schedules [29]. Due to the challenges in modelling neurophys-

iological mechanisms of human brain function and individual

human differences, this approach uses average data from

large volunteer group studies. One of the well-known bio-

mathematical models is the SAFTE model and its application

Fatigue Avoidance Scheduling Tool (FAST) [5], [30]. SAFTE

employs sleep/wake schedules and the body’s internal clock to

predict changes in human cognitive performance. Some studies

have improved the SAFTE model by considering additional

parameters, including task demand, light countermeasures,
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Fig. 2. Relationship of components with corresponding equation numbers in
the model. Output Components are marked in green.

pharmaceutical countermeasures, night shifts, and jet lag,

which significantly influence fatigue and human performance

bio-mathematical models [31]–[33].

As robots become increasingly prevalent across various

industries, humans operating robots under the influence of

fatigue is an emerging concern. However, minimal research

has considered fatigue in modelling human-robot collaboration

[23]. Combining the current human-robot teleoperation model

with these well-established bio-mathematical fatigue models

can provide agencies with predictions of human performance

under mental fatigue while operating robots.

III. METHODOLOGY

This study utilises the cognitive fatigue model based on the

SAFTE model [5] and task demand [33] to predict cognitive

effectiveness, E. The model also employs the extended Fitts’

Law [4] to model task difficulty and to measure operator skill

level. Subsequently, we integrate the influence of cognitive

effectiveness on operator skills to provide a more precise

prediction of system performance for a given mission, as

shown in Fig. 2.

A. Modelling Cognitive Effectiveness

Although the SAFTE model includes both the waking and

sleeping time, only the cognitive effectiveness during the

waking time is considered in the proposed model. The waking

time has two parts: the standby and mission periods. After the

operator is awakened, the standby period starts immediately.

The mission period starts when the operator starts to execute

any mission. The cognitive effectiveness at time t, E(t), of

these two periods can be calculated as

E(t) =

{

R(t)/Rmax + Ct − It, during standby

E(t− 1)− Wmax−W (t)
Wmax

, during mission
, (1)

where R(t)/Rmax represents the current ratio of sleep reservoir

capacity from (6), and Ct is the circadian component from

(7), It is the dimensionless transient inertia term at time t, as

further explained in Section III-C, W (t) is the current attention

capacity with a maximum capacity of Wmax = 75, as further

explained in Section III-D.

This cognitive effectiveness represents the operator’s perfor-

mance level and can be used to evaluate if the operator will

be suitable for executing the mission safely.

B. Task-Based Performance Prediction

The widely known Fitts’ Law [18] predicts the performance

of humans through task difficulty with the following equation:

PT = a+ b · ID, (2)

where PT is the predicted task completion time, ID is the

index of difficulty for the given task. Mathematically, b is

the slope of PT over ID. Therefore, we understand b as

the operator skill coefficient because it reflects the operator

skill level through the changing ratio between task time and

difficulty.

However, the original Fitts’ Law models tasks in one-

dimensional, which limits its application outside the screen.

In [4], the task difficulty is extended to three-dimensional for

real-world robot applications, which can be described as

IDtotal =
n
∑

1

IDtransi + IDorii + IDdiri , (3)

where IDtransi , IDorii , and IDdiri represent the translation,

orientation, and direction difficulty of the i-th motion step,

respectively, please refer to [4] for detailed ID calculation.

In practical scenarios, the upcoming task difficulty dimin-

ishes as more motion steps are completed. Thus, the task

difficulty left at time t has an Index of Difficulty, IDleft(t),
given by:

IDleft(t) = IDtotal − IDdone(t− 1), (4)

where IDdone(t−1) denotes the difficulty of motion steps and

stages already completed at time t, which can be predicted

through operator skill coefficient by

IDdone(t) =
1

b
· E(t) · δt, (5)

where b is measured operator skill coefficient from Fitts’ Law

in (2).

With the predicted upcoming tasks, IDleft(t), we can un-

derstand the estimated progress of the mission at the time t.
Finally, iteration is used to predict if the operator can com-

plete the mission within the safety limit of his/her cognitive

effectiveness and how long the mission will take.

C. Awaking and Standby Period

In practical terms, cognitive fatigue largely depends on

homeostatic sleep quality, which can be conceptualised as a

sleep reservoir in the SAFTE Model. When the operator has

had sufficient sleep and is in their optimal performance state,

the homeostatic sleep reservoir capacity reaches its maximum,

R(t0) = Rmax = 2880. During the initial 2 hours post-

awakening, there is an immediate decline in performance due

to the desynchrony between the rapid activation of the brain

stem and the slower activation of the frontal cortical area [34],

represented by transient inertia, It, with the maximum of 0.05.

After this 2 hours period, the reservoir level at the current time

t, R(t), begins to deplete as follows:

R(t) = R(t− 1)− Vkδt, (6)



where Vk = 30 hour−1 is the depletion rate during wakeful-

ness [33].

The circadian component, Ct, represents the body’s internal

clock and its influence on various physiological, which can be

calculated by

Ct = ct · (a1 + a2
Rmax −R(t)

Rmax

), (7)

where a1 = 0.07, a2 = 0.05, and ct is the circadian rhythm

(c) arousal at time t, which varies between +1 and -1 [35].

D. Mission Period

While performing a mission, the depletion rate over time

depends on the task demand and the sleep reservoir and its

capacity. Much evidence has proven that higher cognitive

demanding task donates a higher depletion rate on attention

capacity [13]–[17]. Also, poor sleep quality contributes to the

higher depletion rate [17], [36], [37]. Therefore, the current

attention capacity, W (t), can be expressed as

W (t) = W (t− 1) + Ẇtδt, (8)

where

Ẇt =

{

−

Rmax

100+R(t) · L(t) · Vd, during task performance

Vr, during recovery
,

is the current attention capacity at time t, Vd = 1.14 hour−1 is

the depletion rate while performing tasks [38], L(t) is the task

demanding levels at time t, as explained below, Rt and Rmax

are homeostatic sleep reservoir from (6) and reservoir capacity,

and Vr = 11 hour−1 is the recovery rate during resting [38].

The task demand level at time t, L(t), refers to the cognitive

attention required from the operator to perform the given

task. This level is contingent upon task difficulty, whereby

a more complex task necessitates greater cognitive attention

and consequently has a higher task demand level.

Although a task may exhibit an unbounded level of difficulty

when deemed infeasible, it is implausible for a task to impose

infinite mental demand on the operator, even if the operator is

aware that the task cannot be completed. To account for this,

the model employs the following equation to map the task

difficulty to the operator’s mental demand level:

L(t) =
tan−1(IDleft(t)/3600)

π/6
, (9)

where L(t) represents the task demand levels at time t, with

a range of [0, 3] [33]. Since ID is measured according to the

unit of seconds, IDleft(t) is converted by 1/3600 to fit with

the rest of the parameters.

IV. CASE STUDY AND RESULTS

To evaluate the feasibility of the proposed model, we

designed a hypothetical scenario based on data from our prior

human study on mobile manipulator teleoperation [4]. The

scenario involves two human operators with average skill

levels from groups A and B, as identified in the previous

research. Group A comprises users with more teleoperation
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Fig. 3. In the situation of both operators performing the whole mission
continuously, the upcoming task difficulty and current operator effectiveness
in task performance at the current time are shown in the graph. 0 upcoming
task difficulty means all task has been completed, and 0 effectiveness means
the operator is no longer suitable for a mission.

TABLE I
PARAMETERS USED IN THE CASE STUDY, WITH CALCULATED VALUES IN

BOLD. ALL PARAMETERS ARE DIMENSIONLESS.

Parameters IDtotal IDi R(t) It ct Ct E(t0)

Value 1500 500 2880 0.05 0.5 0.035 98.5%

experience, while group B consists of users with less experi-

ence. Consequently, Operator 1, with the average skill level

of group A, represents a more experienced user with a skill

level of b = 7.9. Operator 2, with the average skill level of

group B, represents a less experienced user with a skill level

of b = 17.0.

Both operators are required to perform the same mobile

manipulator teleoperation mission, which has a total difficulty

of 1500 (IDtotal = 1500) and consists of three sub-tasks, each

with a difficulty of 500 (IDi = 500), as shown in Table I.

The field commander needs to know whether the operators

can complete the mission and the estimated time required for

each operator.

A. Standby Period

We assume that both operators arrive at work in reasonably

good homeostatic sleep conditions for the scenario. Specifi-

cally, they have a night of sufficient sleep before the mission

(R(t) = Rmax = 2880). However, as employees typically do

not start working immediately upon waking up, both operators

begin the mission 2 hours after awakening (It = 0.05) and

have a circadian rhythm of 0.5 at this time (ct = 0.5).

Consequently, by using (7), the circadian component at this

time can be calculated as Ct = 0.035. Then, with all the

necessary information, the effectiveness at the start of the
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Fig. 4. In the situation of the mission being split into 3 sub-tasks without
resting time in between, the upcoming task difficulty and current operator
effectiveness in task performance at the current time are shown in the graph.

mission can be obtained from (1), yielding E(t0) = 98.5%,

as shown in Table I.

B. Executing Mission as a Whole

To predict the performance of the two operators, we apply

the proposed model to the mission. Initially, we assume they

perform the entire mission without stopping or dividing it. The

results indicate that neither operator can complete the mission

due to fatigue accumulation, with both operators reaching 0
cognitive effectiveness and becoming unsuitable for operation

before the mission is completed, as shown in Fig. 3. From

Fig. 3(b), Operator 1 and 2 have their effectiveness reaches 0
at t = 2.49 hours and t = 2.32 hours.

C. Dividing Mission without Resting

In the third approach, the agency divides the mission into

three sub-tasks, incorporating a 5-minute rest period between

each subtask to facilitate recovery of the operators’ attention

capacity, which leads to improved performance, as depicted in

Fig. 4. Operator 1 accomplishes the mission at t = 3.86 hours,

with a remaining effectiveness of Eend = 76.91%. However,

Operator 2 is unable to complete the mission and reaches zero

effectiveness at t = 6.45 hours.

D. Division of Mission with Rest Periods

In the third approach, the agency splits the mission into three

sub-tasks. It also gives the operators 5 minutes of rest between

each subtask to recover their attention capacity leading to a

better result, as shown in Fig. 5. Operator 1 completes the

mission at t = 3.86 hours, with the remaining effectiveness at

Eend = 76.91%. However, Operator 2 is still unable to finish

the mission and reaches 0 effectiveness at t = 6.45 hours.
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Fig. 5. In the situation of the mission being split into 3 sub-tasks and having
resting time in between, the upcoming task difficulty and current operator
effectiveness in task performance at the current time are shown in the graph.

V. DISCUSSION

The comparison of Fig. 3, Fig. 4, and Fig. 5 indicates that

partitioning a larger mission into smaller sub-tasks renders the

otherwise unfeasible mission achievable, while incorporating

rest periods further enhances human performance. The model

elucidates this phenomenon by demonstrating that dividing a

larger mission reduces the task demand on the operator, result-

ing in a decrease in the rate of attention capacity depletion.

When the attention capacity is depleted at a slower pace, its

impact on cognitive effectiveness is less pronounced. This

mirrors real-world scenarios, where substituting a complex

mission with several less complicated sub-tasks diminishes the

volume of information to be processed and work to be planned

for the operator at a given time.

Fig. 4 also reveals that, upon dividing the mission, Oper-

ator 1 can complete the mission with the highest remaining

effectiveness (Eend = 76.91%). Nonetheless, Operator 2 is still

unable to finish the mission before their effectiveness drops to

0. This outcome mirrors real-world situations where operators

possessing higher skill levels can tackle more challenging

tasks compared to their less-skilled counterparts. Moreover, as

depicted in Fig. 4 and Fig. 5, brief rest periods further boost

performance by offering recovery intervals. These recovery

intervals enable operators to recuperate from accumulated

fatigue, thereby better preparing them for subsequent tasks.

This is evident from Fig. 4(b), where the operators regain their

attention capacity during the 5-minute break, and following

the break, their cognitive effectiveness resumes at a new,

reduced rate of decline. Consequently, the results suggest that

organising a demanding mission into more manageable sub-

tasks and allotting rest periods for operators to recover their

attention capacity is advantageous.



VI. CONCLUSION

This study introduced a human-robot collaboration per-

formance model centred on operator skill level and fatigue

accumulation for a specified mission. The model extends Fitts’

Law [4] to represent task difficulty and operator skill level,

while the SAFTE model [5] is employed to account for fatigue

accumulation and its impact on the operator. As such, the

model can predict an operator’s cognitive effectiveness to

assess their suitability for a mission and the duration required

for mission completion. Furthermore, the model takes recovery

periods into account, enabling the agency to better strategise

mission planning and enhance performance.

Given that the influence of fatigue on human-robot collab-

oration remains an emerging area of research, many of the

model’s elements and coefficients are derived from studies

in related fields, such as transportation and mechanical op-

eration. Future investigations will concentrate on measuring

these elements within human-robot interactions to refine the

model’s accuracy. Additionally, in the case study, the operator

is considered unsuitable for executing missions when their

effectiveness falls to zero. In real-world applications, a more

stringent evaluation involving a higher cut-off for operator

effectiveness would be imposed as a safety precaution, par-

ticularly in high-risk missions.
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