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Abstract. The physical direct problem of determining the temperature distribution in a

single-layer two-dimensional biological skin tissue is considered. This problem arises in hy-

perthermia applications where one aims to obtain knowledge of temperature distribution

through a biological tissue that is subjected to instantaneous heating. Due to the finite

speed of heat propagation, the appropriate mathematical model is described by a hyper-

bolic thermal-wave model of bio-heat transfer. Such a model is numerically solved using the

time-marching method of fundamental solutions, as well as an alternating direction implicit

scheme. The results obtained by the two numerical methods are discussed and compared,

and excellent agreement is achieved.

1.1 Introduction

One model that takes into account the transient mechanisms of heat transfer in biological tissues
is based on the Pennes’ parabolic reaction-diffusion equation (obtained by taking τ = 0 in
equation (1.1) below), which was proposed to model the temperature evolution during cancer
hyperthermia treatment [12], the thermal radiation from cellular phones [13] and the ablation
of afflicted tissues [4], among others. However, although still widely used, the Pennes parabolic
model of heat transfer implies infinite speed of thermal propagation. This contradicts the
physical reality that biological bodies, along with a number of other common materials, exhibit
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a relatively long thermal relaxation (or lag) time τ (typically between 15 to 30 seconds), [9].
This contradiction is resolved by the thermal-wave model of bio-heat transfer given by the
Maxwell-Cattaneo hyperbolic equation (1.1) defined in Section 1.2. Related to this equation, in
this paper, we solve a direct physical problem of determining the temperature distribution in a
single-layer, two-dimensional biological skin tissue by the time-marching method of fundamental
solutions (TMMFS), as well as the alternating direction implicit (ADI) scheme. The results
obtained by the two numerical methods are discussed and compared.

The paper is organized as follows. The mathematical formulation of the direct problem is
presented in Section 1.2, and a non-dimensional form of it is derived. In Sections 1.3 and 1.4,
the ADI scheme and the TMMFS are described. In Section 1.5, the numerical methods are
implemented for the numerical solution of the model under consideration for a physical example
concerning the determination of the temperature distribution in a biological tissue undergoing
laser irradiation. Finally, Section 1.6 highlights the conclusions of the work.

1.2 Mathematical formulation

Let Ω = (0, L̄1)× (0, L̄2) denote the spatial domain of a single-layer, two-dimensional biological
skin tissue, where L̄1 > 0 and L̄2 > 0 stand for the depth and width of the tissue, respectively.
The heat propagation in such a biological body is governed by the thermal-wave model of
bio-heat transfer [8]

ρtctτ
∂2T

∂t̄2
+ (ρtct + τρbcbwb)

∂T

∂t̄
= κ∇2T + ρbcbwb(Tb − T ) +Qm +Qe

+τ
∂

∂t̄
(Qm +Qe) , (x̄1, x̄2, t̄) ∈ Ω× (0, tf] , (1.1)

where T , ρt, ct and κ represent the temperature [◦C], density [kg/m3], specific heat [J/(kg ◦C)]
and thermal conductivity [W/(m ◦C)] of the tissue, respectively, ρb, cb and wb stand for the
density [kg/m3], specific heat [J/(kg ◦C)] and perfusion rate [s−1] of the blood, respectively, τ
is the relaxation time [s] required for the thermal waves to propagate, Tb is the (arterial) blood
temperature [◦C], Qm and Qe are heat generations [W/m3] due to metabolism and external
heating, respectively, and tf is the duration of the thermal process [s].

Consider equation (1.1) subject to the initial conditions

T (x̄1, x̄2, 0) = T0(x̄1, x̄2),
∂T

∂t̄
(x̄1, x̄2, 0) = V0(x̄1, x̄2), (x̄1, x̄2) ∈ Ω, (1.2)

where T0 and V0 are prescribed functions, and the Dirichlet boundary condition

T (x̄1, x̄2, t̄) = µ(x̄1, x̄2, t̄), (x̄1, x̄2, t̄) ∈ ∂Ω× [0, tf], (1.3)

where µ is a prescribed function, assuming also the compatibility µ|∂Ω×{0} = T0|∂Ω. Adiabatic or
Robin boundary conditions can also be considered in place of the Dirichlet boundary condition
(1.3). The hyperbolic model (1.1)–(1.3) can be non-dimensionalized, as follows:

(xi, Li) =

√

τCt

κt2f
(x̄i, L̄i) for i = 1, 2, t =

t̄

tf
, u =

T − Tb
Tb

,

φ =
T0 − Tb
Tb

, ψ =
tfV0
Tb

, ν =
µ− Tb
Tb

, (1.4)
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where the blood temperature Tb has been assumed uniform and equal to a non-zero constant.

Introducing the non-dimensional variables (1.4) into the thermal-wave model of bio-heat
transfer (1.1)–(1.3) yields the dimensionless model:







utt + a1ut = ux1x1 + ux2x2 − a2u+ g(x1, x2, t), x = (x1, x2) ∈ D, t ∈ (0, 1] ,
u(x1, x2, 0) = φ(x1, x2), ut(x1, x2, 0) = ψ(x1, x2), (x1, x2) ∈ D,
u(x1, x2, t) = ν(x1, x2, t), (x1, x2, t) ∈ ∂D × [0, 1],

(1.5)

where D = (0, L1)× (0, L2) and

a1 =
tf
τ
+
wbCbtf
Ct

, a2 =
wbCbt

2
f

τCt
, g(x1, x2, t) =

t2f
τTbCt

[

Qe +Qm +
τ

tf

∂

∂t
(Qe +Qm)

]

. (1.6)

The next two sections describe the two numerical methods for the solution of the direct
initial-boundary value problem (1.5).

1.3 The alternating direction implicit (ADI) scheme

In this section, we describe the ADI scheme from [1, 11] for the numerical solution of the problem
(1.5), as follows. Introducing the intermediate variable v as

v := ut + a1u, (1.7)

then the first equation in (1.5) can be rewritten as

vt = ux1x1 + ux2x2 − a2u+ g(x1, x2, t). (1.8)

We subdivide the solution domain D × [0, 1] into M (1), M (2) and N subintervals of equal step
lengths ∆x1 = L1/M

(1), ∆x2 = L2/M
(2) and ∆t = 1/N , respectively. At the node (x1i, x2j , tn),

we denote uni,j := u(x1i, x2j , tn), v
n
i,j := v(x1i, x2j , tn) and g

n
i,j := g(x1i, x2j , tn), where x1i = i∆x1,

x2j = j∆x2 and tn = n∆t for i = 0,M (1), j = 0,M (2) and n = 0, N .
The Crank–Nicolson method, which is unconditionally stable and second-order accurate in

space and time, discretises (1.7) and (1.8) as:

un+1
i,j − uni,j

∆t
=

1

2

(

vni,j − a1u
n
i,j + vn+1

i,j − a1u
n+1
i,j

)

,

i = 1, (M (1) − 1), j = 1, (M (2) − 1), n = 0, (N − 1), (1.9)

vn+1
i,j − vni,j

∆t
=

1

2

[(

1

(∆x1)2
δ2x1

+
1

(∆x2)2
δ2x2

− a2

)

(

uni,j + un+1
i,j

)

+ gni,j + gn+1
i,j

]

,

i = 1, (M (1) − 1), j = 1, (M (2) − 1), n = 0, (N − 1), (1.10)

where δ2x1
uni,j := uni−1,j − 2uni,j + uni+1,j and δ2x2

uni,j := uni,j−1 − 2uni,j + uni,j+1. Solving (1.9) for

vn+1
i,j , we obtain:

vn+1
i,j =

(

a1 +
2

∆t

)

un+1
i,j +

(

a1 −
2

∆t

)

uni,j − vni,j , (1.11)
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for i = 1, (M (1) − 1), j = 1, (M (2) − 1) and n = 0, (N − 1). Introducing (1.11) into (1.10), we
obtain:

(

a1 +
2

∆t

)

un+1
i,j +

(

a1 −
2

∆t

)

uni,j

=
∆t

2

(

1

(∆x1)2
δ2x1

+
1

(∆x2)2
δ2x2

− a2

)

(

uni,j + un+1
i,j

)

+ 2vni,j +
∆t

2

(

gni,j + gn+1
i,j

)

, (1.12)

for i = 1, (M (1) − 1), j = 1, (M (2) − 1) and n = 0, (N − 1). Denoting A := a1 +
2

∆t
+
a2∆t

2
,

equation (1.12) can be reorganized as:

[

1−
∆t

2A

(

1

(∆x1)2
δ2x1

+
1

(∆x2)2
δ2x2

)]

un+1
i,j =

[

1 +
∆t

2A

(

1

(∆x1)2
δ2x1

+
1

(∆x2)2
δ2x2

)]

uni,j

+
2

A

[

vni,j −

(

a1 +
a4∆t

2

)

uni,j

]

+
∆t

2A

(

gni,j + gn+1
i,j

)

, (1.13)

for i = 1, (M (1) − 1),j = 1, (M (2) − 1) and n = 0, (N − 1).

The above finite-difference scheme is second-order accurate [1], and thus we can add to it
any term of the same or higher order without affecting its order of accuracy. Since the term

(∆t)2

4A2 (∆x1)
2 (∆x2)2

δ2x1
δ2x2

(

un+1
i,j − uni,j

)

is of higher order than the scheme’s order of accuracy, it can be added to the left-hand side of
(1.13) without altering its order. We then obtain

(

1−
∆t

2A(∆x1)2
δ2x1

)(

1−
∆t

2A(∆x2)2
δ2x2

)

un+1
i,j

=

(

1 +
∆t

2A(∆x1)2
δ2x1

)(

1 +
∆t

2A(∆x2)2
δ2x2

)

uni,j

+
2

A

[

vni,j −

(

a1 +
a2∆t

2

)

uni,j

]

+
∆t

2A

(

gni,j + gn+1
i,j

)

, (1.14)

for i = 1, (M (1) − 1), j = 1, (M (2) − 1) and n = 0, (N − 1). Introducing an intermediate variable

u
n+ 1

2
i,j , see [1, 11], we obtain the Peaceman-Rachford (PR)-like splitting scheme

(

1−
∆t

2A(∆x1)2
δ2x1

)

u
n+ 1

2
i,j =

(

1 +
∆t

2A(∆x2)2
δ2x2

)

uni,j

+
1

A

[

vni,j −

(

a1 +
a2∆t

2

)

uni,j

]

+
∆t

4A

(

gni,j + gn+1
i,j

)

, (1.15)

(

1−
∆t

2A(∆x2)2
δ2x2

)

un+1
i,j =

(

1 +
∆t

2A(∆x1)2
δ2x1

)

u
n+ 1

2
i,j

+
1

A

[

vni,j −

(

a1 +
a2∆t

2

)

uni,j

]

+
∆t

4A

(

gni,j + gn+1
i,j

)

, (1.16)

vn+1
i,j =

(

a1 +
2

∆t

)

un+1
i,j +

(

a1 −
2

∆t

)

uni,j − vni,j , (1.17)
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for i = 1, (M (1) − 1), j = 1, (M (2) − 1) and n = 0, (N − 1). In equations (1.15) and (1.16), the

values of un+1
0,j and un+1

M(1),j
for j = 1, (M (2) − 1) and n = 0, (N − 1) are needed. To obtain these

values, we add equations (1.15) and (1.16) to get

u
n+ 1

2
i,j =

un+1
i,j + uni,j

2
−

∆t

4A(∆x2)2
δ2x2

(

un+1
i,j − uni,j

)

, (1.18)

although we usually use the simpler approximation [11],

u
n+ 1

2
i,j =

un+1
i,j + uni,j

2
, (1.19)

for i = 0,M (1), j = 1, (M (2) − 1) and n = 0, (N − 1).

1.4 The time-marching method of fundamental solutions

In the TMMFS, one proceeds by first discretising the governing hyperbolic partial differential
equation in (1.5) in time. The resulting Poisson-type equation is then solved by a combination
of the method of fundamental solutions (MFS) and the method of particular solutions (MPS).
For the time discretization, we select the Houbolt finite-difference scheme [3]. The first- and
second-order time approximations are given by [3, 7]

∂un+1

∂t
≈

1

6h

(

11un+1 − 18un + 9un−1 − 2un−2
)

, (1.20)

∂2un+1

∂t2
≈

1

h2
(

2un+1 − 5un + 4un−1 − un−2
)

, (1.21)

where un := u(x, tn), tn = nh, h > 0 is the time step and n stands for the time level. Substituting
(1.20) and (1.21) into the PDE equation in (1.5), we obtain

∇2un+1 = C0u
n+1 + C1u

n + C2u
n−1 + C3u

n−2 − g(x, tn+1), (1.22)

where:

C0 =
2

h2
+

11a1
6h

+ a2, C1 = −
5

h2
−

3a1
h
, C2 =

4

h2
+

3a1
2h

, C3 = −
1

h2
−
a1
3h
.

In the coupled MPS-MFS, the solution of the Poisson-type equation (1.22) can be written
as

un+1 = un+1
P + un+1

H , (1.23)

where un+1
P is a particular solution that satisfies the non-homogeneous equation and un+1

H is the
homogeneous solution satisfying the Laplace equation.

The particular solution un+1
P can be approximated by a linear combination of radial basis

functions (RBFs), as follows:

un+1
P =

nf
∑

j=1

βn+1
j F (∥x− xj∥) , (1.24)
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where
{

βn+1
j

}

j=1,nf

are unknown coefficients to be determined by a collocation procedure and

nf is the number of the field points {xj}j=1,nf
∈ D. The function F can be obtained analytically

by solving the Poisson equation
∇2F (r) = f(r), (1.25)

where f is a radial basis function. Compactly supported radial basis functions (CSRBFs) are
chosen to govern the particular solution [7], namely,

f(r) =

{

(

1− r
λ

)2
, r ≤ λ,

0, r > λ,
(1.26)

F (r) =

{

r4

16λ2 − 2r3

9λ + r2

4 , r ≤ λ,
13λ2

144 + λ2

12 ln
(

r
λ

)

, r > λ,
(1.27)

where r is the distance between the field points and λ is the compact radius of the CSRBFs.
The homogeneous solution un+1

H can be approximated by a linear combination of fundamental
solutions (MFS), as follows:

un+1
H =

ns
∑

j=1

αn+1
j G

(∥

∥x− ξj
∥

∥

)

, (1.28)

where ns is the number of the source points {ξj}j=1,ns
/∈ D placed outside the spatial domain

D,
{

αn+1
j

}

j=1,ns

are unknown coefficients to be determined by a collocation procedure, and G

is the fundamental solution of the two-dimensional Laplace equation given by

G (∥x− ξ∥) = −
1

2π
ln (∥x− ξ∥) . (1.29)

According to the definitions of un+1
H and un+1

P , given by (1.28) and (1.24), respectively,
equation (1.22) can be written as

∇2un+1
P = C0

(

un+1
H + un+1

P

)

+ C1u
n + C2u

n−1 + C3u
n−2 − g(x, tn+1). (1.30)

Let us define ri,j and ρi,j as ri,j = ∥xi − xj∥ and ρi,j =
∥

∥xi − ξj
∥

∥. Then, substituting
equations (1.28) and (1.24) into equation (1.30) and collocating at the field points {xi}i=1,nf

∈ D,
we obtain

nf
∑

j=1

βn+1
j [f (ri,j)− C0F (ri,j)]−

ns
∑

j=1

αn+1
j C0G (ρi,j) = S(xi, t

n+1), i = 1, nf, (1.31)

where
S(xi, t

n+1) = C1u
n(xi) + C2u

n−1(xi) + C3u
n−2(xi)− g(xi, t

n+1). (1.32)

Substituting equations (1.28) and (1.24) into the Dirichlet boundary condition in (1.5) and
collocating at the boundary points {xi}i=nf+1,nf+nb

∈ ∂D, where nb is the number of the
boundary points satisfying nb ≥ ns, we obtain

nf
∑

j=1

βn+1
j F (ri,j) +

ns
∑

j=1

αn+1
j G (ρi,j) = ν(xi, t

n+1), i = nf + 1, nf + nb. (1.33)
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The equations (1.31) and (1.33) yield the following linear system of algebraic equations:

[

A1 A2

A3 A4

] [

βn+1

αn+1

]

=

[

S

ν

]

, (1.34)

where

βn+1 =
[

βn+1
1 , βn+1

2 , . . . , βn+1
nf

]T
, αn+1 =

[

αn+1
1 , αn+1

2 , . . . , αn+1
ns

]T
,

S =
[

S(x1, t
n+1), S(x2, t

n+1), . . . , S(xnf
, tn+1)

]T
,

ν =
[

ν(xnf+1, t
n+1), ν(xnf+2, t

n+1), . . . , ν(xnf+nb
, tn+1)

]T
,

A1 consists of the elements f (ri,j)− C0F (ri,j) , i = 1, nf, j = 1, nf,

A2 consists of the elements − C0G (ρi,j) , i = 1, nf, j = 1, ns,

A3 consists of the elements F (rnf+i,j) , i = 1, nb, j = 1, nf,

and

A4 consists of the elements G (ρnf+i,j) , i = 1, nb, j = 1, ns.

To set up the time marching, the Euler scheme is used to obtain the sub-components u−1 and
u−2 from the initial conditions in (1.5) as follows:

u−1 = φ− hψ, u−2 = φ− 2hψ. (1.35)

After determining the coefficients
{

βn+1
j

}

j=1,nf

and
{

αn+1
j

}

j=1,ns

by solving the linear system

of algebraic equations (1.34), the solution un+1 at any point x ∈ D is obtained explicitly as

un+1(x) =

nf
∑

j=1

βn+1
j F (∥x− xj∥) +

ns
∑

j=1

αn+1
j G

(∥

∥x− ξj
∥

∥

)

, x ∈ D. (1.36)

In the next section, the numerical methods described above are applied for the solution of a
physical example concerning the determination of the temperature distribution in a biological
tissue undergoing laser irradiation.

1.5 Numerical results and discussion

In this physical example, we consider the model (1.1)–(1.3) describing the heat propagation in
a rectangular biological skin tissue Ω = (0, L̄1)× (0, L̄2) with the input data [5, 6, 10]

κ = 0.5016 W/(m ◦C), ρt = 1000 kg/m3, ct = 4180 J/(kg ◦C),

ρbwb = 8 kg/(m3s), cb = 3344 J/(kg ◦C), τ = 20 s, Tb = T0 = µ = 37◦C,

L̄1 = 0.05m, L̄2 = 0.025m, V0 = Qm = 0, tf = 60 s.

The biological skin tissue is assumed to undergo laser irradiation of the form [5]

Qe(x̄1, x̄2) = ρtKΛ0 exp (a(x̄1 − 0.01)) exp

(

bx̄22
x̄1 + c

)

, (x̄1, x̄2) ∈
[

0, L̄1

]

×
[

0, L̄2

]

,

where K = 12.5 kg−1, a = −127 m−1, b = −129 m−1 and c = 0.0245 m are antenna constants,
and Λ0 = 20 W is the transmitted power.
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The above dimensional quantities transform, via (1.4) and (1.6), into the following dimensionless
data used as input for the problem (1.5):

a1 = 3.384, a2 = 1.152, φ = ψ = ν = 0, L1 = 10.7583, L2 = 5.3791,

g(x1, x2, t) = 0.291 exp (−0.5902x1 + 1.27) exp

(

−0.5995x22
x1 + 5.2716

)

.

The heat propagation in the single-layer, two-dimensional biological skin tissue is numerically
simulated by solving the dimensionless model (1.5) using the ADI scheme and the TMMFS
described in Sections 1.3 and 1.4, respectively. We take a mesh size of M (1) = M (2) = N = 40
when applying the ADI scheme. In implementing the TMMFS, we take λ = 3 and consider
nf = 81 field points, nb = 84 boundary points and ns = 84 source points uniformly distributed
in the spatial domain as shown in Figure 1.1. We take the time interval h = 0.025 which is
equal to time step used when employing the ADI scheme. For a clearer presentation, we report

-2 0 2 4 6 8 10 12

-2

-1

0

1

2

3

4

5

6

Figure 1.1: Distributions of the field, boundary and source points in the coupled MPS-MFS.

results using the scaled non-dimensional coordinates x̃1 = x̄1/L̄1 and x̃2 = x̄2/L̄2.
Figure 1.2 depicts the numerical solutions obtained by the two methods at various field

points, as functions of time t. From this figure, it can be seen that excellent agreement has been
achieved. To further confirm the convergence of the numerical solutions, Table 1.1 presents the
numerical solutions at various points scattered throughout the space-time domain, and the same
conclusion can be observed.

1.6 Conclusions

The physical problem of determining the temperature distribution in a single-layer, two-dimensional
biological skin tissue undergoing thermal therapy through laser irradiation has been considered.
The thermal-wave model of bio-heat transfer has been used to describe the heat propagation in
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Figure 1.2: The numerical temperature u(x̃1, x̃2, t) at (0.2, 0.2, t), (0.7, 0.3, t), (0.3, 0.6, t) and
(0.8, 0.8, t).

Table 1.1: The numerical solutions at various points in the space-time domain.
x̃1 x̃2 t uADI uTMMFS TADI (

◦C) TTMMFS (◦C)

0.1 0.4 0.4 1.8729E–2 1.7393E–2 37.6930 37.6435

0.2 0.3 0.8 3.5082E–2 3.5136E–2 38.2980 38.3000

0.3 0.5 0.2 1.4898E–3 1.3387E–3 37.0551 37.0495

0.4 0.7 0.1 1.5015E–4 1.2760E–4 37.0056 37.0047

0.6 0.6 0.9 2.3539E–3 2.3270E–3 37.0871 37.0861

0.8 0.3 0.5 4.3344E–4 4.1294E–4 37.0160 37.0153

0.9 0.7 0.7 2.3999E–4 2.2985E–4 37.0089 37.0085

such a tissue and numerically solved by an easy-to-implement meshless method. The numerical
solution has been validated by a comparison with the results obtained by the ADI scheme,
and excellent agreement has been achieved. One can observe that the mesh-free nature of
the time-marching method of fundamental solutions (TMMFS) makes it more efficient than
mesh-dependent methods. Another feature of the used meshless method is its applicability to
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irregular domains. The numerical results obtained can be further tested by a comparison with
experimental data. However, this extension is deferred to further work.
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