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ABSTRACT

The accuracy and efficiency of molecular quantum chemical calculations depend critically on the basis set used. However, the development of
novel basis sets is hindered because much of the literature relies on the use of opaque processes and tools that are not publicly available. We
present here BasisOpt, a tool for the automated optimization of basis sets with an easy-to-use framework. It features an open and accessible
workflow for basis set optimization that can be easily adapted to almost any quantum chemistry program, a standardized approach to testing
basis sets, and visualization of both the optimized basis sets and the optimization process. We provide examples of usage in realistic basis
set optimization scenarios where: (i) a density fitting basis set is optimized for He, Ne, and Ar; (ii) the exponents of the def2-SVP basis are
re-optimized for a set of molecules rather than atoms; and (iii) a large, almost saturated basis of sp primitives is automatically reduced to
(10s5p) while achieving the lowest energy for such a basis set composition.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0157878

I. INTRODUCTION

Quantum chemistry is a vital part of modern chemistry
research, with applications ranging from characterizing unknown
products all the way through to designing new molecules. However,
it is still limited in the size of systems that are tractable. There is
typically a trade-off between accuracy and efficiency due to the com-
putational expense of the various steps in typical algorithms, for
example, in calculating molecular integrals or in the diagonaliza-
tion of an effective Hamiltonian. There are two primary aspects of
a quantum chemical calculation that contribute to both the cost and
accuracy: the choice of method and the basis set used to represent
the system.

A great deal of research has focused on the first of these. In
pursuit of accuracy, there have been many attempts at simplifying
high-cost wavefunction theory, for example, through the use of local
orbitals1,2 and density fitting3–8 approximations. In this way, it is
now possible to routinely run coupled-cluster level calculations on
systems of up to a few hundred atoms,9,10 although the cost is still
far from negligible, especially for properties requiring derivatives.
Similarly, attempts have been made to make low-cost methods more
accurate, for example by mixing wavefunction theory and density

functional theory (DFT).11 On the other end of the spectrum, several
groups have sacrificed some accuracy in order to develop very
low cost methods; particularly popular are the semi-empirical DFT
extended tight-binding methods.12

At their root, however, all of these methods rely on a basis set
used to expand the unknown wavefunction (or electronic density)
in terms of simple, known functions. A full, authoritative discussion
of basis sets in quantum chemistry, along with their design, devel-
opment, and optimization, would necessitate a lengthy monograph.
Herein, we instead focus on providing the level of detail required
to provide sufficient context and refer the interested reader to addi-
tional sources at appropriate points. For molecular applications,
the basis set expands every molecular orbital ψ as a linear combi-
nation of atomic orbitals (LCAOs) that are typically termed basis
functions, χ:

ψi ≙
Nb

∑
p

cpiχp,

where cpi are the molecular orbital coefficients, and Nb is the total
number of basis functions in the set. The number of basis functions
of each angular symmetry (s, p, d, f, etc.) defines the “composition”
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of the basis set, with many sets further classified into so-called
“qualities.” Several review articles discuss basis set classifications in
detail and should be consulted for further details,13–17 but as a brief
definition, a basis that contains only the functionsmatching themin-
imal set of atomic orbitals required for the electronic ground state of
the atoms within a molecular system is known as a minimal basis
set. Doubling the number of functions such that each atomic orbital
is described by two basis functions leads to a double zeta (DZ) qual-
ity basis, tripling the functions leads to a triple zeta (TZ) quality
basis, and so-on. Themajority of basis sets also contain “polarization
functions” of higher angular symmetry than required for ground
state electronic configurations.

There are multiple types of LCAO basis set that may be used,
and the most common of these, including Slater-type orbitals,
Gaussian-type orbitals, and numerical atomic orbitals, have recently
been reviewed.18 The same review also discusses the advantages and
disadvantages of LCAO approaches. The usual choice for molecular
applications, for reasons of efficiency when calculating integrals,19 is
the Gaussian-type orbital,

χ ≙ NYl,mr
2n−2−le−αr

2

,

where N ensures normalization, n, l, and m are the principal,
azimuthal (orbital angular momentum), and magnetic quantum
numbers, respectively, Y l,m are spherical harmonic functions, and α
is commonly known as the basis set exponent.While there have been
various investigations into, for example, midbond functions,20–22 or
“floating” s-type orbitals,23 the usual procedure is to have a basis set
associated with each atom type and duplicate this set on each atomic
center.

Many, though not all, Gaussian basis sets are used in a con-
tracted form, whereby the “primitive” Gaussian functions, χprim, are
combined into a smaller set by taking linear combinations of the
primitives

χcon ≙
k

∑
j

a jχ
prim
j ,

where χcon is known as a contracted function, and aj are fixed con-
traction coefficients. While the use of a contracted Gaussian basis
reduces the computational cost, relative to the same set of uncon-
tracted primitives, it also introduces a contraction error.24 For a
contracted basis set, the basis set quality (DZ, TZ, etc.) outlined
above usually refers to the number of contracted functions rather
than the number of primitives. In terms of defining which prim-
itive functions enter a given contraction, one of two schemes is
commonly used: general contraction or segmented contraction. In
a general contraction, all of the primitives for a given atom type
(and with the same angular symmetry) appear in all of the con-
tracted functions, although the contraction coefficients will differ
across all contracted functions.25 By contrast, segmented contraction
schemes first sub-divide the primitives of a given angular symmetry
into smaller sets (segments) of functions, and it is these segmented
sets that are then contracted.26,27 Practically speaking, many con-
temporary Gaussian basis sets use what is sometimes termed a
“partial” contraction scheme, whereby the basis has a combination
of a number of uncontracted primitives along with some (general

or segmented) contracted functions. Again sticking with practical-
ities, the integral evaluation routines in a given quantum chemical
package may favor one particular contraction scheme; hence, some
work has been carried out on procedures for converting generally
contracted basis sets into segmented contracted ones without loss of
accuracy.28

An assumption is typically made that, by increasing the num-
ber of functions in the basis set, we approach a limit—the “complete
basis set” (CBS) limit—whereby the wavefunction has been rep-
resented exactly in the relevant Hilbert space to within numerical
limits. Whether this assumption is valid is so far unproven for
most methods,29–32 although there is empirical evidence to sup-
port it.33–35 Unfortunately, Gaussian basis sets designed in this
way approach completeness very slowly. In particular, correlation
energy tends to require many high-angular momentum polariza-
tion functions,36 greatly increasing the cost of the method. There
are two principal reasons for this: Gaussian basis sets are incapable
of accurately representing the wavefunction in the neighborhood
of a nucleus (the Coulomb hole); the exponents and positions of
the basis functions are fixed and only adaptable via linear combina-
tion. The former problem can be addressed by either using different
function types with the correct behavior at the nucleus (such as
Slater-type orbitals),37 or by adding geminals to the wavefunction
that are asymptotically linear in the electron separation (so-called
F12 methods).38 The necessity to fix the positions and exponents,
however, comes primarily from the need for calculations to be com-
putationally facile. In an attempt to alleviate this, the exponents for
a given atom are carefully optimized on a method-by-method basis
according to criteria that depend on the desired use.

For the majority of molecular quantum chemistry calculations,
a pre-existing Gaussian basis set will be selected from an internal
library within an electronic structure package or perhaps down-
loaded from an online repository.39–41 However, in some cases, it
may be necessary or desirable to design, develop, and optimize new
basis sets. Assuming an LCAO basis set comprising Gaussian-type
orbitals, this would consist of optimizing the exponents of a num-
ber of primitive functions, followed by (optionally) determining how
to contract the functions and the values of the contraction coeffi-
cients. An introduction to mathematical optimization is beyond the
scope of the present article, and the interested reader is referred
to standard texts, such as Ref. 42. For basis sets, this encom-
passes selecting the best possible exponents as variables to minimize
some “objective function” (also known as a loss function) using an
optimization method, for example, the simplex method or a quasi-
Newton method such as BFGS.42 Most commonly, exponents are
“atom-optimized,” where they are determined for some electronic
state(s) of an individual atom, even if they are to be later re-used
in calculations on molecules. Similarly, the majority of basis sets
are “energy-optimized,” meaning the objective function is a (varia-
tional) energy or the difference between the energy from the current
set of exponents and some reference value, such as the CBS limit.
There are also situations where having the objective function related
to other properties, such as density or some “completeness profile,”
may be more useful.43,44

In terms of the values of the exponents, these may be “freely
optimized,” where the exponents are free to take on any value and
are not constrained relative to the value of other exponents. While
this works well for relatively small numbers of exponents, the opti-
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mization becomes significantly more difficult as the number of basis
functions increases. This is not just that the problem has grown in
size, but it also becomes ill-conditioned and is likely to lead to a
so-called “variational collapse,”45 with two exponents with the same
angular symmetry converging to the same value. An alternative is
to use a “geometric sequence” to define the exponents based on a
smaller number of parameters to be optimized. A straight-forward
example is an “even-tempered” basis set,46 where the exponents of a
given angular symmetry are defined by

αn ≙ k
n−1α0,

where k and α0 are the two variables to be optimized, and the positive
integer n defines the nth exponent in the sequence. Other sequences
that also eliminate the ill-conditioning problem, yet introduce more
flexibility than an even-tempered basis, include well-tempered basis
sets,47 and the use of Legendre polynomials.48 In addition to the
number of basis functions to be optimized, an initial “starting guess”
at the exponent values, or other parameters in the case of geomet-
ric sequences, will need to be provided. A potential problem at this
stage is one familiar throughout mathematical optimization, namely
convergence to a local, rather than global, minimum. The selection
of the appropriate minimum in terms of the exponents is usually
guided by extensive benchmarking/test calculations of candidate
basis sets. These candidates are often generated by re-running the
optimization procedure from several different starting guesses.

Assuming that a contracted Gaussian basis set is desired, and
that primitive exponents have been optimized, a design choice on
the type of contraction schememay be made. Focusing momentarily
on general contraction, one of the simplest methods for determin-
ing the contraction coefficients is that adopted by the atomic natural
orbital (ANO) family of basis sets.49 Here the contraction coeffi-
cients are the coefficients of the natural orbitals from an atomic
configuration interaction calculation; hence, they may be “read”
directly from the output of an electronic structure program with
no further optimization required. Further refinements of this tech-
nique have averaged the density matrix over multiple atomic states,
ions, and atoms in external electric fields,50 but the core process of
computing a set of coefficients and re-using them as the contrac-
tion coefficients remains the same. Onemethod of generating partial
general contractions would be to take this fully contracted basis and
then sequentially uncontract primitives until the contraction error
reaches some desired threshold. Alternatively, the number and pat-
tern of exponents to uncontract may also be defined by the overall
design of the basis set or be the result of benchmarking calculations.

As noted by Jensen,24 the “definition of segmented basis sets
is significantly more ambiguous than a general contraction.” The
usual method is for the primitive exponents and the contraction
coefficients to be optimized simultaneously, resulting in a highly
nonlinear optimization problem.24 Determining the total number of
primitives to include in the basis set and how they are to be sub-
divided into segments is also a non-trivial, combinatorial problem.
As with the optimization of primitive exponents, the final choice of
segmented contraction pattern and local minimum is most often the
result of extensive test calculations. Given these difficulties in defin-
ing how to construct a segmented basis set, it is perhaps not surpris-
ing that procedures exist for constructing a segmented scheme from
a previously developed general contraction basis set. The Davidson

purification method can be used to produce a partial segmentation
of some of the functions in a general contracted basis,51 while the
above-mentioned P-orthogonalization method of Jensen identifies a
full pathway from general contraction to segmented contraction.28

Although the above-mentioned outline of basis set optimiza-
tion is mostly focused on Gaussian-type orbital basis sets, electronic
structure methods using density-fitting approximations require
(possibly several) auxiliary basis sets matched to the orbital basis.
A number of procedures exist for automatically generating auxil-
iary basis sets,52–55 but the more traditional approach is to explicitly
optimize the exponents of auxiliary sets.7,56 The latter typically pro-
duces slightly more compact sets in terms of auxiliary basis set
composition. For an F12 calculation, three different auxiliary sets are
required, including one specifically for use in the resolution-of-the-
identity approximation that simplifies multielectron integrals into
products of no more than two-electron integrals.57,58 The “OptRI”
family of auxiliary basis sets is often used for this purpose.59

The process of developing LCAO basis sets for molecular appli-
cations has so far largely been done by a small number of groups and
is not particularly accessible or obvious. Some electronic structure
packages have tools available for basis set development, such as the
general-purpose optimizer inMolpro,60 or the basis set optimization
program that interfaces with GAMESS,61,62 but these are typically
limited in terms of features and require substantial technical knowl-
edge of the specific package. In order to increase the applicability
and efficiency of quantum chemistry, particularly as new methods
are developed at an increasing rate, it would be useful to have a
software-agnostic, easy-to-use framework for basis set optimization.
In this work, we present a Python package, BasisOpt, developed to
tackle this problem.

II. AIMS AND METHODOLOGY OVERVIEW

BasisOpt is an open-source library written in modern Python,
designed to bring together computational chemistry programs with
state-of-the-art optimization methods. We have three primary aims
with this package:

1. to provide an open, accessible, and flexible workflow for basis
set optimization;

2. to allow for the development of novel basis set types and opti-
mization methods, and to formalize existing approaches in a
robust manner;

3. to standardize the testing and reporting of basis sets across
different platforms.

The typical methodology workflow we envision is shown in
Fig. 1. The user starts with a particular choice of basis set type, an
atom or molecule (or collection of either) for which the basis set is
to be optimized, and a calculation method. The optimization pro-
ceeds according to a given strategy (see Sec. III C), checking at each
stage that it is proceeding correctly. Finally, the optimized basis set is
tested across a varied selection of criteria, and the results are stored
and visualized. The workflow may then proceed in a loop, or a dif-
ferent strategy can be tried if the desired accuracy is not achieved. In
order to achieve the first two of our aims, it is important that each
stage of this process is both easy to use with minimal code, and easily
customizable, so that new approaches can be developed. In Sec. III,
we describe each of the parts of the workflow in more detail. In the
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FIG. 1. The high-level workflow used to optimize basis sets with BasisOpt. The user chooses a basis type and optimization strategy for a set of atoms and/or molecules.
BasisOpt then uses SciPy and an external quantum chemistry backend to iteratively optimize the basis sets, outputting the results in a standardized format.

final two sections, we will look at the possible limitations and future
developments and give proof-of-concept examples for how to use
BasisOpt. The software and all the examples given here can be found
at https://github.com/robashaw/basisopt, along with documentation
that includes a quick start guide, tutorials, and detailed information
on the application programming interface (API).

III. SOFTWARE ARCHITECTURE

The package is written in Python 3 and can be installed via
the PyPI package manager. It provides an interface with the basis
set exchange,39 which can be used to fetch standard reference basis
sets, and provides methods for converting basis sets between for-
mats. Thus, any basis set developed with BasisOpt can automatically
be used in essentially any quantum chemistry package. In version
1.0.0, we provide wrappers for Psi463 and ORCA,64 although, as will
be discussed in Sec. III A, it is fairly simple to add wrappers for other
programs. This allows for a software-agnostic approach to basis set
development, as any given wrapper can be used identically, so long
as the correct methods are exposed to the interface.

For routine use, there is a high-level API, with each part
being adaptable and encapsulated. The components of the optimiza-
tion are contained within four base objects: a Molecule, Basis,
Strategy, and Result. The latter three will be described in more
detail shortly. The Molecule object contains all the basic informa-
tion for the system (or systems) of interest; typically, this includes
the coordinates, charge, multiplicity, and method to use. Any calcu-
lation can be run by passing a Molecule to the API, along with a
Basis and any optional settings. For example, a traditional atomic
basis set optimization where the exponents are freely optimized
could be achieved as presented in Listing 1.

LISTING 1. Python code to optimize a triple-zeta quality basis for
the neon atom at the Hartree–Fock level, using Psi463 for calcula-
tions and the default optimization Strategy. The results are then
saved as a Python pickle file.

A. Backends

To achieve the most general applicability of BasisOpt, it is
important that the same procedures can be applied irrespective
of the particular quantum chemical method and, beyond that, the
choice of implementation of that method. For example, there has
been an explosion of new local correlation methods available only
in specific codes, yet the nature of the basis set and the optimization
process should be the same. To this end, BasisOpt uses a skeleton
Wrapper class, from which interfaces to specific programs can be
derived. Any given method can be exposed to the library in a stan-
dard fashion, and use of the high-level API requires no knowledge
of how the program is operating.

A diagram showing the structure of a wrapper is given in
Fig. 2. Currently, there are built-in wrappers for Psi4 and ORCA,
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FIG. 2. An outline of how wrappers for external quantum chemistry programs are laid out.

which act as examples for how further wrappers could be written.
The principal idea is that there is a list of possible methods, and
these are marked as “available” to the API when implemented in a
particular wrapper. The calculation is then called via the run com-
mand with only a molecule and the name of the electronic structure
method—e.g., “ccsd,” for coupled cluster with single and double
excitations. The result is then returned in a native Python data type.

A key principle of this design is that all electronic structure
methods and properties are by default unavailable and will result
in an error if called until implemented and marked available in the
code. This makes it clear to both developers and users what is possi-
ble with a given backend. All of the input file generation and output
file parsing is encapsulated by the wrapper, for example, through
external libraries such as cclib.65,66 Moreover, with this approach, it
is simple to have calculations sent to a batch queuing system, rather
than performed directly on the local computer, and to run multiple
calculations in parallel.

B. Basis set types

The central object in BasisOpt is the Basis. This defines a
general collection of properties and routines that run and store the
results of a basis set optimization. The abstract Basis class has the
following three core parts: methods to set up and run the optimiza-
tion; containers for themolecule(s) and result(s) of the optimization;
and a collection of tests to be run on the optimized set. In addition,
there are basic utility functions, for example, uncontracting a basis,
making an even-tempered expansion, and fixing the ratio between
exponents. Subclasses of the Basis object implement the specific
functionality for the type of basis being optimized within this gen-
eral framework. As the simplest case, we describe in more detail the

AtomicBasis; summaries of a few other example types are given in
Table I.

An AtomicBasis is initialized with an element name, charge,
and multiplicity. The data for the element, in particular the elec-
tronic configuration, are collected from theMendeleev library.67 The
two steps in every basis optimization are the setup, and the opti-
mization itself. In the setup, we provide a computational method
(e.g., CCSD or Hartree–Fock), a basis set “quality,” and a Strategy

for the optimization. The latter will be described in more detail in
Sec. III C.

As mentioned in the Introduction, the quality of the basis
essentially encodes the composition of the basis set. For an atomic
basis, example qualities are n-zeta, where n ≙ 2, 3, 4, and 5. The
quality defines the number of basis functions of each type and can-
not be “less” than the minimal configuration based on the electronic
ground state. For example, for a neutral nitrogen atom, the mini-
mal basis would have a 2s1p composition, while for a gold cation,
it would be 5s4p3d1f. A split-valence double-zeta “quality” basis
would then add an additional exponent for each valence shell. This
would give 3s2p for nitrogen, and Au+ would be 5s4p4d1f. In the
most general sense, a quality is just a function that, given an electron
configuration, determines the number of exponents of each angu-
lar symmetry to use in the basis. BasisOpt provides functions for
automatically generating a quality that corresponds to those used in
the correlation consistent or Karlsruhe families of basis sets,68–70 and
also to define an entirely custom composition of exponents.

With the configuration of the basis determined, the next step
is to generate a starting guess for the variables to be optimized. A
user is free to define this guess, but examples could include an even-
tempered expansion, a reference basis from the Basis Set Exchange,
or even randomly generated numbers in a given interval. Finally, the
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TABLE I. Summaries of the Basis types available in BasisOpt version 1.0.0.

Basis type Summary Notes

AtomicBasis A traditional single-atom basis set,
which is the base for all other basis
types. Can use any optimization
method, property, or wrapper

Minimal and even-tempered basis
sets are provided as functions

MolecularBasis A collection of one or more
AtomicBasis objects, optimized
against one or more molecules
instead of a single atom

Can automatically handle tests as
part of the optimization process

MidbondBasis An AtomicBasis for ghost atoms
placed not on atomic centers. The
positions of the basis functions
can optionally also be optimized,
and both total energy and
counterpoise-corrected energies
can be used

Counterpoise-correction can only
be used on energies, optimizing
positions can be expensive

JKBasis Auxiliary basis sets for one or
more AtomicBasis objects, used
in the density fitting of the
Coulomb and exchange matrices
in a self-consistent calculation.
The J and K components can
optionally be treated separately

Only one loss type available (see
example later), and it only works
with the ORCA backend currently

OptRIBasis As for JKBasis, but for the
resolution-of-the-identity
approximation in F12 methods

Only works with the ORCA
backend currently

setup checks that, if necessary, there is a suitable reference, such as
a CBS energy, for whatever the objective function will be (which is
dependent on the Strategy). Once the setup is complete, for an
AtomicBasis, the optimization is as simple as calling optimize; for
other basis set types, additional steps could be added, for example,
to perform optimizations across multiple atom types or multiple
molecules.

C. Optimization strategies

In essence, once the particular choice of basis is set up, the
actual optimization is largely handled by external Python libraries.
In particular, we call the SciPy optimize routines, and any algorithm
available through SciPy is available in BasisOpt.71 We addition-
ally provide finite difference derivative calculators that are applied
automatically if analytic derivatives are unavailable. In principle,
other optimization routines could equally be used in place of those
implemented in SciPy.

The outcome of the optimization is highly dependent on the
choice of objective function, which in turn depends on the appli-
cation. For example, density fitting auxiliary sets are sometimes
optimized tominimize the error in the density, not the energy.5,7,72,73

We provide standard preconditioner and regularization functions
that can be applied to any optimization, in an effort to improve the

robustness of the optimization procedure. Typical examples of regu-
larizers are the L1- or L2-norms. A useful, simple preconditioner for
free optimization of exponents is one that ensures that all exponents
remain positive and are at least a certain ratio apart from each other
within each shell. Essentially, any function that takes and returns an
array of exponents can be used.

In addition, the different angular momentum shells are typi-
cally highly coupled, but optimizing all exponents at once is imprac-
tical as the number of variables to be optimized simultaneously
leads to high computational costs. At the simplest level, a suitable
approach is, therefore, to cyclically optimize the shells separately
until they stop changing, although this can also be very expensive. To
formalize this, and to allow for novel algorithms, these procedures
are encapsulated in a “Strategy.” As an example, the Strategy

for optimizing an even-tempered basis to a given accuracy for
some arbitrary, user-defined loss/objective function is outlined in
Algorithm 1. Other strategies currently available include the
default, which optimizes each angular momentum shell in turn, and
one for taking an existing basis and systematically removing expo-
nents and re-optimizing until a certain maximum allowed error is
reached. That is, the basis set composition is adjusted to meet a user-
defined energy or other property criterion. We note that unless an
even-tempered Strategy is used, the current default is to freely
optimize the primitive exponents in a basis set. Users of BasisOpt
are able to write their own Strategy objects to re-create existing
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ALGORITHM 1. Strategy for optimizing an even-tempered basis set to achieve a specified accuracy.

1: Choose absolute value-compatible property, P, to evaluate, desired accuracy ϵ, and max.
number of functions per shell,M

2: Give (or calculate) maximum angular momentum shell, L, needed
3: Guess initial prefactor, ki, exponent, αi, and number of functions, N i, for each shell, i
4: Mark each shell as not done
5: while Not all shells done do
6: for i ≙ 0, . . . ,L do

7: Expand basis function exponents as {kni αi : n ≙ 0, . . . ,Ni − 1}
8: Optimize αi and ki to minimize absolute value loss
9: if ∣ΔP∣ < ϵ OR N i ≙M then

10: Mark shell as done
11: else

12: Set N i ≙ N i + 1
13: end if

14: end for

15: Store current parameters and overall loss
16: end while

17: Store final parameters and loss

basis set designs, or to develop their own, and we encourage their
contribution to the main open source project repository.

D. Testing and visualization

Each Basis object stores a full history of the results of each
step of the optimization, and any additional results and tests that
might be desired. This allows for visualization and assessment of the
optimization process. Moreover, it provides a format in which the
exponents, contraction coefficients, energies, etc., can be saved for
use in other contexts or to restart optimizations. Currently, these
can be stored as Python pickles or in the JSON file format.

We provide a number of tests that can be added to Basis

objects, which can be run automatically and the results aggregated
as described above. There are then additional procedures for sta-
tistical analysis and visualization, designed to be compatible with
standard scientific Python packages. These tests range from simple
property tests—e.g., energies or multipole moments—to complete-
ness metrics. There is also functionality to rank the contributions of
individual functions, produce correlation-consistent plots, and per-
form Dunham analyses on diatomic molecules. These tests can very
simply be run across multiple molecules andmultiple basis sets, with
the results automatically collated and summarized in a way that sim-
plifies the process of basis set validation. We note that the testing of
basis sets remains a vitally important component of the development
process and helps determine the appropriate minimum in terms of
the exponents. Thus, being able to automate the running of these
tests across multiple candidate basis sets makes this process easier
and aids reproducibility.

IV. POTENTIAL AND EXTENSIONS

While BasisOpt has been designed to be a flexible and easy-
to-use tool for automating basis set optimization, it would be
impossible to produce a framework that is applicable to all of the

innumerable optimization strategies that could be used when devel-
oping new basis sets. One particular example is that the BasisOpt
framework makes it difficult to re-use results from previous elec-
tronic structure calculations in subsequent calculations during the
same optimization, as might be useful for particularly expensive
methods. There are workarounds for this—such as by saving den-
sities or wavefunctions to a file and pointing the next electronic
structure calculation to them—but there is still an associated over-
head that would not be incurred if the optimization was able to be
performed natively in a given quantum chemistry package. Another
potential issue is keeping backend wrappers up to date with the ever-
changing code bases in the quantum chemistry community; this is
not a unique issue to BasisOpt, however.

It should be noted that a few features are still in development
or are currently quite rudimentary. Of particular importance are
procedures for the automatic selection of contraction coefficients.
This is somewhat harder to distill as a list of instructions, rely-
ing on a certain amount of “chemical intuition,” insofar as that
exists, and the results of significant benchmarking and testing. The
Basis object is able to store contraction coefficients; hence, they
could, in principle, be passed to an appropriate Strategy as vari-
ables to be optimized. For the traditional atom-optimized basis set
approach, a general contraction could be generated from the density
matrix coefficients,49 but an algorithm/Strategy for uncontract-
ing primitives to form a partial general contraction would need to
be developed. It is also possible to envisage a Strategy that uses
Jensen’s P-orthogonalization method to automate the conversion of
a general contraction basis to segmented contraction.28 To the best
of our knowledge, the generalization of Gaussian basis set contrac-
tion, whether general or segmented, to the molecular basis set case
is an open research question. BasisOpt may help in this endeavor by
providing the framework for user-defined contraction strategies

to be developed and tested using the MolecularBasis (see Table I).
Currently, only Gaussian-type orbital exponents can be opti-

mized in BasisOpt, as those are the only type of orbital basis set
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available in the external quantum chemistry programs that wrappers
are provided for. Other types of LCAO basis functions, particularly
Slater-type orbitals, could be optimized by developing a wrapper
for an appropriate external program. This would not require any
changes to the existing Basis object within BasisOpt.

We have aimed to design the component parts such that they
are easily extensible. In particular, there are essentially no restric-
tions on the type of basis set or optimization procedure that can be
used beyond computational resources. We hope this will allow for
the rapid prototyping and development of novel basis sets and per-
haps a move away from the restrictive paradigm of atom-centered,
atom-optimized, Gaussian-type orbitals. We encourage anyone with
interest to contribute new wrappers, basis set types, optimization
strategies, and tests to themain repository so that others may benefit.

V. EXAMPLES

The following examples demonstrate how BasisOpt can be
used in modern basis set development and testing. The Python
code to run these examples can be downloaded from https://github.
com/robashaw/basisopt, while the data are provided as the
supplementary material.

A. Auxiliary basis sets

As mentioned earlier, one of the biggest modern developments
in accelerating quantum chemistry calculations are density fitting
approximations. These require one or more auxiliary basis sets,
which typically must be optimized for each orbital basis set, which
itself is different for each method. In particular, the fitting sets used
for the Fock matrix integral fitting have different requirements from
those used for fitting the transformed, molecular integrals in corre-
lated methods.7 There have been a number of heuristic approaches
suggested for automatically generating auxiliary basis sets,52,54,55 but
these all necessarily produce overly large sets, so as to avoid large
fitting errors. As even a well-optimized fitting set can be two or
three times the size of the orbital set, there are many instances where
such unoptimized fitting sets may become a computational bottle-
neck. However, the process for optimizing these sets is fairly opaque;
therefore, as our first example, we demonstrate in Listing 2 the opti-
mization of JK (Coulomb and exchange) fitting sets for the first three
noble gases, for the cc-pVnZ orbital basis sets, n ≙ T, Q, and 5.68,74

For these calculations, we used the ORCA (version 5.0.3) backend,
an even-tempered starting guess, free optimization of the exponents,
and the default preconditioner, which simply enforces that the expo-
nents remain positive. While the time taken to optimize any type of
basis set is dependent on a large number of factors, including the
electronic structure method used, the number and type of variables
to be optimized, the quality of the starting guess, and so on, it may be
helpful for those new to the field to provide an indication of how long
the example basis set development tasks take when automated with
BasisOpt. Optimizing the JK-fitting auxiliary sets for helium, neon,
and argon using the full script of Listing 2 took ∼3 h 10 min (wall
time) to run to completion on a single core of an Apple M2 Pro.
This comprised roughly 22 min to optimize the three (T, Q, and 5)
auxiliary sets for He, 55 min for Ne, and 1 h 53 min for Ar.

FIG. 3. The basis set incompleteness error (BSIE) vs the difference in energy
between the density fitted and conventional Hartree–Fock calculations (ΔHF),
both per atom. Results are across all test molecules, using the optimized JKFit
auxiliary basis sets for cc-pVnZ orbital sets (n ≙ T, Q, and 5) for the first three
noble gas atoms.

LISTING 2. Sample of the Python script used to optimize JK-fitting
auxiliary basis sets for helium, neon, and argon. The full script is
provided as the supplementary material.

In the JK-fitting procedure, we usually optimize for the mono-
hydride of the atom, and the objective function (or loss) is the
root-mean-square deviation between the full, unfitted JKmatrix and
the fitted JK matrix. The Strategy we use is to optimize for the
largest orbital basis (in this case, cc-pV5Z), then start optimizations
for the smaller bases by systematically removing the least important
functions and re-optimizing. We then calculated the fitting error for
a small set of molecules (XH+, X2, XCO, and XCF4, where X ≙ He,
Ne, or Ar) and compared these to approximated CBS-limit results
(details in the supplementary material). The results of these tests are
given in Fig. 3, and demonstrate that the fitting errors remain more
than an order ofmagnitude smaller than the basis set incompleteness
errors, as is typically required.75

B. Molecule-optimized basis sets

The vast majority of Gaussian basis sets for molecular appli-
cations are optimized for the energy or properties of various elec-
tronic states of atoms and then applied to molecular systems with
the exponents fixed at those atom-optimized values. Some notable
exceptions include the polarization consistent basis sets of Jensen
and co-workers, where the exponents of the polarization functions
are determined from molecular calculations,76,77 the MOLOPT sets
of VandeVondele and Hutter,78 and the basis set included as part
of the ωB97X-3c method that was optimized for a combination of
atoms, ions, and hydrides.79 Some progress has also been made in
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using automatic differentiation approaches to re-optimize existing
basis sets for molecules.80–82 In this second example of the usage of
BasisOpt, shown as a code snippet in Listing 3 with the full script
provided in the supplementary material, we will demonstrate how
the package can be used to easily re-optimize the exponents of the
def2-SVP basis set for the molecules H2O, CH4, CH3OH, CH2O,
and O2.70 The geometries of these molecules were optimized at the
B3LYP/cc-pVTZ level in the Molpro package.60,83

In this example, the def2-SVP basis set is de-contracted, and
the default Strategy is used to construct the objective function plus
apply a preconditioner to ensure all exponents are positive. For each
molecule, the energy difference between the current basis and the
reference (def2-QZVP in this case) is evaluated, with the objective
function being the sum of the energy differences over all molecules.
Within the default Strategy for a MolecularBasis, there are a
number of loops, including a loop over the different atom types,
looping over the angular symmetry shells for each of those atoms,
and iterating through the list of molecules. In this example, we use
native Python to add an additional outer loop that iterates over the
rounds of atomic optimizations, which continues until the change
in objective function is less than a user-defined threshold (in this
case, 1 μEh). The incremental change in energy for each iteration
of this additional loop is shown in Fig. 4. The decrease in energy
observed for the first iteration is due to the relaxation of the prim-
itive exponents from the starting atomic values to molecular values
and, unsurprisingly, is the largest energy change within this loop.
The subsequent changes in energy are then due to the relaxation of
the coupling between the different atoms and the angular symmetry
shells in the basis set composition, and it is clear from the figure that
this additional relaxation results in a significant decrease in energy.
The final part of Listing 3 writes the optimized basis set to a file (in
Molpro format).

The popular ωB97X-D exchange-correlation functional is used
for all electronic structure calculations,84 with the Psi4 program (ver-
sion 1.7a1) using LibXC (version 5.1.5)85 as the backend. Density
fitting is turned off, and the example listing also demonstrates the
use of the logging functionality in BasisOpt/Python, which can be
used to monitor and record the progress of the optimization when

FIG. 4. Incremental change in the absolute value of the sum of the total molecular
electronic energies for water, methane, methanol, formaldehyde, and oxygen as
a function of a loop over the rounds of atomic basis set exponent optimizations.
This outer loop probes the relaxation of the coupling between the atoms and the
angular symmetry shells, with the loop terminated when the incremental change is
lower than a threshold of 1 μEh.

used with a batch submission system. Not shown in the sample list-
ing (see the supplementary material for the full script) is that the
DFT integration grid is set to 175 radial points with 974 spheri-
cal points, and grid pruning is disabled. The script took ∼9 h and
20 min to run on a single core of an Apple M2 Pro.

LISTING 3. Sample of the Python script used to optimize a basis set
for five molecules. The full script is provided as the supplementary
material.

The improvement in molecular energy from reoptimizing the
basis set is shown in Fig. 5, which plots the basis set error, relative
to def2-QZVP, for the molecules used in the basis set optimization
and for acetaldehyde, which was not used in the optimization. The
improvement is relatively consistent across all molecules considered,
with a mean average reduction in error of 0.93 mEh per electron.
For context, the average error for the decontracted def2-SVP basis is
4.98 mEh per electron; hence, the error is reduced by almost 20%
in this reoptimization. We note that, despite this improvement, the
basis set generated by Listing 3 is provided simply as an exam-
ple of how BasisOpt could be used to generate a basis set opti-
mized formolecular calculations, and the resulting exponents are not
necessarily a production-ready basis set.

C. Systematic removal of functions

A common task in the development of correlation consistent
basis sets is to take a large, near-saturated basis of Gaussian primi-
tives of the angular symmetry required to describe an atom’s ground
state and reduce it in size until it reaches the desired criteria in
terms of number of functions and HF energy. In this final exam-
ple, we demonstrate how BasisOpt can be used with the Reduce

Strategy to automate this process of reducing a large basis set
for neon until it reaches the same uncontracted sp configuration as
the cc-pVTZ basis. Listing 4 begins by loading the (18s13p) basis
set of Partridge,86 sometimes known as “Partridge Uncontracted 3,”

J. Chem. Phys. 159, 044802 (2023); doi: 10.1063/5.0157878 159, 044802-9

© Author(s) 2023

 2
6
 J

u
ly

 2
0
2
3
 0

8
:2

2
:5

1



The Journal

of Chemical Physics
ARTICLE pubs.aip.org/aip/jcp

FIG. 5. Basis set error, relative to def2-QZVP, for the def2-TZVP, decontracted
def2-SVP [def2-SVP (decon)], and the reoptimized def2-SVP [def2-SVP (opt)]
basis sets. All molecular energies were computed using the ωB97X-D exchange-
correlation functional. The acetaldehyde molecule was not used in the basis set
optimization.

from the Basis Set Exchange, then systematically removing functions
and freely re-optimizing exponents until the basis reaches (10s5p).
The choice of function to remove is automated by computing the
incremental change in energy if each individual function is removed
(without re-optimization) and subsequently ranking the functions
for removal. Although a specific basis set size is requested in this
example, the reduction algorithm can alternatively be instructed to
stop when the incremental change in energy from removing a func-
tion exceeds a user-provided threshold. Listing 4 also demonstrates
some of the visualization functionality of BasisOpt in the form of
plotting basis set exponents.

LISTING4. Sample of the Python script used to reduce the Partridge
Uncontracted 3 basis set until the basis set size is (10s5p). The full
script is provided as the supplementary material.

FIG. 6. Comparison of the (10s5p) exponents optimized for neon using Listing 4
with those from the Partridge Uncontracted 3 basis, and the s and p functions from
the correlation consistent cc-pVTZ basis.

Using the basis set optimized by BasisOpt and Listing 4 in
Psi4 to calculate the HF ground state energy of the neon atom
results in a total energy of −128.531 863Eh, which is effectively the
same as the −128.531 862Eh from using the (10s5p) extracted from
cc-pVTZ. The script took ∼1 h and 20 min to run to completion on
a single core of an Apple M2 Pro. Figure 6 compares the exponents
optimized via Listing 4 with those of the Partridge Uncontracted
3 set that was used as the starting point and also with the s and p
functions taken from the cc-pVTZ basis. There are large changes rel-
ative to the basis of Partridge; several tighter exponents have been
removed, along with some in the valence-space of the basis, and
overall the exponents are significantly less densely packed. How-
ever, it is immediately obvious that the exponents generated by
the reduction Strategy in BasisOpt are very close to those from
cc-pVTZ, with the exponents spanning a similar range and with the
same spacing between adjacent exponents. This result demonstrates
the effectiveness of BasisOpt in automating the reduction of large
basis sets to a more computationally efficient set of primitives with
specified energy and/or composition criteria.

VI. CONCLUSIONS

We have presented a Python package for the automated opti-
mization of quantum chemical basis sets for use in molecular appli-
cations. It is primarily focused, at the time of writing, on primitive
exponents of Gaussian-type orbitals, additionally providing tools for
testing and visualizing the resulting basis sets. The use of general
wrappers and basis set strategies provides a flexible framework
that should allow for new, more efficient basis sets to be devel-
oped for a wide range of methods, particularly in packages where
there is no built-in general purpose optimizer. However, even for
more traditional optimizations, opening up the process to the full
power of the Python ecosystem should allow for interesting new and
more robust optimization procedures. We have given a high-level
description of the constituent parts of BasisOpt and demonstrated a
few example use cases. More detailed documentation and examples
can be found in the main code repository. The code is fully open
source, and contributions and feedback from the wider community
are encouraged.
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SUPPLEMENTARY MATERIAL

See the supplementarymaterial for data used in examples A and
B (CSV) and for Python code listings (PDF). The code listings are
also included as examples in the GitHub repo.
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