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A B S T R A C T

Using the output of optimisation models to make real-time changes to railway timetables
can be an effective way to reduce the propagation of delay. In this study, we develop a
methodology for evaluating the fairness of such optimisation models with respect to competing
train operators. Whilst both fairness and optimisation-based railway timetable rescheduling
have both been widely studied, they have not previously been studied together. We propose
definitions of fairness and efficiency for timetable rescheduling, and analyse the fairness of
efficiency-maximising solutions for a case study with seven train operators. We also investigate
the pairwise trade-offs between operators and show that the priority given to different train
classes has an important impact on fairness.

. Introduction

Effective real-time management of railway traffic is crucial to delivering good railway performance. In particular, making changes
o the timetable in response to an initial delay can help to reduce the amount of additional delay caused to other trains as a result of
he initial incident. This practice is known as timetable rescheduling. The Train Timetable Rescheduling Problem (TTRP) (Cacchiani
t al., 2014) can be solved in order to determine the optimal way to reschedule the timetable. A large number of different TTRP
roblem variants, models, objective functions and solution methods have been studied.

However, the implications for TTRP models of economic competition between railway operators has not been considered. In
ecent decades, different forms of competition have been introduced in several European railway systems, such as those of Germany,
reat Britain and Sweden (IBM, 2011). Where trains are operated by more than one different company over the same tracks,

imetable rescheduling has the potential to impact these operators unequally. In order to be perceived as fair, a TTRP model must not
ystematically favour some operators over others. A perception of unfairness would be a serious barrier to the practical deployment of
TRP models in competitive railway systems. Therefore, it is essential that the fairness characteristics of such models are understood.

This study investigates the fairness of solutions obtained from solving the TTRP. We use a case study of Doncaster railway station
n Great Britain during January 2017, during which time trains from seven different private passenger operators regularly used the
tation. The TTRP model proposed by Reynolds et al. (2020) is used to calculate the rescheduled timetables that are evaluated.
irst, appropriate definitions of efficiency and fairness are proposed for the TTRP. Second, the fairness of efficiency-maximising
olutions is analysed. Third, the sources of unfairness in efficiency-maximising solutions are elucidated via an investigation of the
ompetitive relationship between each pair of operators. Finally, the changes in efficiency and fairness that arise from varying the
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priority given to class 1 (express passenger) trains over class 2 (ordinary passenger) trains is examined. Class 1 trains are often
prioritised in current manual rescheduling practice because they typically carry more passengers and travel longer distances.

This research has been carried out in partnership with Network Rail, a public sector company that owns and operates railway
nfrastructure in Great Britain. The railway system in Great Britain is vertically separated, meaning that passenger and freight services
re operated by companies that are separated from Network Rail. These companies are called Train Operating Companies (TOCs)
nd Freight Operating Companies (FOCs), respectively — we will simply call them operators. Most passenger operators run services

under competitively tendered franchise agreements. These franchises each confer the right to operate a set of services grouped by
type or region over a period of several years. Open-access operators, on the other hand, run services in purchased timetable slots.
The organisational structure of the system, which is likely to change in the future, is described by Williams (2019).

Fairness to operators is taken into consideration by Network Rail during the timetable rescheduling process. Rescheduling
is currently carried out in accordance with local Route Regulating Policies. One of the stated objectives of these policies is to
‘‘minimise delay to all [operators] . . . in the best interests of all’’ — unfair treatment of an operator would contradict this. Moreover,
delay management teams in Network Rail’s Rail Operating Centres (where timetable rescheduling decisions are made) include
representatives from operators working collaboratively to achieve this goal. The introduction of TTRP models to these settings
relies on gaining the acceptance of key stakeholders such as operators, which is unlikely unless any proposed model can be shown
to be fair.

The railway system in Great Britain has a performance-based financial compensation mechanism called Schedule 8 (see Network
Rail (2019)). Under this system, all delays are recorded and attributed to a particular cause. Every four weeks, this information
is used to calculate the value of monetary payments to be made from Network Rail to operators and vice versa. This mechanism
partially protects operators from losses resulting from events that are outside of their control. For example, if an incident caused by
one operator causes delay to the train of a second operator, this second operator should receive financial compensation. However,
the extent to which cash payments can compensate for delays is limited. This is partly because accurate valuation of the losses
resulting from reputational damage to the operator is challenging. It is also unsatisfactory for the passengers of operators, who may
derive social benefits from train punctuality that cannot be financially valued. It is still preferable, therefore, to carry out timetable
rescheduling as fairly as possible, and reduce reliance on financial compensation.

This paper is organised as follows. In Section 2, the relevant literature is reviewed. Our definitions of fairness and efficiency
are described in Section 3. The case-study is introduced in Section 4. In Subs Section 4.1, an analysis of the fairness of efficiency-
maximising TTRP solutions is given. This is supplemented in Section 4.2 by an analysis of the interactions between pairs of operators.
Finally, we consider the fairness-efficiency trade-off in Section 4.3. The concluding Section 5 offers conclusions and suggests some
possible avenues of further research.

2. Literature review

The literature addressing the TTRP is already very well documented by a number of recent reviews (Cacchiani et al., 2014;
Corman and Meng, 2015; Fang et al., 2015; Lamorgese et al., 2018). Our literature review will focus specifically on fairness,
and objective functions. An overview of relevant literature on the topic of fairness is given in Section 2.1. This is followed up
in Section 2.2 by a discussion of how these concepts apply to objective functions that have been used in the TTRP literature.

2.1. Fairness

The concept of fairness has been extensively studied by economists. It most often arises in the context of allocating or sharing
limited benefits or resources between distinct entities. This is precisely the scenario faced during timetable rescheduling. We can
think of the distinct entities as the different operators, and the resources to be allocated as the available track capacity. Track
capacity consists of segments of track over time, and is limited by the available infrastructure.

Much of the classical literature considering fairness considers the social welfare problem — how a central planner should
allocate goods in an economy. In the framework developed by Bergson (1938) and Samuelson (1947), the preferences of each
entity 𝑖 ∈ {1,… , 𝑛} can be represented by a cardinal utility 𝑢𝑖 ≥ 0 that depends on the allocation that entity 𝑖 receives. The set

⊂ R𝑛
+ of vectors of utilities (𝑢1,… , 𝑢𝑛) that arise from feasible allocations is called the utility possibility set. The problem for the

central planner can be formulated as choosing a point from this set. One way of choosing a point is to find a point that maximises
a social welfare function 𝑓 ∶  → R+ that encodes value judgements about the size and distribution of the utilities of the entities.

Social welfare functions can be used to model different attitudes about inequality and fairness. For example, the utilitarian
unction 𝑓 (𝑢) =

∑𝑛
𝑖=1 𝑢𝑖 is completely indifferent to inequality — it values improvements in the utility of each entity equally,

egardless of how high the utility already is. At the other end of the scale, the minimax function 𝑓 (𝑢) = min𝑖=1,…,𝑛 𝑢𝑖 always seeks
improvement in the utility of the worst-off entity, and is indifferent to improvements in the utility of any other entity. Atkinson
(1970) proposed maximising the 𝛼-fairness welfare function

𝑊𝛼(𝑢) =

⎧

⎪

⎨

⎪

⎩

∑𝑛
𝑖=1

𝑢1−𝛼𝑖
1−𝛼 𝛼 ≥ 0, 𝛼 ≠ 1

∑𝑛
𝑖=1 log(𝑢𝑖) 𝛼 = 1,

hich uses the parameter 𝛼 to interpolate between these two extreme attitudes to inequality. When 𝛼 = 0, the function becomes the
utilitarian function and when 𝛼 → ∞, it converges to the minimax function. Another special case, when 𝛼 = 1, corresponds to the
2
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rule proposed by Nash (1950). For any value of 𝛼, the function 𝑊𝛼 has the property of constant elasticity: given a fixed proportional
ncrease in an entity’s utility, the proportional increase in the welfare of that entity does not depend on the size of their utility. A
etailed introduction to the theory of economic inequality is provided by Foster and Sen (1997).

Another framework in which fairness has been studied is the bargaining problem. In this problem, distinct entities must agree
n how to share a jointly generated surplus. Although this is not exactly the situation that arises in timetable rescheduling, it is still
n interesting way to understand fairness. For the two-player version, both Nash (1950) and Kalai and Smorodinsky (1975) have
roposed axioms that must be satisfied by solutions to this problem before they can be considered fair. Each of these two studies
dditionally proposes solutions that satisfy these axioms. However, there is no general consensus on which set of axioms should be
sed. Moreover, axiomatic approaches are not useful in this application because they cannot be used to evaluate the fairness of a
olution that does not satisfy the axioms.

In most applied decision making scenarios in which fairness is important, it is nevertheless not the only consideration. The
airness of any solution must usually be considered alongside its overall efficiency. The efficiency can be defined as the sum of the
tilities of the entities (the utilitarian function), or in a problem specific way if this is more appropriate. Unsurprisingly, a trade-off
as been observed between efficiency and fairness in many problems. In other words, greater fairness can often only be achieved by
acrificing some efficiency, whilst greater efficiency entails a reduction in fairness. This trade-off has been characterised theoretically
y Bertsimas et al. (2011, 2012) using the concept of the price of fairness. This is defined as the proportion of total system efficiency
ost by maximising a fairness objective compared with maximising efficiency. They argue that analysing the price of fairness is a
seful way to navigate the fairness-efficiency trade-off.

.2. Fairness and the TTRP

As far as the authors are aware, only few previous studies have analysed the fairness of a TTRP model with respect to different
perators or other entities such as trains or passengers. One potential reason for this is that only a few railway systems are sufficiently
iberalised to have multiple operators regularly running trains over the same track. Moreover, fairness and competition in railway
arkets are often less important to policy makers than overall system performance.

However, fairness has been studied for similar applications of optimisation to transport planning problems, including railway
lanning problems. For example, Gestrelius et al. (2020) consider the evaluation of railway timetables from a competition
anagement perspective. They report that research literature and guidelines for facilitating competition between operators in

imetable design are scarce. In a more quantitative study, Li et al. (2019) investigate the fairness-efficiency trade-off for a train
imetabling application, in which 𝛼-fairness between passengers was considered. Other examples of similar applications in which
airness has been considered include railway crew scheduling (Jütte et al., 2017), railway crew rostering (Breugem et al., 2019),
ir traffic flow management (Bertsimas and Gupta, 2016) and airport slot allocation (Fairbrother et al., 2020).

Many different objective functions have been used for the TTRP. Almost all of these can be written in the form max 𝑓 (𝑢1(𝑥),… ,
𝑢𝑛(𝑥)), where 𝑥 is the vector of variables in the optimisation problem, each 𝑢𝑖 is a function measuring the quality of the solution
for train 𝑖, and 𝑓 is a real-valued function. Examples of quantities measured by 𝑢𝑖 (or −𝑢𝑖 in the case of minimisation) include
consecutive delay (delay experienced as a result of interaction with other trains during the rescheduled period) (Corman et al., 2010a;
Pellegrini et al., 2014), deviation from planned schedule (Meng and Zhou, 2014; Lusby et al., 2013), a piecewise linear function
of delay (Lamorgese and Mannino, 2015), and the cost of delays (Törnquist and Persson, 2007). In many studies, 𝑢𝑖 aggregates
several measures, either through development of a utility function (Harrod, 2011; Binder et al., 2017; Reynolds et al., 2020) or
otherwise (Bettinelli et al., 2017; Caimi et al., 2012; Acuna-Agost et al., 2011). Luan et al. (2017) have considered non-discrimantory
train dispatching. They formulate the equity of train delays as soft objectives or hard constraints when minimising average train
delay costs. The inequity between operators is formalised as the maximal individual deviation from the average delay cost. They
investigate the trade-off between train delays and train equity and test their model on a line of the Dutch railway network between
Utrecht and Den Bosch. Shang et al. (2018) consider the optimal scheduling of skip-stopping solutions in an oversaturated urban rail
transit network from the perspective of passenger equity. They consider multi-commodity optimisation using train and passenger
space–time networks and demonstrate the model on a line of the Beijing subway network. The most recent paper in this regard
is Sun et al. (2022), who explicitly consider the distribution of delay among entities such as trains, passengers and operators. They
define equity by means of a Gini coefficient and demonstrate results on the same network (line) as Luan et al. (2017).

From a fairness perspective, the choice of function 𝑓 is more important. This is because it can be interpreted as a social welfare
function where the entities are the trains, and the welfare of each train is a proxy for the welfare of the passengers on the train.
In other words, 𝑓 can encode a particular level of aversion to inequality between the performance of individual trains. The most
popular choice in the literature is to use a sum, which corresponds to the utilitarian function (Törnquist and Persson, 2007; Meng
and Zhou, 2014; Pellegrini et al., 2014; Lamorgese and Mannino, 2015). Weighted sums have also been used to establish train
priorities (Lusby et al., 2013; Pellegrini et al., 2014). Since this can lead to large inequalities in the delays experienced by different
trains, some authors such as D’Ariano et al. (2007) and Corman et al. (2010b), have used a minimum function, corresponding to
minimax fairness. A computational comparison between minimising the total and maximum consecutive delay, respectively, has
been carried out by Pellegrini et al. (2014). Despite the variety of functions 𝑓 used and their implications for fairness, there has
been very little discussion of fairness in the literature. As a result, the effect of using objective functions with different levels of
inequality aversion is not well understood.

Several researchers have used multi-criteria methods to solve instances of the TTRP. Whilst fairness has not been explicitly
3
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trains or missed connections helps to achieve fairness because cancelled trains or those sufficiently late to break connections are likely
to be the worst affected trains. A weighted-sum approach is used by Caimi et al. (2012) to optimise the number of scheduled trains,
the weighted delay and the number of connections maintained. Corman et al. (2012) use a specialised metaheuristic to consider
the trade-off between total delay and the number of missed connections. Samà et al. (2015) present a Data Envelopment Analysis
methodology for evaluating solutions under a large number of different punctuality measures, including objectives of minimax
type. Corman et al. (2011) propose a lexicographic objective, in which trains are divided into different priority classes. Other studies
adopting multi-criteria approaches include Ginkel and Schöbel (2007), Cavone et al. (2017), Binder et al. (2017), Shakibayifar et al.
(2018), Josyula (2019), Altazin et al. (2020). None of these studies analyse the effect of using multi-criteria methods on fairness.

In this paper, we make the following contributions:

1. We propose measures for both the efficiency and fairness of solutions to a set of TTRP instances.
2. We identify the relative weighting of class 1 and 2 trains in the objective function as a key driver of unfairness between

operators.
3. We then investigate the trade-off between efficiency and fairness that is created by changing this parameter using a case

study based on real data from Doncaster station in the UK.

. Efficiency and fairness

In order to evaluate the fairness of railway timetable rescheduling with respect to efficiency, these two terms must first be
efined. As far as the authors are aware, no definition of fairness has been proposed specifically for the TTRP.

.1. Efficiency

Our measure of the overall system efficiency was developed with Network Rail (see Reynolds et al. (2020)). It is designed to
odel the utility of Network Rail, which can be seen as the central decision maker for rescheduling decisions. It is designed to take

nto account the overall quality of service provided to passengers.
Given a feasible solution 𝑥 to a given instance, the efficiency is defined as

𝑈 (𝑥) =
∑

𝑘∈1

𝑈𝑘(𝑥) +𝑤
∑

𝑘∈2

𝑈𝑘(𝑥), (1)

where 1 and 2 are sets containing the class 1 and class 2 trains, respectively, 𝑈𝑘(𝑥) is the utility accrued from train 𝑘, and 𝑤 = 0.4
is a weight that controls the priority given to class 1 trains in comparison to class 2 trains. The priority given to class 1 trains by the
value of 𝑤 reflects the fact that class 1 trains typically carry more passengers. Furthermore, class 1 trains usually complete longer
journeys and hence delays to class 1 trains can have a greater impact in terms of reactionary delay outside the geographical scope
of the TTRP instance.

The utility 𝑈𝑘(𝑥) accrued from train 𝑘 is calculated as a weighted average across the set 𝐽𝑘 of timetabled events for train 𝑘 within
the area and time horizon modelled:

𝑈𝑘(𝑥) =
∑

𝑗∈𝐽𝑘

𝛽𝑗𝑘𝑈
𝑗
𝑘 (𝑥). (2)

Each event 𝑗 ∈ 𝐽𝑘 in the timetable for train 𝑘 corresponds to a particular part of the track 𝑟𝑘𝑗 , and a time that train 𝑘 is due to enter
it. These can include arrival events at platforms and passing events at junctions or key points along a route. The values of 𝛽𝑗𝑘 ensure
that more important events, such as an arrival into Doncaster station or exiting the modelled area, are weighted more highly than
events at minor stations. When alternative platforms are available (such as at Doncaster station), these are separate events 𝑗 ∈ 𝐽𝑘.

The utility 𝑈 𝑗
𝑘 (𝑥) accrued by train 𝑘 at event 𝑗 is equal to zero if the event 𝑗 is not carried out. This could occur if the train

passes through a timetabled platform without stopping to let passengers alight or depart (a cancelled stop) or if the route of a train
is changed so that it does not visit the location specified by event 𝑗. Otherwise, 𝑈 𝑗

𝑘 (𝑥) is equal to

𝛾(𝑙) =

{

𝜙−𝜔|𝑙| if |𝑙| ≤ 𝛤
0 if |𝑙| > 𝛤 ,

(3)

here 𝑙 is the number of 15 s time intervals late that the event occurs. Note that the lateness 𝑙 is negative if the train is early, and
his is penalised equally to positive lateness to discourage station congestion. The parameter values used are 𝜙 = 1 + (1 × 10−7),
= 1 × 105 and 𝛤 = 240. The weights 𝛽𝑘𝑗 are set as follows: A train’s final arrival or passing event in the time horizon is given

eight 0.7 to reflect the importance of trains leaving the controlled area punctually. All other arrivals excluding those representing
latform alternatives receive an equal proportion of the remaining weight 0.3. Non-final passing events receive a weight of zero.
hen 𝑟𝑘𝑗 is a platform alternative, 𝛽𝑘𝑗 has the same weight as the planned platform arrival but discounted by a factor of 0.9. This

eflects the disruption to passengers as a result of changing platforms. Other considerations could also be taken into account, such
s the service patterns and passenger interchange importance of individual stations. A preference is shown for events occurring
s close to on-time as possible. This is achieved by making 𝛾 strictly increasing on [−𝛤 , 0] and strictly decreasing on [0, 𝛤 ]. This
reference reflects the fact that late events are bad for passengers and early events can cause unanticipated difficulties at stations.
he efficiency 𝐸(𝐱) of a set of solutions 𝐱 = {𝑥𝑖 ∶ 𝑖 ∈ 𝐼} to the whole set of instances 𝐼 can be calculated by summing the individual
fficiency of each solution. Denoting the efficiency function 𝑈 when applied to each instance 𝑖 as 𝑈𝑖, this can be written as

𝐸(𝐱) =
∑

𝑈𝑖(𝑥𝑖). (4)
4

𝑖∈𝐼
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3.2. Finding an optimal solution

Solving a TTRP instance consists in finding a set of rescheduling events that maximises the value of 𝐸(𝑥). In Reynolds et al.
2020), we describe this solution method, which solves a multi-commodity network flow model. The constraints in this model
epresent the railway track capacities in the modelled station area over a period of time, discretised to 15 s time intervals. We
evelop a branch and price algorithm for this problem. For each train, the algorithm eventually finds a path through the railway
nfrastructure time-space network that defines its optimal movement in the rescheduled timetable and maximises the utility or
fficiency 𝑈𝑖(𝑥). For further details on the solution method we refer the reader to Reynolds et al. (2020).

.3. Fairness

For a given instance, let the set of operators be 𝑂, and let 𝑜 ⊂  be the set of trains that are operated by operator 𝑜. The
fficiency function 𝑈 (𝑥) can be rewritten as

𝑈 (𝑥) =
∑

𝑜∈𝑂
𝑈𝑜(𝑥), (5)

where

𝑈𝑜(𝑥) =
∑

𝑘∈1∩𝑜

𝑈𝑘(𝑥) +𝑤
∑

𝑘∈2∩𝑜

𝑈𝑘(𝑥) (6)

is the part of the efficiency arising from trains operated by 𝑜. Since 𝑈𝑜(𝑥) includes only trains from operator 𝑜, it can be used to
easure the utility of operator 𝑜.

The utilities 𝑈𝑜(𝑥) are difficult to compare because there might be different numbers of trains with different weights in the
nstance. For each operator 𝑜 ∈ 𝑂, let 𝑥∗𝑜 be an optimal solution when the objective is to maximise 𝑈𝑜(𝑥). Each solution 𝑥∗𝑜 represents
he best solution operator 𝑜 can hope for, and 𝑈𝑜(𝑥∗𝑜 ) provides an upper bound for 𝑈𝑜(𝑥). This allows us to calculate a normalised
tility for each operator

𝑈̂𝑜(𝑥) =
𝑈𝑜(𝑥)
𝑈𝑜(𝑥∗𝑜 )

. (7)

These values can be compared between operators. A value of 𝑈̂𝑜(𝑥) = 1 indicates that operator 𝑜 realises their maximum possible
utility in the rescheduled solution 𝑥 — all events for all trains are due to be carried out on time and as planned. Conversely, 𝑈̂𝑜(𝑥) < 1
indicates that one or more events have been cancelled or rescheduled to occur on a different platform, or late.

A social welfare function (such as 𝛼-fairness) could be applied to the set of utilities {𝑈̂𝑜(𝑥) ∶ 𝑜 ∈ 𝑂} to measure the fairness of
he solution 𝑥 for a single instance. This would allow fairness to be formulated as an objective function so that fairness-maximising
olutions to individual instances could be computed to solve the TTRP. It would also open the possibility of using multi-criteria
ethods to balance the objectives of maximising fairness and maximising efficiency within each instance.

However, when considering operator fairness for timetable rescheduling, it is problematic to focus on single hour-long instances
eparately. This is because operators experience fairness and unfairness over a much longer period of time. The operation of a TTRP
lgorithm on a railway is likely to involve solving hundreds of different instances, involving repeated allocations of track capacity
etween the same sets of operators. Instead, it is much more appropriate to consider many consecutive instances of the problem as
single, combined allocation problem. That is the approach taken in this paper.

Considering fairness over a whole instance set rather than on an individual instance basis has important implications for fairness.
t means that each individual instance need not be fair, provided any operators that loose out can be compensated in other instances.
his is crucial when one considers that a typical TTRP instance considers changes to the timetable over a time horizon of only one
our. Many instances involve only a small number of decisions such as which train should go ahead of the other out of a pair
f conflicting trains. It may be impossible to resolve such problems in a fair way, or doing so may require a large degradation in
fficiency. Our approach of considering fairness over the whole instance set overcomes this issue.

Although fairness is measured over a whole set of instances, each instance must still be optimised individually, as and when
elays arise on the railway. This makes it impossible to optimise our measure of fairness. As a result, we do not suggest the measure
s a potential objective function, but rather as a tool for fairness evaluation. Unfortunately, this also precludes calculation of the
rice of fairness (Bertsimas et al., 2011).

Consider a set of solutions 𝐱 = (𝑥𝑖 ∶ 𝑖 ∈ 𝐼) to a set of instances 𝑖 ∈ 𝐼 . We index the previous notation by 𝑖 so that 𝑂𝑖, 𝑈𝑖,𝑜, 𝑈̂𝑖,𝑜 and
𝑖,∗
𝑜 correspond to the notation 𝑂,𝑈𝑜, 𝑈̂𝑜 and 𝑥∗𝑜 , respectively, when applied to each instance 𝑖. Note that the set of operators 𝑂𝑖 can
e different across instances.

The normalised aggregated utility for operator 𝑜 over 𝐼 can be calculated as

𝑈̂𝑜(𝐱) =

∑

𝑖∈𝐼∶𝑜∈𝑂𝑖

𝑈𝑜,𝑖(𝑥𝑖)

∑

𝑈𝑜,𝑖(𝑥𝑖,∗𝑜 )
. (8)
5

𝑖∈𝐼∶𝑜∈𝑂𝑖
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Fig. 1. A berth diagram of Doncaster Station. Retrieved from https://wiki.openraildata.com/index.php?title=DR. Accessed 14/04/20.

Fig. 2. A berth diagram of the area of track modelled. Retrieved from https://wiki.openraildata.com/index.php?title=DR. Accessed 14/04/20.

These values are then used in the 𝛼-fairness welfare function to produce our measure of fairness:

𝐹𝛼(𝐱) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑜∈𝑂

𝑈̂𝑜(𝐱)1−𝛼

1 − 𝛼
𝛼 ≥ 0, 𝛼 ≠ 1

∑

𝑜∈𝑂
log 𝑈̂𝑜(𝐱) 𝛼 = 1.

(9)

3.4. The process for analysing the relationship between fairness and efficiency

In order to analyse this relationship we first compute the maximum utility for each operator by maximising 𝑈𝑜(𝑥). In order to
make these numbers comparable (Table 1 shows that operators in our case study are very different), these values are then used to
compute normalised aggregate utilities 𝑈̂𝑜(𝑥) for each train operating company. From these, we deduce their 𝛼-fairness indicators
(9). We further analyse the trade-offs between different operators by computing the additional utility accrued by an operator if trains
operated by a operator are removed. This allows the computation of the proportional gain by potentially made by any train operating
company in comparison to any other being removed from the dataset. These numbers in turn allow to quantify conflict between
operators that compete for the same resources, i.e. track sections at specific times. We then explore the influence of parameter 𝑤 on
this conflict and thereby identify 𝑤 as a main driver for unfairness. A similar analysis can be performed for any section of railway
for which the problem of maximising the efficiency 𝑈 (𝑥) as in (1) is possible with different sets of trains. We present a case study
for Doncaster station in Section 4.

4. The case study

An area of railway around Doncaster station has been used as a case study for evaluating fairness. Definitions of any railway
signalling terminology used below can be found in Reynolds et al. (2020). Doncaster station (see Fig. 1) lies on the East Coast
Main Line, a busy railway corridor connecting London with Leeds, York, Newcastle and Edinburgh. The wider area covered (see
Fig. 2) also contains portions of four double track lines that all begin at Doncaster and go towards Sheffield, Lincoln, Leeds and
Hull, respectively. Figures 1 and 2 are published by the Open Rail Data Wiki under Creative Commons licence CC BY-SA 4.0,
https://creativecommons.org/licenses/by-sa/4.0/. The area lies within a single area of signalling control, and contains 225 berths
with 313 valid berth transitions. The station itself has 9 platforms and 85 track circuits. Doncaster station is an important interchange
for a variety of inter-city and local services operated by seven different operators. It is also a busy bottleneck, with over 30 trains
per hour at peak times. This makes it ideal for investigating the interactions between different operators.
6
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Table 1
The passenger operators in the case study, including the total number and the number of class 1 and class 2
trains run through the modelled area during January 2017.
Operator Abbr. # Trains # Class 1 # Class 2

Northern Trains NT 4105 730 3375
London North Eastern Railway LNER 3492 3492 0
Transpennine Express TPE 825 825 0
Cross Country XC 737 737 0
Grand Central GC 496 496 0
Hull Trains HT 354 354 0
East Midlands Railway EMR 275 18 257

The data for the case study comes from January 2017. The seven different passenger operators running services through the
rea during this month are displayed in Table 1. Abbreviations will be used to refer to the operators throughout. Freight operators
ave been excluded from the analysis because freight services are often scheduled during less busy periods and are affected by
escheduling in different ways to passenger operators.

Table 1 shows that NT and LNER operated the most services during the period. Whilst most of the operators run inter-city (class
) services, NT and East Midlands Railway run mostly local (class 2) services. NT, in particular, is responsible for the vast majority
f class 2 trains. During this period, Grand Central and Hull Trains were open-access operators, while the remainder were operating
ranchises.

The month of January 2017 is split into 310 non-overlapping hour-long instances of the TTRP (between 8am and 6pm each day,
or 31 days). These instances are created from real historical data about the timetable, and the traffic perturbations that actually
ccurred. The number of operators running trains in each instance ranges from two to six, with the most common number being
ive. By using instances that cover a whole month, we are able to understand fairness over the whole month, rather than on an
nstance-by-instance basis.

.1. Evaluation of Fairness under Maximal Efficiency

The approach taken by Reynolds et al. (2020) and in many other TTRP studies is to maximise the efficiency of the system. It
s therefore important to evaluate the fairness of these solutions. For each of the 310 instances, an efficiency-maximising solution
as calculated using a solving time limit of 600 s. Only 12 instances were not solved to optimality within this time limit. For these

nstances, the best solution found during the time limit was selected, which was less than 1% away from optimality in all cases.
Fig. 3 shows three quantities for each operator: the normed aggregated utility 𝑈̂𝑜(𝐱), the proportion of instances for which

̂ 𝑜,𝑖(𝑥𝑖) = 1, and the number of instances |{𝑖 ∈ 𝐼 ∶ 𝑜 ∈ 𝑂𝑖}| in which the operator runs at least one train. This shows that NT had
he smallest normed aggregated utility, followed by LNER. Other operators had higher figures, showing that there is inequality in
he normed utility of operators. NT and LNER also run trains in the greatest number of instances and run the most trains in total.
t can be seen that the normed utility of NT is only equal to 1 (𝑈̂𝑜,𝑖(𝑥𝑖) = 1) in 41.6% of instances, which is significantly lower than
or other operators.

The overall figure for the 𝛼-Fairness over the full test set is −0.01689 (5 decimal places) with 𝛼 = 1. Fig. 4 shows the 𝛼-Fairness
f each instance separately. From this it can be seen that the set of solutions as a whole is more fair than many of the individual
nstances in the test set. It is also apparent that fairer instances are more numerous than less fair instances.

The distribution of normed utility over the instances by operator is further visible in Fig. 5. For each operator, a boxplot is shown
f 𝑈̂𝑜,𝑖(𝑥𝑖) for all of the instances 𝑖 ∈ 𝐼 such that 𝑈̂𝑜,𝑖(𝑥𝑖) ≠ 1. These are instances in which the normed operator utility was less than
he maximum possible amount available for that operator. It shows that while NT was affected a greater number of instances, the
alues of 𝑈̂𝑜,𝑖(𝑥𝑖) in these instances were on average closer to 1 than for most other operators. This might be because 𝑈̂𝑜,𝑖(𝑥𝑖) is
easured as a proportion of the total possible utility, and therefore when an operator runs more trains in an instance, a delay to

ny one of them causes less proportional impact.
To summarise, the results in this section indicate that unfairness is present in efficiency-maximal timetable rescheduling solutions.

T achieves a smaller proportion of its total possible utility than any other operator, although this is due to small losses over many
nstances. The results also show that fairness varies between instances.

.2. Identifying sources of unfairness

Values of 𝑈̂𝑜,𝑖(𝑥𝑖) that are less than 1 occur because TTRP solutions must allocate scarce track capacity to some operators in
reference to others. TTRP instances contain trade-offs between the interests of different operators that must be resolved according
o the objective function used. We examine these trade-offs in order to more fully understand the variation in normalised aggregated
tility across different operators that leads to unfairness.

For a given instance, let 𝑥∗⧵𝑜 be the optimal solution when it is solved with objective function
∑

𝑈𝑜′ (𝑥), (10)
7

𝑜′∈𝑂⧵{𝑜}
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Fig. 3. Normed aggregated utility, number of instances with utility of 1, and number of instances for each operator.

Fig. 4. Histogram of 𝛼-fairness scores of instances, with 𝛼 = 1.

for each operator 𝑜 ∈ 𝑂. This objective function is obtained from the efficiency function by removing the utility accrued from any
trains operated by 𝑜. For each remaining operator 𝑜′ ∈ 𝑂 ⧵ {𝑜}, the proportional gain in their utility is

𝑈̂𝑜′⧵𝑜(𝑥) =
𝑈𝑜′ (𝑥∗⧵𝑜) − 𝑈𝑜′ (𝑥)

, (11)
8
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Fig. 5. A boxplot showing the distribution of 𝑈̂𝑖,𝑜(𝑥𝑖) over the set of instances 𝑖 ∈ 𝐼 , by operator. Instances 𝑖 for which 𝑈̂𝑖,𝑜(𝑥𝑖) = 1 are excluded. The number of
instances that are included is shown on the right.

where 𝑥 is an efficiency-maximising solution. Note that 𝑜′ ∈ 𝑂 is necessary for this value to be defined, but that if 𝑜 ∉ 𝑂, we simply
have that 𝑈̂𝑜′⧵𝑜(𝑥) = 1 (an operator that does not run trains in the instance is removed, so the utility of 𝑜′ is not affected).

We can aggregate this over the whole instance set 𝐼 . By letting 𝑂𝑖, 𝑈𝑖,𝑜, 𝑥𝑖 and 𝑥𝑖,∗⧵𝑜 denote 𝑂,𝑈𝑜, 𝑥 and 𝑥∗⧵𝑜 for instance 𝑖 ∈ 𝐼 (as
n Section 3.3), the proportional gain in aggregated utility can be written as

𝑈̂𝑜′⧵𝑜(𝐱) =

∑

𝑖∈𝐼∶𝑜′∈𝑂𝑖

𝑈𝑖,𝑜′ (𝑥
𝑖,∗
⧵𝑜 ) −

∑

𝑖∈𝐼∶𝑜′∈𝑂𝑖

𝑈𝑖,𝑜′ (𝑥𝑖)

∑

𝑖∈𝐼∶𝑜′∈𝑂𝑖

𝑈𝑖,𝑜′ (𝑥𝑖)
. (12)

These values make it possible to identify the pairwise trade-offs between operators. A large value of 𝑈̂𝑜′⧵𝑜(𝐱) means that operators
𝑜 and 𝑜′ are in greater competition for track capacity, whereas 𝑈̂𝑜′⧵𝑜(𝐱) = 0 means that there is no competition.

The values of 𝑈̂𝑜′⧵𝑜(𝐱) were calculated for each pair of operators using all 310 instances. They are displayed in Fig. 6 and
epresented visually in Fig. 8 as a directed graph in which the width of each directed arc (𝑜′, 𝑜) represents the magnitude of 𝑈̂𝑜′⧵𝑜(𝐱).
ig. 7 shows the number of instances 𝑖 ∈ 𝐼 for which 𝑈̂𝑖,𝑜′⧵𝑜(𝑥𝑖) > 0 for each pair 𝑜, 𝑜′ of operators.

Fig. 6 shows that LNER experienced a gain in utility of 0.2957% when NT was removed from every instance, the largest
roportional increase of any pair of operators. Fig. 7 shows that when LNER was removed from the instances, NT improved its
tility in 129 of the 310 instances, the largest number of instances of any pair of operators. From Fig. 8 it is apparent that LNER
nd NT both have significant trade-offs with a wide variety of different operators. Some pairs of operators that might have been
xpected to have significant trade-offs, because they both run large numbers of trains, did not have large trade-offs. TPE and XC are
good example of this, affecting the utility of each other only in 3 and 6 cases, respectively. This probably reflects characteristics

f the timetable, in which their trains are rarely scheduled to pass through Doncaster Station at similar times. EMR experiences no
tility trade-off, but this is not a significant finding since they operate trains in only 9 of the 310 instances.

An interesting aspect of the results displayed in Fig. 6 is that for some pairs of operators the value of 𝑈̂𝑜′⧵𝑜(𝐱) is negative, although
one of these are large in absolute value. Specifically, this is observed for (𝑜′, 𝑜) =(TPE, NT), (NT, TPE), (XC, HT) and (HT, TPE).
egative trade-offs over the whole instance set are observed because in 62 of the instances, there is some pair of operators for which
̂ 𝑖,𝑜′⧵𝑜(𝑥𝑖) < 0. This means that when operator 𝑜 was removed from the instance, the utility of operator 𝑜′ decreased.

This phenomenon is known as resource non-monotonicity, and observing it shows that maximising the efficiency is a resource
on-monotonic strategy. In this case, the resource in question is track capacity and the entities in question are the operators in the
et 𝑂 ⧵ {𝑜}. When operator 𝑜 is removed from an instance, the collective availability of track capacity to the entities is increased
ince 𝑜 is no longer competing for it. Formally, removing 𝑜 from an instance weakly decreases the dual price of each time-space
esource (see Reynolds et al. (2020) for an explanation of these terms). As a result, the entities are always collectively better off, i.e.

∑

𝑈𝑜′ (𝑥
𝑖,∗
⧵𝑜 ) ≥

∑

𝑈𝑜′ (𝑥𝑖).
9
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Fig. 6. The values of 𝑈̂𝑜′⧵𝑜(𝐱) multiplied by 100 (therefore given in 100ths of a percent) and rounded to 2 decimal places. Rows correspond to 𝑜′; columns to 𝑜.

Fig. 7. The number of instances out of 310 for which 𝑈̂𝑜′⧵𝑜(𝑥𝑖) > 0. Rows correspond to 𝑜′; columns to 𝑜.

However, this collective improvement in utility is not shared equally under an allocation strategy of efficiency maximisation. Rather,
we observe that whilst some operators benefit disproportionately, others experience a decrease in utility. This occurs when the
removal of trains run by 𝑜 from an instance causes an improvement for trains run by some operator 𝑜̂ that is only possible with a
degradation for trains run by 𝑜′.

4.3. The effect of train class weight on efficiency and fairness

The evidence from Sections 4.1 and 4.2 shows that in our case study, NT experiences the lowest normalised aggregated utility
and that this arises as a result of trade-offs with the utility of LNER in particular. It is notable that NT also run the majority of
class 2 trains in the instance set, and that these are down-weighted in the efficiency measure. Specifically, the train class weight is
𝑤 = 0.4, meaning that the efficiency contribution of a class 2 train that runs exactly as planned is worth 0.4 of what it would if it
10
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Fig. 8. A graph of the operators in which the width of arc (𝑜′ , 𝑜) corresponds to 𝑈̂𝑜′⧵𝑜(𝐱).

Fig. 9. Efficiency and fairness for different values of 𝑤.

ere class 1. This suggests that an improvement in fairness might be achieved by using an objective function in which class 2 trains
re down-weighted less severely.

To test this, all 310 instances were solved using the objective function 𝑈 with three different values 𝑤 = 0.4, 0.7 and 1.0. The
scenario in which 𝑤 = 0.4 is equivalent to maximising the efficiency, whereas equal weight is given to class 1 and class 2 trains in
he 𝑤 = 1 scenario. The final scenario, 𝑤 = 0.7, was selected because it is halfway between these two extremes. For each value of
𝑤, the aggregated efficiency 𝐸(𝐱) and the aggregated fairness 𝐹𝛼(𝐱) were calculated and are plotted in Fig. 9. Note that points to
the right and up indicate higher efficiency and higher fairness and re therefore preferable. Fig. 10 compliments the information in
Fig. 9 by showing the normalised aggregated utilities of the operators in each of the three scenarios.

These results show that as 𝑤 is increased from 0.4 to 0.7, there is a trade-off between fairness and efficiency. The solutions
btained with 𝑤 = 0.7 are more fair than 𝑤 = 0.4, but less efficient. It is not surprising that the efficiency decreases, since function

𝑈 (𝑥) with en 𝑤 = 0.4 as shown in (1) is in fact the Network Rail definition of efficiency. Fig. 10 shows that the increase in fairness
omes principally from an increase in utility for NT that is associated with a small cost for TPE and GC, with almost no difference
or LNER. It is likely that this results in some of the conflicts between NT and TPE and between NT and GC from being decided in
avour of NT as a result of the higher value of 𝑤.

A different pattern is observed as 𝑤 is increased from 0.7 to 1.0. The efficiency continues to deteriorate as 𝑤 deviates more from
0.4, and therefore the objective function deviates more from the efficiency measure. However, the rescheduling outcomes are less
fair for 𝑤 = 1.0 than for 𝑤 = 0.7. Fig. 10 shows that the increase in 𝑤 once again causes a substantial improvement to the utility of
11

NT. However, this time a more significant decrease in the utilities of LNER and GC are observed. Since for 𝑤 = 0.7 LNER already
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Fig. 10. The change in normalised aggregated operator utility for different values of 𝑤. Grey lines indicate that 𝑈̂𝑜(𝐱) increases as 𝑤 increases; red lines show
he opposite.

as a lower normed aggregated utility than NT, this results in a decrease in fairness. The point for 𝑤 = 1.0 is dominated by the
oint for 𝑤 = 0.7, since it has both lower fairness and lower efficiency. This highlights that the points depicted in Fig. 9 are not
necessarily) Pareto optimal — bi-objective optimisation techniques would be required to find Pareto optimal points. However, as
ointed out in Section 3.3, it is not possible to optimise fairness since this is measured over the whole instance set.

Fig. 10 shows that the largest changes in utility in response to changing 𝑤 are experienced by NT, LNER and GC. These findings
re consistent with the evidence from Section 4.2 that competition between NT and LNER is high. It is interesting to note that XC
oes not experience a significant fall in normalised aggregated utility, despite the fact that competition between NT and XC was
lso found to be high. This could indicate the importance of factors other than train weight in deciding how conflicts involving
rains operated by NT and XC are resolved. Another possible explanation is that conflicts involving these two operators primarily
elate to the small number of Class 1 trains operated by NT.

. Conclusions

In this paper, we evaluate the fairness of a TTRP algorithm in the presence of competition between train operators. This is
chieved by analysing results from a case study of Doncaster station during the month of January 2017. Measures for both efficiency
nd fairness are proposed and calculated both for each instance individually and over the whole month. Efficiency-maximising
olutions are studied both to investigate fairness and to analyse pairwise trade-offs between operators. Finally, the effect of changing
he train class weighting in the objective function is studied with respect to fairness and efficiency.

The results show that some unfairness is present in efficiency-maximising solutions. That unfairness is principally to the detriment
f NT, the operator running most of the class 2 trains. Further, the largest trade-off in normalised aggregated utility is between
T and LNER. Increasing the train class weighting from 0.4 to 0.7 increases fairness by improving the utility of NT, but decreases
fficiency by harming the utility of operators running class 1 trains. However, increasing 𝑤 from 0.7 to 1.0 decreases both efficiency
nd fairness by harming the utility of LNER. This shows that the value of 𝑤 needs to be carefully considered in any future deployment
f optimisation-based timetable rescheduling.

Future research should focus on making direct comparisons between the fairness of TTRP solutions and the fairness of historical
anually decided rescheduling actions. This would add to the evidence presented in this paper about the likely impact of deploying

ptimisation-based timetable rescheduling. Another direction of further study would be to identify how elements of the objective
unction other than 𝑤 affect fairness. For example, it would be interesting to understand whether optimising the fairness of each
ndividual instance leads to greater fairness over the whole instance set, and what the effect on efficiency would be. It might also be
nteresting to investigate the sensitivity of the solution to parameters 𝛽𝑘𝑗 , even though we think that, because they refer to individual
vents for particular trains, their influence on the overall solution and fairness of the solution is small.

Recognising that optimising fairness of TTRP solutions over instances of one hour is of limited practical interest, it would
ertainly be of interest to develop solution methods that optimise fairness over a sequence of instances, such as the 310 instances
e considered in the case study. This would require further research into solution methods for a set of instances. On the other hand

t would allow a proper study of the trade-off between fairness and efficiency using multi-objective optimisation methods. Finally,
t would be interesting to understand how operator fairness and passenger fairness interact, and how fairness for the TTRP ought
o relate to the fairness of the original timetable construction process.
12
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