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A B S T R A C T 

We investigate the linear and non-linear properties of the Goldreich–Schubert–Fricke (GSF) instability in stellar radiative zones 
with arbitrary local (radial and latitudinal) differential rotation. This instability may lead to turbulence that contributes to the 
redistribution of angular momentum and chemical composition in stars. In our local Boussinesq model, we investigate varying 

the orientation of the shear with respect to the ‘ef fecti ve gravity’, which we describe using the angle φ. We first perform an 

axisymmetric linear analysis to explore the effects of varying φ on the local stability of arbitrary differential rotations. We then 

explore the non-linear hydrodynamical evolution in three dimensions using a modified shearing box. The model exhibits both 

dif fusi ve GSF instability and a non-dif fusi ve instability that occurs when the Solberg-Høiland criteria are violated. We observe 
the non-linear development of strong zonal jets (‘layering’ in the angular momentum) with a preferred orientation in both cases, 
which can considerably enhance turbulent transport. By varying φ, we find instability with mixed radial and latitudinal shears 
transports angular momentum more efficiently (particularly if adiabatically unstable) than cases with purely radial shear ( φ = 

0). By exploring the dependence on box size, we find the transport properties of the GSF instability to be largely insensitive 
to this, implying we can meaningfully extrapolate our results to stars. Ho we ver, there is no preferred length-scale for adiabatic 
instability, which therefore exhibits strong box-size dependence. These instabilities may contribute to the missing angular 
momentum transport required in red giant and subgiant stars and drive turbulence in the solar tachocline. 
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 I N T RO D U C T I O N  

he internal transportation of angular momentum (AM) and chemical 
omposition throughout the life-cycle of a star can vastly affect its
ltimate fate. Unfortunately, the dynamics of AM (and chemical) 
edistribution in stellar interiors is poorly understood, as can be seen 
articularly clearly for red and subgiant stars, whose core-envelope 
ifferential rotations inferred from asteroseismology are not well ex- 
lained by existing models (e.g. Aerts, Mathis & Rogers 2019 ). In the
ollowing, we are interested in dynamics occurring in stably-stratified 
tellar radiative zones exhibiting differential rotation, particularly in 
egions of strong shear, such as the solar tachocline, which connects 
he radiative and convective regions and contains interesting wave, 
urbulence, and magnetic field dynamics (e.g. Gilman & Fox 1997 ; 

ood & McIntyre 2011 ; M ́arquez-Artavia, Jones & Tobias 2017 ;
araud 2020a ). Some of the main physical mechanisms that could 

nhance AM transport in stars involve (magneto-)hydrodynamic 
nstabilities (e.g. Maeder 2009 ; Meynet et al. 2013 ; Aerts et al.
019 ). One such instability that may occur within radiative zones 
s the Goldreich–Schubert–Fricke (GSF) instability (Goldreich & 

chubert 1967 ; Fricke 1968 ). 
 E-mail: mmrwd@leeds.ac.uk 
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The GSF instability is a doubly-dif fusi ve instability of differential
otation, where the action of thermal diffusion on sufficiently small 
ength-scales reduces the stabilizing effects of buoyancy, allowing 
or the development of a fingering-type instability (analogous to 
he thermo-haline instability, e.g. Garaud 2018 ). In a rotating shear
ow where the thermal gradient is stabilizing (a radiative region), 
 reduction in thermal effects can allow AM fingers to develop
nd grow exponentially . Subsequently , these non-linearities saturate, 
.g. by secondary parasitic shear instabilities, as they grow until 
urbulence develops. This configuration is visually analogous to 
alt fingering, and formally analogous for axisymmetric (2D 3- 
omponent) simulations performed with purely radial shear at the 
quator (for a certain choice of dif fusi vity ratio, Barker, Jones &
obias 2019 ). Interestingly, the non-linear development of the in- 
tability does not lead to a homogeneous turbulent state in general,
nd other interesting dynamics, such as the formation of layering in
M (often referred to as’zonal-jets’) has previously been observed, 
hich can enhance turbulent transport (particularly at non-equatorial 

atitudes, in the case with radial shear , Barker , Jones & Tobias 2020 ).
This paper builds directly upon Barker et al. ( 2019 , hereafter paper

 ), and Barker et al. ( 2020 , hereafter paper 2 ). These papers consider
 local Cartesian representation of a small patch of a stably-stratified,
ifferentially-rotating, radiation zone, modelling a global ‘shellular’ 
or ‘vertical’) differential rotation that varies only with spherical 
adius; first at the equator in paper 1 , then at a general latitude in
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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aper 2 . Following these papers, we perform an axisymmetric linear
tability analysis alongside complementary three-dimensional non-
inear numerical simulations, with the primary goal of understanding
he non-linear evolution of the GSF instability, and determining its
otential role in AM transport and chemical mixing. Paper 1 found
hat 3D simulations at the equator with radial shear (primarily)
xhibited homogeneous turbulence with sustained and enhanced
M transport. Significant differences between axisymmetric and 3D

imulations were observed ho we ver, and where comparisons could
e made their findings were in agreement with previous work (e.g.
orycansky 1991 ). A simple, easily-implementable theory to model
M transport in stars (moti v ated by Denissenkov 2010 and Brown,
araud & Stellmach 2013 for thermohaline convection), was also
eveloped for possible use in stellar evolution codes. 
Generalizing the abo v e study to an arbitrary latitude (but still

ith radial shear), paper 2 again found that the instability exhibited
nhanced AM transport, with further increases typically seen away
rom the equator. Interestingly, the formation of zonal jets (or
ayering in AM) was observed in non-linear simulations, which
ere tilted with respect to the local gravity vector by an angle

hat corresponded initially with the fastest growing linearly unstable
odes, but later evolved with time. Paper 2 also analysed the linear

tability and obtained the following simple criterion for onset of
dif fusi ve) axisymmetric instability at a general latitude, for radial
ifferential rotation: RiPr < 

1 
4 , where Ri = N 

2 / S 2 is the local
gradient) Richardson number and Pr = ν/ κ is the (thermal) Prandtl
umber. Here, N 

2 is the squared buoyancy frequency, S 2 is the squared
ocal shear rate, and ν and κ are the kinematic viscosity and thermal
if fusi vity (see also Rashid, Jones & Tobias 2008 ). For instability at
he equator, the flow only becomes unstable if the stricter Rayleigh
riterion for non-dif fusi ve centrifugal instability is violated. 

The GSF instability belongs to a family of instabilities referred to
s so-called ’secular’ shear instabilities. Standard shear instabilities,
or which perturbations are usually assumed to be adiabatic, are
ot typically expected to develop in stellar radiation zones, thanks
o the strong stabilizing effects of the stratification. On the other
and, finite-amplitude ‘secular’ (or dif fusi ve) shear instabilities (e.g.
ahn 1974 ; Zahn 1992 ), are believed to be important by producing

hermally-dif fusi ve shear-induced turbulence when the Richardson
umber Ri of the flow is large, provided the Peclet number Pe (which
easures the ratio of thermal diffusion to advection time-scales) is

ufficiently small (e.g. Prat & Ligni ̀eres 2013 ; Garaud, Gagnier &
erhoeven 2017 ; Gagnier & Garaud 2018 ; Kulenthirarajah & Garaud
018 ; Cope, Garaud & Caulfield 2020 ; Garaud 2020b ). The GSF
nstability is distinct from these in that it is a linear instability that only
perates in the presence of rotation, but it is related in that it requires
hermal diffusion to dominate o v er momentum diffusion. When both
nstabilities operate, they can interact, leading to interesting non-
inear dynamics (Chang & Garaud 2021 ). The GSF instability and
ts co-existence with inflection-point instabilities have also been
nalysed in linear theory for horizontal shears with a tanh profile
y Park, Prat & Mathis ( 2020 ); Park et al. ( 2021 ). They referred to
he GSF instability as the ‘inertial instability’ following its relation
o this instability in the geophysical literature. 

Our primary goal in this work is to develop an understanding of
ow the linear and non-linear properties of the axisymmetric hydro-
ynamic (primarily GSF) instabilities are modified when the model
s extended to allow arbitrary local differential rotation. Our model
llows us to study the stability of horizontal/latitudinal shears as well
s mixed latitudinal and radial shears, thereby building considerably
pon papers 1 and 2 , which were restricted to purely radial shears.
n our local model, this is accomplished by studying how variation
NRAS 524, 2857–2882 (2023) 
n the orientation of the local ef fecti v e gravity v ector relativ e to the
hear alters the linear and non-linear dynamics of the GSF instability
n a small-scale Cartesian box. This is done by studying its effects
n the linear problem in Section 3 , where we derive criteria for
he onset of linear adiabatic and dif fusi ve instabilities. Here, we
ill also present several figures that characterize the growth rates

nd wav ev ector magnitudes within the various possible regimes.
ection 4 uses pseudo-spectral hydrodynamical simulations using
n MPI-parallelized code to explore the fully non-linear problem.
n particular, we explore the effects of the orientation of the local
f fecti ve gravity relative to the shear on both the kinetic energy
nd AM transport produced by the instability, and also present visual
napshots of the dynamics at various points throughout the evolution.
n Section 5 , we present our conclusions and discuss moti v ations for
urther work, as well as a brief discussion of the application of our
esults to transport in stars. 

 L O C A L  CARTESI AN  BOX  M O D E L  

.1 The model and go v erning equations 

ur model represents a small-scale patch of a stably-stratified region
f a differentially-rotating star, such as in the lower parts of the
olar tachocline. We model this patch as a Cartesian box with
oordinates ( x , y , z), where we define y as the local azimuthal
irection, and x and z as two directions in the meridional plane, which
ill be described in more detail below. We adopt the Bousinessq

pproximation (Spiegel & Veronis 1960 ), which is valid here since
he scales on which the effects of thermal diffusion become strong
nough to enable instability are typically far smaller than the pressure
cale height (e.g. see the estimates in Barker et al. 2019 ). 

The differential rotation in this model is locally decomposed into
 rotation term �( r, β) = �( r, β) ̂  � (which is locally constant with
agnitude �), along with a linear shear flow U 0 = −Sx e y , which
ay in general vary with both spherical radius r and co-latitude β in

he star. S is the constant value locally of −� |∇ �( r , β) | , and � is
he distance from the axis of rotation (cylindrical radius). We define
 to be aligned with the variation of the shear flow U 0 , and so it is in
eneral misaligned with respect to the local ef fecti ve gravity vector

e g = ( cos φ, 0 , sin φ) (which is approximately along the spherical
adial direction), where the components of this vector (and all subse-
uent ones) are expressed using our local Cartesian coordinates. We
efine the angle 	 (as in paper 2 ), such that ˆ � = ( sin 	, 0 , cos 	 ).
ince 	 is the angle from the equator (perpendicular to ˆ �) to the
 -axis and the latter is misaligned from the spherical radial direction
 e g ) by φ, our latitude angle is 	 + φ. Our model is illustrated
n Fig. 1 , where the top panel shows the orientation of the box
ith respect to the local ef fecti ve gravity e g and the bottom panel

llustrates the various angles and the shear flow considered. 
Papers 1 and 2 adopted a similar model but with shear acting

adially (i.e. co-linear with the ef fecti ve gravity), so that φ = 0 and
 lies along e g . It is, ho we ver, kno wn that shear flows can vary more
enerally in stellar interiors (for example, we know the Sun has both
adial and latitudinal differential rotation, at least in the vicinity of
he convection zone), and such mixed radial and latitudinal shears
ould possibly have enhanced mixing properties. Thus, a natural
xtension for us is to investigate the effects of varying the angle
etween the direction of the local shear and the ef fecti ve gravity,
hich we describe using the angle φ. 
The equations go v erning perturbations to the shear flow, U 0 , are 

 u + 2 � × u + u · ∇ U 0 = −∇p + θe g + ν∇ 

2 u , (1) 



GSF instability general shears 2859 

Figure 1. Two panels indicating the local Cartesian model with arbitrarily 
oriented local ef fecti ve gravity e g describing local differential rotation 
depending on both spherical radius and latitude in general (note, we refer 
to rotation profiles as �( r , β), where β is the co-latitude). For illustration, the 
dark orange region may represent a radiation zone and the yellow region an 
o v erlying conv ection zone, if we consider application to the solar tachocline. 
We consider a general differentially-rotating star at a latitude 	 + φ, with 
local shear along x , and normal to the stratification surfaces (i.e. along the 
temperature gradient) e θ , which is inclined relative to the local radial direction 
(approximately along e g ) by an angle � − φ that is determined by the thermal 
wind equation. 
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Table 1. Table of differential rotation profiles as 	 and φ are varied, where 
here β is co-latitude, z is distance along rotation axis, r is spherical radius, 
and � is cylindrical radius in this table. 

	 φ Differential rotation profile Baroclinic/barotropic? 

0 – �( � ) (cylindrical) barotropic 
±90 ◦ – �( z) (axial variation only) baroclinic 
– 0 �( r ) (spherical/shellular) baroclinic except at 	 = 0 
– ±90 ◦ �( β) (horizontal/latitudinal) baroclinic 
– – �( r , β) (arbitrary) baroclinic in general 

Figure 2. Illustration of the various vectors and corresponding angles in 
the ( x , z)-plane as defined in the text. The cylindrical radial direction (along 

the equator) is along ˆ �
⊥ 

, and the rotation axis is along ˆ �. The local radial 
direction is (approximately) along the ef fecti ve gravity direction e g , with is 
misaligned with respect to the x direction when φ is non-zero. 
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θ + N 

2 u · e θ = κ∇ 

2 θ, (2) 

 · u = 0 , (3) 

 ≡ ∂ t + u · ∇ + U 0 · ∇. (4) 

ere, we have defined a new temperature perturbation as θ , which 
as the units of an acceleration and is related to the standard
emperature perturbation ˜ T via θ = αg ̃  T , where α is the thermal 
xpansion coefficient and g is the local gravitational acceleration. 
e have set the background reference density to unity. A back- 

round temperature (entropy) profile T ( x , z) has also been adopted,
ith uniform gradient αg ∇T = N 

2 e θ , where e θ = ( cos �, 0 , sin �),
here we note that our buoyanc y frequenc y N 

2 > 0 in the radiative
one of a star. The ef fecti ve gravity vector e g lies approximately
n the spherical radial direction, and is inclined to x by an an-
le φ. For ease of presentation when referring to ‘radial’ and 
latitudinal’, we consider sufficiently slowly rotating stars that 
 g lies approximately along the spherical radial direction, though 
he model itself does not require this restriction. Throughout our 
ystem, we also have constant kinematic viscosity ν and thermal 
if fusi vity κ , both of which are vital ingredients to study the GSF
nstability. 

We expect a realistic system would quickly adjust to be in thermal
ind balance on a dynamical time-scale. If this holds, we can then

liminate � as a free parameter by assuming that a given basic flow
 0 and its thermal state satisfies the thermal wind equation (TWE) 

 �S sin 	 = N 

2 sin ( � − φ) . (5) 

t is left as a topic for future work to study how rapidly a stellar
nterior would adjust to satisfy thermal wind balance. This equation is 
erived from the azimuthal component of the vorticity equation for 
he basic state and describes the degree of ‘baroclinicity’ in the
ystem (i.e. the component of differential rotation along the rotation 
xis). When 	 = 0, this indicates cylindrical differential rotation 
ocally, where �( � ). This is a barotropic configuration, implying
urfaces of constant density and pressure are aligned, i.e. � = φ. If
in 	 �= 0, this implies in general a misalignment between surfaces
f constant density and pressure, such that � and φ are unequal,
hich is referred to as a baroclinic configuration. In the latter, the

otation profile depends locally upon both spherical radius and co- 
atitude. The limit sin 	 = 1 implies � varies only with distance
long its axis ˆ �. The case φ = 0 refers (approximately) to spherical
r shellular differential rotation, in which � depends locally upon 
pherical radius only. If φ = ±90 ◦, this approximately corresponds 
ith purely latitudinal differential rotation, where � depends locally 
nly upon co-latitude. These various cases are summarized in Table 1
elow. We also illustrate the various angles in our problem in Fig. 2 .
We take �−1 as our unit of time and the length-scale d to define

ur unit of length, where the latter is defined by 

 = 

( νκ

N 

2 

) 1 
4 
. (6) 
MNRAS 524, 2857–2882 (2023) 
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he latter is chosen because the fastest growing mode typically has
 wavelength O ( d ). On this length-scale, the buoyancy time-scale
 

−1 is equal to the geometric mean of the product of viscous ( d 2 / ν)
nd thermal diffusion ( d 2 / κ) time-scales (see e.g. Radko 2013 , for a
iscussion of its rele v ance for similar double-dif fusi ve instabilities).
his choice allows us to conveniently select a box size relative to

he wavelengths of the fastest growing linear modes. We typically
se a (100 d ) 3 box by default throughout our non-linear simulations.
e also define our dimensionless shear rate as S = S/� and our

imensionless buoyancy frequency as N = N /�. 
In total, excluding the dimensions of the box (and numerical

esolution), our problem has five independent parameters: S , Pr,
 

2 , 	 , and φ (since � is constrained by equation ( 5 )). Note that
he Prandtl number, which is a crucial parameter in our system, is
efined as 

r = 

ν

κ
. (7) 

he non-dimensional momentum and heat equations can be written,

 u + 2 ̂  � × u − Su x e y = −∇p + θe g + E ∇ 

2 u , (8) 

θ + N 

2 u · e θ = 

E 

Pr 
∇ 

2 θ, (9) 

long with incompressibility, where we have defined the local Ekman
umber E = ν/( �d 2 ) (which can be related to other parameters).
ere, lengths have been scaled using d , time has been scaled by
−1 , velocities by d �−1 , and temperatures by d �−2 . Note that

or simplicity hats have not been added to denote non-dimensional
uantities. 

.2 Numerical methods 

ur non-linear simulations are performed using a modified version
f the Cartesian pseudo-spectral code SNOOPY (e.g. Lesur &
ongaretti 2005 ), as employed and tested in papers 1 and 2 . SNOOPY
ses a basis of shearing waves, meaning our Fourier modes have
ime-dependent wav ev ectors, which is equi v alent to using shearing-
eriodic boundary conditions in a non-shearing frame. A periodic
e-mapping procedure is applied for numerical reasons following
murhan & Regev ( 2004 ). Each time-step is evaluated using a
rd-order e xplicit Runge–K utta time-marching scheme, and aliasing
rrors are eliminated using the 2/3-rule. Throughout our simulations
e initialize the flow using solenoidal random noise with amplitude
0 −3 for ev ery wav enumber in the range ˆ i , ˆ j , ̂  k ∈ [1 , 21] , where
 x = 

2 π
L x 

ˆ i , k y = 

2 π
L y 

ˆ j , and k z = 

2 π
L y 

ˆ k . Tables of our simulation pa-
ameters and of the linear properties of these cases are presented in
ppendix B . 

 L INEA R  T H E O RY  

.1 Dispersion relation for axisymmetric modes 

e consider axisymmetric modes (with azimuthal wavenumbers k y =
) as these are likely to be the most unstable, and follow closely the
ethods in paper 2 . Knobloch & Spruit ( 1982 ) argued that although

on-axisymmetric baroclinic modes are unstable whenever surfaces
f constant pressure and temperature are misaligned (at least with
 rigid boundary, as also found by Rashid et al. 2008 ), because
he buoyancy frequency greatly exceeds the shear rate in most
strophysical situations, baroclinic modes will only be unstable for
avelengths larger than the stellar radius, which justifies our focus
n axisymmetric modes. In this section, we build upon Knobloch &
NRAS 524, 2857–2882 (2023) 
pruit ( 1982 ), Knobloch ( 1982 ), and papers 1 and 2 by exploring in
ore detail the effects of varying φ on the linear stability problem,

nd we will deri ve se veral ne w results as well as reproducing some
rior ones. We will explore graphically and in more detail the
onsequences of varying φ than in prior work, and we will for the
rst time compute the linear growth rates and wavenumbers of the
ost unstable modes in this problem as φ is varied. 
We start by seeking solutions proportional to exp( ik x x + ik z z +

t ), where k x and k z are the wav ev ector components in the x and z
irections in the meridional plane. In our model x is radial if φ = 0,
ut more generally it is aligned with the gradient in angular velocity,
nd z is perpendicular to it. We define the complex growth rate
 = σ + i ω, where the growth (decay) rate σ ∈ R and the oscillation
requency ω ∈ R . We manipulate the linearized versions of equations
 1 )–( 4 ) for such perturbations, and define s ν = s + νk 2 and s κ = s +
k 2 , to obtain the cubic dispersion relation 

 

2 
ν s κ + as κ + bs ν = 0 , (10) 

here 

 = 

2 

� 

( ̂ k · �)( ̂ k · ( ∇� ) ⊥ ) , (11) 

= 

2 �

k 2 
( s 	 

k x + c 	 

k z )(2 �k x s 	 

+ (2 �c 	 

− S) k z ) , (12) 

nd 

 = N 

2 ( ̂ k · e ⊥ 

θ )( ̂ k · e ⊥ 

g ) , (13) 

= 

N 

2 

k 2 
( k z c � − k x s � )( k z c φ − k x s φ) . (14) 

n the abo v e we hav e used c 	 

and s 	 

to refer to cos 	 and sin 	
or brevity, and similarly for trigonometric functions with other
rguments. We also define the local angular momentum gradient 

� = ∇( � 

2 �) = � (2 �c 	 

− S, 0 , −2 �s 	 

) , = |∇� | ( c γ , 0 , −s γ ) , 

(15)

hich has magnitude 

∇� | 2 = � 

2 
(
S 

2 + 4 �( � − Sc 	 

) 
)
. (16) 

he normal to the local angular momentum gradient is then 

 ∇� ) ⊥ = � (2 �s 	 

, 0 , 2 �c 	 

− S) = |∇� | ( s γ , 0 , c γ ) . (17) 

e also define the vector perpendicular to the ef fecti ve gravity 

e ⊥ 

g = ( −s φ, 0 , c φ) , (18) 

nd the normal to stratification surfaces 

e ⊥ 

θ = ( −s � , 0 , c � ) , (19) 

s well as the cylindrical radial direction 

ˆ ⊥ = ( c 	 

, 0 , −s 	 

) . (20) 

he baroclinic shear (along the rotation axis) is 

ˆ · ( ∇� ) = � ((2 �c 	 

− S) s 	 

− 2 �s 	 

c 	 

) = −S� s 	 

(21) 

= |∇� | ( s 	 

c γ − s γ c 	 

) = −|∇� | s γ−	 

, (22) 

ence, the angle between the rotation axis and local angular
omentum gradient is cos −1 

(−S�s 	 
|∇� | 

)
. We also define a modified

ichardson number, 

 = 

N 

2 � 

2 �|∇� | , (23) 
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hich is a potential measure of the stabilizing effects of the stratifi-
ation against the destabilizing effects from the angular momentum 

radient (Knobloch & Spruit 1982 ). We also have 

 Ss 	 

= −|∇� | s γ−	 

. (24) 

his means that, with some rearranging, the thermal wind equa- 
ion (equation ( 5 )) can be written as 

2 �|∇� | 
� 

s γ−	 

= N 

2 s �−φ, (25) 

r in the form 

 γ−	 

= R s �−φ. (26) 

.2 Non-diffusi v e (in)stability 

or the non-dif fusi ve case, we take ν = κ = 0, giving a reduced
ispersion relation 

 

2 = −( a + b) . (27) 

 ne gativ e (or zero) real component of the growth rate is required
or stability, thus we have stability when 

 + b ≥ 0 , (28) 

o find a criterion independent of k , we divide by k z and define q =
 x / k z to obtain 

 q s 	 

+ c 	 

)( q s γ + c γ ) + R( q s � − c � )( q s φ − c φ) ≥ 0 . (29) 

his is a quadratic in q , hence for stability, it must have no real roots,
nd a positive discriminant implies 

 s 	 + γ − R s �+ φ) 2 − 4( s 	 

s γ + R s � s φ)( c 	 

c γ + R c � c φ) < 0 . (30) 

e then use equation ( 26 ) to eliminate R. After simplifying, we
btain the stability criterion 

s γ+ � s γ−	 

s 	 + φ

s �−φ

> 0 . (31) 

lternatively, this can be written Rs γ + � s 	 + φ > 0, which is equi v a-
ent to ∇� · e ⊥ 

θ < 0 when 	 + φ > 0 and ∇� · e ⊥ 

θ > 0 when 	 + φ <

. Together, these are equi v alent to the Solberg-Høiland criteria, that
he specific angular momentum should not decrease outwards (from 

he rotation axis) along an isentropic surface for adiabatic stability. 
hen this condition is violated, we expect more violent dynamical 

nstabilities to operate than the GSF instability that is our primary 
ocus. Taking the limit φ → 0, we reco v er equation 30 in paper 2 . 

.3 GSF instability 

he presence of thermal diffusion ( κ �= 0) offers a mechanism to
elax the stabilizing effects of gravitational buoyancy and allows 
peration of the GSF instability, as long as it o v ercomes viscous
iffusion ( ν �= 0). When the constant term in our cubic dispersion
elation becomes ne gativ e we hav e instability. Hence, we may write
he dif fusi ve instability criterion as 

2 κk 6 + aκk 2 + bνk 2 < 0 (32) 

eading to the necessary instability condition ( ν2 κk 6 is stabilizing) 

 + Pr b < 0 . (33) 

or adiabatic stability a + b ≥ 0, so if Pr < 1, it is possible for
quation ( 33 ) to be satisfied, implying (1 − Pr) b > 0. Hence, at
mall Pr, b must be positive, so it is necessary that a is ne gativ e for
nstability. In order to find a more stringent condition for instability,
e follow a similar approach to the non-dif fusi ve case involving the

ign of the discriminant. The instability criterion is 

 s 	 + γ − RPr s �+ φ) 2 − 4( s 	 

s γ + RPr s � s φ)( c 	 

c γ + RPr c � c φ) > 0 . 

(34) 

In the limit of strong stratification, surfaces of constant pressure 
nd density align and equation ( 5 ) implies � −→ φ. This leads to 

Pr < 

s 2 	 −γ

4 s φ+ 	 

s φ+ γ

, (35) 

hich (cf equation (2.30) of Knobloch 1982 ) can also be written in
erms of the usual Richardson number as 

iPr < 

s γ s 	 

4 s φ+ 	 

s φ+ γ

, (36) 

or instability, by noting that R = Ri ( s 2 γ−	 

/ ( s γ s 	 

)) (see Appendix A ).
his criterion reduces to RiPr < 1/4 for instability when φ → 0

shellular differential rotation), as obtained in paper 2 . Ho we ver,
nstability is possible for weaker differential rotation for non-zero φ. 

We analyse the asymptotic limits as Pr → 0 in detail in Ap-
endix A , both for the strongly driven case (where RiPr → 0)
nd the weakly driven case (where RiPr = O (1)), where we derive
e veral ne w results. The growth rate in the limit of small Pr where
he instability is strongly driven (but adiabatically stable) can be 
etermined by considering the limit RiPr → 0 as Pr → 0. In this
egime, we find s = 

√ −a , and hence both the maximum growth rate
nd the wedge angle of instability in the ( k x , k z )-plane are independent
f φ for fixed 	 . In reality, though, we are usually interested in a
xed latitude 	 + φ, in which case the growth rate and unstable
edge angles depend on φ, being maximized for mixed radial and
orizontal shears rather than purely radial ones. In this regime, the
aximum growth rate and wav e-v ector magnitude can be predicted

rom equations (43–44) of Barker et al. ( 2020 ), which we reproduce
ere: 

 

2 = 

2 �|∇� | 
� 

sin 2 
(

1 

2 
( γ − 	 ) 

)
, (37) 

 

4 = 

1 

2 d 4 
sin 2 

(
γ + 	 

2 

)
. (38) 

hese will be plotted later in Fig. 4 for S = 2 as a function of φ for
arious latitudes 	 + φ. On the other hand, if RiPr = O (1) as Pr →
, the growth rate and unstable wedge may depend on φ for a fixed
 as well (as we show in Appendix A3.2 ). 

.4 Oscillatory GSF instability 

ur cubic dispersion relation equation ( 10 ) also allows oscillatory
nstabilities, for which s = σ + i ω and ω �= 0 at onset. These are
ssentially weakly destabilized inertia-gravity waves gaining energy 
rom the differential rotation or baroclinicity. To derive a criterion 
or onset ( σ = 0) in this case, we substitute s = i ω into equation
 10 ), consider the limit of strong stratification for which � → φ,
eglect terms with higher powers of k (following Knobloch 1982 ),
nd equate real and imaginary parts to obtain: 

−ω 

2 (1 + 2 Pr )(1 + q 2 ) + 2 �
|∇� | 
� 

( c γ + qs γ )( c 	 

+ qs 	 

) 

+ N 

2 Pr ( c φ − qs φ) 2 = 0 , (39) 
MNRAS 524, 2857–2882 (2023) 
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ω 

(
−ω 

2 (1 + q 2 ) + 2 �
|∇� | 
� 

( c γ + qs γ )( c 	 

+ qs 	 

) 

+ N 

2 ( c φ − qs φ) 2 
)

= 0 . (40) 

ince, we are looking for oscillatory instabilities, we omit the solution
ith ω = 0, so we can combine both of the abo v e to eliminate ω 

2 ,
iving the quadratic 

r ( c γ + qs γ )( c 	 

+ qs 	 

) + R(1 + Pr )( c φ − qs φ) 2 = 0 . (41) 

e require a positive discriminant, so that 

 < 

Pr 

2(1 + Pr ) 

s 2 	 −γ

s φ+ 	 

s φ+ γ

, (42) 

or oscillatory instability to onset (cf equation (2.32) of Knobloch
982 ). Equi v alently, 

i < 

Pr 

2(1 + Pr ) 

s γ s 	 

s φ+ 	 

s φ+ γ

. (43) 

his can be contrasted with equation ( 36 ) for direct instability (steady
odes with ω = 0). The ratio of the quantity RiPr predicted by

quation ( 36 ) to that from equation ( 43 ) is 

(1 + Pr ) 

2 Pr 2 
→ ∞ as Pr → 0 . (44) 

ence, GSF instability occurs first as a direct instability at onset
or small Pr (in agreement with Knobloch 1982 ), since oscillatory
nstability requires a much smaller value of RiPr. 

To determine the properties of the modes at onset in the limit Pr
 0 (and RPr → 0), we can solve equations ( 39 ) and ( 40 ) to obtain

 preferred wav ev ector orientation and squared frequency 

 = cot φ, (45) 

 

2 = 

2 �|∇� | 
� 

s γ+ φs 	 + φ. (46) 

he first result implies that the waves have wav ev ectors k that lie
pproximately along e g . We have determined numerically for a range
f parameters that these modes lie between e g and e θ and that they
l w ays have smaller growth rates than the fastest growing direct GSF
nstability. 

.5 Illustrati v e results from linear theory 

ig. 3 shows the base 10 logarithm of the growth rate σ from solving
quation ( 10 ) on the ( k x , k z )-plane for axisymmetric instabilities. In
he majority of our investigations, we fix the latitude 	 + φ and
hoose S = 2, N 

2 = 10, and Pr = 10 −2 to allow a direct comparison
ith paper 2 . We then vary φ (and consequently 	 ) to probe the

ffects of shear orientation on the linear instability. Additional cases,
ncluding fixing 	 = 60 ◦ (see Appendix C ) as well as probing the
ffects of Pr and N 

2 were also considered. In these figures, we also

lot the vectors ˆ �
⊥ 

and ( ∇� ) as the solid red lines. These lines
elineate the wedge within which a < 0 and GSF-unstable modes
re expected. We also plot the vectors e g and e θ as the light blue
ines, and the wedge between them is where b < 0, and oscillatory
odes can be found. The angles of the red and blue lines can be

ound from Table B1 and Fig. 2 . 
The main feature seen in all of these plots are ‘primary lobes’

orresponding to either the dif fusi ve GSF instability or to the
diabatic instability when equation ( 31 ) is violated. These lobes
ontain (directly) unstable modes (with ω = 0) with a preferred
NRAS 524, 2857–2882 (2023) 
av ev ector orientation lying between the AM gradient ∇� , and the

ine perpendicular to the rotation axis ˆ �
⊥ 

. Since S ∼ � and given
hat our unit of time is �−1 , the fastest growing modes have growth
ates O(1) and are observed to lie along the line that is approximately
alf-way between these two vectors (as explained in Appendix A ).
ote that this wedge is perpendicular to the physical wedge within
hich the GSF (or adiabatically) unstable mode displacements (and
elocity perturbations) arise due to the incompressibility condition

k · u = 0. 
We observe in Fig. 3 that the orientation of the primary lobes

nd the maximum growth rates at a fixed latitude 	 + φ = 30 ◦

epend strongly on φ. In particular, we observe the fastest growth
and the widest primary lobes) at this latitude for φ ∈ [60 ◦, 90 ◦],
hich are also adiabatically unstable according to equation ( 31 ) (see

lso panel (b) in Fig. 4 that displays the maximum growth rate versus
). For adiabatically stable but GSF unstable cases, here for φ <

0 ◦, we observe somewhat slower growth (but still O (1)) and lobes
hat narrow as φ → −90 ◦. The fastest growing modes (darkest red)
n adiabatically unstable cases occur for | k | = k → 0, suggesting
hat with the presence of diffusion, the dominant modes grow on
he largest possible wavelengths (without diffusion, these modes
o not have a preferred wav ev ector magnitude k , only a preferred
av ev ector orientation). This is in comparison to the GSF cases,
here the darkest areas have a unique non-zero wavenumber, and
ence a preferred wavelength in real space. 

On the other hand, we have observed that for a fixed 	 (see
ig. C1 in Appendix C ), varying φ alone does not change the
rientation or sizes of the primary lobes, but it does modify the
aximum growth rates, with cases with horizontal shears for φ ∼

0 ◦ exhibiting faster growth than radial shears with φ ∼ 0 ◦. This
esult might be expected because radial motions will be preferentially
nhibited to a greater extent by the stable stratification. Decreasing
r to a smaller, more realistic value substantially increases the
ize of the primary lobes for a given RiPr. This result holds even
n the presence of a more realistic and much larger buoyancy
requency (not shown), as the key parameter for dif fusi ve instability is
iPr. 
We additionally note the appearance in Fig. 3 (and Fig. C1 ) of

wo further, but much smaller ‘secondary lobes’, which are barely
isible when φ = 0 and were not previously identified in paper
 owing to the wavenumber resolution and colour-scale adopted
or their figures. These lobes are most visible here for φ = −30 ◦

nd −90 ◦, and correspond to the oscillatory ( ω �= 0) axisymmetric
aroclinic instabilities that can develop in this system (McIntyre
970 ; Knobloch 1982 ; Labarbe & Kirillov 2021 ; Le Bars 2021 ).
hese are oscillatory modes – as noted in Section 3.4 essentially
eakly excited inertia-gravity waves – in contrast to the usual
SF (or adiabatic) instability that onsets as a direct instability
ithin the primary lobes. The smaller secondary lobes are likely

o be o v erpowered by the GSF instability in stellar interiors (see
ection 3.4 ), as their maximum growth rates are generally much
maller than the primary lobes for Pr 
 1, ho we v er the y could
otentially become important in the presence of strong chemical
radients, where there are stricter criteria for instability (Knobloch &
pruit 1982 ). 
Here, we present a selection of figures showing how the maximum

inear growth rates and wavenumber magnitudes vary with φ. We
how results for both the GSF instability (black) and the adiabatic
nstability (red) by solving the dispersion relations directly, as well
s the growth rate in the asymptotic limits as RiPr → 0 (green; based
n equation ( 37 )) and RiPr ∼ O(1) (blue; based on Appendix A ,
quations ( A18 ) and ( A19 )). 
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Figure 3. Figures of linear growth rate log 10 ( σ / �) for the axisymmetric GSF (or adiabatic) instability for various φ on the ( k x , k z )-plane for N 

2 /�2 = 10, 
Pr = 10 −2 , S/� = 2, at a fixed latitude 	 + φ = 30 ◦. Here, we vary φ in multiples of 30 ◦ from −90 ◦ to 90 ◦. GSF (or adiabatically) unstable modes are contained 

within the wedge bounded by the two vectors ˆ �
⊥ 

and ∇� . Note that panels (a) and (b) are adiabatically unstable according to equation ( 31 ). We also observe a 
smaller wedge outside this region in panels (d), (e), and (f) containing weakly growing oscillatory modes, which are bounded by the light blue lines. The fastest 
growing modes (darkest red) in adiabatically unstable cases occur for k → 0, suggesting that the presence of diffusion leads to the preference of the largest 
possible wavelengths in this regime. This is in comparison to the GSF cases, where the darkest areas have a unique non-zero wavenumber and hence a preferred 
wavelength in real space. 
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In Fig. 4 , we plot the growth rate of a given instability against φ
in the full range between ±180 ◦), whilst keeping the latitude 	 +

fixed, and setting S = 2, N 

2 = 10, Pr = 10 −2 . 
At the equator ( φ + 	 = 0), φ = 0 is marginally stable with

 = 2, corresponding to Rayleigh stability. This is also true for any
ase where φ is such that 	 = 0, which corresponds with cylindrical
ifferential rotation ( �( � ) only), which is neutrally stable for S = 2
constant angular momentum as a function of cylindrical radius � ).
nterestingly, we see that the effects of varying φ are symmetric about
ero at the equator, and there is no adiabatic instability in this case.
he fastest growing instability occurs for mixed radial/latitudinal 
hears with φ ∼ 60 ◦ rather than purely latitudinal shears with φ ∼
0 ◦, which is intuitively surprising. We observe that the growth rate is
n very good agreement with the prediction from the asymptotic limit
MNRAS 524, 2857–2882 (2023) 
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Figure 4. A selection of figures comparing the maximum linear growth rates in both the adiabatic (red) and dif fusi v e (black) re gimes for S = 2, Pr = 10 −2 , 
N 

2 = 10. The light blue dashed line corresponds to the critical φ for onset of adiabatic instability predicted by equation ( 31 ). The onset of GSF instability as 
predicted by equation ( 36 ) is shown as magenta dashed lines. Predictions for the growth rate in the limits assuming RiPr ∼ O (1) and RiPr → 0 are shown as the 
blue and green lines, respectively. 

a  

c
 

s  

t  

d  

d  

r  

a  

c  

l  

T  

t  

o  

l  

t  

l  

G  

v  

a  

w  

o  

c
 

c  

n  

s
<  

u  

p  

p  

w  

s  

a  

w  

 

d  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/2/2857/7219325 by guest on 27 N
ovem

ber 2023
s RiPr ∼ O (1), but it is smaller than the ‘upper bound’ predicted by
onsidering its e v aluation in the limit as RiPr → 0. 

Mo ving a way from the equator, at φ + 	 = 30 ◦ latitude, we again
ee the expected marginal stability when φ ∼ 30 ◦, but we also observe
he onset of adiabatic instability between φ = 30 ◦ and 90 ◦. Only
if fusi ve instability is observed for φ < 30 ◦, but adiabatic instability
ominates instead when φ > 30 ◦, which typically has a larger growth
ate than GSF unstable modes. The transition between dif fusi ve and
diabatic instability is given by the dashed blue line, which shows the
ritical value of φ predicted by equation ( 31 ), and the magenta dashed
ines indicate the bounds for GSF instability given by equation ( 36 ).
hese are in excellent agreement with our numerical results. Note

hat there is a tiny non-zero range of φ for which neither instability
ccurs near φ ∼ 30 ◦ between the magenta and light-blue dashed
ines. This is a finite Pr effect due to viscosity, which is not present in
he RiPr → 0 prediction (in green; that matches the light-blue dashed
ine). We observe that the numerically-computed growth rate of the
SF instability from directly solving the cubic (black) is again in
ery good agreement with the prediction from the asymptotic limit
NRAS 524, 2857–2882 (2023) 
s RiPr ∼ O (1) and is somewhat smaller than the prediction valid
hen RiPr → 0. The latter case also occurs for a wider range of φ,
ccurring for φ > −150 ◦, which is stable for the black and green
urves. 

The 60 ◦ latitude case shows similar behaviour to the 30 ◦ latitude
ase except that marginal stability for adiabatic instability occurs
ow at φ = 60 ◦. At the pole ( 	 + φ = 90 ◦), we firstly see that the
ystem is stable to both dif fusi ve and adiabatic instabilities for −180 ◦

 φ < −90 ◦ and the onset for GSF occurs at φ = −64 ◦ and lasts
ntil φ = 90 ◦. Adiabatic instability is not observed for any φ at the
oles. The transition to GSF instability is predicted by equation ( 36 ),
lotted as the dashed magenta line, which is in excellent agreement
ith our numerical results. This equation is singular when φ → 90 ◦,

o it is not plotted there. Again, we see that the prediction in the
symptotic limit assuming RiPr ∼ O (1) is in very good agreement
ith our results, whereas the RiPr → 0 prediction is an upper bound.
We thus observe from these figures that the maximum growth rates

epend strongly on latitude and on the differential rotation angle φ,
 ut typically ha ve similar maximum values O (1) (when S ∼ O (1))
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Figure 5. A selection of figures comparing the fastest growing wav ev ector magnitudes against φ at the latitudes 0 ◦, 30 ◦, 60 ◦, and 90 ◦ for S = 2, Pr = 10 −2 , 
N 

2 = 10. The onset of adiabatic instability as predicted by equation ( 31 ) is shown as a blue dashed line. The onset of GSF instability predicted by equation ( 36 ) 
is shown as the magenta dashed lines, and the onset of adiabatic instability predicted by equation ( 31 ) is indicated by the light blue dashed lines. We plot the 
predictions from solving our cubic equation numerically (black) as well as the corresponding asymptotic predictions assuming RiPr ∼ O (1) (blue) and RiPr → 

0 (green). 
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hen (either adiabatic or dif fusi ve) instability occurs. In general, the
astest growing modes typically occur for mixed radial/latitudinal 
hears rather than purely radial or latitudinal shears, and the most
nstable orientation of the shear depends on latitude. 
Fig. 5 shows the corresponding wav ev ector magnitudes ( k = | k | )

or the fastest growing modes as a function of φ between φ = −180 ◦

nd 180 ◦ for each panel plotted in Fig. 4 . We observe that in the
diabatically unstable regime (to the right of the blue-dashed lines 
howing the predictions of equation ( 31 )), the preferred wav ev ector
agnitude is not plotted. This is because the diffusion-free quadratic 

ispersion relation exhibits a preferred orientation but no preferred 
av ev ector magnitude in this local model. There is a preference for
 → 0, ho we ver, in this regime when diffusion is present, as we have
bserved by solving our cubic dispersion relation here, but we omit 
howing this. 

Interestingly, we see that in the three cases that showed the largest
rowth rates (latitudes 0 ◦, 60 ◦, and 90 ◦), we also see that all of
hese cases have similar | k | values on average in the range 0.5–
.7 (in units of d −1 ). We observe that the asymptotic predictions
or k assuming RiPr ∼ O (1) are in very good agreement with
he numerical results from solving our cubic (black), whereas 
he predictions assuming RiPr → 0 are typically slightly larger 
indicating slightly smaller wavelength modes). The differences in 
oth growth rates and wav ev ector magnitudes could be important
or the non-linear evolution (e.g. as would be expected from simple
arasitic mode saturation prescriptions like the one considered in 
aper 2 ). 
The critical shear strength S crit for onset of GSF instability (i.e.

hich occurs for S > S crit ) at a given latitude 	 + φ is highly
ependent on φ. To compute S crit for the GSF instability, we solve
umerically the equation given by setting the left-hand side of 
quation ( 34 ) to zero for each φ (with all other parameters fixed).
esults are shown in Fig. 6 for various latitudes (assuming N 

2 = 10,
r = 10 −2 ). Note that when 	 = 0, corresponding with cylindrical
otation, and for values 	 ∼ 0, there is a region with a local maximum
onstant value in S crit = 2. This is because cylindrical rotation profiles
MNRAS 524, 2857–2882 (2023) 



2866 R. W. Dymott et al. 

M

Figure 6. Critical shear strength S crit required for the onset of GSF instability 
for φ ∈ [ −180 ◦, 180 ◦] at the latitudes 	 + φ = 5 ◦, 30 ◦, 60 ◦, and 90 ◦ (assuming 
N 

2 = 10, Pr = 10 −2 ). Note: we choose 5 ◦ to approximate the equatorial 
region for numerical reasons. For each latitude, 	 ∼ 0, corresponding to an 
approximately cylindrical rotation profile, is a local maximum in S crit because 
GSF instability requires Rayleigh’s stability criterion to be violated, whereas 
for other latitudes, equation ( 36 ) is usually a less stringent condition except 
for large ne gativ e values of φ. 
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re only unstable if Rayleigh’s stability criterion is violated, which
s typically a more stringent condition than equation ( 36 ). 

On the other hand, we show that when φ is ne gativ e the instability
s stabilized for sufficiently large values of φ. Such φ values (e.g. φ

−180 ◦ near the equator) correspond to outwardly varying angular
omentum profiles when S is positive, which are thus Rayleigh-

table. Hence for such ne gativ e values of φ (depending on latitude),
arge or even infinite values of S crit are required for instability. 

Fig. 6 shows that a large reduction in S crit is possible when φ and 	
re both non-zero, particularly near the equator. For shellular rotation
 φ = 0), we note that the most readily destabilized cases are near the
oles ( 	 + φ ≈ 90 ◦), as identified in paper 2 . On the other hand,
he equatorial regions are most readily destabilized for primarily
orizontal (or mixed radial/latitudinal) shears. In particular, note that
 + φ ≈ 5 ◦ is unstable for very weak horizontal shears and, more

enerally, for those with | φ − 5 ◦| � 5 ◦. This figure illustrates the
on-trivial behaviour of the GSF instability as a function of latitude
nd φ. 

In the next section, we will turn to analyse the results of a set
f numerical simulations exploring the non-linear evolution of these
nstabilities as φ is varied. 

 N O N - L I N E A R  SIMULATIONS  A N D  RESULTS  

.1 Varying φ with S = 2 

.1.1 Non-linear evolution of GSF instability 

ur primary aim is to understand the non-linear effects of varying
he orientation of the shear φ on the GSF instability, and to
uantify the resulting turbulent angular momentum transport. This
ection presents results from our 3D simulations including snapshots
f the flow at various stages throughout the evolution. We use non-
imensional parameters throughout and following Fig. 4 (and paper
 ), we fix S = 2, N 

2 = 10, Pr = 10 −2 , and use a domain with L x =
 y = L z = 100, unless otherwise stated. Note that S = 2 is the critical
alue for instability to onset for a cylindrical differential rotation
NRAS 524, 2857–2882 (2023) 
rofile ( 	 = 0) or at the equator for a shellular profile ( φ = 0). We
ill later investigate the effects of varying shear strength S and box

ize ( L x , L y , L z ) in Sections 4.2 and 4.3 . Table B1 .1 is a table of the
inear properties of our simulations, and Table B2 .2 gives some of
he resulting non-linear properties. 

Snapshots of the y component of the velocity field u y (which is
he variable that most clearly shows both the linear and non-linear
ehaviour) in the ( x , z)-plane are given in Figs 7 –11 . The upper left
mage in each of these figures sho ws ho w the local model fits into
he global picture for each choice of parameters. Panel (c) shows the
inear growth phase, which is dominated by the fastest growing mode
elocity perturbations (‘AM fingers’) that are orientated roughly half-
ay between ˆ � and ( ∇� ) ⊥ (indicated by solid black lines). Here,

entrifugally-dri ven AM fingers de velop. Panel (d) shows the initial
on-linear saturation of these fingers and the formation of zonal jets.
anels (e) and (f) show the evolution of the zonal jets, illustrating that

hese can grow in strength and tilt away from their initial orientation
epending on the parameters. Gi ven suf ficient time, all cases here
ith non-zero φ (and non-zero 	 ) achieved a steady layered state,

n which these zonal jets contribute to providing sustained AM
ransport. 

Panel (b) in each of Figs 7 –11 shows the kinetic energy spectrum
n the ( k x , k z )-plane (averaged over y ) at t = 250 in each case, where
ll simulations had reached a statistically steady state exhibiting
trong zonal jets. This shows the orientations of the modes as a
unction of their spatial scale, which strongly exhibit a preferred
irection at small wavenumbers and become increasingly isotropic
or larger wavenumbers. Note that the de-aliasing wavenumber in
hese simulations has magnitude 5.83, so the decrease in spectral
ower by then is evidently more than a factor of 10 3 from the
eak, suggesting that our simulations are well resolved spatially.
e have checked that this is also the case even in the more turbulent

nitial saturation phases at t ∼ 50, in addition to verifying that our
imulations are spatially resolved in y by analysing the k y spectrum.

The first set of snapshots we present are given in Fig. 7 . These
llustrate the y -component of the velocity at various points throughout
he evolution of the instability at the equator (at the times t = 10,
0, 100, and 250). This is an equatorial ( 	 + φ = 0) case with φ =
0 ◦, 	 = −30 ◦, which we can see from Fig. 4 is within the GSF-
nstable regime. By t = 10, centrifugally-driven AM fingers have
eveloped within the wedge of unstable directions. At t = 50, the
M fingers have saturated non-linearly and formed zonal jets, or AM

ayers. Figs 8 and 9 show the corresponding v olume-a veraged kinetic
nergy ( K = 

1 
2 〈| u | 2 〉 , where 〈 · 〉 denotes a v olume a verage), and AM

ransport (i.e. Reynolds stress component 〈 u x u y 〉 ), respectively. The
ets are fully formed by t = 100, and we see from the subsequent
volution at t = 250 and Figs 8 and 9 that this is a statistically steady
tate, which is transporting enhanced levels of AM. 

Figs 8 and 9 indicate that the transport properties of the GSF
and adiabatic) instability depend heavily on shear flow orientation

and latitude 	 + φ. We notice that the magnitudes of turbulent
ransport in the final states are, on a whole, well ordered with respect
o the predictions for the linear growth rate in Fig. 4 , in that 〈 u x u y 〉
s generally larger for cases with larger growth rates σ . However,
 xceptions are observ ed, resulting from undetermined non-linear
actors such as the strengths of zonal jets in each case. We also
otice that the case with φ = −60 ◦ at the equator ( 	 + φ = 0) doesn’t
ehave in the same way as φ = 60 ◦, despite the symmetrical nature
about zero) of the growth rate σ predicted by linear theory in Figs 4
nd 5 . Instead, KE and AM transport properties are significantly
ncreased in comparison with φ = 60 ◦, which Fig. 4 would suggest
o be roughly equal. 
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Figure 7. Panel (a) depicts the local configuration of the box, filled with the snapshot of u y at t = 10, within the global picture at the equator 	 + φ = 0 with 
φ = 30 ◦, 	 = −30 ◦, S = 2, Pr = 10 −2 , and N 

2 = 10. This is coupled with snapshots of the y -component of the velocity in ( x , z) slices at y = 0 at various points 
throughout the evolution (at times t = 10, 50, 100, and 250) of the GSF instability in panels (c) to (f). By t = 10 AM fingers have developed in the wedge of 
instability, in between lines of constant AM, ( ∇� ) ⊥ , and the rotation axis, ˆ �. By t = 50, we already see clear layering, made up of oppositely-directed zonal 
jets. The jets are fully developed by t = 100, and we see from its evolution at t = 250, along with Figs 8 and 9 , that this is a statistically steady state transporting 
enhanced levels of AM. Panel (b) shows the kinetic energy spectrum in the ( k x , k z )-plane at t = 250 and shows the preferred orientation for the layered state and 
how it differs from that of the initial fingers. 
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Figure 8. Evolution of the kinetic energy K ( K = 

1 
2 〈| u | 2 〉 ) at various 

latitudes for S = 2, N 

2 = 10, Pr = 10 −2 , varying φ at a fixed latitude 	 

+ φ. The orientation of the shear directly affects final K levels within the 
GSF regime, as well as by leading to a stronger adiabatic instability for 
certain φ. Panels (a) and (b) are plotted on a semi-log scale, whereas the slow 

evolution for φ = −60 required a log–log scale for (c). 
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Figure 9. Reynolds stress component 〈 u x u y 〉 illustrating AM transport for 
the same cases as Fig. 8 . 
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Figure 10. Panel (a) depicts the local configuration of the box, filled with the snapshot of u y at t = 10, within the global picture for a non-equatorial case at 
latitude 	 + φ = 30 ◦ with φ = −30 ◦, 	 = 60 ◦, S = 2, Pr = 10 −2 , and N 

2 = 10. This is coupled with snapshots of the y -component of the velocity in ( x , z) 
slices at y = 0 at various points throughout the evolution (at times t = 10, 50, 100, and 250) of the observed GSF instability in panels (c) to (f). At t = 10 AM, 
fingers are observed inside the wedge of instability, in between the lines ( ∇� ) ⊥ and ˆ �. By t = 50 AM fingers have saturated by parasitic instabilities and are 
now well within the non-linear regime and the onset of layer formation. The flow at t = 100 and 250 is weaker in magnitude than that in Fig. 7 , and the layers 
are less distinct from one another here. Panel (b) shows the kinetic energy spectrum in the ( k x , k z )-plane at t = 250. 
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Once the initial growth phase becomes non-linearly saturated, jet 
igration and mergers dominate the dynamics. A merger can be seen 

articularly clearly in the equatorial case with φ = −90 ◦ (the green 
ine in Fig. 8 ), between times t ≈ 65 and 85, the layers in the system
erge to form larger-scale jets that transport angular momentum 

ore efficiently. 
Fig. 10 shows snapshots from a simulation at a non-equatorial 

atitude 	 + φ = 30 ◦ (cf. paper 2 ) within the GSF unstable regime,
MNRAS 524, 2857–2882 (2023) 
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M

Figure 11. Panel (a) depicts the local configuration of the box, filled with the snapshot of u y at t = 10, within the global picture for a case at the north pole with 
latitude 	 + φ = 90 ◦ with φ = 30 ◦, 	 = 60 ◦, S = 2, Pr = 10 −2 , and N 

2 = 10. This is coupled with snapshots of the y -component of the velocity in ( x , z) slices 
at y = 0 at several points in the evolution (at times t = 10, 50, 100, and 250) of the GSF instability in panels (c) to (f). At t = 10, AM fingers develop within the 
unstable wedge, and by t = 50, they have saturated and clear AM layers start to appear. Interestingly, we see throughout the t = 50, 100, and 250 snapshots that 
these layers rotate to orientate themselves along lines of constant AM. The lack of changes after t = 100 indicates the system has attained a statistically steady 
state. Panel (b) shows the kinetic energy spectrum in the ( k x , k z )-plane at t = 250. 
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ith φ = −30 ◦, 	 = 60 ◦, with otherwise the same parameters.
nstability onsets initially between lines ( ∇� ) ⊥ and ˆ �, so that here
he preferred direction is along x . Parasitic instabilities acting on
hese fingers then lead into the non-linear regime, which quickly
NRAS 524, 2857–2882 (2023) 
tarts forming zonal-jets. Comparing these panels with Figs 8 and 9
larifies that at t ≈ 50, the initial exponential growth has subsided,
nd the following growth in energy and turbulent transport results
rom strengthening or mergers of the jets. Potentially, as a result
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f similarities in both the wav ev ector magnitudes and growth rates
redicted by Figs 5 and 4 for φ < 30 ◦, cases within −90 ◦ < φ < 30 ◦

ave roughly the same velocities and hence mean kinetic energies. 
nterestingly, a purely radial shear with φ = 0 produced the least AM
ransfer of these cases observed. 

The final case for which we will show snapshots in the GSF
nstable regime in this section is a case at the (north) pole 	 +
= 90 ◦ in Fig. 11 . Here, φ = 30 ◦, 	 = 60 ◦, S = 2, Pr = 10 −2 ,

nd N 

2 = 10. Early phases of evolution have unstable mode flows
xcited between ( ∇� ) ⊥ and ˆ � but the non-linear evolution orientates 
he subsequent zonal jets to become approximately parallel to lines 
f constant AM. This is consistent with what we might expect if the
nstability saturates by moving the system back towards marginal 
tability, though it is difficult to understand this quantitatively given 
he complexity of our shear flow at this time. Again, we conclude
rom the lack of changes between t = 100 and 500 that these layers
ave reached a statistically-steady state with enhanced transport 
roperties. 
We note that the small initial growth rate for φ = −60 ◦ requires

he use of a logarithmic time-scale in 8 and 9 to see that this case
oes grow in strength and form layers; albeit o v er a much longer
eriod of time. This case appears to saturate at a very low level, as
ight be expected. 

.1.2 Adiabatically unstable cases 

s we have identified in Section 3 and shown in Fig. 4 , the system
an be adiabatically unstable for certain φ and latitudes 	 + φ.

hen the adiabatic stability criterion equation ( 31 ) is violated, we
xpect much more violent instabilities that do not require diffusion 
o operate. These are essentially adiabatic centrifugal instabilities. 

e have shown in Fig. 5 that in this regime, the unstable modes do
ot have a finite preferred wav ev ector magnitude in the absence of
iffusion, with all modes having the same orientation growing at the 
ame rate, but that the presence of diffusion prefers modes to have
rbitrarily large length-scales, with k → 0. 

We show the flow for one case at latitude 	 + φ = 30 ◦ with φ =
0 ◦, 	 = −30 ◦ in Fig. 12 . This is the case in Figs 8 and 9 , with the
ighest levels of turbulent transport (and one of the highest for energy,
nly below the other adiabatically unstable case with φ = 90 ◦) for this
atitude. The growth rate in this regime from Fig. 4 is only marginally
igher than that with φ = 0 (as shown in paper 2 ). However, the lack
f a finite preferred wav ev ector magnitude permits large wavelength 
odes on the scale of the box to grow, resulting in a dependence

n the size of our Cartesian box, we will analyse in Section 4.3 .
hese then saturate, leading to flows with much larger amplitudes 

han any of the GSF unstable cases in Figs 7 –11 . The zonal jets
n these cases are correspondingly stronger, and these adiabatically 
nstable cases lead to the highest values of turbulent transport. Note 
hat Fig. 9 shows up to three orders of magnitude stronger AM
ransport in these adiabatically-unstable cases when compared to the 
SF-unstable ones. 
Ostensibly the dynamics are similar to the GSF-unstable cases; 

o we ver, the time-scales for the different phases to occur and the
trengths of the flo ws, v ary largely between these regimes. We notice
hat the AM fingers at t = 10 are larger than those in the GSF regime,
nd by t = 50, the system is in a highly turbulent state, with | u y |
eing far larger than observed in any of the adiabatically-stable cases. 
hilst fluctuations tend to be large in the adiabatic regime, by t =

00, we reach a statistically steady state in which large-scale layers 
ave formed, orientated along the same line as the initial fingers by
 = 250, despite their large amplitudes. 
Adiabatically-unstable differential rotations, which here primarily 
nvolve horizontal rather than radial shears if φ ∼ 90 ◦, can be
 xpected to evolv e much more rapidly than the dif fusi ve instability
nalysed in Section 4.1.1 . 

We note that an increase in angular momentum transport al w ays
ccompanies an increase in the length-scale of the layered flow. 
or cases where the initial instability occurs at a finite small scale,

his increase in length-scale arises owing to mergers of the zonal
ets; these mergers can take significant time to complete. For the
diabatically unstable cases where the initial instability occurs on a 
arge spatial scale, the increase in angular momentum transport is 
ignificant even at early times. 

.2 Variation of shear strength S 

e now examine the effect of varying the shear strength S for
wo different shear orientations at a latitude 	 + φ = 30 ◦. The
rst has 	 = 60 ◦ and φ = −30 ◦ (‘mixed radial/horizontal shear’)
nd is GSF-unstable (but adiabatically stable) when S = 2, and
he second has 	 = −60 ◦ and φ = 90 ◦ (‘horizontal shear’) and
s adiabatically unstable when S = 2. Ho we ver, note that whether
hese cases are dif fusi vely or adiabatically unstable depends on S .

e have observed the qualitative behaviour of the flow in these
imulations to be very similar to the cases presented in Section 4.1 ,
o we restrict our presentation to the v olume-a veraged quantities. The 
ean kinetic energy and AM transport are shown in Fig. 13 . Cases

hat are adiabatically unstable in Fig. 13 are indicated by dashed
ines. 

The criterion for dif fusi ve instability gi ven by equation ( 36 ), and
or adiabatic instability given by equation ( 31 ), both indicate that the
hear strength S directly affects the onset of each type of instability.
n addition, larger shears lead to higher growth rates. Interestingly, 
hough, while larger shears lead to larger initial growth rates, the
esults of Fig. 13 suggest that this doesn’t necessarily translate into a
igher kinetic energy K in the final steady state. Counter-intuitively, 
f we look carefully at panel (a), we can see that after the initial
rowth phase, the energy for S = 1 grows to slightly o v ertake that
or S = 1.5. This was also observed in some cases in paper 2 and is
otentially related to the relativ ely stronger, larger wav elength, and
otentially more stable zonal jets for lower shears. 
Ho we ver, the AM transport, shown via 〈 u x u y 〉 , in the final steady

tate is in all cases ordered in the way predicted by their initial
inear growth rates, with larger S cases providing larger 〈 u x u y 〉 .
diabatically unstable cases have more energetic flows and provide 
igher levels of AM transport than GSF unstable cases, indicating 
hat when the Solberg-Høiland stability criteria (i.e. Equation 31 ) 
re violated in stars, we would expect much more rapid dynamical
volution. To be able to extrapolate our non-linear results to stars, we
ust verify whether the AM transport or other turbulent properties 

ary as the box size is varied. We turn to such a study in the next
ection. 

.3 Dependence on box size 

n order to verify whether our non-linear results in a small domain
ight be applicable to astrophysical objects, we wish to check 
hether the non-linear saturation properties of each instability de- 
end on the box size. To do this, we performed additional simulations
ith S = 2 at a latitude of 	 + φ = 30 ◦ with L x = L y = L z = 200 and
00, and with appropriate spatial resolutions (as indicated in Table 
 ), for both a GSF unstable case with 	 = 60 ◦ and φ = −30 ◦, and
n adiabatically unstable case with 	 = −60 ◦ and φ = 90 ◦. Results
re shown in Figs 14 and 15 for the mean kinetic energy and AM
MNRAS 524, 2857–2882 (2023) 
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Figure 12. Panel (a) depicts the local configuration of the box, filled with the snapshot of u y at t = 10, within the global picture for a case in the adiabatically- 
unstable regime at 	 + φ = 30 ◦ latitude, with φ = 60 ◦, 	 = −30 ◦, S = 2, Pr = 10 −2 , and N 

2 = 10. This is coupled with snapshots of the y -component of the 
velocity in ( x , z) slices at y = 0 at various points throughout the evolution (at the times t = 10, 50, 100, and 250) in panels (c) to (f). This adiabatically unstable 
case exhibits rapidly growing AM fingers, which saturate shortly after t = 10. By t = 50, the system is highly turbulent, and | u y | far larger here than observed 
in any of the adiabatically stable cases. By t = 100 and 250, we see clear evidence of AM layers orientated along the same line as the initial fingers, despite the 
strong flows that develop. The zonal jets formed are much stronger than any in the GSF-unstable regime, in agreement with Figs 8 and 9 . Panel (b) shows the 
kinetic energy spectrum in the ( k x , k z )-plane at t = 250. 
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Figure 13. Dependence of mean kinetic energy and AM transport (Reynolds stress) on shear flow strength S for two different shear orientations. Panels (a) 
and (b) show a case with 	 = 60 ◦ and φ = −30 ◦ that is GSF-unstable when S = 2, and panels (c) and (d) show a case with 	 = −60 ◦ and φ = 90 ◦ that is an 
adiabatically unstable when S = 2. Both of these are at 	 + φ = 30 ◦ latitude, with N 

2 = 10 and Pr = 10 −2 . AM transport in the final steady states are well 
ordered with respect to initial linear growth rates. K is not, ho we ver, perhaps due to the relatively stronger and larger wavelength zonal jets for S = 1. Note that 
every shear strength we tested for 	 = 60 ◦ and φ = −30 ◦ was GSF unstable, and similarly, every 	 = −60 ◦ and φ = 90 ◦ case was adiabatically unstable. 
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ransport. In order to ensure the smallest scales remain well resolved 
ven in larger boxes, we increase our resolutions as specified in 
able 2 . 
Fig. 14 demonstrates that AM transport ( 〈 u x u y 〉 ) in GSF-unstable

ases is approximately independent of box size. This is a very 
romising and important result since it indicates that the turbulent 
ransport predicted by our simulations is robust and can potentially be 
pplied to model AM evolution in stars. The kinetic energy attained 
n the final state is also very similar, though this varies slightly more
s the box is enlarged. These results are consistent but not obvious
rom the fact that the GSF instability has a preferred wav e-v ector
agnitude in linear theory, as predicted by Fig. 5 . This useful result
eans that the results from this paper, within the GSF unstable 

egime, can be applied to astrophysical problems with confidence. 
On the other hand, Fig. 15 shows that both the kinetic energy and

M transport in adiabatically unstable cases that violate equation 
 31 ) exhibit a strong dependence on box size. This might be predicted
rom linear theory because, in this regime, there is a preferred
rientation but not a preferred wav ev ector magnitude for adiabatic
nstability, and Fig. 5 indicates that in this regime, the fastest growing
ode in the presence of diffusion has k → 0. As a result, the
avelengths of the fastest growing modes grow without being bound 

o fit within the box. Fig. 15 verifies that in this regime, where the
echanism limiting k is the box size, then the non-linear properties

f the instability also depend on it. While this leads to a violent
nstability that transports AM very efficiently, our results in this 
egime cannot therefore be reliably extrapolated to stars and planets 
ue to this clear box size dependence. To simulate this regime reliably 
ould require models with shear profiles that are not linear, spherical
eometry, or other effects that could introduce a preferred scale or
imit the wavelengths of the modes (e.g. inclusion of the β effect or
ompressibility). 
MNRAS 524, 2857–2882 (2023) 
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Figure 14. Dependence of K and 〈 u x u y 〉 on box size for the GSF instability 
at a latitude 	 + φ = 30 ◦, where we vary each of ( L x , L y , L z ). We fix S = 

2, N 

2 = 10, Pr = 10 −2 , 	 = 60 ◦, and φ = −30 ◦. The AM transport is 
approximately independent of box size, and K only depends weakly on it, 
implying that we can extrapolate results in this GSF-unstable regime to stars. 
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Figure 15. Dependence of K and 〈 u x u y 〉 on box size for the adiabatic 
instability at a latitude 	 + φ = 30 ◦, where we vary each of ( L x , L y , L z ). 
We fix S = 2, N 

2 = 10, Pr = 10 −2 , 	 = −60 ◦, and φ = 90 ◦. The strong 
dependence on box size implies that results obtained in this regime in our 
local model cannot reliably be extrapolated to stars. 

Table 2. Table of resolutions (number of grid points in each dimension 
before de-aliasing) used when testing the effects of boxsize on the non-linear 
properties of both types of instability. Cases with L x , y , z = 100 were also 
re-run with higher resolution but no differences were found o v er the original 
resolution. 

N x N y N z 

GSFunstable ( φ = −30 ◦ 	 = 60 ◦) 
L x , y , z = 100 256 256 256 
L x , y , z = 200 512 256 512 
L x , y , z = 300 512 512 512 

Adiabaticallyunstable ( φ = 90 ◦ 	 = −60 ◦) 
L x , y , z = 100 256 256 256 
L x , y , z = 200 512 256 512 
L x , y , z = 300 512 512 512 
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.4 Momentum transport as a function of φ

n Fig. 16 , we summarize the mean Reynolds stress components
 u x u y 〉 , 〈 u x u z 〉 , and 〈 u x u z 〉 as a function of φ, after performing both
patial and temporal averaging in the final turbulent state (after layer
ergers). The angular momentum transport is quantified by 〈 u x u y 〉 ,
hereas the other two would correspond with turbulent driving of
ean flows/circulations in the meridional plane. 
Out of all the GSF-unstable (but adiabatically stable) cases studied,

e found mixed radial/latitudinal shears ( φ �= 0) and particularly
atitudinal shears ( φ ∼ ±90 ◦) at the equator ( 	 + φ = 0) to
ead to the most transport. As shown in Fig. 16 , purely latitudinal
hears are the most unstable and produce AM transfer o v er three
rders of magnitude greater than we previously found in paper 2
or the case of radial differential rotation ( φ = 0). The increased
ransport properties when ( | φ| ∼ 90 ◦) are at least in part due to the
early perpendicular directions of the buoyancy and shear, such that
NRAS 524, 2857–2882 (2023) 
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Figure 16. Figure showing the Reynolds stresses (and hence momentum 

transport) as a function of φ for various latitudes. The mean value in each 
case is calculated once the instability has reached its final turbulent/layered 
state after mergers, and the error bars indicating fluctuations are the standard 
deviations from the mean. All the latitude = 0 ◦ and 90 ◦ cases are GSF unstable 
(adiabatically stable), and adiabatically unstable cases occur for latitude = 30 ◦
after the vertical red lines at φ = 30 ◦. 
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uoyancy restoring forces are expected to be weaker. This non-linear 
nding is consistent with the linear results shown in Fig. 6 , which
uggest that the configuration is least stable near the equator for
 φ| ∼ 90 ◦ compared both with φ = 0 and with other latitudes in
he GSF-unstable regime. On the other hand, adiabatically-unstable 
ases generally have much larger transport than the GSF-unstable 
nes at a latitude of 30 ◦. It is interesting that in the GSF-unstable
egime, 〈 u x u y 〉 is only weakly dependent on φ for latitude 30 ◦. 

In summary, we have found that the GSF instability is typically
uch more efficient at transporting momentum in stars with mixed 

adial/latitudinal or purely latitudinal differential rotations versus the 
hellular (radial) case, particularly near the equatorial regions. When 
diabatic instability occurs, it also significantly enhances transport. 
he most efficient transport is found near the equator for primarily

atitudinal differential rotation profiles. A configuration with purely 
atitudinal shear at the equator would be unusual, but this tendency for
redominantly horizontal shears to be more unstable and to transport 
omentum more efficiently than vertical/radial shears, and for the 

rowth rates and transport rates for primarily horizontal shears to be
aximized near the equator are the general trends we have observed.
ote that 〈 u x u y 〉 for a purely latitudinal shear would correspond with

atitudinal transport of angular momentum, which we have shown 
s generally much more efficient than radial transport. When φ
 0, 〈 u x u y 〉 does not correspond with radial momentum transport,

s would be most commonly parametrized in 1D stellar models. 
ndeed, it is unclear how relevant 1D stellar models with rotation –
ven with a suitable parametrization for turbulent transport – would 
e at capturing the long-term consequences of angular momentum 

ransport due to these (and other) fluid and MHD instabilities. 

 C O N C L U S I O N S  

e have presented a detailed study into the local hydrodynamic 
nstabilities of differentially-rotating stably-stratified flows in stellar 
nd planetary interiors. Our primary focus has been the GSF insta-
ility, an axisymmetric double-dif fusi ve instability of dif ferentially- 
otating flows that requires thermal diffusion to operate, but we have
lso analysed the adiabatic instability occurring when the Solberg- 
øiland stability criteria are violated. We have built upon prior work

Barker et al. 2019 , 2020 ) by studying the linear and non-linear
roperties of these instabilities for arbitrary orientations of the local 
hear with respect to the local ef fecti ve gravity (by defining the angle
). Our model allows us to study radial ( φ = 0), latitudinal/horizontal
 φ = ±90 ◦), and mixed radial and latitudinal shears, so it is more
enerally applicable to stellar interiors than prior studies that were 
estricted to considering radial shear. 

We first revisited the linear stability problem (building upon 
nobloch & Spruit 1982 ; Barker et al. 2019 , 2020 ), discussed

ts properties in detail, and derived several new results. An in-
epth linear analysis of the most important regimes of the GSF
nstability is presented in Appendix A . In particular, we derived
 criterion equation ( 36 ) for the critical value of RiPr for the
nset of (dif fusi ve) axisymmetric instability, where Ri is the local
radient Richardson number and Pr is the Prandtl number. We 
olved the cubic linear dispersion relation numerically on the ( k x ,
 z ) plane for axisymmetric instabilities, and we disco v ered lobes of
scillatory instability previously predicted by Knobloch ( 1982 ) but 
ever analysed in detail before. These grow more weakly in stellar
nteriors than the directly growing GSF modes that are our primary
ocus, ho we ver. 

We solved for the linear growth rates and wavevectors for both
he dif fusi v e GSF and adiabatically-unstable re gimes. The GSF
MNRAS 524, 2857–2882 (2023) 
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nstability is found to have broadly similar linear properties for
adial, horizontal, and mixed radial/horizontal shears, though there
re important dependencies on the local orientation of the shear
s a function of latitude for both the growth rate and dominant
avenumber. On the other hand, we found that the adiabatic

nstability excited when the Solberg-Høiland stability criteria are
iolated typically has a larger growth rate than the dif fusi ve GSF
nstability . More importantly , though, it has a preferred orientation
ut no preferred wav ev ector magnitude in our local model in the
bsence of diffusion. With diffusion, we find there is a preference for
rbitrarily long length-scales. 

Using a modified version of the pseudo-spectral code SNOOPY,
e performed a suite of non-linear simulations to explore the
utcome of both types of instability as the properties of the local
ifferential rotation are varied (both the orientation φ and shear rate
 ). Our simulations have confirmed the predictions of linear theory
or the linear growth phase and identified two distinct regimes (as

is varied) in the non-linear evolution corresponding to the GSF-
nstable and adiabatically-unstable regimes. 
The GSF-unstable cases typically exhibit the formation of strong

onal jets that merge with a preferred orientation that is consistent
ith that of the fastest-growing modes, but later evolves depending
n the parameters of the simulation. The mean AM transport and
urbulent kinetic energy in this regime are demonstrated to converge
s the box size is increased. This is consistent with what we might
ave predicted based on the linear modes possessing a preferred
ength-scale. This key result means that our local simulations of
he GSF instability can potentially be used to fruitfully study the
urbulent transport and its rele v ance for stellar interiors (with suitable
xtrapolation to astrophysical parameter values). The zonal jets we
av e observ ed could play an important role in AM evolution in
tars. 

The adiabatically-unstable cases, on the other hand, lead to much
ore efficient AM transport and energetically stronger flows, in

ome cases leading to sustained AM transfer that is several orders of
agnitude larger than the GSF-unstable cases. Ho we ver, consistently
ith the properties of the linear modes in this regime preferring

he largest length-scales, we have found that the AM transport
ontinues to increase and does not converge as our box size is
ncreased. This suggests that turbulent transport in stars within the
diabatically-unstable regime cannot be reliably studied using similar
ocal Boussinesq models with linear shear. 

Our linear analysis and simulations, which probe the effects of
hear strength S suggest that it is more likely for the instability
o occur in earlier stages in the life of a star, where it rotates more
apidly and potentially has stronger differential rotation. These stages
n the life of a star have much more efficient AM transport. However,
his instability could potentially operate (e.g. at mid-latitudes) in the
olar tachocline, for example (e.g. Barker et al. 2020 ). In addition,
his instability is likely to operate on the equatorial atmospheric jets
f hot Jupiters that advect heat from day-side to night-side (e.g.
oodman 2009 ; Li & Goodman 2010 ; Barker et al. 2020 ). It would
e difficult or impossible to resolve in existing global simulations
e.g. Showman et al. 2009 ; Mayne et al. 2017 ), but could potentially
ignificantly modify their atmospheric flows and should be studied
urther. 

In the future, we plan to continue our investigation of this system
ith the inclusion of magnetic fields, as stellar radiative interiors are

lso highly likely to be magnetized. We are also interested to see
ow these instabilities alter the chemical composition within stellar
nteriors, for which local fluid instabilities could play an important
ole. 
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PPEN D IX  A :  INSTABILITY  IN  T H E  

SYMPTOTIC  LIMIT  O F  SMALL  P R A N D T L  

UMBER  

he dispersion relation equation ( 10 ) can be written 

 

3 + s 2 (2 νk 2 + κk 2 ) + s( a + b + ν2 k 4 + 2 νκk 4 ) 

+ ν2 κk 6 + aκk 2 + bνk 2 = 0 . (A1) 

onsidering the orders of the terms here when Pr 
 1 (implying ν
κ), we have 

 ∼ O( �2 ) , b ∼ O( �2 / Pr ) , s ∼ O( �) , k 2 ∼ O( �/ν) . (A2) 

ince νk 2 is small compared to κk 2 , it can thus be neglected, reducing
quation ( A1 ) to 

 

3 + s 2 κk 2 + ( a + b + 2 νκk 4 ) s + ν2 κk 6 + aκk 2 + bνk 2 = 0 . (A3) 

e have s 3 = O ( �3 ) and s 2 κk 2 = O ( �3 κ/ ν) therefore since κ �
this second term is much larger than the first, so we may ignore

he first one. Similarly, as = �3 but bs = O ( �3 κ/ ν), which is much
arger, so we may also neglect as by comparison with bs . This means
hat we can reduce equation ( A3 ) to 

 

2 κk 2 + 2 s νκk 4 + ν2 κk 6 + bs + aκk 2 + bνk 2 = 0 , (A4) 

here all terms in equation ( A4 ) are O ( �3 κ/ ν). Note both Ri and R
re O (1/Pr) in this scaling, and since Pr is small, Ri and R are large
nd Ri Pr (and R Pr) are assumed to be O (1). We express 

 = 

2 �|∇� | 
� 

sin ( 	 − θk ) sin ( γ − θk ) , b = N 

2 sin 2 ( θk + φ) . (A5) 

y defining the wav ev ector as k = k( cos θk , 0 , − sin θk ) = ( k x , 0 , k z ).
o maximize s o v er all possible wavenumbers k x and k z , we may first
aximize o v er k 2 , and then maximize o v er the angle θ k . Note a and
 only depend on θ k and not on the magnitude k , so ∂ a/ ∂ k 2 and
 b/ ∂ k 2 are both zero. Differentiating equation ( A4 ) with respect to
 

2 and setting ∂ s/ ∂ k 2 = 0, it follows that 

s 2 + 4 s νκk 2 + 3 ν2 κk 4 + aκ + bν = 0 . (A6) 

ultiplying by k 2 and subtracting equation ( A4 ) from this equa-
ion (to eliminate the s 2 term), gives 

 s νκk 4 + 2 ν2 κk 6 − bs = 0 . (A7) 

he only difference between the non-zero φ case investigated here 
nd the case analysed in paper 2 is that our expression for b is
ifferent. If we define 

= 

κνk 4 

b 
, (A8) 

e obtain 

 = 

2 νk 2 λ

1 − 2 λ
. (A9) 
o get positi ve s , i.e. gro wing modes, we require 0 < λ < 1/2 in
quation ( A9 ). Now we eliminate s and k 4 from equation ( A4 ) and
ivide by κk 2 to get 

 

2 + 2 s νk 2 + ν2 k 4 + 

bs 

κk 2 
+ a + b Pr = 0 . (A10) 

liminating s using equation ( A9 ), we get 

4 ν2 k 4 λ2 

(1 − 2 λ) 2 
+ 

4 ν2 k 4 λ

(1 − 2 λ) 
+ ν2 k 4 + 

2 νk 2 λb 

(1 − 2 λ) κk 2 
+ a + b Pr = 0 . 

(A11) 

ow, we use equation ( A8 ) to eliminate k 4 and multiply up by
1 − 2 λ) 2 to get 

1 − 2 λ) 2 a = ( λ − 1) Pr b. (A12) 

e now have the two key equations ( A9 ), which gives s in terms of λ,
nd ( A12 ), which relates λ to a and b . Maximizing s o v er θ k requires
s to differentiate ( A9 ) with respect to θ k and set ∂ s/ ∂ θk = 0 to
btain the maximum growth rate. First, we eliminate k between ( A8 )
nd ( A9 ) to get 

1 − 2 λ) s = 2 Pr 1 / 2 λ3 / 2 b 1 / 2 . (A13) 

o w, we dif ferentiate ( A13 ) and ( A12 ) partially with respect to θ k .
ince we require s to be a maximum, we set ∂ s/ ∂ θk = 0. These two
quations allow us to eliminate ∂ λ/ ∂ θk , giving an equation between
 a/θk and ∂ b/θk . Since we have both a and b in terms of θ k in
 A5 ), this is the equation that determines the critical value of θ k 

hat corresponds to ∂ s/ ∂ θk = 0, i.e. the maximum growth rate.
ifferentiating ( A13 ) with respect to θ k and then multiplying by
 λ(1 − 2 λ) gives 

2 λ − 3) b 
∂ λ

∂ θk 

= λ(1 − 2 λ) 
∂ b 

∂ θk 

. (A14) 

ifferentiating ( A12 ) with respect to θ k and then multiplying by
1 − 2 λ)( λ − 1) gives 

(1 − 2 λ)( λ − 1) 

a 

∂ a 

∂ θk 

= (2 λ − 3) 
∂ λ

∂ θk 

+ 

(1 − 2 λ)( λ − 1) 

b 

∂ b 

∂ θk 

. 

(A15) 

ow ( A14 ) can be used to eliminate (2 λ − 3) ∂ λ/ ∂ θk and ( A12 ) can
e used to eliminate a / b , to obtain 

2 λ − 1) 
∂ a 

∂ θk 

= Pr 
∂ b 

∂ θk 

. (A16) 

ifferentiating our expressions for a and b in ( A5 ) and substituting
hem into ( A16 ), we obtain 

1 − 2 λ) 
2 �|∇� | 

� 

sin ( 	 + γ − 2 θk ) = Pr N 

2 sin 2( θk + φ) , (A17) 

r using the definition of R, 

1 − 2 λ) sin ( 	 + γ − 2 θk ) = RPr sin 2( θk + φ) . (A18) 

f the parameters RPr, 	 , γ , and φ are given, ( A12 ) is 

1 − 2 λ) 2 sin ( 	 − θk ) sin ( γ − θk ) = ( λ − 1) RPr sin 2 ( θk + φ) . 

(A19) 

 A18 ) and ( A19 ) are a pair of simultaneous equations for λ and θ k 

hich were solved numerically (see Figs 4 and 5 ). Note that once θ k 

s found, b can be found from ( A5 ), then ( A8 ) determines k 4 from
, such that knowing λ determines the magnitude of the critical k
or maximum growth rate, and θ k gives the direction of the vector k .
nce θ k is found, a and b can be constructed, and so s , the maximum
rowth rate, can be found from ( A9 ). 
MNRAS 524, 2857–2882 (2023) 
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1 Limit λ → 0 

he limit λ → 1/2 (in which RiPr → 0 as Pr → 0) is not affected by
because only a and not b matters in this limit, and a is independent

f φ. Ho we ver, in the limit λ → 0 (in which RiPr = O (1) as Pr → 0),
does matter, and ( A12 ) becomes 

 + Pr b = 0 , (A20) 

nd ( A18 ) becomes 

sin ( 	 + γ − 2 θk ) = RPr sin 2( θk + φ) . (A21) 

utting in the expressions ( A5 ) for a and b into ( A20 ), which are
alid in the Pr → 0 limit, it follows 

sin ( 	 − θk ) sin ( γ − θk ) + RPr sin 2 ( θk + φ) = 0 . (A22) 

liminating RPr between ( A21 ) and ( A22 ), we obtain an equation for
he optimum θ k . To do this, we let 

˜ 
k = θk + φ, ˜ 	 = 	 + φ, ˜ γ = γ + φ. (A23) 

hen ( A21 ) and ( A22 ) become 

sin ( ̃  	 + ˜ γ − 2 ̃  θk ) = RPr sin 2 ̃  θk (A24) 

nd 

sin ( ̃  	 − ˜ θk ) sin ( ̃  γ − ˜ θk ) + RPr sin 2 ˜ θk = 0 . (A25) 

e expand the sines in ( A25 ) and divide by sin 2 ˜ θk , giving 

sin ˜ 	 sin ˜ γ cot 2 ˜ θk − sin ( ̃  	 + ˜ γ ) cot ˜ θk + cos ˜ 	 cos ˜ γ = −RPr . 

(A26) 

xpanding ( A24 ) using 

sin ( ̃  	 + ˜ γ − 2 ̃  θk ) = sin ( ̃  	 + ˜ γ ) cos 2 ̃  θk − cos ( ̃  	 + ˜ γ ) sin 2 ̃  θk 

(A27) 

nd dividing by sin 2 ̃  θk , we obtain 

sin ( ̃  	 + ˜ γ ) 
cos 2 ˜ θk − sin 2 ˜ θk 

sin 2 ̃  θk 

− cos ( ̃  	 + ˜ γ ) = RP r, (A28) 

r noting that sin 2 ̃  θk = 2 sin ˜ θk cos ˜ θk 

1 

2 
sin ( ̃  	 + ˜ γ ) cot ̃  θk − 1 

2 
sin ( ̃  	 + ˜ γ ) tan ̃  θk − cos ˜ 	 cos ̃  γ + sin ˜ 	 sin ̃  γ = RPr . 

(A29) 

dding ( A26 ) and ( A29 ) in order to eliminate R Pr along with some
elpful cancellations, 

sin ˜ 	 sin ˜ γ cot 2 ˜ θk − 1 

2 
sin ( ̃  	 + ˜ γ ) cot ˜ θk 

− 1 

2 
sin ( ̃  	 + ˜ γ ) tan ˜ θk + sin ˜ 	 sin ˜ γ = 0 , (A30) 

his can be written 

sin ˜ 	 sin ˜ γ ( cot 2 ˜ θk + 1) − 1 

2 
sin ( ̃  	 + ˜ γ ) 

( cot 2 ˜ θk + 1) 

cot ˜ θk 

= 0 . (A31) 

ere a factor cot 2 ˜ θk + 1, which must be non-zero, cancels out, and
 xpanding sin ( ̃  	 + ˜ γ ) giv es 

cot ˜ θk = 

1 

2 
( cot ˜ γ + cot ˜ 	 ) , (A32) 

hich may be rewritten as 

cot ( θk + φ) = 

1 

2 
[ cot ( γ + φ) + cot ( 	 + φ) ] (A33) 

n the original variables. In the λ → 0 limit, this simple equation gives
NRAS 524, 2857–2882 (2023) 

k , the angle of k for the fastest growing mode. 
2 Shellular φ = 0 case as in paper 2 

f 	 is positive, ∇� has z-component −2 � �sin 	 , so γ is also
ositive. If 	 is negative, γ is also negati ve. Hence, whate ver the
ign of 	 in the φ = 0 case, there is al w ays just one root θ k of ( A33 )
nd it lies between 	 and γ . The wedge of instability between 	
nd γ is the range of angles for θ k , where a is ne gativ e. At large N 

2 ,
hich means large R and Ri, b is large and positive (from O ( �2 /Pr)
here Pr is small). Inside the wedge, a is ne gativ e, but it has smaller
agnitude than b , only O ( �2 ). This means that a + b is positive,

o it is adiabatically stable, but a + b Pr can be ne gativ e, implying
SF/dif fusi ve instability. Dif fusion at lo w Pr reduces the stabilizing

ffects of the b term, allowing the shear instability corresponding to
 to o v ercome it, leading to the GSF instability. 
There is a small wedge angle in which b is ne gativ e for 0 < θ k <

, since b = N 

2 sin θk sin ( � + θk ). Ho we ver, for large R and small
r, the thermal wind equation implies � is small, only O( �2 / N 

2 ),
o although b is ne gativ e, it has a very small magnitude, which will
ormally be wiped out by a in this tiny wedge of b instability. It
ight be possible for the angles 	 and γ to be very small also, so

hat both a and b are both very small, and ne gativ e b might be bigger
han positive a , but this unusual limit has yet not been explored. 

3 The non-shellular case φ �= 0 case 

ince φ is unrestricted, we have more possibilities than in the
hellular case with φ = 0. If 	 + φ and γ + φ both have the same
ign, and both lie between 0 and π, then the previous argument for
he shellular case still holds, and θ k + φ lies in the wedge between
 + φ and γ + φ, meaning θ k lies between 	 and γ , i.e. in the

nstable wedge of ne gativ e a . Example: for 	 = 30 ◦, γ = 60 ◦, φ =
5 ◦, the solution of ( A33 ) is θ k = 42.626 ◦, in the required wedge
i ving negati ve a , positi ve b and positive s , so its a local maximum
f s . This case is very similar to the shellular case, and we complete
he analysis of this case below in Section A3.1 . 

Ho we ver, we could ask, what happens if the vector e g lies between
⊥ and ∇� ? If 	 and γ are both positive, this would mean φ is

e gativ e, and 	 < −φ < γ . Now 	 + φ is ne gativ e and γ + φ is
ositive. This means that cot x is no longer continuous as x increases
rom 	 + φ to γ + φ because it goes to infinity at x = 0. Example:
 = 30 ◦, γ = 60 ◦, φ = −45 ◦. Looking at ( A33 ), cot ( θk + φ) =
 . 5( cot 15 ◦ − cot 15 ◦) = 0, so θ k + φ = 90 ◦, so θ k = 135 ◦, which
s not in the unstable wedge. We have a solution for ( A33 ) here, but
t has both a and b positive, so from ( A25 ) RPr is negative. This is
ot what we want physically in the radiation zone, because we want
he stratification to be stable, with R > 0 as it is in the tachocline.
f e g lies between �⊥ and ∇� , then there is a value of θ k = −φ

hich lies in the unstable wedge and has b zero. If b is zero, our
riginal scaling breaks down, because b is no longer O ( �2 /Pr). For
hese modes, with k lined up with gravity, and a ne gativ e, the fastest
rowing modes will be small k 2 adiabatic modes with σ = 

√ −a , i.e.
n the fast rotational time-scale. 

3.1 The non-shellular case when e g lies outside the wedge 
etween �⊥ and ∇� 

his is the case where ( A33 ) gives a physically satisfactory maximum
rowth rate with k in the unstable wedge. Expanding the expression
or ( A5 a) using sine and cosine rules for sums, and using ( A32 ), the
ondition for s to be a local maximum, we may obtain, after some
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implifications, 

 = −�|∇� | 
2 � 

sin 2 ˜ θk 

sin 2 ( ̃  γ − ˜ 	 ) 

sin ˜ 	 sin ˜ γ
. (A34) 

ow we have an expression for R/Ri in order to express b in terms of
i rather than R. To do this, we use the definition of ∇� , to deduce 

2 �� 

|∇� | = 

sin γ

sin 	 

, 
� S 

|∇� | = 

cos 	 sin γ

sin 	 

− cos γ. (A35) 

ow R = N 

2 �/ 2 �|∇� | and Ri = N 

2 / S 

2 by definition, so R / Ri =
 

2 �/ 2 �|∇� | . So the square of ( A35 b) divided by (A35 a) gives 

R 

Ri 
= 

(
cos 	 sin γ

sin 	 

− cos γ

)2 sin 	 

sin γ
= 

sin 2 ( γ − 	 ) 

sin γ sin 	 

. (A36) 

ow from ( A5 b) 

 = N 

2 sin 2 ˜ θk = R 

2 �|∇� | 
� 

sin 2 ˜ θk 

= Ri 
2 �|∇� | 

� 

sin 2 ˜ θk 

sin 2 ( γ − 	 ) 

sin γ sin 	 

. (A37) 

ow in the λ → 0 limit, ( A20 ) tells us that a = −Pr b . Putting together
ur expressions for a and b , 

r b = RiPr 
2 �|∇� | 

� 

sin 2 ˜ θk 

sin 2 ( γ − 	 ) 

sin γ sin 	 

= −a = 

�|∇� | 
2 � 

sin 2 ˜ θk 

sin 2 ( ̃  γ − ˜ 	 ) 

sin ˜ 	 sin ˜ γ
. (A38) 

ooking at these expressions, sin 2 ( γ − 	 ) = sin 2 ( ̃  γ − ˜ 	 ), so these
erms cancel. We thus end up with 

iPr = 

sin γ sin 	 

4 sin ( γ + φ) sin ( 	 + φ) 
, (A39) 

hich is different from the shellular φ = 0 case, where the limit λ
 0 corresponded to the simpler RiPr = 1/4. 
If 	 and γ are both positive (they must have the same sign) and φ

s positive, then the limit is RiPr < 1/4. This is stabilizing, because it
eans that Ri has to be smaller for instability, and since Ri = N 

2 / S 

2 ,
his means the shear S has to be larger for instability. Example: 	 =
0 ◦, γ = 60 ◦, φ = 30 ◦ gives the limit as RiPr = 1/8, so the range of
nstability is reduced from 0 < RiPr < 0.25 down to 0 < RiPr < 0.125
onfirming positive φ is stabilizing if γ and 	 are positive. 
Ho we ver, if φ is negative when γ and 	 are positive, φ is
estabilizing. Example: 	 = 30 ◦, γ = 60 ◦, φ = −15 ◦, then the
pper limit of Ri Pr is increased to 0.5915 so a smaller shear S will
till be unstable. 

If φ is ne gativ e and | φ| approaches the smaller of 	 or γ then sin ( 	
 φ) or sin ( γ + φ) will become small so that (A39 ) will diverge

o infinity. This is correct, because as φ approaches the wedge of
nstability, we expect the system to become adiabatically unstable, 
.e. unstable whatever Ri is. If e g is inside the wedge, fluid motion
erpendicular to gravity cannot be stabilized by the stratification, 
nd since it is inside the wedge it is driven by the shear, so it is very
nstable. 

3.2 The non-shellular case close to λ = 0 

ow suppose that λ is small but not quite zero (i.e. the limit RiPr =
 (1) as Pr → 0), so that squares and higher powers of λ can be
eglected. Then ( A12 ) gives 

= 

a + Pr b 

3 a 
. (A40) 

ow a + Pr b is small and ne gativ e, but not quite zero. If we put in
he expressions ( A34 ) for a and (A38 ) for b , ( A40 ) becomes 

= 

1 

3 

(
1 − 4 RiPr 

sin ˜ γ sin ˜ 	 

sin γ sin 	 

)
= 

κνk 4 

b 
, (A41) 

o 

 

4 = 

N 

2 sin 2 ˜ θk 

3 

(
1 − 4 RiPr 

sin ˜ γ sin ˜ 	 

sin γ sin 	 

)
. (A42) 

his means that if RiPr is just a little less than the limiting value
iven by A39 there is an unstable solution with a long wavelength,
ecause k is small from (A42) , and the growth rate is also small from
 A9 ), giving 

 = 

2 
√ 

Pr N sin ˜ θk √ 

3 

(
1 − 4 RiPr 

sin ˜ γ sin ˜ 	 

sin γ sin 	 

)1 / 2 

. (A43) 

his result has been confirmed numerically and describes the slow 

rowth that occurs when the strength of the differential rotation is
ust abo v e the minimum value required for instability. 

PPENDI X  B:  TA BLES  O F  SI MULATI ONS  
MNRAS 524, 2857–2882 (2023) 
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Table B1. Table of linear properties for simulation parameters. For all of these, we fix Pr = 10 −2 and N 

2 = 10. k x , and k z are wav ev ector components of the 
fastest growing linear mode, σ is the corresponding growth rate. The cases which investigated variations in shear S were considered at 	 + φ = 30 ◦ latitude 
with 	 = 60 ◦, φ = −30 ◦ in the case that was GSF-unstable at S = 2, 	 = −60 ◦, and φ = 90 ◦ in the case that is adiabatically unstable if S = 2. Our simulation 
units are determined by setting � = d = 1. 

S φ 	 � γ RiPr k x k z | k | σ θ k Adiabatically stable? 

Latitude = 0 ◦

2 −90 ◦ 90 ◦ −66.42 ◦ 135 ◦ 0.025 −0.17 0.51 0.54 0.70 71.08 ◦ � 

2 −60 ◦ 60 ◦ −39.73 ◦ 120 ◦ 0.025 −0.053 0.58 0.58 0.76 84.81 ◦ � 

2 −30 ◦ 30 ◦ −18.46 ◦ 105 ◦ 0.025 −0.30 0.51 0.59 0.61 59.21 ◦ � 

2 0 ◦ 0 ◦ NA NA 0.025 NA NA NA NA NA � 

2 30 ◦ −30 ◦ 18.46 ◦ −105 ◦ 0.025 −0.30 0.51 0.59 0.61 59.21 ◦ � 

2 60 ◦ −60 ◦ 39.73 ◦ −120 ◦ 0.025 −0.05 0.58 0.58 0.76 84.81 ◦ � 

2 90 ◦ −90 ◦ 66.42 ◦ −135 ◦ 0.025 −0.17 0.51 0.54 0.70 71.08 ◦ � 

Latitude = 30 ◦

2 −90 ◦ 120 ◦ −69.73 ◦ 150 ◦ 0.025 0.47 0.49 0.68 0.36 46.28 ◦ � 

2 −60 ◦ 90 ◦ −36.42 ◦ 135 ◦ 0.025 0.26 0.67 0.72 0.55 69.19 ◦ � 

2 −30 ◦ 60 ◦ −9.73 ◦ 120 ◦ 0.025 −0.03 0.74 0.74 0.62 87.72 ◦ � 

2 0 ◦ 30 ◦ 11.54 ◦ 105 ◦ 0.025 0.32 -0.67 0.74 0.49 64.14 ◦ � 

2 30 ◦ −30 ◦ NA NA 0.025 NA NA NA NA NA � 

2 60 ◦ −30 ◦ 48.46 ◦ −105 ◦ 0.025 −0.01 0.015 0.018 0.88 57.09 ◦ ×
2 90 ◦ −60 ◦ 69.73 ◦ −120 ◦ 0.025 −0.001 0.01 0.01 1.10 81.87 ◦ ×

Latitude = 60 ◦

2 −90 ◦ 150 ◦ −78.46 ◦ 165 ◦ 0.025 0.52 0.22 0.56 0.03 22.77 ◦ � 

2 −60 ◦ 120 ◦ −39.73 ◦ 150 ◦ 0.025 0.52 0.52 0.73 0.29 45.20 ◦ � 

2 −30 ◦ 90 ◦ −6.42 ◦ 135 ◦ 0.025 0.29 0.70 0.76 0.51 67.21 ◦ � 

2 0.0 ◦ 60 ◦ 20.27 ◦ 120 ◦ 0.025 0.015 0.76 0.76 0.60 88.86 ◦ � 

2 30 ◦ 30 ◦ 41.54 ◦ 105 ◦ 0.025 −0.25 0.70 0.75 0.48 70.19 ◦ � 

2 60 ◦ 0 ◦ NA NA 0.025 NA NA NA NA NA � 

2 90 ◦ −30 ◦ 78.46 ◦ −105 ◦ 0.025 0.001 0.01 0.01 0.85 81.87 ◦ ×
Latitude = 90 ◦

2 −90 ◦ 180 ◦ NA NA 0.025 NA NA NA NA NA � 

2 −60 ◦ 150 ◦ −48.46 ◦ 165 ◦ 0.025 0.51 0.21 0.55 0.024 22.30 ◦ � 

2 −30 ◦ 120 ◦ −9.73 ◦ 150 ◦ 0.025 0.51 0.49 0.71 0.32 43.98 ◦ � 

2 0 ◦ 90 ◦ 23.58 ◦ 135 ◦ 0.025 0.29 0.62 0.69 0.58 65.20 ◦ � 

2 30 ◦ 60 ◦ 50.27 ◦ 120 ◦ 0.025 0.049 0.65 0.65 0.70 85.69 ◦ � 

2 60 ◦ 30 ◦ 71.54 ◦ 105 ◦ 0.025 −0.16 0.60 0.62 0.59 75.34 ◦ � 

2 90 ◦ 0 ◦ NA NA 0.025 NA NA NA NA NA � 

Variations in shear (GSF instability at S = 2 in 
Fig. 13 panels (a) and (b)) 

0.5 −30 ◦ 60 ◦ −25.037 ◦ 73.90 ◦ 0.40 0.18 −0.39 0.43 0.013 66.03 ◦ � 

1.0 −30 ◦ 60 ◦ −20.035 ◦ 90 ◦ 0.10 −0.18 0.60 0.63 0.18 72.95 ◦ � 

1.5 −30 ◦ 60 ◦ −14.94 ◦ 106.1 ◦ 0.044 −0.11 0.69 0.70 0.40 80.55 ◦ � 

2.0 −30 ◦ 60 ◦ −9.73 ◦ 120 ◦ 0.025 −0.029 0.74 0.74 0.62 87.72 ◦ � 

2.5 −30 ◦ 60 ◦ −4.34 ◦ 130.89 ◦ 0.016 0.053 0.76 0.76 0.84 86.04 ◦ � 

3.0 −30 ◦ 60 ◦ 1.31 ◦ 139.11 ◦ 0.011 −0.12 −0.76 0.77 1.06 −81.12 ◦ � 

Variations in shear (adiabatic instability at S = 2 in 
Fig. 13 panels (c) and (d)) 

0.5 90 ◦ −60 ◦ −25.03 ◦ −73.90 ◦ 0.40 0.18 −0.39 0.43 0.013 66.03 ◦ � 

1.0 90 ◦ −60 ◦ 99.97 ◦ −90 ◦ 0.10 0 0 0 0.48 NA ×
1.5 90 ◦ −60 ◦ 105.06 ◦ −106.1 ◦ 0.044 0 0 0 0.85 NA ×
2.0 90 ◦ −60 ◦ 110.27 ◦ −120 ◦ 0.025 0 0 0 1.10 NA ×
2.5 90 ◦ −60 ◦ 115.66 ◦ −130.89 ◦ 0.016 0 0 0 1.31 NA ×
3.0 90 ◦ −60 ◦ 121.31 ◦ −139.11 ◦ 0.011 0 0 0 1.49 NA ×
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Table B2. Table of simulation parameters and non-linear outcomes. All simulations have Pr = 10 −2 and N 

2 = 10. Time-averages are based on the entire 
simulation after the initial linear growth phase. Simulation parameters not listed in this table are given in Section 2.1 . Our simulation units are determined by 
setting � = d = 1. 

S φ 	 L x L z 〈 u x u y 〉 〈 u x u z 〉 〈 u y u z 〉 
√ 〈 u 2 x 〉 

√ 

〈 u 2 y 〉 
√ 

〈 u 2 z 〉 

Latitude = 0 ◦

2 −90 ◦ 90 ◦ 100 100 2883 .03 ± 490.52 − 13 .37 ± 69.90 92.94 ± 147.36 34.14 ± 260.66 32.20 ± 89.30 27.15 ± 260.66 
2 −60 ◦ 60 ◦ 100 100 510 .02 ± 41.53 73 .13 ± 9.30 195.36 ± 20.84 15.08 ± 0.58 31.56 ± 1.28 13.00 ± 0.56 
2 −30 ◦ 30 ◦ 100 100 135 .81 ± 16.78 37 .73 ± 5.74 112.04 ± 13.98 7.82 ± 0.43 15.19 ± 0.89 7.69 ± 0.39 
2 0 ◦ 0 ◦ 100 100 NA NA NA NA NA NA 

2 30 ◦ −30 ◦ 100 100 138 .81 ± 20.62 − 38 .93 ± 6.97 −115.60 ± 17.19 7.88 ± 0.52 15.36 ± 1.06 7.97 ± 0.50 
2 60 ◦ −60 ◦ 100 100 134 .84 ± 16.54 − 36 .92 ± 5.59 −111.77 ± 14.02 7.79 ± 0.41 15.14 ± 0.82 7.98 ± 0.41 
2 90 ◦ −90 ◦ 100 100 2838 .20 ± 578.87 14 .92 ± 76.82 −128.26 ± 130.56 34.64 ± 3.97 88.33 ± 7.04 28.10 ± 3.75y 

Latitude = 30 ◦

2 −90 ◦ 120 ◦ 100 100 25 .71 ± 8.29 − 1 .55 ± 1.13 −20.68 ± 7.95 2.93 ± 0.61 13.81 ± 2.30 3.21 ± 0.69 
2 −60 ◦ 90 ◦ 100 100 25 .86 ± 7.13 − 2 .68 ± 0.51 −7.49 ± 2.07 3.29 ± 0.29 8.14 ± 2.67 3.46 ± 0.30 
2 −30 ◦ 60 ◦ 100 100 24 .08 ± 1.56 − 1 .77 ± 0.21 0.72 ± 0.61 3.22 ± 0.09 7.85 ± 0.26 3.27 ± 0.10 
2 0 ◦ 30 ◦ 100 100 11 .29 ± 1.48 − 1 .14 ± 0.37 5.17 ± 1.15 2.36 ± 0.16 8.08 ± 1.51 2.55 ± 0.22 
2 30 ◦ 0 ◦ 100 100 0 0 0 NA NA NA 

2 60 ◦ −30 ◦ 100 100 958 .54 ± 509.53 − 334 .17 ± 216.16 −516.59 ± 311.61 28.37 ± 6.34 29.85 ± 6.63 23.80 ± 5.12 
2 90 ◦ −60 ◦ 100 100 9219 .30 ± 4186.12 − 633 .00 ± 529.89 −499.52 ± 483.91 83.77 ± 15.41 86.67 ± 16.71 53.12 ± 11.22 

Latitude = 90 ◦

2 −90 ◦ 180 ◦ 100 100 0 0 0 NA NA NA 

2 −60 ◦ 150 ◦ 100 100 3 .54 ± 0.77 − 0 .88 ± 0.18 −9.52 ± 2.07 0.52 ± 0.08 4.55 ± 0.26 1.24 ± 0.14 
2 −30 ◦ 120 ◦ 100 100 17 .54 ± 2.13 − 5 .37 ± 0.31 −22.90 ± 2.23 2.22 ± 0.17 7.08 ± 0.52 3.23 ± 0.17 
2 0 ◦ 90 ◦ 100 100 36 .99 ± 1.97 − 20 .74 ± 1.00 −25.59 ± 1.72 4.45 ± 0.09 6.61 ± 0.13 5.09 ± 0.12 
2 30 ◦ 60 ◦ 100 100 162 .84 ± 22.49 − 113 .43 ± 11.59 −77.34 ± 12.22 10.59 ± 0.52 11.13 ± 0.69 7.96 ± 0.47 
2 60 ◦ 30 ◦ 100 100 138 .36 ± 19.83 − 110 .84 ± 25.12 −31.54 ± 10.89 15.67 ± 1.26 8.15 ± 0.52 8.35 ± 0.59 
2 90 ◦ 0 ◦ 100 100 0 0 0 NA NA NA 

Variations in shear (GSF instability at S = 2 in Fig. 13 panels (a) and (b)) 

1 −30 ◦ 60 ◦ 100 100 15 .46 ± 1.28 0 .99 ± 0.13 2.88 ± 0.30 2.16 ± 0.12 5.67 ± 0.45 1.24 ± 0.13 
1.5 −30 ◦ 60 ◦ 100 100 17 .82 ± 1.52 − 0 .65 ± 0.16 0.98 ± 0.31 2.60 ± 0.09 4.72 ± 0.20 2.06 ± 0.10 
2 −30 ◦ 60 ◦ 100 100 24 .08 ± 1.39 − 1 .77 ± 0.21 0.75 ± 0.59 3.22 ± 0.09 7.84 ± 0.28 3.26 ± 0.09 
2.5 −30 ◦ 60 ◦ 100 100 29 .48 ± 2.06 − 3 .65 ± 0.36 −0.12 ± 0.95 3.95 ± 0.13 10.99 ± 1.22 4.23 ± 0.14 

Variations in shear (adiabatic instability at S = 2 in Fig. 13 panels (c) and (d)) 

1 90 ◦ −60 ◦ 100 100 160 .95 ± 69.64 − 64 .15 ± 71.27 −18.56 ± 24.81 24.52 ± 7.61 11.14 ± 3.35 12.61 ± 6.14 
1.5 90 ◦ −30 ◦ 100 100 646 .72 ± 306.23 − 790 .23 ± 531.47 −365.74 ± 313.57 76.15 ± 14.92 65.94 ± 12.66 42.89 ± 9.95 
2 90 ◦ −60 ◦ 100 100 916 .75 ± 459.88 − 639 .07 ± 563.43 −493.17 ± 481.91 83.52 ± 17.09 86.28 ± 18.35 52.87 ± 12.45 
2.5 90 ◦ 30 ◦ 100 100 1082 .42 ± 758.08 − 567 .85 ± 768.16 −580.33 ± 842.64 87.96 ± 24.89 99.80 ± 29.88 60.97 ± 19.59 
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igure C1. Figures of linear growth rate log 10 ( σ / �) for the axisymmetric GSF (o
r = 10 −2 , S/� = 2, with 	 = 60 ◦ fixed. Here, we vary φ in multiples of 30 ◦ from 

edge bounded by the two vectors ˆ �
⊥ 

and ∇� . We also observe two secondary lo
he strength and orientation of secondary modes depends on φ and are only present
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r adiabatic) instability for various φ on the ( k x , k z )-plane for N 
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−90 ◦ to 60 ◦. GSF (or adiabatically) unstable modes are contained within the 

bes outside the primary one. While the primary lobe is fixed in orientation, 
 when we are adiabatically stable. 
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