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A B S T R A C T 

ALMA observations of dust ring/gap structures in a minority but growing sample of protoplanetary discs can be explained by the 

presence of planets at large disc radii – yet the origins of these planets remains debated. We perform planet formation simulations 

using a semi-analytic model of the HL Tau disc to follow the growth and migration of hundreds of planetary embryos initially 

distributed throughout the disc, assuming either a high or low turbulent α viscosity. We hav e disco v ered that there is a bifurcation 

in the migration history of forming planets as a consequence of varying the disc viscosity. In our high viscosity discs, inward 

migration pre v ails and yields compact planetary systems, tempered only by planet trapping at the water iceline around 5 au. In 

our lower viscosity models however, low mass planets can migrate outward to twice their initial orbital radii, driven by a radially 

e xtended re gion of strong outward-directed corotation torques located near the heat transition (where radiative heating of the 

disc by the star is comparable to viscous heating) – before eventually migrating inwards. We derive analytic expressions for the 

planet mass at which the corotation torque dominates, and find that this ‘corotation mass’ scales as M p, corot ∼ α2/3 . If disc winds 

dominate the corotation torque, the corotation mass scales linearly with wind strength. We propose that the observed bifurcation 

in disc demographics into a majority of compact dust discs and a minority of extended ring/gap systems is a consequence of a 

distribution of viscosity across the disc population. 

Key words: planets and satellites: formation – planets and satellites: individual: HL Tau – planets and satellites: physical 

evolution – planet–disc interactions – protoplanetary discs. 

1  I N T RO D U C T I O N  

Protoplanetary discs, as the arenas for planet formation, are the 

mediators and record-keepers of the planet formation process. Over 

the last decade, our view of nearby protoplanetary discs has been 

revolutionized by high angular resolution images – most notably 

obtained by the Atacama Large Millimeter Array (ALMA). ALMA 

has resolved a diverse set of substructures present in a growing 

sample of protoplanetary discs, such as gaps, rings, spirals, clumps, 

and crescents (e.g. van der Marel et al. 2013 ; Benisty et al. 2015 ; 

Rapson et al. 2015 ; Wagner et al. 2015 ; Kudo et al. 2018 , among 

many others). Of these structures, gaps and rings are the most 

common (Huang et al. 2018 ; Long et al. 2018 ). Probing the disc 

dust component, the DSHARP Surv e y (Andrews et al. 2016 , 2018 ) 

found gaps and rings ranging from circumstellar distances of 5 to 

more than 150 au. The HL Tau disc, in particular, exhibits dust gaps 

between 13 and 90 au (ALMA Partnership 2015 ). 

A natural interpretation of these disco v eries is that disc substruc- 

ture is linked to the presence of young planets. Given that planets 

interact gravitationally with the disc in which they are embedded, 

⋆ E-mail: jspeedie@uvic.ca (JS); jpudritz@physics.mcmaster.ca (REP) 

substructures are thought to be caused by planets, at least in part. 

Many hydrodynamical simulations have shown that by judiciously 

choosing planet masses and orbital radii, one can successfully 

recreate the pattern of gaps and rings in HL Tau (e.g. Dipierro et al. 

2015 ; Dong, Zhu & Whitney 2015 ; Jin et al. 2016 ). While Jovian 

masses are required to open gaps in the gas, dust gaps can be created 

by much lower mass planets, possibly down to super-Earths or mini- 

Neptunes (Paardekooper & Mellema 2004 , 2006 ; Rosotti et al. 2016 ; 

Long et al. 2018 ). 

Discs with gaps and rings, ho we ver, are in the minority of all disc 

systems kno wn. v an der Marel & Mulders ( 2021 ) have analysed the 

extant ALMA observations of all of the known protostellar discs, 

numbering o v er 700 discs. Specifically, of 692 discs analysed in 

detail, only 16 per cent are identified with structure resolved at 25 au 

scales (10 per cent transition and ring plus 6 per cent for the addition 

of extended discs). These authors emphasize that the occurrence rate 

of discs with clear rings and gaps is similar to the occurrence rate 

of Jovian mass planets in the exoplanet population and displays the 

same dependence on stellar mass. 

Earlier work has already shown that high mass planets are rare at 

large disc scales. Fernandes et al. ( 2019 ) and Pascucci et al. ( 2019 ) 

used data from Kepler and RV surv e ys to show that giant planet 

occurrence rates peak at 2–3 au, around the position of snow lines, 
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with about 4 −6 per cent at 3–7 au (Wittenmyer et al. 2016 ), and 

only 1 per cent at 10–100 au. Similar trends beyond 10 au are also 

seen by the e xtensiv e Gemini GPIES, IR imaging surv e y (Nielsen 

et al. 2019 ). The historic disco v ery of the pair of young forming 

massive planets in a transition disc around the T-Tauri star PDS 70 

(PDS 70b,c with 4-17 and 4-12 Jovian masses and orbital radii 20.6 

and 34.5 au, respecti vely; K eppler et al. 2018 ; Haf fert et al. 2019 ) 

indicates that in some cases, massive planets are indeed forming at 

disc radii exceeding 10 au. 

It has been known for some time that discs with large gaps are 

more likely to be more massive (Ercolano & Pascucci 2017 ). More 

recently, van der Marel & Mulders ( 2021 ) show that there is a good 

correlation of these ringed systems with more massive host stars 

(1.5–3 M ⊙) in the surv e y, suggesting that ringed/gapped systems 

occur in more massive discs. By comparing systems at different ages 

this work also showed that structured discs retain high dust masses up 

to at least 10 Myr, whereas the dust mass of compact, non-structured 

discs decreases o v er time. 

While this might imply that only a fraction of ring/gap discs are 

a consequence of giant planets (Fernandes et al. 2019 ), another 

possible explanation is that if such planets are indeed responsible 

for the production of the rings and gaps in discs at large disc radii 

during their formation, then they must have migrated back to 10 au 

or less before the final architectures of their planetary systems are 

established (van der Marel & Mulders 2021 ). 

Our work is based on a careful analysis of planet–disc interaction 

wherein forming planets are subject to gravitational torques e x erted 

by the surrounding gas disc which can significantly change their 

orbital location (e.g. Kley & Nelson 2012 ). Type I migration, which 

pertains to low mass forming planets, depends on the competition 

between two kinds of torques arising from resonances between 

the planet and the disc (Goldreich & Tremaine 1979 ). Lindblad 

torques from waves launched at Lindblad resonances are fairly 

straightforward (T anaka, T akeuchi & Ward 2002 ) and are generally 

inward-directed. On the other hand, corotation torques depend on 

the viscosity (Masset 2001 ), the radiative cooling efficienc y (Kle y & 

Crida 2008 ) and the thermal, density, and entopy gradients in orbits 

very nearly in corotation with the planet (Masset et al. 2006 ; 

Baruteau & Masset 2008 ; Ida & Lin 2008 ; Paardekooper, Baruteau & 

Kley 2011 ) – and are typically outward-directed. 

The relative strength of these two competing torques can lead to net 

inw ard or outw ard migration of planets in discs, depending on planet 

mass, disc viscosity, and local temperature gradients. There are also 

conditions where the torques are balanced. These constitute planet 

traps, and can arise at sharp opacity transitions that occur at the water 

iceline, and dead zone boundaries where the turbulence amplitude 

rapidly changes due to a decrease in disc ionization. The thermal or 

viscous gradients in these cases fa v our a strong outward-directed and 

highly localized corotation torque that balances the inward Lindblad 

torque. A third, important instance is in the heat transition region 

of the disc where disc heating changes from viscous dissipation to 

irradiation by the central star. 

Viscous stresses due to disc turbulence are traditionally modelled 

with the α parameter (Shakura & Sunyaev 1973 ). This parameter 

can be determined observationally by measuring the amplitude of 

turbulence in the discs. Most models of planet formation have used 

values in the range α = 10 −2 –10 −3 . 

Given that corotation torques depend upon the turbulent viscosity 

of discs, it is natural to ask if all discs have similar levels of 

turbulence. They do not. In fact, observations of line emission lacking 

turbulent broadening (Flaherty et al. 2015 , 2017 , 2018a , b , 2020 ), 

small dust ring scale heights (Pinte et al. 2016 ), sizes of protoplan- 

etary discs (Trapman et al. 2020 ), and theoretical arguments based 

on low fragmentation velocities observed in laboratory experiments 

(Pinilla, Lenz & Stammler 2021 ) increasingly point towards values 

of viscosity as low as α ≃ 10 −4 in some systems. 

In this paper, we compute how planets grow and migrate within 

disc models whose detailed evolving astrochemistry is carefully 

followed. We compute two different cases: the conventional α = 

10 −3 , and a lower α = 10 −4 . In relation to one another, we refer to 

these as high viscosity and low viscosity , respectively. Our model 

allows for accurate calculation of thermal, density, and entropy 

gradients that are all important in computing the mass dependent, 

net torques on forming, migrating planets; both in magnitude and 

direction. In order to base our simulations for our general theoretical 

planet formation model as much as possible on real data, we adopted 

the conditions in the HL Tau protoplanetary disc (Cridland, Pudritz & 

Alessi 2019a ; Cridland, Eistrup & van Dishoeck 2019b ). We grow 

and evolve hundreds of planets, each in their own simulation, with 

initial orbital radii distributed throughout the disc. As a first step 

to computing the masses of these migrating planets, we adopt a 

very conserv ati ve estimate based on standard planetesimal accretion 

models. 

We find the remarkable result that there is a bifurcation in the 

migration behaviour of forming planets that is determined by the level 

of turbulence in their discs. In the low turbulent viscosity ( α = 10 −4 

in our models) regime, strong outward-directed corotation torques 

beyond about 10 au, drive forming planets to the outer regions of 

the disc, where they are captured in the heat transition trap. They 

e ventually re verse their migration and move inwards to smaller disc 

radii. On the other hand, forming planets in the higher viscosity 

discs migrate inwards. We confirm with analytical theory that the 

physics of this process can be well described by a new planetary 

mass scale which we call the co-rotation mass, M p, corot = M p, corot ( α). 

It is the planet mass at which the outward-directed co-rotation torque 

achieves its maximum value, at some disc location. We argue that 

such low viscosity states are natural in more massive discs, whose 

higher column density will cut off the ionization of discs by external 

X-rays, and thus MRI induced turbulence within them. 

This paper is structured as follows. In Section 2, we describe the 

theoretical formation model that we use to simulate planet formation 

and evolution in the HL Tau disc. Section 3 presents the first portion 

of our numerical planet formation results: the background torque 

landscape and key features within the torque maps. The second 

portion is presented in Section 4: the resulting planet migration tracks 

and final masses of the formed planet populations. In Section 5, we 

provide physical insight into our numerical results with analytic 

approximations and theory to deriv e e xpressions for the corotation 

mass. Finally, we discuss our results in Section 6 and conclude in 

Section 8. 

2  M O D E L  A N D  SI MULATI ONS  

In this section, we describe the theoretical formation model that 

we use to grow and evolve planets in protoplanetary discs. We first 

establish the basic disc structure and dust evolution equations, and 

follow this with a description of the details of planet growth and 

migration. 

2.1 Gas disc model 

The gas disc model is based on the self-similar analytic model 

of Chambers ( 2009 ). Given a disc viscosity parameter α, initial 

disc mass M 0 , initial disc radius s 0 and protostar mass, radius, and 

MNRAS 510, 6059–6084 (2022) 
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Bifurcation of planet formation histories 6061 

temperature ( M ⋆ , R ⋆ , T ⋆ ), the model computes (as a function of time) 

the disc accretion rate Ṁ ⋆ ( t), and the disc surface density �( t ) and 

mid-plane temperature T ( t ) radial profiles. We model HL Tau with a 

stellar mass of M ⋆ = 1 . 2 M ⊙, a stellar radius of R ⋆ = 3 . 0 R ⊙, and a 

temperature of T ⋆ = 4395 K (White & Hillenbrand 2004 ). 

The disc is divided into two regions depending on the dominant 

disc heating mechanism: viscous dissipation or stellar irradiation. 

Viscous dissipation dominates in the inner regions where the disc’s 

surface density is highest. The boundary between these two regions 

is known as the heat transition (HT) , r HT , and is referred to 

e xtensiv ely in this work. As a consequence, the disc surface density 

and temperature profiles take on a different power law in each region: 

� 

� 0 
( r) ∝ 

{

r −3 / 5 r ≪ r HT 

r −15 / 14 r ≫ r HT 
(1) 

T 

T 0 
( r) ∝ 

{

r −9 / 10 r ≪ r HT 

r −3 / 7 r ≫ r HT , 
(2) 

where � 0 = � 0 ( t ) and T 0 = T 0 ( t ) depend on time through the 

evolving mass accretion rate. We assume that the mass accretion 

rate is constant o v er all disc radii, which requires: 

Ṁ ⋆ = 3 πν�, (3) 

where 

ν = αc s H (4) 

is the disc viscosity in the standard α-disc paradigm (Shakura & 

Sunyaev 1973 ). Chambers ( 2009 ) derived individual formulations 

for the different heating sources in the disc. 

Inward of r HT the disc is heated through viscous evolution. In the 

absence of a disc wind, the traditional assumption is that gravitational 

potential energy release at each radius is converted entirely into heat 

which is then radiated away as blackbody radiation from the disc. As 

is well known, this rate of release is controlled by the accretion rate, 

which as seen abo v e depends on both the viscosity and the column 

density. Thus, this region has an ef fecti ve temperature of (Ciesla & 

Cuzzi 2006 ): 

2 σT 4 eff = 
9 ν��2 

4 
, (5) 

which results in the mid-plane temperature of: 

T 4 visc = 
3 κ� 

8 
T 4 eff = 

27 κν� 
2 �2 

64 σ
, (6) 

where κ is the (assumed constant) average dust opacity from the mid- 

plane to the disc surface. By combining equations (3) and (6) one 

can (as Chambers 2009 did) reco v er the radial dependence shown in 

equation (1) for r ≪ r HT as well as the temporal evolution of Ṁ ⋆ � 0 , 

and T 0 . 
1 

The second heating source, dominant for r ≫ r HT , is due to 

direct irradiation from the host star – not the release of gravitational 

potential energy of the accreting flow. In this case the mid-plane 

temperature profile use by Chambers ( 2009 ) followed the model of 

Chiang & Goldreich ( 1997 ): 

T irr = T rad 

(

r 

r 0 

)−3 / 7 

, (7) 

where r 0 is the outer radius of the disc, and: 

T rad = 

(

2 

7 

)1 / 4 (
T ⋆ 

T c 

)1 / 7 (
R ⋆ 

r 0 

)3 / 7 

T ⋆ , (8) 

1 For brevity we have largely neglected to show the mechanics of these 

deri v ations, and invite the reader to see Chambers ( 2009 ) for details. 

where T c is a constant with units of Kelvin (see Chambers 2009 ). 

Notably, the temperature profile T rad lacks a dependence on Ṁ ⋆ (and 

also time) and hence all of the temporal evolution of Ṁ ⋆ is encoded 

in the evolving gas surface density in regions of the disc that are 

mainly heated through direct irradiation. 

We emphasize that r HT only prescribes a characteristic radial 

scale at which the disc’s heating from viscous is comparable to 

that from direct irradiation. In reality, and as shown in numerical 

simulations (for example, D’Alessio et al. 2006 ), the temperature 

profile smoothly transitions from viscous-dominated to irradiation- 

dominated o v er a considerable range of disc radii. To account for 

this, we combine both temperature profiles (both computed o v er the 

whole radius range of the disc) by taking the sum of their energy 

distributions. In that case the mid-plane temperature becomes: 

T 4 = T 4 visc + T 4 irr . (9) 

This is how the heat transition becomes an extended region 

spanning a range of disc radii (looking ahead to Fig. 3 ). With this new 

temperature profile we update the gas surface density profile using 

their connection through equation (3) for a given (current) value of 

Ṁ ⋆ . We repeat this process for a wide range of time-steps throughout 

the lifetime of the disc, from t = 10 5 yr to t = 2 × 10 6 yr, where we 

generate Ṁ ⋆ at each time-step using the following modified power 

law (Chambers 2009 ): 

Ṁ ⋆ = 

{ 
Ṁ 0 

(1 + t/τvis ) 19 / 16 e 
−( t−τinit ) /τdep t < t 1 

Ṁ 1 
[ 1 + ( t−t 1 ) /τrad ] 

20 / 13 e 
−( t−τinit ) /τdep t ≥ t 1 , 

(10) 

where t 1 is the first time that T irr > T visc at the outer edge of the disc 

and Ṁ 1 and M 1 are the mass accretion rate and disc mass at t 1 . If T irr 

> T visc at t = 0 then t 1 = 0, M 1 = M 0 , and Ṁ 1 = Ṁ 0 . The viscous 

accretion time-scale in the viscously heated and radiative heating 

regimes are τvis = 3 M 0 / 16 Ṁ 0 and τrad = 7 M 1 / 13 Ṁ 1 , respectively. 

The exponential term represents the impact of mass removal due 

to photoe v aporation which lo wers the o v erall mass accretion rate 

through the disc (Hase ga wa & Pudritz 2013 ). The parameter τ init = 

10 5 yr is the initial time at which we start our simulations and τ dep = 

8 Myr is the depletion time driven by photoe v aporation. Our choice 

of a long depletion time is in line with a recent ALMA archi v al 

surv e y of local star forming regions which suggest that the average 

depletion time for protoplanetary discs (not in strong F UV fields) is 

between 8 and 9 Myr (Michel, van der Marel & Matthews 2021 ). 

With this long depletion time we imply that the bulk of the mass 

accretion history is driven by viscous evolution. 

As a final point, Chambers ( 2009 ) assumed a constant κ mainly to 

a v oid complications due to a range of dust sizes, volatile abundances, 

and physical processes like vertical settling – all of which would 

negate an analytical deri v ation. An exception to this is at gas 

temperatures high enough to sublimate the dust, where an analytical 

deri v ation can again be obtained. Below this sublimation temperature 

( ∼1380 K), κ = κ0 = 3 cm 
2 g −1 , and is held constant across the 

disc. Abo v e 1380 K silicate dust sublimates and it is assumed 

that κ = κ0 ( T /1380) −14 cm 
2 g −1 (Ruden & Pollack 1991 ; Stepinski 

1998 ). Here we wish to re-introduce some of these aforementioned 

complications to study how the freeze out of water can impact the 

local temperature structure of the disc and hence on planetary torques. 

The disc model of Cridland et al. ( 2019a ) follows a straightforward 

path to incorporate variations in water ice abundances on the local 

temperature profile. The steps are: 

(i) Compute an initial temperature and surface density profile 

using κ0 and the disc model of Chambers ( 2009 ). 

(ii) Compute the water ice distribution (see below). 

MNRAS 510, 6059–6084 (2022) 
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6062 J. Speedie et al. 

Figure 1. Important properties of our planet formation models. Each panel shows the initial conditions for our six formation scenarios: three disc masses 

and two levels of viscosity. Top row: Radial profiles of the α viscosity parameter. These two panels ef fecti v ely serv e as the definition of what we refer to as 

‘high viscosity’ and ‘low viscosity’. The MRI dead and active zones are labelled. Middle row: Profiles of the disc aspect ratio, h = H / r . We label the regions 

of the disc according to the dominant heating mechanism; the ‘heat transition’ refers to the transition between viscously and radiatively heated regions. Bottom 

row: Profiles of the gas surface density, �. Table 1 provides numerical values of these three quantities e v aluated at r = 10 au and t = 0.100 Myr, as well as 

movies showing their full evolution o v er the course of our simulations. 

(iii) Compute new κ( r ) from ice distribution (see below). 

(iv) Re-compute viscous temperature profile from κ( r ) and origi- 

nal surface density using equation (6). 

(v) Re-compute new surface density with new temperature profile 

and equation (3). 

(vi) Iterate steps iv and v until the functions converge. 

The astrochemistry of the disc dictates where opacity transitions 

such as ice lines will occur. It also dictates how well ionized it is in 

a given X-ray background provided by the host star. The ionization, 

in turn, controls the coupling of the magnetic field to the disc and 

thus, whether MRI turbulence is present or not. This sets the extent 

of the dead zone. These and other details of the initial conditions of 

MNRAS 510, 6059–6084 (2022) 
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Bifurcation of planet formation histories 6063 

Figur e 2. Tor que maps (migration maps) of e volving discs [shown for our high-mass disc]. The disc e x erts a torque on a forming planet as a function of the 

planet’s mass and semimajor axis. We show this torque at one demonstrative time snapshot, t = 1.020 Myr. For comparison, the high viscosity ( left-hand panel ) 

and low viscosity ( right-hand panel ) models are shown side by side. Ne gativ e torque Ŵ / Ŵ 0 < 0 (red) corresponds to inward migration, and positive torque Ŵ / Ŵ 0 

> 0 (blue) to outward migration. At planet masses abo v e the gas gap-opening mass (pink line; equation 21), the planet is free to mo v e under Type-II migration 

(pink cross-hatching). Three main features of the torque maps, corresponding to contours of zero net torque, are labelled (the dead zone, water iceline, and heat 

transition; see Fig. 3 for formal definitions). Those three contours of zero net torque also appear in Fig. 6 . The distinct notches in these diagrams that occur near 

100 au are minor spurious numerical artefacts arising from the resolution used in the astrochemistry simulations. 

the disc, and the value of disc viscosity in the dead zone and beyond, 

are discussed in online Appendix A – to which we refer the reader 

for details. 

2.1.1 Disc winds 

As has been shown in a number of recent MHD disc simulations, 

MRI-driven turbulence will be strongly damped in dense regions 

of the disc. The actual damping condition is re vie wed in online 

Appendix A, where it is shown how we self-consistently compute 

the extent of the dead zone using our detailed astrochemistry models. 

Despite the virtual absence of turbulence in the dead zone, material 

must still accrete on to the central star. Disc winds have long been 

proposed as a main carrier of disc angular momentum (Blandford & 

Payne 1982 ; Pudritz & Norman 1983 ; Pelletier & Pudritz 1992 ; 

Ferreira & Pelletier 1995 ). Such winds efficiently extract a portion 

of the energy released in the accreting flow and carried off by the 

wind. Recent non-ideal MHD simulations (Gressel et al. 2015 ; Bai 

2016 ) and observations (Tabone et al. 2017 , 2020 ) have shown 

that disc winds are probably the major driver for global angular 

momentum transport, at least within the dead zone of protoplanetary 

discs. These simulations have shown that MRI turbulence can be 

almost completely suppressed by Ohmic and ambipolar diffusion 

(Bai & Stone 2013 ; Gressel et al. 2015 ) while at the same time 

driving disc winds that dominate the angular momentum transport 

process. Bai & Stone ( 2013 ) found that 60 per cent of the available 

energy is carried off by the MHD disc wind, the remainder being 

presumably dissipated as heat. 

The loss of energy from the disc due to wind transport will reduce 

its temperature somewhat. As an estimate of this, we adopt the 

numerical results of Bai & Stone ( 2013 ) to prescribe an efficiency 

for removing the energy in shearing flow by the wind as ǫ ≃ 0.60, 

leaving a fraction of (1 − ǫ) to be lost, presumably as heat which is 

then radiated away. If we use this data, it allows one to estimate the 

disc temperature in this region as arising from the energy that is not 

carried off in the flow in this inner zone, but radiated away. Thus, 

T DZ = (1 − ǫ) 1/4 T visc ≃ 0.8 T visc . 

The actual physical mechanisms of disc heating have been ex- 

amined in detailed recent global disc simulations (Wang, Bai & 

Goodman 2019 ; Gressel et al. 2020 ), that include irradiation, 

photodissociation, and photoionization by X-ray and EUV photons, 

and the dissipation arising from Ohmic resistivity and ambipolar 

diffusion in the lightly ionized regions of the disc. The results show 

that turbulence is damped in wide regions of the disc by these 

magnetic dissipation effects. In the absence of turbulence on the 

mid-plane, Ohmic heating is ηO J 
2 , where J = (1/4 π) ∇ × B is the 

current intensity and ηO is the Ohmic magnetic dif fusi vity of the disc. 

Numerical experiments show this to be small compared to heating by 

ambipolar diffusion (which depends on a magnetic field-dependent 

dif fusi vity, ηA ) that occurs preferentially abo v e the disc plane. Even 

this non-ideal MHD heating mechanism may be small in the dead 

zone compared to heating by IR photons from the surface regions of 

the disc. 

Given that the adjustment to the temperature in the dead zone 

region is not very large ( ≤ 20 per cent ), we elected to keep our 

underlying disc model simple by keeping the α used in equation (4) 

constant at either 10 −3 for the high viscosity model, or 10 −4 for the 

low viscosity model. In the outer disc, we assume that αturb = α in the 

activ e re gion of the disc, which implies that turbulence is the primary 

source of angular momentum transport there. In the dead zone we 

reduce αturb by two orders of magnitude, but keep α constant. In 

this way we are assuming that disc winds have become the primary 

source of angular momentum transport in that region, and maintains 

a constant mass accretion rate throughout the disc. We note that a 

fully self-consistent treatment of both turbulence and disc winds has 

been performed for self-similar disc models (Chambers 2019 ), and 

further extended by Alessi & Pudritz (submitted). The latter shows 

that it is self-consistent to treat this as an ef fecti ve α parameter that 

includes both turbulence and disc wind transport contributions. 

2.1.2 Initial conditions 

As we are specifically targeting the young stellar system of HL Tau, 

we choose our initial disc gas mass and outer radius to best match 

the current estimates, assuming the age of HL Tau to be roughly 
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6064 J. Speedie et al. 

Figure 3. Formal definitions of three planet traps. [Demonstrated for 

our high viscosity, high-mass disc at t = 1.020 Myr]. In all panels, the 

black contours correspond to the contours of zero net torque in Fig. 2 (left- 

hand panel) with height given by the right-hand y-axis. The vertical dashed 

black lines indicate the specific radius of each associated physical change, 

which in the case of the dead zone and water iceline, coincide with the 

radial location of planet trapping. Top panel: The outer edge of the dead 

zone is the radius where the ohmic Elsasser number (see equation A1 and 

online Appendix A) exceeds unity. Middle panel: The water iceline occurs 

where the abundances of water vapour and water ice are equal ( r IL , online 

Appendix A). Bottom panel: The heat transition is an extended radial region 

o v er which the disc temperature profile (black line, equation 9) transitions 

from the viscously heated profile (orange, equation 6) to the radiatively heated 

one (red, equation 7). The associated planet trap is not at r HT (vertical dashed 

black line; equations 1 and 2). 

1 Myr. Carrasco-Gonz ́alez et al. ( 2016 ) report a dust mass range of 

1 − 3 × 10 −3 M ⊙ which, assuming the standard ISM gas-to-dust 

mass ratio of 100, results in a current gas mass of 0.1–0.3 M ⊙. More 

recently Booth & Ilee ( 2020 ) uses the rare (and optically thin) 13 C 
17 O 

isotopologue to estimate a total gas mass of ∼ 0.2 M ⊙ for HL Tau. 

Therefore, we select initial disc gas masses so that, after the disc 

has evolved for 1 Myr, its integrated surface density profile works out 

to approximately 0.1 M ⊙, 0.2 M ⊙, and 0.3 M ⊙. We refer to these as 

the low-mass , medium-mass , and high-mass models, respectively. 

For the high viscosity ( α = 10 −3 ) cases, the initial disc gas masses 

that co v er this range obtained from dust measurements are 0.14 M ⊙, 

0.28 M ⊙, and 0.42 M ⊙ (as in Cridland et al. 2019a ); for the low 

viscosity ( α = 10 −4 ) cases, the intial disc gas masses are 0.11 M ⊙, 

0.22 M ⊙, and 0.32 M ⊙. Similarly, each of the models start with 

an initial disc radius of 91 au such that they evolve to have HL 

Tau’s current ∼120 au radius after 1 Myr of viscous evolution. Since 

each model starts with the same initial radius and different mass, 

their initial stellar mass accretion rate will be different. The six (6) 

formation scenarios are summarized in Table 1 . 

Fig. B1 in online Appendix B plots the disc mass (integrated 

surface density profiles) inwards of 93 au o v er time. As these are 

quite high disc masses, we have calculated the Toomre-Q parameter 

to check the gravitational instability of these models (online Fig. B2). 

The high- and medium-mass discs are unstable to gravitational 

collapse outwards of ∼30 au initially, but this radius grows with time. 

By 1 Myr, all six models are stable o v er all radii. While the period of 

instability might impact the o v erall evolution of the mass accretion 

rate, it does not have a strong impact on our overall conclusions. 

In Fig. 1 , we plot radial profiles of three quantities for all six 

discs: the viscous α parameter, the disc aspect ratio, and the gas 

surface density. The scale height plays several critical roles: in 

determining g as g ap opening masses, the Hill sphere of the planet, 

and the saturation parameter which controls the magnitude of the 

corotation torque (see Section 5). The aspect ratio is determined 

by local hydrostatic balance between gas pressure and gravity at 

each disc radius, which for thin Keplerian discs h ≡ H / r ≪ 1, with 

vertically isothermal gas profiles gives: 

h ( r) = c s /v Kep ( r) . (11) 

Since c s ∝ T ( r ) 1/2 , it is the temperature behaviour of the disc, and 

its evolution, that determines this scale height. The inner, viscously 

heated region of the disc gradually cools as the column density 

decreases which causes h ( r ) to decrease with time. The radiatively 

heated part of the disc ho we v er, is e xposed to a constant stellar flux 

(we ignore stellar evolution in this work), and so h ( r ) in the region 

beyond the heat transition retains a constant shape and value. The 

gas scale height is often modelled as a power law with disc radius 

of the form: H ∼ r β (for example, Rich et al. 2021 ). Under this form 

the gas scale height scales with β = 1.05 in the viscously heated 

region of the disc and β = 1.29 in the radiatively heated region of the 

disc. These are in line with scattered light observations of small dust 

grains and CO emission used to constrain the scale height through 

the disc (Rich et al. 2021 ). 

2.2 Planet growth 

Currently, two main theories for planet formation exist: formation 

through core accretion which we adopt here, and formation through 

gravitational instability. The core accretion scheme is further split 

into two mechanisms, depending on the size of the objects that accrete 

on to the planet: planetesimal accretion (10–100 km bodies) and 

pebble accretion (mm-cm bodies). We note that while accretion rates 
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Table 1. Six planet formation scenarios: three disc masses and two levels of viscosity. Values shown here are at r = 10 au and t = 

0.100 Myr (start of simulations). Disc mass stated is the integrated gas surface density inside 93 au, also at t = 0.100 Myr. See Fig. 1 for 

radial profiles and online Fig. B1 for disc mass o v er time. Within each scenario, we grow and evolve 100 planetary embryos (in separate 

simulations) with initial orbital radii logarithmically spaced between r = 0.2 − 94 au, o v er almost 2 Myr ( t = 0.100 −1.888 Myr). ‘DZ’ 

means dead zone; ‘AZ’ means active zone. 

M gas disc (M ⊙) α parameter [link to movie] h = H / r [link to movie] � ( g cm −2 ) [link to movie] 

High α Low α High α Low α High α Low α High α Low α

In DZ In AZ In DZ In AZ 

Low-mass 0.14 0.11 10 −5 10 −3 10 −6 10 −4 0.051 0.047 199 186 

Medium-mass 0.27 0.22 10 −5 10 −3 10 −6 10 −4 0.059 0.048 318 364 

High-mass 0.41 0.32 10 −5 10 −3 10 −6 10 −4 0.065 0.050 411 502 

by pebbles are two orders of magnitude more rapid than accretion 

by planetesimals (Bitsch, Lambrechts & Johansen 2015 ; Johansen & 

Lambrechts 2017 ), it still remains unclear whether pebble accretion 

can build large solid cores that are inferred in giant planets (Brouwers, 

Vazan & Ormel 2018 ; Ali-Dib & Thompson 2020 ). 

The disco v ery of rings in planetary discs has recently focused a 

great deal of attention on dust trapping by pressure bumps. This is 

a quickly developing new area of research that addresses possible 

planetesimal formation within the bumpsiang (Carrera et al. 2021 ; 

Jiang & Ormel 2021 ). We note that this could be an additional, or 

perhaps even major source of planetesimals under some conditions. 

A conservative treatment of planetesimal accretion: In this paper, 

we compute planet growth during migration using a conventional 

model for the source of planetesimals that ignores the back-reaction 

of forming planets on disc structure. We do this for two reasons: 

deliberately in order to gauge ho w massi ve our planets can become 

in that picture; and practically because of the difficulty of including 

this self-consistently in our already very demanding numerical simu- 

lations. Specifically, we assume the standard planetesimal accretion 

paradigm of Ida & Lin ( 2004 ). Furthermore, we do not include 

any dust evolution, nor the production of planetesimals from the 

underlying dust distribution. Instead, we assume that the availability 

of planetesimals follows the gas surface density, proportional to � 

by a radially constant planetesimal-to-gas ratio f pl : 

� pl = f pl � . (12) 

We now describe the three phases of planet growth and how 

we calculate a planet’s accretion history if/when it gains enough 

mass to enter each subsequent phase. At these discrete times in a 

planet’s formation history, we change the planetesimal-to-gas ratio 

f pl to approximately reflect changes in the dynamical effect of the 

growing planet on the surrounding population of planetesimals, and 

their probability of accretion on to the growing planet – which 

would otherwise be an intractable problem in our semi-analytic 

formalism. 

We initialize planetary cores with mass 

M core = 0 . 01 M ⊕ . (13) 

The first phase consists of oligarchic growth. During this phase, the 

core grows by successive accretion of planetesimals that come close 

enough (specifically, within its 10 Hill radii feeding zone, r Hill = 

a p [ M p / 3 M ⋆ ] 
1 / 3 ). The heat generated by this accretion prevents any 

gas accretion on to the core. The core accretes at a rate 

Ṁ core = 
M p 

τc , acc 
, (14) 

where τ c, acc is the core accretion time-scale of Ida & Lin ( 2004 ): 

τc , acc = 1 . 2 × 10 5 yr 

(

� pl 

10 gcm −2 

)−1 
( a 

au 

)1 / 2 
(

M p 

M ⊕

)1 / 3 (
M ⋆ 

M ⊙

)−1 / 6 

×

[ 
(

� 

2 . 4 × 10 3 gcm −2 

)−1 / 5 
( a 

au 

)1 / 20 
(

m 

10 18 g 

)1 / 15 
] 2 

, (15) 

where M ⋆ and m are the mass of the central star and incoming 

planetesimals (which we assume are all 10 18 g in mass). We assume 

that during oligarchic growth the young planet is too hot for gas to 

be collected and hence the accretion of solids is the only source of 

planetary growth. As such, the time derivative of the planet mass is 

strictly: 

d M p 

d t 
= Ṁ core . (16) 

At later phases, when gas accretion becomes the dominate source of 

mass evolution, equation (16) will also include a gas accretion term. 

Throughout this first phase, we set f pl = 0.01. Using the 

� pl = f pl � proportionality assumes very efficient ( ∼ 100 per cent ) 

planetesimal formation from the underlying dust density distribu- 

tion. Indeed isolated streaming instability simulations (e.g. Sch ̈afer, 

Yang & Johansen 2017 ) rapidly (within ∼30 orbits) convert all of the 

available dust to planetesimals. However, a given disc radius is not 

isolated, since radial drift continually replenishes dust from larger 

radii. Therefore our assumption that f pl = f dust, ISM = 0.01 represents 

a balance between higher expected dust-to-gas ratios driven by radial 

drift, and lower planetesimal formation efficiencies. 

This first phase of growth by solid accretion slows once the core 

depletes its 10 r Hill feeding zone and reaches the core isolation mass 

(Ida & Lin 2004 ): 

M c , iso = 10 M ⊕

(

1 

10 −6 M ⊕ yr −1 

d M p 

d t 

)1 / 4 (
κenv 

1 cm 2 g −1 

)0 . 3 

, (17) 

where κenv is the opacity of the envelope (Mordasini 2014 ). 

The second phase marks the end of core formation and the 

beginning of the planet’s atmospheric growth. Gas accretion begins 

slow, with time-scales on O (10 6 ) years, and as such the planet 

can migrate a significant amount during the initial growth of its 

proto-atmosphere. As it migrates it encounters a new population of 

planetesimals at different orbits, perturbing them potentially into its 

feeding zone. This results in a small (i.e. very slow) increase in 

refractory mass in the planet as planetesimals are directly accreted 

into the growing atmosphere (see for example, Emsenhuber et al. 

2020 ). To model this slow accretion of planetesimals we reduce f pl 

by a factor of 10 to be f pl = 0.001 and continue to allo w gro wth via 

equation (14) (along with equation 18 below) to represent an evolved 

population of planetesimals that have been partially cleared by the 

migrating planet. 

MNRAS 510, 6059–6084 (2022) 
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The abo v e decrease in f pl has the effect of changing the planetes- 

imal accretion time-scale from O (10 5 ) years to O (10 6 ) years. This 

longer time-scale is reflective of the typical migration time-scale for 

planets with a mass equal to the isolation mass in our disc model. 

In this way, our planetesimal accretion rate reflects the fact that 

the planet must mo v e into a region of the disc that has previously 

untouched planetesimals in order to further its solid accretion. 

The gas accretion is regulated in our model by the Kelvin–

Helmholtz contraction time-scale of the gas envelope τKH : 

Ṁ gas ≃ 
M p 

τKH 
, (18) 

where (Hase ga wa & Pudritz 2013 ): 

τKH ≃ 10 c yr 

(

M p 

M ⊕

)−d 

. (19) 

The parameters c and d depend on the opacity of the envelope κenv ; 

the values that have been identified by Alessi & Pudritz ( 2018 ) to best 

reproduce the observed mass–period relation of exoplanets are c = 9, 

d = 3, and κenv = 0.001 cm 
2 g −1 . Unstable gas accretion can occur if 

the planet becomes massive enough to lower the Kelvin–Helmholtz 

time-scale to ∼10 5 yr (Cridland, Pudritz & Alessi 2016 ). 

The total mass evolution of the planet (equation 16) becomes: 

d M p 

d t 
= Ṁ core + Ṁ gas , (20) 

where Ṁ core follows from 14 and the appropriate change of f pl . Note 

here we use the variable Ṁ core to stay consistent with our earlier 

notation, rather than explicitly stating that solid accretion results 

in solid delivery directly to the core. Once the proto-atmosphere is 

suf ficiently massi ve most planetesimals no longer survi ve their trip 

to the core, instead e v aporating in the gas (Mordasini et al. 2016 ). 

The distinction between a planetesimal reaching the core or not does 

not play a significant role in our model, as we are only interested in 

the o v erall mass evolution of the planet. 

The third and final phase begins when a planet opens a gap in the 

local gas surroundings. It decouples from its surroundings and the 

gas accretion geometry changes (Szul ́agyi et al. 2014 ). The standard 

gap opening criterion is met if the torque e x erted by the planet on the 

disc exceeds the disc’s viscous torque, or equi v alently, if the planet’s 

Hill sphere exceeds the disc’s pressure scale height: 

M g as g ap = M ⋆ min 
(

3 h 
3 , 

√ 

40 αh 5 
)

, (21) 

where h = H / r is the disc aspect ratio (Lin & Papaloizou 1993 ; 

Matsumura & Pudritz 2006 ). 

In this third phase, both the gas and planetesimal accretion rates 

are once again modified. Due to the aforementioned change in gas 

accretion geometry we follow the gas accretion model of Cridland 

( 2018 ) to account for the interaction of the vertically flowing gas (the 

so-called ‘meridonial flow’ of Morbidelli et al. 2014 ; Teague, Bae & 

Bergin 2019 ) and the planet’s internally generated magnetic field 

(as proposed by Batygin 2018 ). These interactions conspire to slow 

gas accretion 2 and eventually lead to the termination of planetary 

growth. Along with the change in gas accretion geometry, the orbits 

of planetesimals potentially in the feeding zone of the planet become 

ever more eccentric as the gas in the region is depleted, which further 

reduces the efficiency of their accretion on to a growing planet. To 

2 By a factor proportional to (nearly) the inverse of the planet’s mass, see 

Cridland ( 2018 ) for details. 

model this effect, we further reduce f pl by a factor of 1000 to be f pl = 

10 −6 when the gap is opened. 

We note two important attributes of the formalism described in 

this section. First, we are assuming that planetary core growth scales 

as Ṁ core ∝ � pl ∝ � (by equations 14, 15, and 12). We note that since 

the gas surface density � drops o v er time according to equation (3), 

so too do our planet accretion rates. The length of time where planet 

core growth can be sustained thus depends on the disc viscosity α as 

well as the current position of the planet. Secondly, the f pl prescription 

ne gates an y feedback or coupling between the growing planet and 

the disc (e.g. increased availability of solids due to dust trapping in 

planet-induced pressure bumps). For these two reasons, we consider 

our planet accretion formalism to be conserv ati ve. 

Fig. B3 in online Appendix B shows the value of f pl , and hence 

the growth stage, of each planet we form throughout their formation 

history. As our results will show, only planets that migrate to within 

∼1 au enter into the third and final growth phase. The potential 

planets rele v ant to the dust gaps/rings at large radii in HL Tau do not 

exceed the second phase by the end of our simulations. 

2.3 Planet migration 

Planet migration is an inevitable consequence of planet–disc in- 

teraction. The key results for planet migration presented in this 

work pertain specifically to Type I migration. This is the regime 

of migration that all planets initially follow, until they have grown in 

mass enough to escape Type I disc torques by opening a gap in the gas 

(i.e. by exceeding equation 21), at which point they transition into the 

Type II migration regime. In both regimes, the torque experienced 

by the planet depends on the planet’s mass; in that sense, this section 

and the previous (Section 2.2) are intertwined. 

The torque calculations performed in this work closely follow the 

method first developed in Paardekooper et al. ( 2011 ). The action of 

these torques was ef fecti vely visualized in what we call torque maps 

by Coleman & Nelson ( 2014 ). We have implemented both of these 

approaches in Cridland et al. ( 2019a ), and then applied them in our 

combined studies of planet formation and migration in Cridland et al. 

( 2019b ). The mathematical details of Type I migration are deferred 

to our theoretical results in Section 5. First, we briefly summarize 

the basic physical concepts for the general reader. 

2.3.1 Type I migration 

Type I planet migration in a gaseous disc refers to a change 

in a planet’s semimajor axis caused by the exchange of angular 

momentum between the planet and the disc in which it is embedded. 

Angular momentum is exchanged by gravitational torques. The 

torques that drive low mass planets in the Type I regime are of 

two kinds: Lindblad torques and corotation torques . 

Lindblad resonances between the disc gas and planet are located 

interior and exterior to the planet’s orbit. A wave flux is excited 

at each of these that carry off angular momentum through the 

disc (Goldreich & Tremaine 1979 , 1980 ). The net Lindblad torque, 

resulting from the difference of the inner and outer Lindblad torques, 

generally leads to inward planetary migration and outward transport 

of the planet’s angular momentum. 

The second kind of angular momentum exchange is not w avelik e, 

and takes place in bands of planetary orbits lying very close to 

corotation with the planet. These corotation torques depend on a 

number of different kinds of physical processes such as disc viscosity 

(Section 5.2), thermal diffusion (also Section 5.2), and the action of 
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disc winds (Section 5.4), all of which affect the flow of angular 

momentum into this region (Paardekooper et al. 2011 ). 

The direction and magnitude of the total Type I torque e x erted on 

a planet by the disc is the sum of the Linblad and total corotation 

torques. These depend not only on the planet’s mass, but also on 

the local disc properties such as the gradients in local temperature 

and column density, and the adiabatic index of the gas. These 

gradients vary across the disc, as for example, in the disc heating 

which switches from viscous to stellar irradiation dominance as the 

disc evolves. Thus, the total torque and its direction varies with the 

planet’s semimajor axis. This also implies that planet–disc interaction 

and therefore planet migration is dynamic, changing as both the 

planet and the disc evolve. 

The central point here is that the direction of this total torque in 

Type I migration can be outward, depending upon planet mass, disc 

viscosity, and aspect ratio. We show this first in the simulations, and 

then in the continuation of this thread in Section 5.1. 

We note that the torque maps throughout this work are normalized 

to the reference torque (Tanaka et al. 2002 ): 

Ŵ 0 = 

( q 

h p 

)2 
� p r 

4 
p �

2 
p , (22) 

where q = M p / M ⋆ and h p = H p / r p , and the index p denotes e v aluation 

of the quantity at the position of the planet. The quantity Ŵ 0 sets the 

magnitude of the net Lindblad torque that arises from the difference 

between the inner and outer Linblad torques (Nelson 2018 ). 

2.3.2 Type II planet migration 

Returning to our formation model: If a gas gap is opened (equation 

21), the planet clears its corotation region of gas and the strongest 

Lindblad node is e v acuated. Type I migration is turned off and the 

planet transitions into Type II migration (which also corresponds 

to a change in the gas and planetesimal accretion rate, third 

phase in Section 2.2). Under this migration scheme the planet acts 

as an intermediary for angular momentum transport through the 

disc, moving its orbit to smaller radii. It does so on the viscous 

time-scale: 

d a p 

d t 
= 

a p 

t ν
, (23) 

where t ν = a 2 p /ν. 

In the event that the planet’s mass exceeds the total mass of the 

gas disc within its orbital radius, 

M crit = π�a 2 p , (24) 

then we lengthen the viscous time-scale to t ′ ν = t ν(1 + M p /M crit ). 

3  N U M E R I C A L  RESULTS:  M I G R AT I O N  A N D  

TO R QU E  MAPS  

In this section, we focus purely on the background disc and the 

features that dictate planet migration. Section 4 presents the resulting 

planetary evolution tracks. 

As described in Section 2 and summarized in Table 1 , we explore 

six planet formation scenarios. Of particular interest to this work 

is the comparison of evolution outcomes between two levels of 

viscosity, set by the α-parameter to α = 10 −3 or α = 10 −4 o v er 

the bulk of the disc. In relation to one another, we refer to these 

as high and low viscosity , respectively. Three initial disc masses 

( low-mass , medium-mass , high-mass ) are chosen to bracket the 

observ ationally constrained v alues for the HL Tau disc. Throughout 

the following sections, all figures show our high-mass disc models 

unless otherwise stated. See Table 2 for movies of the the low- and 

medium-mass disc model results. 

In Fig. 2 we calculate the total torque that would be e x erted on 

a planet of any given mass and semimajor axis and display it at an 

intermediate time snapshot in our simulations. We call this landscape 

a ‘torque map’. The colourbar indicates the magnitude and direction 

of the total torque. Inward-directed torque ( Ŵ / Ŵ 0 < 0, shown in red) 

works to decrease a planet’s semimajor axis, and outward-directed 

torque ( Ŵ / Ŵ 0 > 0, shown in blue) works to increase it. Where these 

two opposing forces cancel ( Ŵ / Ŵ 0 = 0, shown in white) are special 

locations within the disc known as planet traps, which we discuss 

more below. As in Fig. 1 , we show the high viscosity case on the left, 

and low viscosity on the right. The features of the torque maps are 

as follows. 

Type I/II migration regimes. The upper boundary of the torque 

maps is outlined by the gas gap-opening mass M g as g ap (equation 

21, shown in pink). Beyond this mass, a planet is locally detached 

from the gas and therefore free of the torques associated with Type 

I migration. Instead, it follows Type II migration (Section 2.3.2), 

moving slowly inwards on a viscous time-scale of millions of years 

as the gas is slowly accreted on to the star, or e v aporated. We sho w the 

Type II regime with pink cross-hatching. Note that torques e x erted 

by the planet on the disc al w ays w ork to open a gap, while viscous 

flow competes to diffusively smoothen the resulting surface density 

gradients and fill the gap back in. 

Dead and active zones. At the radial location between the dead 

zone and active zone, the upper boundary of the torque maps jumps 

suddenly by a factor of 10. This is a consequence of two things: (i) 

the dependence of the gas gap-opening mass on viscosity, M g as g ap ∝ 

α1 / 2 , and (ii) the step in viscosity between the two zones (see top row 

of Fig. 1 ). In both our high and low viscosity models, α increases by 

2 orders of magnitude in going outward from the dead into the active 

zone (either from 10 −5 to 10 −3 , or from 10 −6 to 10 −4 ). 

The scaling effect of viscosity. How the level of viscosity affects 

the torque maps and hence planetary evolution is a key theme of this 

work and we discuss it e xtensiv ely in Section 5. F or now, we note 

that the factor of 10 decrease in α between the high and low viscosity 

models results in a global ‘downward’ shift in the torque maps, such 

that all of the torque map features that determine planet migration 

occur at lower planet masses. 

Time evolution. The torque landscape evolves over time (grad- 

ually, owing to our 8 Myr depletion time; Michel et al. 2021 ) 

in two ways. First, the outermost radius increases as the disc 

spreads viscously outwards. Secondly, features in the torque maps 

mo v e slowly inwards o v er time. Coleman & Nelson ( 2016a , b ) also 

observed this behaviour in their simulations. It is a consequence of 

the gradual reduction of the disc’s surface density due to viscous 

evolution (Cridland et al. 2019a ). The evolution can be seen more 

clearly in the movie provided for Fig. 4 in Section 4. 

In particular, the gradual reduction of the column density due to 

viscous e volution, e ventually follo wed by photoe v aporation, means 

that the disc becomes more easily ionized by external radiation (X- 

rays and FUV) in its outer regions. The dead zone therefore shrinks 

– its outer boundary mo v es inwards as it becomes possible to sustain 

magnetized turbulence in the expanding region of lower column 

density gas beyond. The shrinking of the viscously heated inner disc 

region inevitably also moves the heat transition inwards. As such, the 

planet trap that is associated with the position of the heat transition 

(see below) also mo v es radially inwards with time. 

Contours of zero net torque. In both panels of the torque 

maps in Fig. 2 , we outline three occasions of zero net torque in 

MNRAS 510, 6059–6084 (2022) 
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Table 2. Collection of movies illustrating the key results of this work. Click the links to watch, or download the movie files at MNRAS 

online. 

Figure Model Description Link 

4 High-mass, high and low viscosity Planet evolution tracks atop torque maps (all planets) [click] 

Medium-mass, high and low 

viscosity 

[click] 

Low-mass, high and low viscosity [click] 

5 (left) High-mass, high viscosity Planet trapping at the water iceline (single planet) [click] 

5 (right) High-mass, low viscosity Outward planet migration by the heat transition (single planet) [click] 

7 Three disc masses, low viscosity Outward planet migration by the heat transition (all planets) [click] 

9 High-mass, low viscosity Outward planet migration and decomposition of disc torques (single planet) [click] 

black contours. The shape and location of the contours depends on 

the underlying disc chemistry, temperature and density gradients, 

disc viscosity, and planet mass. Each contour is associated with 

the radial location of a planet trap, which are in turn associ- 

ated with a change in some physical quantity within the disc. 

The precise radius at which the disc undergoes one of these 

changes is indicated in Fig. 2 with a vertical dashed line and 

labelled. 

Planet traps. In essence, a planet trap is a location of zero net 

torque (i.e. a point along a contour), bounded from the inside by 

outward-directed torque, and bounded from the outside with inward- 

directed torque. Planet traps are convergent in the sense that no matter 

what edge of the trap a planet starts on, it will be pulled towards the 

trap and kept there. The same is true in the opposite sense for a 

planet that starts inward of a trap (i.e. in a blue zone). The existence 

of these traps is computed self-consistently from the disc properties 

and using the torque formulae in Section 5.1. The three types of traps 

that we have found are expected on general grounds (Hase ga wa & 

Pudritz 2011 ), as discussed below. 

In Fig. 3 , we dedicate three panels to each of the three contours of 

zero net torque and show explicitly the associated physical change. 

The latter closely coincides with the radial location of planet trapping 

for the dead zone and water iceline, but not the heat transition. The 

vertical dashed lines are the same ones shown in Fig. 2 . We discuss 

them each in turn. 

The dead zone. The transition between the dead zone and active 

zone, as described in online Appendix A, occurs where the ohmic 

Elsasser number (online equation A1) exceeds unity, shown by the 

light grey horizontal line. At t = 1.020 Myr, this happens around 

r ≈ 1.5 au in our high-mass models. 

The water iceline. The water iceline (also known as the water 

snowline) is defined as the disc radius at which water vapour 

( x water vapour ) is equally abundant as water ice ( x water ice ). The radius of 

the water iceline is roughly r ≈ 7 au at t = 1.020 Myr. 

In the case of the dead zone and water iceline traps, the outer 

edges of the corresponding contours constitute a clear planet trap at a 

sharp radial location which is constant o v er a certain range of planet 

masses for which trapping is ef fecti ve. The radial localization is 

because there is a very sharp radial change in the turbulence gradient 

(for the dead zone), and opacity gradient (for the water iceline). The 

former is a consequence of the rapid quenching of MRI with disc 

radius (i.e. increased screening of X-rays), and the latter due to the 

sharp phase transition that defines the vapour to solid transition for 

water. 

The heat transition. The heat transition describes a radially 

e xtended re gion where the disc goes from being heated predomi- 

nantly by viscous dissipation to predominantly by stellar irradiation. 

As described abo v e equation (2), the mid-plane temperature profile 

follows the power-law T ∝ r −9/10 inside the heat transition, and 

T ∝ r −3/7 outside. The radius where viscous- and radiatively heated 

temperature profiles formally intersect is r HT ≈ 17 au (at t = 

1.020 Myr). The mid-plane temperature profile transitions between 

the two smoothly and, importantly, gradually, via equation (9). This 

yields a contour of zero net torque that itself spans a large range 

of values in radius, extending outwards to tens of au (the outermost 

radius depending on disc mass), and turning upwards in planet mass. 

The region of blue outward-directed torque enclosed by this contour 

of zero net torque plays a key role in determining the radial evolution 

of planets formed in our low viscosity discs – a point we will return 

to many times in the rest of this work. 

4  N U M E R I C A L  RESULTS:  PLANET  

E VO L U T I O N  T R AC K S  

Having described the background torque landscape and the features 

that dictate planet migration, we now present the resulting planetary 

evolution tracks. 

In each of our six planet formation scenarios, we grow and evolve 

100 planets, each with a different initial orbital radius between 0.2 

and 93 au, distributed logarithmically. Planetary cores are initiated 

with a mass of 0.01 M ⊕, and grow by our conservative planetesimal 

core accretion formalism. Each planet is formed in its own separate 

simulation, so there is no interaction between them. 

In Fig. 4 , we show the formation histories of the planets we form 

in our high-mass HL Tau disc models for two levels of viscosity. 

Overlaid atop the torque maps in grey lines are planet evolution 

tracks, sho wing ho w a planet has gro wn in mass due to accretion 

of material from the disc at each radius, and migrated o v er time 

as determined by the disc torques. Each black dot at the end of a 

planet track indicates that planet’s current mass and semimajor axis. 

We provide three demonstrative time snapshots (top, middle, and 

bottom rows) and label the ke y ev ents happening at those times. The 

evolution of planetary trajectories in our torque maps can be better 

appreciated when viewed as a movie, for which we provide a link in 

the caption of Fig. 4 as well as Table 2 . We’ll begin by describing the 

effect of viscosity on planet growth, followed by its effect on Type I 

planet migration. 

As previously described (see Section 2.2), forming planets accrete 

an amount of solid material directly proportional to the local gas 

surface density at their orbital radius ( Ṁ core ∝ f pl �). This point can 

be most easily seen if the reader pauses the movie during the first few 

frames – after a few × 10 4 yr of planet growth, but before too much 

of the disc has accreted on to the central star. At those early times, 

the distribution of planet masses falls off with radius following the 

MNRAS 510, 6059–6084 (2022) 
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Bifurcation of planet formation histories 6069 

Figure 4. Planet evolution tracks. [Shown for our high-mass disc]. Like Fig. 2 , but o v erlaid in grey lines are the growth and migration histories of 100 planets, 

with black dots indicating a single planet’s location at time: ( top row ) t = 0.540 Myr, showing planets in the low viscosity disc escaping from the water iceline 

trap ; ( middle row ) t = 1.073 Myr, showing trapping of planets at the water iceline in the high viscosity disc and outward migration of planets in the low 

viscosity disc; and ( bottom row ) t = 1.888 Myr, the end of our simulations. Each planet is formed in its own separate simulation, so there is no interaction 

between planets. In the low viscosity disc panels, we mark the radial locations of the observed gaps in the dust distribution of the HL Tau disc (table 2 of ALMA 

P artnership 2015 ). Each gre y tick corresponds to a dust gap, with thicker lines indicating those gaps whose locations are more well constrained. [Link to movie]. 

gas surface density profile. Planet growth is easy at small disc radii, 

and difficult at large disc radii. 

A second and crucial point pertains to planet growth o v er time. By 

equations (3) and (4), the lower viscosity disc loses its mass to the 

star at a lower rate. Therefore, the planet-building solids are retained 

in the lower viscosity discs for longer, enabling more sustained 

planet growth as time goes on. We note that this difference between 

viscosities is made subtler by our long depletion time, τ dep = 8 Myr 

(equation 10). 

The differences in planet migration between the high and low 

viscosity models arise from differences in the resulting torque 

landscapes. As mentioned briefly in Section 3, lowering the disc 
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viscosity lowers the planet mass at which key features in the torque 

maps occur – most notably, the extended region of outward-directed 

torque associated with the heat transition. We dive into the theory 

to explain why this happens in Section 5, and focus now on the 

outcomes. 

The result foreshadowed in Section 3 is presented in the middle 

right-hand panel of Fig. 4 . Planets in the lower viscosity disc ( α = 

10 −4 ) initialized near the heat transition (as close in as ≈10 au) 

are captured by the extended region of outward torque and migrate 

outwards to large disc radii early on in their evolution (beginning 

around t ≈ 0.750 Myr). At around t = 1.5 Myr, this population of 

planets reach their maximum orbital radii, ≈20 au. They encounter 

inward-directed torques at their exterior and their outward migration 

is halted. Trapped at this location of zero net torque associated with 

the heat transition, they go on to slowly migrate inward as the disc 

viscously evolves. To connect this result to the observed dust gaps 

in the HL Tau disc, we mark the gaps’ radial locations on the low 

viscosity panels of Fig. 4 (occuring between roughly 10 and 90 au; 

table 2 of ALMA Partnership et al. 2015 ). 

While they are trapped, this population of planets continues to 

grow in mass but only slightly. This cessation of further growth 

is a direct consequence of our conserv ati ve accretion prescription –

namely, that the solids fraction available for accretion on to the planet 

in the form of planetesimals is a constant f pl = 0.01 (Section 2.2), or 

even reduced to f pl = 0.001 in a couple cases (top right-hand panel, 

online Fig. B3). The bottom right-hand panel of Fig. 4 shows these 

planets still trapped at t = 1.887 Myr, the end of the simulation. 

While the white regions of near zero torque extend to higher masses 

and orbital radii, our accretion model limits them from being driven 

to these larger mass and radial scales. 

In the higher viscosity disc, inward migration dominates, tempered 

ef fecti vely only by planet trapping at the water iceline. This is 

highlighted in the left-hand panels of Fig. 4 . The planets trapped 

at the water iceline do not escape before the end of the simulation. 

This is a consequence of the higher escape masses that this trap has in 

comparison to the low viscosity case. One can observe this difference 

directly by noting that planets near the iceline in our low viscosity 

disc grow in mass reaching the value necessary to escape ( ≈ 1 M ⊕
in the high-mass disc) around t = 0.5 Myr. 

Turning to the innermost regions ( r � 1 au) of both the high and 

low viscosity discs, the high column density makes for rapid planet 

accretion and we see planets quickly exceeding the gas gap-opening 

threshold. They enter the Type II migration regime, having interacted 

with the outward-directed torque feature within the dead zone very 

little if at all. 

Before leaving Fig. 4 , we note that all of the models shown produce 

Hot Jupiter planets. In pre vious pre vious papers (Alessi & Pudritz 

2018 ; Alessi, Pudritz & Cridland 2020 ), population synthesis studies 

showed that distributions of disc masses and lifetimes could explain 

the broad structure of planetary populations in models where Type 

I migration was drastically reduced by means of the various planet 

traps discussed here. In this paper, we focus on a disc model for these 

extended systems that features both fairly massive as well as long 

lived discs. These conditions are exactly right for producing close in 

planets. The rarity of Hot Jupiters is in turn a reflection of the relative 

scarcity of massive, long lived discs in the disc populations around 

young stars. 

As an additional aid for visualizing planet interaction with disc 

torques, we provide Fig. 5 and two accompanying movies. We select 

a single planet from each of the high and low viscosity discs and 

follow their evolution o v er time. As each planet’s mass changes, we 

take a horizontal slice through the torque map at that mass to create 

a 1D profile of the torque as a function of radius. We tile this profile 

azimuthally to create the image of an axisymmetric face-on disc –

the torque landscape as seen by the planet. 

In the left-hand panel of Fig. 5 , we highlight the interaction 

between a demonstrative planet (initial orbital radius 8.3 au) and 

the water iceline in the high viscosity, high-mass disc. We place the 

planet (arbitrarily) at 3 o’clock, represented by a black dot whose 

size is proportional to the planet’s mass. A grey line again records the 

planet’s migration history, and a black circle indicates the planet’s 

semimajor axis. At the time snapshot shown in the figure, the planet 

is trapped at the water iceline, where it grows in mass and migrates 

inwards at a rate dictated by the trap for the rest of the simulation. 

In the right-hand panel of Fig. 5 , we highlight the outward 

migration of a planet interacting with the extended region of outward 

torque associated with the heat transition in the low viscosity, high- 

mass disc. The time snapshot shown ( t = 1.887 Myr) corresponds 

roughly to when this planet reaches its largest orbital radius. 

With a linear radial scale, it is more apparent how much of the 

disc is dominated by this blue region when the planet is at the 

right mass. 

In both of these planet–trap interaction examples, the planets do 

not reach a high enough mass to escape the influence of the trap. We 

discuss this trap escape mass in more detail in Section 5. (Looking 

ahead to that section, this mass is a function of time and disc mass, 

and in the case of the water iceline it is well described by equation 

39). For now we note that in our models, it takes at least 3 –5 M ⊕
to escape the water iceline, and at least ≈ 1 . 5 − 2 . 3 M ⊕ to migrate 

up and o v er the heat transition trap, depending on the disc mass (see 

Table 3 ). Cridland et al. ( 2019b ) find similar trap escape masses for 

their water iceline (their fig. 5). 

Up to now, we have featured results only from our high-mass 

disc models. In Table 2 , we provide movie analogues to Fig. 4 for 

the low- and medium-mass discs. In Fig. 6 , we present the results 

of all six planet formation scenarios in the form of a mass versus 

semimajor axis diagram (M-a diagram). As usual, the high viscosity 

case is shown on the left, and the lower viscosity case on the right. 

We colour the planets according to the mass of the disc in which they 

formed. 

As we have argued, understanding the underlying torque map 

features is crucial for interpreting points on an M-a diagram, and so 

we include the three contours of zero net torque in the background. 

For the same purpose, upper edge of the torque map (the gas gap- 

opening mass, equation 21) is shown in pink. 

In the context of the underlying torque map features, we describe 

the groupings of planets in each panel according to the torque feature 

that most influences their evolution history and label them on Fig. 6 . 

The ‘water iceline planets’ and ‘heat transition planets’ are those 

trapped at the water iceline and contour of zero net torque associated 

with the heat transition, respectively. Masses and semimajor axes for 

a representative planet in each population are given in Table 3 , as 

well as the escape mass for each trap. 

Water iceline planets. The high viscosity discs form a population 

of planets that spend a significant fraction of their formation history 

trapped at the water iceline. This trap occurs at larger distances 

from the star for higher disc masses, simply because the temperature 

profile at the location of the iceline T visc ∝ �, and the higher mass 

discs have higher surface density (see bottom panel Fig. 1 ). At t = 

1.888 Myr, the position of the ice line, r IL , is between 3 and 6 au. 

The iceline planets in the low mass discs come closer to escaping the 

trap than those in the higher mass discs because the escape mass is 
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Bifurcation of planet formation histories 6071 

Figure 5. Planet–trap interaction: single planet examples. [Shown for our high-mass disc]. An alternative visualization, best understood through a movie, of 

how disc torques determine planet migration. In each panel, we follow the evolution of a single, demonstrative planet. As a function of time, we take a horizontal 

slice through the torque map (Fig. 2 or 4 ) at the planet’s current mass to yield a radial torque profile. We tile this profile azimuthally to form a face-on disc. The 

planet’s current semimajor axis is shown as a thin black circle, and its current mass (also listed in the top left-hand corner) is proportional to the size of the black 

dot. Left-hand panel: The formation history of a planetary embryo in the high viscosity, high-mass disc, with initial semimajor axis a p, 0 = 8.3 au. The planet 

is trapped at the water iceline and does not escape before the end of the simulation. [Link to movie]. Right-hand panel: The formation history of a planetary 

embryo in the low viscosity, high-mass disc, with initial semimajor axis a p, 0 = 10.7 au. Around t = 0.700 Myr, the planet migrates outward to almost twice its 

initial orbital distance, where it gets trapped for the rest of the simulation. [Link to movie]. 

Table 3. Total mass, core mass, and orbital radius of a select planet in each of the trapped populations at t = 

1.888 Myr (see Fig. 6 ). In the bottom row we provide each trap’s ‘escape mass’: the planet mass corresponding to the 

zero net torque contour peak. Planets would leave the trap and migrate inwards again if their mass grew to exceed 

this threshold. 

Water iceline planets (high viscosity disc) Heat transition planets (low viscosity disc) 

High mass Medium mass Low mass High mass Medium mass Low mass 

M p 2.22 M ⊕ 2.12 M ⊕ 2.11 M ⊕ 1.61 M ⊕ 1.42 M ⊕ 1.34 M ⊕

M core 2.10 M ⊕ 2.03 M ⊕ 2.02 M ⊕ 1.55 M ⊕ 1.40 M ⊕ 1.32 M ⊕

a p 6.39 au 5.02 au 3.22 au 18.1 au 14.3 au 7.78 au 

trap escape mass 5.0 M ⊕ 3.9 M ⊕ 3.0 M ⊕ 2.3 M ⊕ 2.0 M ⊕ 1.5 M ⊕

Figure 6. Planet masses and semimajor axes at the age of HL Tau. Results from all six of our formation scenarios: high-mass (red), medium-mass (orange) 

and low-mass (blue) HL Tau discs, at two levels of viscosity (broadly, α = 10 −3 and α = 10 −4 ; see top panel of Fig. 1 ). Each dot (planet) is surrounded by a 

faded circle simply to give the reader a sense of number density. As always, results for the high viscosity discs are shown on the left, and low viscosity on the 

right. For reference, and to put the planets’ locations in the context of the torque maps, we o v erlay the gas gap-opening mass in pink (equation 21), and the three 

contours of zero net torque in colours corresponding to disc mass (see also Figs 2 and 4 ). We identify planets trapped at the water iceline in the high viscosity 

discs as ‘water iceline planets,’ and those trapped outside the heat transition in the low viscosity discs as ‘heat transition planets’ (see Fig. 7 ’s movie). 

MNRAS 510, 6059–6084 (2022) 
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Figure 7. Heat transition planets and the mechanism for outward 

migration. [Low viscosity discs]. A zoom-in on the right-hand panel of 

Fig. 6 . The x-axis is now in linear scale, sho wing ho w large a fraction of 

the disc is spanned by the contour of zero net torque associated with the 

heat transition (lightly coloured contours). Inside of these contours, the total 

torque is outward-directed, and outside, it is inward-directed. We indicate 

schematically the general migration trend that results from interaction with 

this zero-torque contour with red arrows, using the high mass disc as an 

example. [Link to movie]. 

lower (see the dependence of equation 39 on h , which is lower for a 

lower M disc ). 

Heat transition planets. The low viscosity discs form a popu- 

lation of planets with masses between 1 and 2 M ⊕ and with orbital 

radii 8 −20 au. To highlight this result, Fig. 7 provides a closer look 

at the masses and semimajor axes of the heat transition planets in the 

low versus high viscosity discs, as well as the shape and extent of 

the zero-torque contour associated with the heat transition. 

Examining Fig. 7 ’s movie, planet interaction with the heat transi- 

tion’s torque feature unfolds, broadly speaking, as follows. Early in 

these heat transition planets’ formation history, they encounter the 

low mass end of the zero-torque contour associated with the heat 

transition. As they grow in mass (represented by the ‘up’ arrow), 

the outward-directed torque inside the contour boundary forces them 

to migrate outwards (indicated by the ‘right’ arrow). If their growth 

is too rapid, they reach the ‘top’ of the contour, peeling off and 

migrating inwards. Otherwise, they continue to travel ‘along the blue 

band’ inside the zero-torque contour to its outermost radius, where 

they are trapped until they can acquire the mass needed to grow ‘up 

and o v er’ the trap and escape. The ultimate fate of the heat transition 

planets is therefore to grow more massive and likely migrate inward. 

As we will see in greater detail in the theory section to follow, 

the contour shape turns upwards in the outer regions because h = 

H / r increases with radius in the outer, radiatively heating dominated 

region of the disc, and it is this shape that aids planet trapping outside 

the heat transition. 

Fig. 7 also shows that there is some variation in the degree of 

outward migration at different disc masses. In Fig. 8 we investigate 

this variation by o v erplotting the migration trajectories of planets 

initialized in the same radial locations but in the two different 

viscosity discs, for each disc mass. The degree of bifurcation in the 

migration histories between the two viscosities is most pronounced 

in the high-mass disc. As shown in the bottom panel of Fig. 8 , the 

radial location of the heat transition is farther outward in higher 

mass discs. Thus, the disc viscosity is the fundamental quantity 

responsible for the bifurcation, and the disc mass controls the 

degree or extent to which the migration outcomes are dif ferent. Lo w 

Figur e 8. Bifur cation of migration histories. Top three panels: Planet 

tracks of all the planets that migrate outward in the low viscosity discs (red, 

orange, and blue lines), and planet tracks of the planets initialized at the same 

locations in the high viscosity discs, which migrate inwards (grey lines). The 

black dots are their masses and orbital radii at t = 1.88 Myr. Bottom panel: 

The radial evolution of r HT , the formal location of the heat transition (vertical 

dashed black line in bottom panel of Fig. 3 ), as a function of disc mass o v er 

time in each of our six planet formation scenarios. 
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Bifurcation of planet formation histories 6073 

viscosity, massive discs make the best case for e xtensiv e outward 

migration. 

We note that disc mass could affect the g as g ap opening criterion 

that we have used (Lin & Papaloizou 1993 ), which is based solely 

on torque balance effects, to predict when Type II migration will set 

in. Malik et al. ( 2015 ) have shown that an additional constraint must 

be considered – namely – that the gap the crossing time of a planet 

be longer than the gap opening time. As our low mass planets do not 

get into the Neptune mass regime, this is unlikely to be significant 

here. 

This concludes our presentation of planet formation simulation 

results. To summarize: A lowered viscosity shifts the features of 

the torque map that determine planet migration ‘downward’, to 

occur at lower planet masses. As such, the disc viscosity dictates 

the planetary mass range at which outward planet migration can 

occur. In our low viscosity discs, planetary embryos initialized near 

the heat transition reach this mass threshold and are propelled to 

twice their initial orbital radii – an extended planetary system. The 

threshold is too high in our high viscosity discs, and inward migration 

takes hold, resulting in compact planetary systems, tempered only 

by planet trapping at the water iceline around ∼5 au. The theory 

section to follow provides a rigorous theoretical perspective that 

explains these results and leads to simple scaling laws for the nature 

of cororation masses and planet formation in discs of different 

viscosities. 

5  T H E O R E T I C A L  RESULTS:  PLANET  

F O R M A  T I O N  A  T  L A R G E  DISC  R A D I I  

The physics of planet–disc interaction by gravitational torques is 

subtle. The previous two sections have shown our numerical results: 

the torque maps and evolutionary tracks of planets in the full, non- 

linear context of planet–disc interactions. The purpose of this section 

is to pair our numerical results with the physical insight derived from 

analytical approximations of the full torque theory. 

5.1 Theor etical backgr ound 

Here we pick up on the thread we started in Section 2.3.1. The 

torque calculations and maps are based on the full set of equations 

originally from equations (50)–(53) in Paardekooper et al. ( 2011 ), 

and summarized below. 

In Fig. 9 , we show how these torques actually work using a clear 

visualization. In particular, we take another look at the outward 

migration of a demonstrative planet in the low viscosity, high-mass 

disc. This is the same planet also presented in the right-hand panel of 

Fig. 5 . Early on in its formation, the planet interacts with the extended 

region of outward torque associated with the heat transition and is 

propelled from its initial a p, 0 = 10.7 au to a p = 18.2 au. We discuss 

each of the four panels of Fig. 9 in turn, starting at the bottom left 

and going clockwise. 

Total type I torque ( Ŵ tot ). As described in Paardekooper et al. 

( 2011 ), the total Type I torque e x erted by a gaseous disc on an 

embedded planet is the sum of two physical processes: torques 

at Lindblad resonances (Goldreich & Tremaine 1979 , 1980 ), and 

corotation torques (co-orbital and horseshoe torques). For a planet 

with zero eccentricity and inclination, this simply means: 

Ŵ tot = Ŵ LR + Ŵ C , (25) 

where Ŵ LR is the Lindblad torque, and Ŵ C constitutes the corotation 

torques. In the top two panels of Fig. 9 , we decompose the total 

torque into its two competing components: the Lindblad torques (top 

left-hand panel, red), and corotation torques (top right-hand panel, 

blue). 

Lindblad torques ( Ŵ LR ). Lindblad torques arise from waves 

at the locations of Lindblad resonances throughout the disc, both 

interior and exterior to the planet’s orbit ( r Lind = [1 ± 1 /m ] 2 / 3 a p , 

where m ≥ 2 is an inte ger). The wav es generate spiral arms that 

either carry angular momentum away from (outer wave) or deposit 

it on to (inner wave) the planet. The direction of the net Lindblad 

torque can therefore be inward or outward, depending on the interplay 

between the gradient of the column density and that of the disc 

temperature: γ eff Ŵ LR / Ŵ o = ( −2.5 − 1.7 βT + 0.1 α� ), where ( −βT ) 

is the power-law index of the temperature on disc radius, and ( −α� ) 

the index for the column density. The ef fecti ve adiabatic index of 

the gas is γ eff (see equations 46, 47 in Paardekooper et al. 2011 ). 

Using the power-law indices for the temperature and column density 

regimes summarized in our equations (1) and (2), we compute that 

γ eff Ŵ LR / Ŵ o = −3.79; −2.85 for the disc radii inside and outside the 

heat transition, respectively. The negative values indicate inward 

directed torques. In other words, the Lindblad torque is al w ays 

directed inward (i.e. red in our torque maps) throughout our entire 

disc model and for all disc masses. The top left-hand panel of Fig. 9 

confirms this analytic result – in our models the net Lindblad torque 

is al w ays directed inw ards. Outw ard planetary mo v ement in our discs 

therefore depends entirely on the physics of the corotation torque. 

Cor otation tor ques ( Ŵ C ). Corotation torques result from grav- 

itational perturbations to the gas close to the planet – inside its 

co-orbital and (closed) horseshoe region. The co-orbital component 

is linear and depends on the gradient of vortensity, ( ∇ × v ) / �. The 

horseshoe component is non-linear. Gas undergoing horseshoe orbits 

gains and loses angular momentum o v er the cycle, and if the entropy 

of the gas decreases with disc radius (non-adiabatically), the resulting 

azimuthal asymmetry in density causes outward planet migration 

(Paardekooper et al. 2010 ). 

Specifically, the corotation torques are comprised of vorticity 

and entropy-related horseshoe drag torques ( Ŵ VHS , Ŵ EHS ) and linear 

vorticity and entropy-related corotation torques ( Ŵ LVCT , Ŵ LECT ) as 

follows: 

Ŵ C = 

[ 

Ŵ VHS F p ν G p ν + Ŵ EHS F p ν F p χ

√ 

G p ν G p χ

] 

+ Ŵ LVCT 

(

1 − K p ν

)

+ Ŵ LECT 

√ 
(

1 − K p ν

) (

1 − K p χ

)

. (26) 

These latter three functions F , G, and K , discussed further in 

Section 5.2, are the amplitudes of the combined Lindblad and 

corotation torques that measure the saturation of the torques, and 

depend on a saturation parameter, to be discussed below. Only the 

F amplitude varies significantly o v er parameter ranges of interest, 

and its peak value will determine where the corotation torque hits a 

maximum. 

The top right-hand panel of Fig. 9 shows that the corotation torques 

in our models are directed outward, and their strength depends on 

both planet mass and radius. Features in the corotation torque map 

give rise to features in the total torque map (i.e. positions and shapes 

associated with the dead zone, ice line, and heat transition traps). 

Contribution of torques. In the bottom right-hand panel of Fig. 9 , 

we take a vertical slice in planet mass through each of the three torque 

maps ( Ŵ tot , Ŵ LR , Ŵ C ) at the planet’s current orbital radius. The result is 

three curves of torque amplitude as a function of planet mass, where 

planet mass is on the y-axis to match the torque map panels. The 

horizontal grey line indicates the planet’s current mass, and where it 
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6074 J. Speedie et al. 

Figure 9. Decomposing the total torque and visualizing the planet mass of maximum outward torque. [Low viscosity, high-mass disc]. The total torque 

e x erted by the disc on a planet is the sum of the outward-directed corotation torque and inward-directed net Lindblad torque. To illustrate why planets in the 

low viscosity discs are propelled outward, we take a vertical slice through the Lindblad torque map ( top left-hand panel ), the corotation torque map ( top 

right-hand panel ), and total torque map ( bottom left-hand panel ) at the planet’s current orbital radius to yield three torque profiles as functions of planet mass. 

We plot these profiles in the bottom right-hand panel . The reader familiar with Paardekooper et al. ( 2011 ) will recognize them as rotated versions of their fig. 

6. Where the total torque profile (black) intersects with the horizontal line (the planet’s current mass) is the torque this planet experiences. (It is the same planet 

as in the right-hand panel of Fig. 5 , with a p, 0 = 10.7 au). The vertical dashed line at Ŵ = 0 delineates ne gativ e inward torques from positive outward ones. 

[Link to movie]. 

intersects with each of the torque curves indicates the value of that 

torque the planet is currently experiencing. We provide a movie in 

Table 2 . 

This panel clearly shows that the Lindblad torque profile is 

constant in planet mass, and strongly ne gativ e (inward-directed). The 

corotation torque is positive (outward-directed); its dependence on 

planet mass dictates the mass dependence of the total torque profile, 

and makes outward planet migration possible. At the time snapshot 

shown, the planet is undergoing outward migration simply because 

it is at the right mass to reach peak corotation torque. 

In the deri v ations that follo w, we refer to this planet mass of 

maximum outward torque ( Ŵ C ) as the corotation mass, or M p, corot . 

In other words, 

Ŵ C (M p , corot , r) = max Ŵ C ( r) . (27) 

We label the corotation mass in the bottom right-hand panel of Fig. 9 . 

Despite using quite a different underlying disc model, our corotation 

torque profiles strongly resemble those in fig. 6 of Paardekooper et al. 

( 2011 ). Starting from the framework laid out in that same work, we 

derive an analytic recipe for the planet mass of maximum outward 

torque depending on the local properties of the disc. 

5.2 The viscous and thermal corotation masses 

The amplitude or magnitude of the corotation torque is prone to 

saturation o v er time. In the absence of replenishing processes, the 

torque modifies the angular momentum of gas in the horseshoe 

region (which is not connected to other orbits within the disc) and 

destroys the vortensity and entropy gradients that bring it to life. This 

occurs o v er the libration time-scale, t lib (Paardekooper & Papaloizou 

2009a ): 

t lib = 
4 

3 x s 

2 π

�p 
, (28) 

where x s is the dimensionless radial half-width of the horseshoe band 

of orbits around the planet’s orbital radius, r p , and �p is the planet’s 

orbital angular frequency. We note that angular momentum exchange 

can occur continuously at the Lindblad resonances, and that Ŵ LR is 

not subject to saturation. 

The width of the corotation region has been analysed in great 

detail, by means of fits to 3D numerical simulations (Paardekooper & 

Papaloizou 2009b ). These authors used the FARGO code, and intro- 

duced a numerical softening parameter b in computing gravitational 

potential of the planet. Their simulation results could be well matched 
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using a value of ( b / h ) = 0.4, where h = H / r . They find that 

x s = C( b/h ) ·
√ 

q 

h 
, (29) 

where q = M p / M ⋆ is the ratio of the planet’s mass to that of its 

host star. The coefficient C is a function C = C ( b / h ) ≃ 1 that can 

be written as a power law around the value ( b / h ) = 0.4 such that 

C = (1 . 1 /γ
1 / 4 
eff ) · [0 . 4 / ( b/h )] −1 / 4 , where the ef fecti ve adiabatic in- 

dex of the gas is γ eff . 

In order to circumvent saturation and sustain the corotation torque, 

the vortensity and entropy gradients within the horseshoe region 

need to be restored more quickly than t lib . The amplitude of Ŵ C thus 

implicitly depends on processes that transport angular momentum 

within the disc. For non-isothermal discs, such as the models we use 

here, the replenishing processes necessary to maintain the corotation 

torque are (1) thermal diffusion, χ (equation 41) and (2) viscosity, ν

(Paardekooper & Papaloizou 2008 ). 

The degree to which the corotation torque is saturated is described 

by saturation parameters: p χ , associated with thermal diffusion, and 

p ν , associated with viscosity. These parameters are the subscripts of 

the F , G , and K functions that appear in the equation for the corotation 

torque Ŵ C (equation 26), where for example F p is shorthand for F (p). 

The numerical results of Paardekooper et al. ( 2011 ) show that the G 

and K functions vary only slightly, and so of the four terms, the first 

two terms involving F p ν and F p χ (inside square brackets in equation 

26) will contribute the most to the functional form or variation of Ŵ C . 

The form of these functions is reproduced in Fig. 9 , lower right-hand 

panel, where the maxima in F p are there shown as a function of planet 

mass (on the y-axis), for α = 10 −4 . 

Thus, the basic point is that we take the amplitude of the corotation 

torque Ŵ C to be mainly determined by: 

F p ν = F (p ν) and F p χ = F (p χ ) , (30) 

each an identical function of two saturation parameters – one due to 

viscous diffusion, and one due to thermal diffusion. To find M p, corot , 

our task is to find the planet mass of peak F p ν and F p χ . We do 

so by locating the value of p ν for which F p ν takes its maximum 

(relying on fig. 6 of Paardekooper et al. 2011 ), and then translating 

this p ν into a planet mass: M p, ν, corot . We repeat the process for p ν and 

F p ν to find M p, χ , corot , and then combine the two into a net M p, corot 

(Section 5.3). 

We first focus on the effects of viscous diffusion, F (p ν). In ideal 

disc models, both the vortensity and entropy are conserved along 

stream lines of the fluid. Consider the case where the entropy 

decreases with radius. Fluid in orbits just beyond the planet’s orbit 

are in colder gas, those inside the orbit have hotter gas. A fluid 

element just outside will make a U-turn as it approaches the planet, 

and goes on to enter the inner, slightly hotter region. In order that 

pressure balance be preserved, a density increase must occur in the 

colder fluid. Similarly, there is a density drop in the hotter region 

and this density difference results in a torque that pushes the planet 

outward. This density bump must be maintained, ho we ver, in the face 

of decoherence brought on by phase mixing. In this process, because 

the horseshoe libration period is different for different orbits in the 

region, the density jump can be quickly smeared out and disappears. 

If the viscous time scale of the gas t ν is comparable to this libration 

time ho we ver, then the surface density and vortensity gradients can be 

maintained against these looses, and the torque remains unsaturated 

(see re vie w Nelson 2018 ). 

The viscous diffusion time-scale of gas across a region of width 

x s at the planet’s orbital radius r p is 

t ν = 

(

x s r p 
)2 

ν
, (31) 

where ν = αc s H is the viscosity of the disc. The associated saturation 

parameter has been computed numerically for non-isothermal discs 

and is expressed in Paardekooper et al. ( 2011 ): 

p ν = 
2 

3 

√ 
x s t ν �p 

2 π
= 

2 

3 

√ 

x 3 s r 
2 
p �p 

2 πν
, (32) 

where the second equality comes from substituting t ν (equation 31). 

The physical meaning of the viscous saturation parameter p ν is that it 

is a direct expression of the ratio of t ν to t lib , which is readily derived 

by using the expressions for t lib and equation (28) 

p ν = 
4 

3 
√ 

3 

√ 
t ν

t lib 
, (33) 

and which is natural given that the libration time-scale t lib needs 

to be compensated for in order that the corotation torque remain 

unsaturated. 

Continuing from the second equality in equation (32), substituting 

ν = αc s H p and noting that for thin discs, �p / c s = 1/ H p , we see that 

the saturation parameter depends explicitly upon α and h p = H p / r p 
at the planet’s orbital radius: 

p ν = 
2 

3 
√ 

2 π
α−1 / 2 x 3 / 2 s h 

−1 
p . (34) 

Combining this with equation (29), we obtain an expression for 

the saturation parameter p ν that depends on the properties of the full 

disc, namely the viscosity α and the aspect ratio h , as well as the 

planet’s mass, as measured by the mass ratio q : 

p ν = p ν, 0 ·
q 3 / 4 

α1 / 2 h 7 / 4 
, (35) 

where we define the coefficient p ν, 0 as 

p ν, 0 = 
2 

3 
√ 

2 π
C 

3 / 2 = 0 . 266 , (36) 

the numerical value given corresponding to the typical case where 

C ≃ 1. 

If viscous diffusion is the only diffusive mechanism putting 

angular momentum into the corotation region, then the maximum 

outward directed corotation torque will occur for a value of p ν where 

F p ν = F max ; i.e. where d F p ν / dp ν = 0. We denote the value of p ν
where F p ν takes its maximum as p ν, corot . The numerical results of 

Paardekooper et al. ( 2011 ) (fig. 6) show that 

p ν, corot ≃ 0 . 35 . (37) 

The physical insight offered by equations (35) and (37) is as 

follows. As seen in equation (33), the level of saturation described 

by p ν is a question of time-scales. At small mass ratios q , when p ν ≪
1, the corotation torque is in the weak (linear) regime, and migration 

will be dominated by the inward Lindblad torque. As the mass ratio q 

grows such that the viscous time-scale is comparable to the libration 

time-scale, the corresponding saturation parameter p ν is of the order 

of unity (i.e. p ν = p ν, corot ∼ 1). Here, the corotation torque is at 

maximum strength and we can have outward planet migration. With 

further mass q increase, the planet mo v es into the non-linear, p ν
≫ 1 regime, wherein the corotation torque saturates, and again, the 

Lindblad torque pushes the planet inwards. Therefore, it is when 

the time-scale of a replenishing (dif fusi ve) process is comparable to 
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the libration time-scale that is crucial for outward planet migration. 

While we have just described this for the case where viscosity is 

the replenishing process, it applies broadly to other processes that 

transport heat and angular momentum (e.g. thermal diffusion, see 

below; disc winds, see Section 5.4). 

Setting equation (35) equal to p ν, corot and rearranging for q , we 

may define a value of the mass ratio q ν, corot for which a planet can 

undergo the strongest, outward directed corotation torque. We see 

that it depends upon the disc viscosity and gas aspect ratio as: 

q ν, corot = 

(

p ν, corot 

p ν, 0 

)4 / 3 

α2 / 3 h 
7 / 3 = 1 . 44 α2 / 3 h 

7 / 3 . (38) 

Many disc models suppose typical conditions for these disc pa- 

rameters as α = 10 −3 and h = 0.05, for which we find q ν, corot = 

1.33 × 10 −5 . For a solar mass star (note that M ⋆ = 1 . 2 M ⊙ in our 

HL Tau models), this corresponds to a planetary mass of 

M p ,ν, corot = 4 . 43 
( α

10 −3 

)2 / 3 
(

h 

0 . 05 

)7 / 3 

M ⊕ . (39) 

We refer to M p, ν, corot as the viscous corotation mass . 

With these ideas outlined, we now turn to thermal diffusion effects, 

F (p χ ), to find the thermal corotation mass , M p, χ , corot . The physical 

discussion follows exactly the same course as the preceeding viscous 

diffusion arguments. The thermal diffusion saturation parameter p χ
is related to that due to viscosity by 

p χ = p ν ·
3 

2 

√ 
ν

χ
, (40) 

where χ is the thermal dif fusi vity: 

χ = 
4 γ ( γ − 1) σT 4 

3 κρ2 H 2 �2 
. (41) 

Here, γ is the adiabatic exponent, σ is the Stefan–Boltzmann constant 

and κ is the opacity. 

In fluid mechanics, the ratio of these two dif fusi vities is known as 

the Prandtl number: 

Pr = 
ν

χ
. (42) 

It describes the relative importance of viscous versus thermal diffu- 

sion. The Prandtl number plays an important role in the corotation 

torque. For reference, we provide Fig. C1 in online Appendix C, 

which sho ws ho w the thermal dif fusi vity χ = χ ( r ), the le vel of 

viscosity ν = ν( r ) and therefore the Prandtl number Pr = Pr ( r) varies 

across disc radius in our models. 

We again refer to the numerical results of Paardekooper et al. 

( 2011 ) (their fig. 6) for the value of the saturation parameter at which 

the corotation torque amplitude takes its maximum. While they do 

not provide the pure function F (p χ ) = F p χ , they do show the product 

F p χ · F p ν . As this is a product of near-Gaussians, the amplitude peak 

is hardly affected, and like p ν, corot , 

p χ, corot ≃ 0 . 35 . (43) 

From here, we substitute Pr (equation 42) and p ν (equation 35) 

into equation (40): 

p χ = 
3 

2 
p ν, 0 

√ 

Pr q 3 / 4 α−1 / 2 h 
−7 / 4 . (44) 

Setting p χ = p χ , corot so that q = q χ , corot , re-arranging for q χ , corot , 

noting that p ν, corot = p χ , corot and absorbing terms in common to 

equation (38) into q ν, corot , we find the thermal corotation mass ratio: 

q χ, corot = 

(2 

3 

)4 / 3 (

Pr 
)−2 / 3 

q ν, corot . (45) 

Equi v alently, in terms of the viscous corotation mass, we find the 

thermal corotation mass: 

M p ,χ, corot = 

(2 

3 

)4 / 3 (

Pr 
)−2 / 3 

M p ,ν, corot . (46) 

Putting this in physical units (again M ⋆ = M ⊙), we have, finally: 

M p ,χ, corot = 2 . 58 
(

Pr 
)−2 / 3 ( α

10 −3 

)2 / 3 ( h 

0 . 05 

)7 / 3 
M ⊕ . (47) 

Comparing this to equation (39), we see that the thermal corotation 

mass differs from the viscous corotation mass by a constant and a 

Prantl number prefactor, Pr −2 / 3 . 

In Fig. 10 , we compare the behaviour of our two corotation 

masses – M p, corot based on p ν in the left-hand column (the viscous 

corotation mass, M p, ν, corot , equation 39) and M p, corot based on p χ
(the thermal corotation mass, M p, χ , corot , equation 47) in the right- 

hand column. A planet of mass equal to either corotation mass will 

experience the maximum possible magnitude of corotation (outward) 

torque under the competing saturating influence of either viscous or 

thermal diffusion. The top two rows show M p, ν, corot and M p, χ , corot 

as a function of disc aspect ratio h , for a range of disc viscosities: 

α = 10 −5 − 10 −2 . Note that in the right-hand panel, M p, χ , corot was 

calculated assuming Pr = 1. The bottom panels in Fig. 10 show the 

behaviour of the two corotation masses in the context of our models 

at a certain time snapshot ( t = 1.5 Myr, also chosen for Fig. 11 ). The 

variation of the disc aspect ratio is folded into the radial dependence 

as h = h ( r ) (see middle panel of Fig. 1 ). The effect of lowering the 

disc viscosity by a factor of 10 is clear from comparing the solid ( α = 

10 −3 ) and dashed ( α = 10 −4 ) lines. Both corotation masses scale as 

M p, corot ∝ α2/3 , and so the planet mass of maximum outward torque 

is lower for lower disc viscosities. 

5.3 The net corotation mass 

Which corotation mass applies to which regions of the disc? The 

equi v alent question is: What is the relative importance of viscous 

versus thermal diffusion in different regions in the disc? This is the 

utility of the Prandtl number (equation 42). 

In the inner region defined by the dead zone, the viscosity is 

very low ( α = 10 −5 or 10 −6 ). The heat generated in that region is 

therefore carried out by thermal diffusion, so in the dead zone r � 

1 au we expect χ ≫ ν and Pr ≪ 1. In the outer parts of the disc 

where radiative heating dominates viscous heating, here too thermal 

diffusion must be important to maintain the necessary cooling of the 

disc, so for r � r HT we anticipate that Pr ≪ 1. 

At intermediate disc radii, (the region just beyond the dead zone 

and out to where radiative heating begins to dominate), viscous 

heating and thermal diffusion can be more comparable. In the models 

of Paardekooper et al. ( 2011 ), Pr does not exceed unity. In our 

models ho we ver, we find that the Prandtl number reaches high values 

Pr ≫ 1 (see online Fig. C1; max Pr ≃ 20). We discuss reasons for 

this difference in online Appendix C. None the less, we can expect 

that at intermediate radii our planet formation results arise from the 

corotation mass that depends on the thermal dif fusi vity rather than 

the viscosity. 

In the variational analysis to follow, we will see that these physical 

ideas are indeed born out by the theoretical analysis and the numerical 

results. When Pr ≪ 1, the applicable corotation mass is the viscous 

corotation mass M p, ν, corot , while in the Pr ≫ 1 regime, the important 

corotation mass is that derived from thermal diffusion dependent 

saturation, M p, χ , corot . Note that while the Prandtl number does inform 

us of the relative importance of χ and ν, this does not translate into a 
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Bifurcation of planet formation histories 6077 

Figure 10. Planet masses of maximum outward torque: viscous corotation mass ( M p, ν, corot , equation 39) and thermal corotation mass ( M p, χ , corot , equation 

47). The form of our two analytic approximations for the planet mass of maximum outward torque derived purely from the viscous saturation parameter, p ν
( left-hand column ) and from the thermal saturation parameter, p χ ( right-hand column ). In the top row , we plot the curves as a function of the disc aspect ratio 

( h = H / r ) for a range of α parameters ( α = 10 −5 –10 −2 ). The values of α explored in this work are the thick black solid and dotted lines. In the bottom row , 

we plot the curves as a function of disc radius through the radial dependence of h and α contained in our HL Tau models (see top and middle rows of Fig. 1 ), 

for all three model disc masses and two levels of viscosity. A lower α results in a lower planet mass of maximum outward torque, because both M p, ν, corot and 

M p, χ , corot scale as α2/3 . 

Figure 11. The planet mass of maximum outward torque in the limits of Pr ≪ 1 and Pr ≫ 1. [Low viscosity, high-mass disc]. Here, we illustrate how well 

our two analytic approximations for the planet mass of maximum outward torque agree with the numerically calculated values from our torque maps. Left-hand 

panel: Atop the total torque map of the high-mass, low viscosity disc, we show the numerically calculated planet mass of maximum outward torque at each 

radius (blue dots), the viscous M p, ν, corot based on p ν (yellow line), and the thermal M p, χ , corot based on p χ (light green line). Right-hand panel: Same as the 

left-hand panel, but o v erlaid on a map of Prandtl number (Pr = Pr( r ) = ν/ χ , see right-hand panel of online Fig. C1). The M p , ν corot curve predicts what planet 

masses are required for outward migration in regions where Pr ≪ 1, and M p , χ corot does the same where Pr ≫ 1. When each curve is not describing M p of 

maximum Ŵ C , it is delineating the boundary to inward migration (e.g. M p, ν, corot describes the water iceline escape mass). See left-hand panel of online Fig. C1 

for the same curves overlaid on purely the corotation torque map. 
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description of the relative importance of the corresponding saturation 

parameters (i.e. Pr �= p ν/ p χ ). 

As discussed abo v e equation (30), based on the numerical results 

of Paardekooper et al. ( 2011 ) we consider that the variation of the 

corotation torque Ŵ C is dominated by the two terms involving the 

F p ν and F p χ : 

Ŵ C ≃ Ŵ VHS F p ν G p ν + Ŵ EHS F p ν F p χ

√ 

G p ν G p χ , (48) 

which we can re-write as 

Ŵ C ≃ [ A + B F p χ ] F p ν (49) 

to indicate the slowly varying multipliers A and B . 

Finding the peak corotation mass is equi v alent to finding where 

δŴ C = 0: 

δŴ C ≃ δ([ A + B F p χ ] F p ν ) = 0 . (50) 

Carrying out the variation, we have 

[ A + BF p χ ] 
d F p ν

dp ν
δp ν + B F p ν

d F p χ

dp χ
δp χ = 0 . (51) 

Recalling the relation between p ν and p χ (equation 40), we see that 

δp χ ∝ Pr 1 / 2 δp ν . Thus, the 2nd term (depending on δp χ ) in the abo v e 

equation scales as Pr 1 / 2 with respect to the first term. In the limit 

of small Prandtl numbers, as Pr ≪ 1, the 1st term dominates and 

equation (51) is satisfied if 

d F p ν

dp ν
= 0 . (52) 

In other words, the amplitude of the corotation torque Ŵ C is dictated 

by the saturation influence of viscosity p ν , and the planet mass of 

maximum outward torque will be given by M p, ν, corot . 

In the limit of large Prandtl numbers Pr ≫ 1, the 2nd term 

dominates equation (51) and we require 

d F p χ

dp χ
= 0 . (53) 

Here, the amplitude of the corotation torque Ŵ C is dictated by the 

saturation influence of thermal diffusion p χ , and the planet mass of 

maximum outward torque will be given by M p, χ , corot . 

With these results in hand, we can describe the corotation mass 

function throughout the whole disc. At each disc radius, we first check 

to find the value of the Prandtl number there. The net corotation mass 

is then defined by an approximating piecewise formula: 

M p , corot = 

{

M p ,ν, corot , Pr ≪ 1 

M p ,χ, corot , Pr ≫ 1 
, (54) 

where M p, ν, corot is given by equation (39) and M p, χ , corot by equa- 

tion (47). We note that, if we had included additional processes 

in our models that transport heat or angular momentum (e.g. disc 

winds, see Section 5.4), we would need to incorporate them into the 

processes of finding the net M p, corot too. 

In Fig. 11 we assess the performance of our analytical approx- 

imations. In the left-hand panels, we plot M p, ν, corot and M p, χ , corot 

o v erlaid on maps of the total torque. The small blue dots show the 

numerical values of M p, corot at each radius, computed directly from 

the torque map. In the right-hand panels, we plot the piecewise 

definition of M p, corot (equation 54) o v erlaid on a map of Prandtl 

number to highlight the regimes wherein each corotation mass applies 

(note Pr is independent of planet mass – we tile the Pr profile for 

visual purposes). 

As expected, M p, ν, corot matches in the Pr ≪ 1 regime (inside the 

dead zone and outside the heat transition), and M p, χ , corot matches 

in the Pr ≫ 1 regime (intermediate disc radii). One can interpolate 

between these two regimes for the case that Pr ≃ 1. 

Finally, we note an additional property of the viscous corotation 

mass M p, ν, corot : at intermediate disc radii (outside the dead zone 

but inside the heat transition), M p, ν, corot matches the mass at which 

planets trapped at the water iceline can escape. As an explanation 

for this, note in Fig. 11 that the inward directed Linblad torque at 

the radial position of the ice line has a very sharp onset (i.e. dark 

red region) just above this mass scale. Below it, the net torque is 

near zero – and abo v e, the planet must be pushed rapidly inwards 

away from the iceline. Following this logic, we see that at larger 

radii, M p, χ , corot demarcates a similarly sharp transition abo v e the 

heat transition trap region, which we predict will also behave as 

the escape mass condition. These results inform us that planets, 

upon increasing their mass sufficiently to escape their traps, will 

quickly reverse course and be driven in towards small disc radii by 

the Linblad torques that await them – assuming masses are all in the 

Type I regime. If planets achieve enough mass to open a gas gap 

(abo v e the pink line), slow, inward directed Type II migration will 

ensue. 

5.4 Extension: corotation mass for MHD disc wind-dri v en 

accretion 

Our analysis so far has not addressed the effect of disc winds on 

planetary migration and formation, but it is expected to be significant. 

Work by Hase ga wa et al. ( 2017 ) shows that disc winds may be 

important in understanding both the high accretion rates as well as 

lo w le vels of turbulence (and hence rapid dust settling) in the HL Tau 

system (Rich et al. 2021 ; Ueda et al. 2021 ). 

In general, any mechanism that transports angular momentum 

through or out of the disc will have an effect on the corotation torque, 

and hence on how planets will migrate. The analysis al w ays comes 

down to a basic comparison of two time-scales, namely, the time- 

scale for replenishing the angular momentum in the corotation region 

by whatever is the dominant mechanism for angular momentum 

transport and the libration time-scale which smears out the fluctuation 

and eliminates the corotation torque. Disc winds result in inward 

mass advection (inflow) as the disc’s angular momentum is remo v ed 

by the wind. This is a laminar not turbulent flow, so the action is not 

viscous in nature. Disc winds set up a radial inflow speed v r whose 

magnitude is related to the strength of the outflow. In this situation 

the replenishment of angular momentum in the corotation region 

occurs on a time-scale 

t w = 
x s r p 

v r 
. (55) 

The radial inflow speed driven by a disc wind can be written as 

v r = −2 r 
�̇ w 

� 
( λ − 1) , (56) 

where �̇ w is the mass outflow rate per unit area from the disc surface. 

The high efficiencies of MHD disc winds arise from their long ‘lever 

arms’ which is measured by λ = ( r A ( r o )/ r o ) 
2 where r A is the Alfven 

radius on the field line out to which the gas is accelerated, from the 

footpoint of the field line at a radius r o on the disc. In general, this 

is a slowly varying function of r o (Pelletier & Pudritz 1992 ). For 

self-similar discs as modelled by Blandford & Payne ( 1982 ), λ = 

const. 

Kimmig, Dullemond & Kley ( 2020 ) have simulated planetary 

migration in 2D discs in which angular momentum transport is 

MNRAS 510, 6059–6084 (2022) 
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Bifurcation of planet formation histories 6079 

mediated by disc winds. These were not explicitly MHD simulations, 

rather, the wind torque prescription was described analytically. 

Lindblad torque effects were not included. They discovered that both 

inward and outward migration of planets could take place depending 

upon a parameter K that is the ratio of the time for disc gas to advect 

through the corotation region under the action of the disc wind, t w , 

to the libration time-scale: 

K = 
t w 

t lib 
(57) 

In their analysis, the radial advection speed is v r = ( λ − 1)( b/ π) �r p , 

where 

b = 
�̇ w 

� 

2 π

�
(58) 

becomes a parameter that measures the wind mass loss rate from the 

disc. We will call K the ‘wind saturation parameter,’ in accord with 

the definitions of the viscous and thermal saturation parameters p ν
and p χ (Section 5.2). From the results abo v e one deriv es (Kimmig 

et al. 2020 ): 

K = 
3 

4 

q 

h 

1 

( λ − 1) b 
. (59) 

More detailed physics is required to actually compute the mass- 

loss rate of the wind, but theoretical results and numerical simu- 

lations, now supported by observations (Watson et al. 2016 ), show 

that 

Ṁ w 

Ṁ a 

= λ−1 ≃ 0 . 1 , (60) 

where Ṁ a is the accretion rate driven through the disc. Thus, in 

what follows, we take λ ≃ 10 for the theoretically derived and 

observationally verified value. 

In order to estimate likely values of the wind mass-loss rate for 

observed jets and disc winds, note that with the total mass-loss rate 

from the disc scaling as Ṁ w = 2 πr 2 � w , and Ṁ a = 2 π�v r r , and 

assuming thin discs where h = c s / �r , then equation (58) can be 

written as 

b = 
Ṁ w 

Ṁ a 

v r 

c s 
h = 0 . 5 × 10 −5 

(

Ṁ w / Ṁ a 

10 −1 

)

(v r /c s 

10 −3 

)

(

h 

0 . 05 

)

, (61) 

where we have normalized the inflow rate at an ef fecti ve rate of 

v r / c s ≃ 10 −3 . 

The simulation results of Kimmig et al. ( 2020 ) show that outward 

planetary migration occurs for values K ≃ 10. This is the hallmark 

of an unsaturated corotation torque, as the authors note, and the 

parameter K plays exactly the same kind of role as the saturation 

parameters p ν and p χ that we have already discussed (Section 5.2). 

From this result, we can define an analogous corotation mass 

when wind driving is the dominant angular momentum transport 

mechanism in the disc. If the maximum outward corotation torque 

occurs at K dw, corot = 10, then we can solve the corotation mass scale 

of a planet under the action of disc winds, M p, dw, corot , by rearranging 

equation (59), giving: 

q dw , corot = 
40 

3 

( K/K dw , corot ) 

10 
( λ − 1) b h . (62) 

Thus we find the intriguing result that for a fiducial disc wind, 

the disc wind cororation mass ratio is comparable to an Earth mass: 

q dw , corot = 3 × 10 −5 ( b/ 0 . 5 × 10 −5 ) ( h/ 0 . 05). Writing out the mass 

scale for a planet migrating due to a disc wind around a solar mass 

star: 

M p , dw , corot = 1 . 13 

(

( K/K corot ) 

10 

) (

b 

0 . 5 × 10 −5 

) (

h 

0 . 05 

)

M ⊕, 

(63) 

where we have taken λ = 10. 

This result is in accord with the Kimmig et al. ( 2020 ) simulations. 

They found that to drive a Jupiter mass outward, they needed a value 

of b = 10 −2 . Using the longer lever arm from wind observations, 

we see that the corotation mass corresponding to Jupiter is b = 

1.4 × 10 −3 . Ho we v er, e xamining the estimate for the value of b given 

in equation (61), this would require an unrealistically high mass-loss 

rate from the disc, of roughly Ṁ w / Ṁ a ≃ 10 which is far too high 

for winds observed in disc systems (Watson et al. 2016 ). Another 

possibility is that the radial inflow speed becomes much larger, and 

would have to reach αw ≃ 10 −1 . This would imply accretion rates 

through the disc that are at least an order of magnitude larger than 

the observations would suggest. 

There are still only very few works that address the full physics of 

MHD disc winds in low viscosity regimes. Recently McNally et al. 

( 2020 ) have completed fully 3D, non-ideal simulations of corotation 

torques and their effects on planetary motion. An important new 

physical process arises for magnetized gas in 3D, namely magnetic 

buoyancy. These 3D simulations investigate magnetic buoyancy 

effects in the corotation region. While in 2D outward motion is 

indeed driven by MHD torques (McNally et al. 2017 ), in 3D magnetic 

buoyancy alters local vortensity gradients. This leads to a dominant 

ne gativ e corotation torque; i.e. low mass planets mo v e ev en more 

rapidly inwards than without MHD effects. Arguably the main caveat 

to this as indicated by the authors, is that heating of the corotation 

region by the accreting planet alters the temperature gradients in such 

a way as to strongly reduce the buoyancy of the gas. This remains to 

be investigated in future 3D MHD studies. 

We note that disc winds could contribute to early outward, and 

then later inward directed torques. Here’s how. As already discussed, 

jet and disc observations clearly show that wind loss and accretion 

rates are strongly coupled. At the earliest phases of disc formation, 

the disc accretion rate are the highest, and decrease with time. The 

wind mass rates will follow this trend. This implies that disc winds 

early in the life of a disc have the greatest potential to drive forming 

planets outwards. Later, as the wind levels drop below thresholds 

deriv ed abo v e, the wind torque ef fects will re verse and push the 

planets inwards. This mimics the behaviour we have outlined for the 

low viscosity case. Disc winds will have a more pre v alant role in 

low viscosity discs, so we expect winds to reinforce the migration 

behaviour due to pure viscous discs. 

6  DI SCUSSI ON  

Our simulations and calculations lead to the important new insight 

that forming planetary systems can either be concentrated in the 

inner regions of the disc or dispersed to large disc radii before moving 

inwards again. This bifurcation of planetary evolution depends on the 

ef fecti ve viscosity of the host protoplanetary disc which dictates the 

corotation mass (i.e. the threshold planet mass for outward migration 

beyond the heat transition). We have shown that in low α discs, the 

corotation mass scale is markedly lower than in the high viscosity 

case. Forming planets in such discs are caught up in regions of 

outward corotation torque and pushed outwards. These eventually 

mo v e slowly inwards again as the disc viscosity diminishes and the 

MNRAS 510, 6059–6084 (2022) 
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heat transition trap mo v es slowly inwards dragging the planetary 

cores with them. 

A direct consequence of this finding is that the observational disc 

demographics in van der Marel & Mulders ( 2021 ) can be explained 

as a manifestation of the underlying distribution of turbulent vis- 

cosities across the whole protostellar disc population. As a natural 

consequence of our results, we expect that observed rings and gaps 

arise in those discs with low viscosity. We argue, below, that both 

observations of turbulent intensities in discs, and the broad range 

of disc masses imply a range of turbulent viscosities across disc 

populations. 

As for the masses attained by planets at these larger radii: our 

accretion models adopt a conserv ati ve picture of mass accretion. 

These end up forming planets in the 1–2 Earth mass range. This is 

likely significantly below the mass needed for planets to form dust 

gaps (Rosotti et al. 2016 ). We saw, ho we ver, that with more mass 

accretion planets have potential trajectories in the torque maps to 

take them to larger disc radii. These planets are being starved of 

mass in this conventional mass accretion picture. We discuss both 

this and the point abo v e in greater detail, below. 

The corotation mass idea allows us a clear picture of how this 

bifurcation mechanism works. The corotation mass scale in discs 

with higher viscosities ( α = 10 −3 ), is high enough that forming 

planets are caught up by the inward directed Lindblad torque and 

migrate inwards. Their rapid type I inward is arrested by either ice 

lines, or dead zone traps which lie in the inner regions (less than 10 

au) of the disc. These traps occur at inner disc regions, not readily 

resolved by ALMA. The outer regions of such discs are rapidly 

depleted in cores that could grow into more massive super-Earths 

or Jupiters and planet formation occurs in the inner disc regions. So 

compact dust discs and initial planetary configurations are predicted 

by our model. 

In low viscosity discs ( α = 10 −4 ) on the other hand, growing 

planetary embryos beyond 10 au are intercepted by the corotation 

torques whose corotation mass scales are much lower. In this 

situation, they are quickly pushed out to twice their starting radius, 

to a maximum of 20 au (but with possibilities to much further out, 

as indicated). For our particular choice of accretion model, these 

planets are unlikely sufficient in mass to be able to open a dust gap 

(see below). This result agrees with other works that the standard 

models of planetesimal growth do not provide planets with sufficient 

mass in the outer regions of discs (Johansen & Bitsch 2019 ). 

Another important aspect of our model is that planets pushed 

out to large disc radii will gradually return to the inner regions of 

the disc. This is also due to the nature of the corotation torque. 

As the mass of the planet grows, this torque saturates. If a planet 

becomes massive enough to decouple from the heat transition trap, 

it will migrate inward, pushed along by the Lindblad torque, until 

it becomes sufficiently massive to open a gap in the gas and slow 

down into the Type II migration mode. In many cases, the planet 

can remain trapped in the extended heat transition trap, in which 

case it gradually mo v es inward as disc viscosity clears out the disc 

o v er a few million years. Ultimately, the disc lifetime is determined 

by the final rapid gas loss due to photoe v aporation (Ercolano & 

Pascucci 2017 ), which is also contained in our models. In discs 

with short lifetimes, photoe v aporation will starve forming Jupiters 

of gas, leaving a dominant collection of Super-Earths (Hase ga wa & 

Pudritz 2013 ; Cridland et al. 2016 ; Hase ga wa 2016 ; Alessi et al. 

2020 ). In either case, planets that have migrated out to large disc 

radii will return to the inner disc regions while the disc is still 

present. This is in excellent agreement with the picture painted by 

van der Marel & Mulders ( 2021 ) which hinges on the assumption 

that ring/gap-creating planets will eventually migrate inward again. 

On another note, outward migration of Super-Jupiter planets has 

also been reported in simulations of low viscosity discs (Dempsey, 

Mu ̃ noz & Lithwick 2021 ). 

Let us return to the question of the distribution of turbulent 

intensities in discs. The data are still scarce, but a variety of mea- 

surements exist, based on observations of mass accretion rates in T- 

Tauri protostellar discs (Hartmann et al. 1998 ), direct measurements 

of velocity dispersion in discs (Flaherty et al. 2018a ; Teague et al. 

2018 ), and constraints arising from the sharpness of dust ring features 

in ALMA observations (Dullemond et al. 2018 ). More recently, Ueda 

et al. ( 2021 ) in their study of differential dust settling on the SED and 

polarization, constrain turbulent α to very low values ( � 10 −5 ). In 

a related vein, Doi & Kataoka ( 2021 ) estimate the dust scale height 

from ALMA dust continuum image of HD 163296 and find α ≃ 10 −4 

− 3 × 10 −3 in two specific rings. These indicate that values for the 

turbulent intensity lie in the range 10 −4 ≤ α ≤ 10 −2 . 

Given this albeit still limited range of direct measurements of 

turbulence in discs, it is natural to think that turbulence amplitudes 

should vary across disc populations. Stars form in star clusters, 

so there are bound to be large variations in the ionizing radiation 

environments of discs across such regions (e.g. being in the proximity 

of a massive star forming in a cluster, versus forming in a quiet 

‘suburb’ of the star cluster). Since the masses of protoplanetary discs 

are linked to the masses of stars which ultimately form within them, 

discs will have a considerable range in mass and column density. 

More massive discs, having higher column densities, are more highly 

screened from X-ray ionization, resulting in lower disc ionization and 

hence, MRI turbulence. All of these local conditions will determine 

the degree of the disc ionization by stellar X-rays (Matsumura & 

Pudritz 2006 ), on the level of MRI turbulence within them, and 

hence on the character of their forming planetary system. 

6.1 Confronting the obser v ations 

Our results address sev eral ke y observational constraints on planet 

formation: 

(i) Planets at large disc radii are not associated with opacity 

transitions . One of the main challenges to standard models of planet 

formation is the importance of ice line formation. Our model shows 

that while ice lines are important traps for planet formation in higher 

viscosity discs, this is not so obvious for low viscosity discs. Low 

mass forming planets in low viscosity discs are pushed out to large 

disc radii at a very early time, where they are trapped in extended 

heat transition regions. Such traps have no connection to opacity 

transitions or ice lines, and originate in the rather broad disc region 

in which the transition between predominantly viscous to radiative 

heating of the disc occurs. Unlike ice lines, or dead zone traps, 

planets associated with the heat transition could open gaps o v er a 

wide range of potential disc radii. Where this region occurs in the 

disc will depend on the strength of the turbulence, as we have seen 

in Fig. 4 . 

These results are in excellent accord with observations that the gaps 

structures in HL Tau are not associated with opacity transitions, such 

as water, or other icelines (van der Marel, Williams & Bruderer 

2018 ). If these gaps are indeed the result of planet formation, then 

these planets cannot be associated with such transitions, as our model 

clearly shows. 

We note that planet formation at higher disc viscosities in our models 

is more closely connected with ice lines and opacity transitions, 

which are not currently well resolved by ALMA observations. 

MNRAS 510, 6059–6084 (2022) 
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Bifurcation of planet formation histories 6081 

(ii) Lo w obser v ed frequency of massi v e planets beyond 10 au . 

As discussed in the Introduction, occurrence rates for giant planets 

falls off markedly beyond 10 au. Our model shows that planets in 

low viscosity discs reside at large disc radii temporarily. They move 

steadily inwards, either by being tethered to their inward moving heat 

transition traps, or by decoupling with such traps and subsequent 

migration driven by Lindblad torques until they open a gap in the gas 

and undergo slow Type II mo v ement. Giv en that, in our picture, most 

discs may have higher turbulent viscosity, those systems will undergo 

strong Lindblad torques that rapidly clear out forming embryos from 

the outer regions of the disc. As a third argument, we note that the 

stochastic ‘kicks’ that turbulence gives to planets especially when 

they are of low mass, will increase their inward migration rates over 

those found in quiescent discs (Baruteau, Meru & Paardekooper 

2011 ). It follows that the loss of planetary cores will be much less 

severe in the lower viscosity discs, again reinforcing our results. 

(iii) Low disc viscosity and pebble formation. A completely 

independent line of evidence supporting low amplitude turbulence 

( α ≃ 10 −5 –10 −4 ) arises upon considering the growth of pebbles 

(Pinilla, Lenz & Stammler 2021 ). With isotropic turbulence, pebble 

formation can happen in discs when the gas and dust diffusion has 

these lo w v alues. Otherwise, high turbulence limits pebble formation 

because of the increased grain fragmentation that will occur. Pebble 

accretion may be important in quickly generating giant planet cores 

(Bitsch et al. 2018 ). Taken together with our own results, we see that 

Jovian planet formation could also occur in low viscosity discs. It 

seems clear that pure pebble accretion quickly produces ∼10 Earth 

mass planets if the dust is large and turbulence is weak (Ormel 2017 ). 

Whether or not this process extends to higher masses is possible (e.g. 

in combination with planet–planet collisions; Wimarsson, Liu & 

Ogihara 2020 ) but is a topic for further investigation. 

(iv) Low disc viscosity and disc winds. The observation of low 

turbulence levels in a disc is a consequence of non-ideal MHD effects 

which damp out turbulence and drive angular momentum loss by 

MHD disc winds (Bai & Stone 2013 ; Gressel et al. 2015 ). Outflows 

are associated with protostellar discs and the formation of stars of all 

masses (e.g. re vie w Pudritz & Ray 2019 ). Therefore our lo w viscosity 

models are in accord with the finding that ambipolar diffusion damps 

out the MRI turbulence to low levels leaving primarily the disc wind 

to extract the disc angular momentum. The energetic jet (Krist et al. 

2008 ) observed in H α and forbidden lines by HST , and the associated 

molecular outflow observed by ALMA (Klaassen et al. 2016 ) from 

HL Tau are the means by which this disc angular momentum is 

carried away. Disc winds will reinforce this trend in the migration of 

forming planets, as we have argued. 

6.2 Dust settling and dust gap opening 

Our results for the corotation masses at large disc radii indicate that 

in our conserv ati ve mass accretion model, planet masses lie in the 

range 1–2 M ⊕. This falls short of the predictions of simulations 

which suggest a dust gap opening mass (Lambrechts & Johansen 

2014 ; Rosotti et al. 2016 ) of 

M dust gap ≃ 15 

(

h 

0 . 05 

)3 

M ⊕ , (64) 

for α = 10 −3 . More recently, Dong et al. ( 2018 ) carried out 

hydrodynamical simulations at very low viscosities ( α = 10 −6 −
10 −5 ) and found that a planet as low in mass as Mars ( M p = 0 . 1 M ⊕) 

could open multiple (4) dust gaps in the disc inner regions where 

the gas disc aspect ratio is low ( h = 0.02). On the other hand, if 

the aspect was high ( h = 0.08), a planet of mass M p = 34 M ⊕ was 

needed to open multiple (3) dust gaps. In our simulations, the gas disc 

aspect ratio h at large disc radii where radiative heating dominates 

is independent of viscosity and has typical values of h between 0.05 

and 0.06 out to 30 au, and then climbing to 0.09 at 100 au. Does the 

high local values of h mean that the heat transition planets computed 

in this work would not open dust gaps after all? 

There are sev eral cav eats to the calculation of dust gap opening 

that need to be addressed. Simulations have not included the result of 

dust settling, nor an in depth examination of the effect that different 

turbulent amplitudes will have on the result (Rosotti et al. 2016 ). 

Our own analysis also assumes complete mixing of the dust and gas. 

This ignores the fact that dust particles will rather quickly settle to 

scale heights that depends on both their size (best measured by their 

Stokes number St in the Epstein drag regime) and the turbulence in 

the disc (Birnstiel, Dullemond & Brauer 2010 ; Doi & Kataoka 2021 ; 

Ueda et al. 2021 ). For Stokes numbers St ≪ 1, the dust scale height 

is related to the gas pressure scale height as 

H d = H 

√ 

α/ St . (65) 

The reduced dust scale height compared to that of the gas has recently 

been observed and quantified for a few systems (Rich et al. 2021 ). 

Another point is that our planet formation calculations assume 

that it is planetesimal accretion that dominates the accretion of rocky 

planetary cores beyond an Earth mass or so. The issue of whether 

or not pebble accretion builds up to Jovian planet mass cores is 

still under investigation. Ho we ver, we do note that low viscosity 

discs may be more fa v ourable to their formation away from the ice 

line and out at larger disc radii. Detailed 3D simulations indicate 

that strong turbulence suppresses pebble accretion (Ormel & Liu 

2018 ), but further investigation is needed. Perhaps of the greatest 

importance is the question of how much dust can be trapped in the 

pressure bumps that these forming planets raise. That is a question 

we leave to forthcoming paper. 

Thus, in our view, it is still an open question as to whether or not 

dust gap opening needs to have a minimum of Neptune mass planets 

to open the dust gaps (as equation 64 suggests). 

7  SUMMARY  

We summarize the flow of technical steps and innovations that we 

hav e dev eloped in this work for the conv enience of the general reader. 

(i) For two levels of disc viscosity (high, α = 10 −3 and low, 

α = 10 −4 ), we first calculate maps of the total torque that would 

be e x erted by the disc on a planet of any mass and semimajor axis 

for each time-step in our simulations (see Fig. 2 ). In these torque 

maps, we identify three key features (three contours of zero net 

torque enclosing regions of outward-directed torque embedded in an 

otherwise inward-directed torque landscape) that influence planetary 

migration in their respective regions of the disc. The torque features 

are common between the high and low viscosity discs, but occur 

uniformly at lower planet masses in the lower viscosity case . 

(ii) Each of the three zero net torque contours are associated with 

(but not necessarily colocated with) a change in a physical quantity 

within the disc and a planet trap (see Fig. 3 ): 

(a) The dead zone , where the ohmic Elsasser number ex- 

ceeds unity (online equation A1 and online Appendix A). 

(b) The water iceline , where the abundances of water vapour 

and ice are equal (online Appendix A). 

(c) The heat transition , where the disc transitions from 

being mainly viscously heated to mainly radiatively heated 

(equations 1, 2, and 9 and Section 2.1). 
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(iii) In our high-mass, high viscosity disc at t = 1.02 Myr (loosely 

the age of the HL Tau system) for example, the outer edge of the 

dead zone is colocated with its trap at ∼1.5 au, the water iceline and 

its trap occur at ∼7 au, and the contour enclosing outward-directed 

torque associated with the heat transition extends from 10 to 40 au 

(Fig. 3 ). 

(iv) We then compute planet evolution tracks, which involve planet 

growth and migration under local disc conditions. These tracks are 

the lines of planet mass and semimajor axis o v er time superimposed 

on the evolving torque maps. This procedure allows us to clearly 

see how the torque landscape affects planet growth and direction of 

migration (Fig. 4 and the movies in Table 2 ). 

(v) It is through the e xtensiv e sets of such simulations that we 

disco v ered the migration bifurcation phenomenon. To develop a 

theoretical model that explains the behaviour, we derived analytic 

expressions, based on generalize torque theory, for the planet mass 

at which the (outward-directed) corotation torque is at maximum 

strength. This we refer to as the corotation mass ( M p, corot , equation 

54). As the corotation torque is prone to saturation o v er time by (in 

our models) either viscous or thermal diffusion, we first derive the 

viscous and thermal corotation masses ( M p, ν, corot , equation 39 and 

M p, χ , corot , equation 47); we then identify which regions of the disc 

to which they each apply based on the Prandtl number (Section 5.3). 

(vi) Building on Kimmig et al. ( 2020 ) who demonstrated that disc 

winds can also lead to outward migration, we show that there is a 

disc wind corotation mass , M p, dw, corot (equation 63) at which the 

outward corotation torques are at a maximum (Section 5.4). 

8  C O N C L U S I O N S  

We have shown, by means of sophisticated astrochemistry and planet 

formation simulations backed by a detailed theoretical framework, 

that there is a bifurcation between the migration histories of planets 

forming in discs of high viscosity and those forming in discs of 

low viscosity. Corotation torques in low viscosity discs push planets 

outward to large disc radii before they return to the inner regions 

of the disc,whereas planets in high viscosity discs only migrate 

inwards. From this we infer that extended, structured protoplanetary 

disc systems with dust gaps/rings observed at 10s of au are likely 

discs that have these low viscosities, while the majority of systems 

with more compact dust components have higher viscosity. 

Our specific conclusions are: 

(i) The torque features associated with the water iceline and 

especially the heat transition significantly affect the migration of 

planets that interact with them: 

(1) In the low viscosity models, a collection of planetary 

embryos are captured by the extended region of outward torque 

associated with the heat transition and are forced to migrate 

outwards to larger disc radii early in their evolution (starting 

around t ≈ 0.750 Myr; see right-hand panels of Fig. 4 and the 

movies in Table 2 ). While some of these planets peel off the 

outward migration band before reaching the trap (see Fig. 7 ’s 

movie), those that reach the largest orbital radii are trapped 

there. These heat transition planets have masses within 1 −
2 M ⊕ and orbital radii ranging 8 −20 au (depending on disc 

mass, see Fig. 7 ), roughly twice as far from the star as where 

they were seeded. With further accretion, they would reach the 

trap escape mass (1 . 5 − 2 . 3 M ⊕; Table 3 ) and migrate inwards 

again. 

(2) In the high viscosity models, planet trapping at the water 

iceline is the main safeguard to otherwise unimpeded inward 

migration (see left-hand panels of Fig. 4 and the movies in 

Table 2 ). These water iceline planets do not accumulate enough 

mass to escape the water iceline trap and continue migrating 

inward before our simulations end. The mass needed to escape 

this trap decreases with time and increases with disc mass, 

ranging 3 –5 M ⊕ (Table 3 ). 

(ii) In both cases of thermal or viscous diffusion in a planet’s 

corotation region, the corotation mass scales as M p, corot ∝ α2/3 , 

explaining how a lower α results in the strongest corotation torque 

reaching lower planet masses. Our analytic expressions describe our 

numerical results well (Fig. 11 ). 

(iii) The extent of outward planet migration in the low viscosity 

discs depends on the disc mass. The most e xtensiv e bifurcation and 

outward migration under the influence of the corotation torque occurs 

for the most massive discs. 

(iv) Analogous to how raising the turbulent α raises the viscous 

and thermal corotation masses, increasing the disc wind mass outflow 

rate through the parameter b increases the disc wind corotation mass, 

M p, dw, corot ∝ b . Stronger winds in the early phases of disc evolution, 

especially in the case of low turbulent viscosity, should contribute to 

strong outward corotation torques. As winds die off during later disc 

evolution, the direction of the wind torque will reverse, helping push 

planets inwards. Using realistic disc wind strengths that align with 

outflo w observ ations suggests a value for M p, dw, corot in the range of 

Earth to mid super-Earth masses. 

Our work has several major implications: 

(i) The statistical analysis of hundreds of protoplanetary discs 

shows that the dust component of discs falls into two populations: 

(1) radially compact, with no (resolved) structure, or (2) radially 

extended, with ample resolved gap/ring structure (van der Marel & 

Mulders 2021 ). The inevitability of dust radial drift suggests that 

compact discs simply contain no mechanism for trapping and 

retaining their dust at large radii (e.g. pressure bumps; Whipple 

1972 ), whereas structured/extended discs do. One possible source 

of pressure bumps is planets – which then requires a mechanism by 

which planets can be present at large radii early in their formation 

history. 

(ii) If turbulence is primarily due to the MRI instability, then we 

argue that the most massive discs (which are the structured/extended 

discs of van der Marel & Mulders 2021 ) will naturally have low 

values of MRI disc turbulence. This is due to increased shielding 

from ionizing radiation. As the most massive discs are more common 

around more massive stars, there should be an associated trend 

of lower disc viscosity in discs around more massive stars. We 

conclude that low values of disc turbulent viscosity ( α = 10 −4 ) 

could be a characteristic of the extended, gap/ring protoplanetary 

systems. 

The models presented here do not take into account the back- 

reaction of the forming planets on the disc structure (e.g. increased 

availability of solids due to dust trapping in planet-induced pressure 

bumps) – and this, we think, is why our heat transition planet masses 

are relatively low. We address this question in a future paper. 

In the meantime, we note that our theory can be tested in principle. 

The key is in identifying where the heat transition occurs in observed 

discs. Since viscous heating rates and hence the extent of the 

viscous region in discs depends upon the turbulent amplitude α, 

observations will need to measure the turbulence strength at various 

disc radii to compare with the external heating rate due to the host 

star. 
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