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Abstract

Given a directed graph G and a list (s1, t1), . . . , (sk, tk) of terminal pairs, the Directed Steiner

Network problem asks for a minimum-cost subgraph of G that contains a directed si → ti path

for every 1 ≤ i ≤ k. The special case Directed Steiner Tree (when we ask for paths from

a root r to terminals t1, . . . , tk) is known to be fixed-parameter tractable parameterized by the

number of terminals, while the special case Strongly Connected Steiner Subgraph (when

we ask for a path from every ti to every other tj) is known to be W[1]-hard parameterized by

the number of terminals. We systematically explore the complexity landscape of directed Steiner

problems to fully understand which other special cases are FPT or W[1]-hard. Formally, if H is a

class of directed graphs, then we look at the special case of Directed Steiner Network where

the list (s1, t1), . . . , (sk, tk) of requests form a directed graph that is a member of H. Our main

result is a complete characterization of the classes H resulting in fixed-parameter tractable special

cases: we show that if every pattern in H has the combinatorial property of being “transitively

equivalent to a bounded-length caterpillar with a bounded number of extra edges,” then the

problem is FPT, and it is W[1]-hard for every recursively enumerable H not having this property.

This complete dichotomy unifies and generalizes the known results showing that Directed

Steiner Tree is FPT [Dreyfus and Wagner, Networks 1971], Strongly Connected Steiner

Subgraph is W[1]-hard [Guo et al., SIAM J. Discrete Math. 2011], and Directed Steiner

Network is solvable in polynomial-time for constant number of terminals [Feldman and Ruhl,

SIAM J. Comput. 2006], and moreover reveals a large continent of tractable cases that were not

known before.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph

Theory

Keywords and phrases Directed Steiner Tree, Directed Steiner Network, fixed-parameter tract-

ability, dichotomy

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.27

1 Introduction

Steiner Tree is a basic and well-studied problem of combinatorial optimization: given an

edge-weighted undirected graph G and a set R ⊆ V (G) of terminals, it asks for a minimum-
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27:2 Characterization of Tractability for Directed Steiner Network

cost tree connecting the terminals. The problem is well known to be NP-hard, in fact, it was

one of the 21 NP-hard problems identified by Karp’s seminal paper [22]. There is a large

literature on approximation algorithms for Steiner Tree and its variants, resulting for

example in constant-factor approximation algorithms for general graphs and approximation

schemes for planar graphs (see [8, 15, 9, 4, 3, 2, 7, 26, 24, 23, 1, 17]). From the viewpoint of

parameterized algorithms, the first result is the classic dynamic-programming algorithm of

Dreyfus and Wagner [17] from 1971, which solves the problem with k = |R| terminals in time

3k ·nO(1), showing that the problem is fixed-parameter tractable (FPT) parameterized by the

number of terminals. More recently, the running time was improved to 2k ·nO(1) by Björklund

et al. [5] using the technique of fast subset convolution. Steiner Forest is the generalization

where the input contains an edge-weighted graph G and a list (s1, t1), . . . , (sk, tk) of pairs

of terminals and the task is to find a minimum-cost subgraph containing an si–ti path for

every 1 ≤ i ≤ k. The fixed-parameter tractability of Steiner Forest follows from the

observation that the connected components of the solution induces a partition on the set

{s1, . . . , sk, t1, . . . , tk} of terminals, and hence we can solve the problem by for example trying

every partition and invoking a Steiner Tree algorithm for each class of the partition.

On directed graphs, Steiner problems can become significantly harder, and while there

is a richer landscape of variants, very few results are known [21, 11, 18, 10, 27, 14, 13]. A

natural and well-studied generalization of Steiner Tree to directed graphs is Directed

Steiner Tree (DST), where an arc-weighted directed graph G and terminals r, t1, . . . , tk
are given and the tasks is to find a minimum-cost subgraph containing an r → ti path for

every 1 ≤ i ≤ k. Using essentially the same techniques as in the undirected case [5, 17],

one can show that this problem is also FPT parameterized by the number of terminals.

An equally natural generalization of Steiner Tree to directed graphs is the Strongly

Connected Steiner Subgraph (SCSS) problem, where an arc-weighted directed graph G

with terminals t1, . . . , tk is given, and the task is to find a minimum-cost subgraph containing

a ti → tj path for any 1 ≤ i, j ≤ k with i 6= j. Guo et al. [21] showed that, unlike DST, the

SCSS problem is W[1]-hard parameterized by the number k of terminals (see also [14]). A

common generalization of DST and SCSS is the Directed Steiner Network (DSN)

problem (also called Directed Steiner Forest or Point-to-Point Connection), where

an arc-weighted directed graph G and a list (s1, t1), . . . , (sk, tk) of terminal pairs are given

and the task is to find a minimum-cost subgraph containing an si → ti path for every

1 ≤ i ≤ k. Being a generalization of SCSS, the Directed Steiner Network problem

is also W[1]-hard, but Feldman1 and Ruhl [18] showed that the problem is solvable in time

nO(k), that is, in polynomial time for every constant k.

Besides Directed Steiner Tree, what other special cases of Directed Steiner

Network are fixed-parameter tractable? Our main result gives a complete map of the

complexity landscape of directed Steiner problems, precisely describing all the FPT/W[1]-hard

variants and revealing highly non-trivial generalizations of Directed Steiner Tree that

are still tractable. Our results are expressed in the following formal framework. The pairs

(s1, t1), . . . , (sk, tk) in the input of DSN can be interpreted as a directed (unweighted) pattern

graph on a set R of terminals. If this pattern graph is an out-star, then the problem is

precisely DST; if it is a bidirected clique, then the problem is precisely SCSS. More generally,

if H is any class of graphs, then we define the Directed Steiner H-Network (H-DSN)

problem as the restriction of DSN where the pattern graph is a member of H. That is, the

1 We note that Jon Feldman (co-author of [18]) is not the same person as Andreas Emil Feldmann
(co-author of this paper).
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Figure 1 Two 4-caterpillars: an out- (left) and an in-caterpillar (right).

input of H-DSN is an arc-weighted directed graph G, a set R ⊆ V (G) of terminals, and an

unweighted directed graph H ∈ H on R; the task is to find a minimum-cost network N ⊆ G

such that N contains an s → t path for every st ∈ E(H).

We give a complete characterization of the classes H for which H-DSN is FPT or

W[1]-hard. We need the following definition of “almost-caterpillar graphs” to describe the

borderline between the easy and hard cases (see Figure 1).

◮ Definition 1. A λ0-caterpillar graph is constructed as follows. Take a directed path

(v1, . . . , vλ0
) from v1 to vλ0

, and let W1, . . . ,Wλ0
be pairwise disjoint vertex sets such that

vi ∈ Wi for each i ∈ {1, . . . , λ0}. Now add edges such that either every Wi forms an out-star

with root vi, or every Wi forms an in-star with root vi. In the former case we also refer to

the resulting λ0-caterpillar as an out-caterpillar, and in the latter as an in-caterpillar. A

0-caterpillar is the empty graph. The class Cλ,δ contains all directed graphs H such that

there is a set of edges F ⊆ E(H) of size at most δ for which the remaining edges E(H) \ F

span a λ0-caterpillar for some λ0 ≤ λ.

If there is an s → t path in the pattern graph H for two terminals s, t ∈ R, then adding

the edge st to H does not change the problem: connectivity from s to t is already implied by

H, hence adding this edge does not change the feasible solutions. That is, adding a transitive

edge does not change the solution space and hence it is really only the transitive closure of

the pattern H that matters. We say that two pattern graphs are transitively equivalent if

their transitive closures are isomorphic. We denote the class of patterns that are transitively

equivalent to some pattern of Cλ,δ by C∗
λ,δ. Our main result is a sharp dichotomy saying that

H-DSN is FPT if every pattern of H is transitively equivalent to an almost-caterpillar graph

and it is W[1]-hard otherwise. We measure the running time in λ, δ, and the vertex cover

number τ of the input pattern H, i.e. τ is the size of the smallest vertex subset W of H such

that every edge of H is incident to a vertex of W .

◮ Theorem 2. Let H be a recursively enumerable class of patterns.

1. If there are constants λ and δ such that H ⊆ C∗
λ,δ, then H-DSN with parameter k = |R|

is FPT and can be solved in 2O(k+max{ω2, τω log ω)})nO(ω) time, where ω = (1 + λ)(λ+ δ)

and τ is the vertex cover number of the given input pattern H ∈ H.

2. Otherwise, if there are no such constants λ and δ, then the problem is W[1]-hard for

parameter k.

Invoking Theorem 2 with specific classes H, we can obtain algorithmic or hardness results

for specific problems. For example, we may easily recover the following facts:

If HDST is the class of all out-stars, then HDST-DSN is precisely the DST problem. As

HDST ⊆ C∗
1,0 holds, Theorem 2(1) recovers the fact that DST can be solved in time

2O(k)nO(1) and is hence FPT parameterized by the number k = |R| of terminals [17, 5].

If HSCSS is the class of all bidirected cliques, then HSCSS-DSN is precisely the SCSS

problem. One can observe that HSCSS is not contained in C∗
λ,δ for any constants λ, δ

(for example, because every graph in Cλ,δ has at most λ+ 2δ vertices with both positive

ICALP 2016
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in-degree and positive out-degree, and this remains true also for the graphs in C∗
λ,δ).

Hence Theorem 2(2) recovers the fact that SCSS is W[1]-hard [21].

Let Hd be the class of directed graphs with at most d edges. As Hd ⊆ C∗
0,d holds,

Theorem 2(1) recovers the fact that Directed Steiner Network with at most d

requests is polynomial-time solvable for every constant d [18]. Note that any pattern of

HSCSS is transitively equivalent to a bidirected star, which has vertex cover number τ = 1.

Hence for the important spacial case of SCSS, our algorithm recovers the running time

of 2O(d log d)nO(d) = nO(d) given in [18].

Very recently, Suchý [25] studied the following generalization of DST and SCSS: in the

q-Root Steiner Tree (q-RST) problem, a set of q roots and a set of k leaves are

given, and the task is to find a minimum-cost network where the roots are in the same

strongly connected component and every leaf can be reached from every root. Building

on the work of [18], Suchý [25] presented an algorithm with running time 2O(k) · nO(q) for

this problem, which shows that it is FPT for every constant q. Let Hq-RST be the class of

directed graphs that are obtained from an out-star by making q−1 of the edges bidirected.

Observe that Hq-RST is a subset of C1,q−1, that q-RST can be expressed by an instance

of Hq-RST-DSN, and that any pattern of Hq-RST has vertex cover number τ = 1. Thus

Theorem 2(1) implies that q-RST can be solved in time 2O(k+q log q) ·nO(q) = 2O(k) ·nO(q),

recovering the fact that it is FPT for every constant q.

Thus the algorithmic side of Theorem 2 unifies and generalizes three algorithmic results: the

fixed-parameter tractability of DST (which is based on dynamic programming on the tree

structure of the solution) and q-RST (which is based on simulating a “pebble game”), and

also the polynomial-time solvability of DSN with constant number of requests (which also

is based on simulating a “pebble game”). Let us point out that our algorithmic results are

significantly more general than just the unification of these three results: the generalization

from stars to bounded-length caterpillars is already a significant extension and very different

from earlier results. We consider it a major success of the systematic investigation that,

besides finding the unifying algorithmic ideas generalizing all previous results, we were able

to find tractable special cases in an unexpected new direction.

There is a surprising non-monotonicity in the classification result of Theorem 2. As DST

is FPT and SCSS is W[1]-hard, one could perhaps expect that H-DSN becomes harder

as the pattern become denser. However, it is possible that the addition of further requests

makes the problem easier. For example, if H contains every graph that is the vertex-disjoint

union of two out-stars, then H-DSN is classified to be W[1]-hard by Theorem 2(2). However,

if we consider those graphs where there is also a directed edge from the center of one star to

the other star, then these graphs are 2-caterpillars (i.e., contained in C2,0) and hence H-DSN

becomes FPT by Theorem 2(1). This unexpected non-monotonicity further underlines the

importance of completely mapping the complexity landscape of the problem area: without

complete classification, it would be very hard to predict what other tractable/intractable

special cases exist.

We mention that one can also study the vertex-weighted version of the problem, where

the input graph has weights on the vertices and the goal is to minimize the total vertex-

weight of the solution. In general, vertex-weighted problems can be more challenging than

edge-weighted variants [15, 4, 23, 12]. However, for general directed graphs, there are easy

transformations between the two variants. Thus the results of this paper can be interpreted

for the vertex-weighted version as well.
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1.1 Our techniques

We prove Theorem 2 the following way. In Section 2, we first establish the combinatorial

bound that there is a solution whose cutwidth, and hence also (undirected) treewidth, is

bounded by the number of requests.

◮ Theorem 3. A minimal solution M to a pattern H has cutwidth at most 7m if m = |E(H)|.

Then in Section 3 we go on to generalize this to almost-caterpillars, showing that if the

pattern is in C∗
λ,δ, then the (undirected) treewidth can be bounded in λ and δ.

◮ Theorem 4. The treewidth of a minimal solution to any pattern graph in C∗
λ,δ is at

most 7(1 + λ)(λ+ δ).

This combinatorial bound can be exploited in an algorithm that restricts the search for a

bounded-treewidth solution.

◮ Theorem 5. Let an instance of H-DSN be given by a graph G with n vertices, and a

pattern H on k terminals with vertex cover number τ . If the optimum solution to H in G

has treewidth ω then the optimum can be computed in time 2O(k+max{ω2, τω log ω)})nO(ω).

Combining Theorem 4 and Theorem 5 proves the algorithmic side of Theorem 2. We

remark that the proof is completely self-contained (with the exception of some basic facts on

treewidth) and in particular we do not build on the algorithms of Feldman and Ruhl [18]. As

combining Theorem 3 and Theorem 5 already proves that DSN with a constant number of

requests can be solved in polynomial time, as a by-product this gives an independent proof

for the result of Feldman and Ruhl [18]. One can argue which algorithm is simpler, but

perhaps our proof (with a clean split of a combinatorial and an algorithmic statement) is

more methodological and better reveals the underlying reason why the problem is tractable.

Finally, in Section 4 we show that whenever the patterns in H are not transitively

equivalent to almost-caterpillars, the problem is W[1]-hard. We first show that there is

only a small number of obstacles for not being transitively equivalent to almost-caterpillars:

the graph class contains (possibly after identification of vertices) arbitrarily large strongly

connected graphs, pure diamonds, or flawed diamonds (see Lemma 22 for the precise

statement). We provide a separate W[1]-hardness proof for each of these cases, completing

the proof of the hardness side of Theorem 2.

Due to space limitations we defer all missing proofs to the full version of this extended

abstract, including the algorithm that implies Theorem 5.

2 The cutwidth of minimal solutions for bounded-size patterns

Consider a minimal solution M to an instance of H-DSN, in which no edge can be removed

without making the solution infeasible. The goal of this section is to prove Theorem 3: we

bound the cutwidth of a minimal solution M to a pattern H in terms of m = |E(H)|. A

layout of a graph G is an injective function ψ : V (G) → N inducing a total order on the

vertices of G. Given a layout, we define the set Vi = {v ∈ V (G) | ψ(v) ≤ i} and say that an

edge crosses the cut (Vi, V i) if it has one endpoint in Vi and one endpoint in V i := V (G) \Vi.

The cutwidth of the layout is the maximum number of edges crossing any cut (Vi, V i) for

any i ∈ N. The cutwidth of a graph is the minimum cutwidth over all its layouts.

Like Feldman and Ruhl [18], we consider the two extreme cases of directed acyclic

graphs (DAGs) and strongly connected components (SCCs) in our proof. Contracting all

SCCs of M without removing parallel edges sharing the same head and tail, but removing

ICALP 2016
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the resulting self-loops, results in a directed acyclic multi-graph D, the so-called condensation

graph of M . We bound the cutwidth of D and the SCCs of M separately, and then put

together these two bounds to obtain a bound for the cutwidth of M . As we will see, bounding

the cutwidth of the acyclic multi-graph D and putting together the bounds are fairly simple.

The main technical part is bounding the cutwidth of the SCCs.

We will need two simple facts about cutwidth. First, the cutwidth of an acyclic multi-

graph can be bounded using the existence of a topological ordering of the vertices. That is,

for any acyclic graph G there is an injective function ϕ : V (G) → N such that ϕ(u) < ϕ(v) if

uv ∈ E(G). Note that such a function in particular is a layout.

◮ Lemma 6. The layout given by a topological ordering ϕD of an acyclic directed multi-

graph D that is the union of m paths, has cutwidth at most m.

◮ Lemma 7. Let G be a directed graph and D be its condensation multi-graph. If the cutwidth

of D is x and the cutwidth of every SCC of G is at most y, then the cutwidth of G is at

most x+ y.

◮ Lemma 8. Any SCC U of a minimal solution M to a pattern H with at most m edges

has cutwidth at most 6m.

Proof. First we establish that U is a minimal solution to a certain pattern.

◮ Claim 9. U is a minimal solution to a pattern HU with at most m edges.

Let RU be the terminals in the pattern HU given by Claim 9 and let us select an arbitrary

root t ∈ RU . Note that HU has at most m edges, hence |RU | ≤ 2m. Let Sin (resp., Sout) be

an in-star (resp., out-star) connecting t with every other vertex of RU . As U is a strongly

connected graph containing every vertex of RU , it is also a solution to the pattern Sin on RU .

Let us select an Ain ⊆ U that is a minimal solution to Sin; it is not hard to see that Ain is

an in-arborescence with at most 2m leaves. Similarly, let Aout ⊆ U be an out-arborescence

that is a minimal solution to Sout. Observe that U has to be exactly Ain ∪ Aout: if there

is an edge e ∈ E(U) that is not in Ain ∪ Aout, then U \ e still contains a path from every

vertex of RU to every other vertex of RU though t, contradicting the fact that U is a minimal

solution to pattern HU .

Let Z be the set of edges obtained by reversing the edges in E(Ain) \ E(Aout). As

reversing edges does not change the cutwidth, bounding the cutwidth of Aout ∪ Z will also

imply a bound on the cutwidth of U = Ain ∪Aout.

◮ Claim 10. The union Aout ∪ Z is a directed acyclic graph.

Claim 10 implies a topological ordering on the vertices of Aout ∪ Z. This order can be

used as a layout for U . Using some more structural insights, the number of edges crossing

a given cut can be bounded in the number of edges of the pattern graph, as the following

claim shows.

◮ Claim 11. Any topological ordering ϕ of the graph Aout ∪ Z has cutwidth at most 6m.

As the underlying undirected graph of U and Aout ∪ Z are the same, Claim 11 implies

that the cutwidth of U is at most 6m. This completes the proof of Lemma 8. ◭

The proof of Theorem 3 follows easily from putting together the ingredients. We remark

that the bound on the cutwidth in Claim 11 is asymptotically tight: Take a constant degree

expander on m vertices. It has treewidth Ω(m) [20], and so its cutwidth is at least as large.

Now bi-direct each (undirected) edge {u, v} by replacing it with the directed edges uv and vu.
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Next subdivide every edge uv to obtain edges ut and tv for a new vertex t, and make t a

terminal of R. This yields a strongly connected instance G. The pattern graph H for this

instance is a cycle on R, which has O(m) edges, since the terminals are subdivision points of

bi-directed edges of a constant degree graph with m vertices. As H is strongly connected,

every minimal solution to H contains the edges ut and tv incident to each terminal t. Thus

a minimal solution contains all of G and has cutwidth Ω(m). Since G is strongly connected,

it also contains the required arborescences Ain and Aout.

3 The treewidth of minimal solutions to almost-caterpillar patterns

In this section, we prove that any minimal solution M to a pattern H ∈ C∗
λ,δ has the following

structure.

◮ Theorem 12. A minimal solution M to a pattern H ∈ C∗
λ,δ consists of a subgraph M c

that is a minimal solution to a sub-pattern Hc of H with at most (1 + λ)(λ+ δ) edges, and a

forest M \M c of out-arborescences, each of which intersects M c only at the root.

According to Theorem 3, the cutwidth of the core M c is therefore at most 7(1 +λ)(λ+ δ).

It is well known [6] that the cutwidth is an upper bound on the treewidth of a graph, and

so also the treewidth of M c is at most 7(1 + λ)(λ+ δ). It is easy to see that attaching any

number of arborescences to M c does not increase the treewidth. Thus we obtain Theorem 4,

which is the basis for our algorithm to solve H-DSN in case every pattern of H is transitively

equivalent to an almost-caterpillar.

In particular, when adding δ edges to the pattern of the DST problem, which is a single

out-star, i.e., a 1-caterpillar, then the pattern becomes a member of C1,δ and hence our

result implies a linear treewidth bound of O(δ). The example given at the end of Section 2

also shows that there are patterns H ∈ Cλ,δ for which every minimal solution has treewidth

Ω(λ+ δ): just consider the case when H is a cycle of length λ+ δ (i.e., it contains a trivial

caterpillar graph). One interesting question is whether the treewidth bound of 7(1 +λ)(λ+ δ)

in Theorem 4 is tight. We conjecture that the treewidth of any minimal solution to a pattern

graph H ∈ C∗
λ,δ actually is O(λ+ δ).

Proof (of Theorem 12). Let M be a minimal solution to a pattern H ∈ C∗
λ,δ. Since every

pattern in C∗
λ,δ has a transitively equivalent pattern in Cλ,δ and replacing a pattern with

a transitively equivalent pattern does not change the space of feasible solutions, we may

assume that H is actually in Cλ,δ, i.e., H consists of a caterpillar of length at most λ and δ

additional edges.

The statement is trivial if |E(H)| ≤ δ. Otherwise, according to Definition 1, H contains

a λ0-caterpillar for some 1 ≤ λ0 ≤ λ and at most δ additional edges. Hence let us fix a set F

of at most δ edges of H, such that the remaining edges of H form a λ0-caterpillar C, for

some 1 ≤ λ0 ≤ λ, with a path (v1, . . . , vλ0
) on the roots of the stars Si. We only consider the

case when C is an out-caterpillar as the other case is symmetric, i.e., every Si is an out-star.

Define I = H \
⋃λ0

i=1 Si to be all of H except the stars. Note that |E(I)| ≤ λ+ δ. We fix a

subgraph MI of M that is a minimal solution to the sub-pattern I, and for every st ∈ E(I)

we fix a path Pst in MI . Note that MI is the union of these at most λ+ δ paths, since MI

is a minimal solution. For each star Si, let us consider a minimal solution MSi
⊆ M to Si;

note that MSi
has to be an out-arborescence.

For i ∈ {1, . . . , λ0}, let ℓ be a leaf of Si, and let e be an edge of M . If M \ e has no path

from vi to ℓ, then we say that e is ℓ-necessary. More generally, we say that e is i-necessary if

e is ℓ-necessary for some leaf ℓ of Si.

ICALP 2016
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◮ Claim 13. Let P be a path in M , and for some i ∈ {1, . . . , λ0}, let Wi ⊆ E(M) contain

all i-necessary edges f for which f /∈ E(P ), but the head of f is a vertex of P . Then there

exists one leaf ℓ of Si such that every f ∈ Wi is ℓ-necessary.

Using this observation, we identify the core M c of M using the at most λ + δ paths

Pst that make up MI , and then selecting an additional at most λ0 paths for each Pst. To

construct M c together with its pattern graph Hc, we initially let M c = MI and Hc = I and

repeat the following step for every st ∈ E(I) and 1 ≤ i ≤ λ0. For a given st and i, let us

check if there are i-necessary edges f /∈ E(Pst) that have their heads on the path Pst ⊆ MI .

If so, then by Claim 13 all these edges are ℓ-necessary for some leaf ℓ of Si. We add an

arbitrary path of M from vi to ℓ (which contains all these edges) to M c and add the edge

viℓ to Hc. After repeating this step for every st ∈ E(H) and i, we remove superfluous edges

from M c: as long as there is an edge e ∈ E(M c), which can be removed while maintaining

feasibility for the pattern Hc, i.e., for every vw ∈ E(Hc) there is a v → w path in M c not

containing e, we remove e. Finally, we remove any isolated vertices from M c.

Note that the resulting network M c is a minimal solution to Hc by construction. Also

note that Hc contains at most λ + δ edges from I and at most λ0 ≤ λ additional edges

for each edge of I, so that |E(Hc)| ≤ (1 + λ)(λ + δ). We prove that the remaining graph

M c \E(M) consists of arborescences, each of which intersects M c only at the root. For this,

we rely on the following key observation.

◮ Claim 14. If a vertex u has at least two incoming edges in M , then every such edge is in

the core M c.

Proof. First we show that there is an st ∈ E(I) such that every s → t path in M goes

through u. Suppose for contradiction that for every st ∈ E(I) there is a path from s to t in

M avoiding u. Since M is a minimal solution, the edges entering u must then be needed

for some stars Si of the pattern H instead. Let e and f be two edges entering u. As e and

f have the same head, they cannot be part of the same out-arborescence MSi
. Therefore,

there are indices i < j such that (w.l.o.g.) e is i-necessary and f is j-necessary.

There is a path in M from the root vi of Si to the root vj of Sj , due to the path

(v1, . . . , vλ0
) in the caterpillar C ⊆ H. Since path (v1, . . . , vλ0

) is part of I, our assumption

on e and f implies that there is a path P in M from vi to vj that avoids both e and f . As

f ∈ E(MSj
), there is a path Q in M starting in vj and passing through f . This path cannot

contain e, as e and f have the same head u. The existence of P and Q implies that u can

be reached from vi by a path through vj and f , avoiding the edge e. Thus for any edge

viℓ ∈ E(Si), if there is a vi → ℓ path going through e (and hence vertex u), then it can

be rerouted to avoid e and use edge f instead. This however contradicts the fact that e is

i-necessary.

We have proved that there is an st ∈ E(I) such that every s → t path in M goes

through u. Suppose that there is an edge e 6∈ E(M c) entering u. If e is needed for some

s′t′ ∈ E(I) in M , then e is also present in M c, and we are done. Otherwise, as M is a

minimal solution, edge e is i-necessary for some i ∈ {1, . . . , λ0}. Consider now the step in

the construction of M c when we considered st ∈ E(I) and integer i. As we have shown,

the s → t path Pst goes through u. Thus e is an i-necessary edge not in E(Pst) such that

its head is on Pst. This means that we identified a leaf ℓ of Si such that e is ℓ-necessary,

introduced viℓ into Hc, and added a vi → ℓ path to Hc, which had to contain e. Moreover,

since all paths from vi to ℓ in M pass through e, edge e then remains in M c when removing

superfluous edges. ◭
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We are now ready to show that every component of the remaining part is an out-

arborescence and intersects the core only in a single vertex.

◮ Claim 15. The remaining graph M+ := M \ E(M c) is a forest of out-arborescences, each

of which intersects M c only at the root.

Since we have already established that M c is a minimal solution to Hc with |E(Hc)| ≤

(1 + λ)(λ+ δ), Claim 15 completes the proof of Theorem 12. ◭

4 Characterizing the hard cases

We now turn to proving the second part of Theorem 2, i.e., that H-DSN is W[1]-hard for

every class H where the patterns are not transitively equivalent to almost-caterpillars.

◮ Theorem 16. Let H be a recursively enumerable class of patterns for which there are

no constants λ and δ such that H ⊆ C∗
λ,δ. Then the problem H-DSN is W[1]-hard for

parameter k.

A major technical simplification is to assume that the class H is closed under identifying

terminals and transitive equivalence. As we show in Section 4.1, this assumption is not really

restrictive: it is sufficient to prove hardness for the closure of H under identification and

transitive equivalence, since any W[1]-hardness result for the closure can be transferred to H.

For classes closed under these operations, it is possible to give an elegant characterization of

the classes that are not almost-caterpillars. There are only a few very specific reasons why a

class H is not in C∗
λ,δ for any λ and δ: either H contains every directed cycle, or H contains

every “pure diamond,” or H contains every “flawed diamond” (see Section 4.2 for the precise

definitions). Then in Section 4.3, we provide a W[1]-hardness proof for each of these cases,

completing the hardness part of Theorem 2.

4.1 Closed classes

We define the operation of identifying terminals in the following way: given a partition V of

the vertex set V (H) of a pattern graph H, each set W ∈ V is identified with a single vertex

of W , after which any resulting isolated vertices and self-loops are removed, while parallel

edges having the same head and tail are replaced by only one copy of that edge. A class of

patterns is closed under this operation if for any pattern H in the class, all patterns that can

be obtained by identifying terminals are also in the class. Similarly, we say that a class H

is closed under transitive equivalence if whenever H and H ′ are two transitively equivalent

patterns such that H ∈ H, then H ′ is also in H. The closure of the class H under identifying

terminals and transitive equivalence is the smallest closed class H′ ⊇ H. It is not difficult to

see that any member of the closure can be obtained by a replacement with a transitively

equivalent pattern and a single application of identifying terminals.

The following lemma shows that if we want to prove W[1]-hardness for a class, then it

is sufficient to prove hardness for its closure. More precisely, due to an slight technicality,

the actual statement we prove is that it is sufficient to prove W[1]-hardness for a decidable

subclass of the closure.

◮ Lemma 17. Let H be a recursively enumerable class of patterns, let H′ be the closure of H

under identifying terminals and transitive equivalence, and let H′′ be a decidable subclass

of H′. There is a parameterized reduction from H′′-DSN to H-DSN with parameter k.
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a) b) c) d) e)

Figure 2 The obstruction appearing in Lemma 19: a) a directed cycle of length 4, b) a pure

4-out-diamond, c) a flawed 4-out-diamond, d) a pure 4-in-diamond, e) a flawed 4-in-diamond.

4.2 Obstructions: SCCs and diamonds

To show the hardness for a closed class that is not the subset of C∗
λ,δ for any λ and δ, we will

characterize such a class in terms of the occurrence of arbitrarily large cycles, and another

class of patterns called “diamonds” (cf. Figure 2).

◮ Definition 18. A pure α-diamond graph is constructed as follows. Take a vertex set L

of size α ≥ 1, and two additional vertices r1 and r2. Now add edges such that L is the leaf

set of either two in-stars or two out-stars S1 and S2 with roots r1 and r2, respectively. If

we add an additional vertex x with edges r1x and r2x if S1 and S2 are in-stars, and edges

xr1 and xr2 otherwise, the resulting graph is a flawed α-diamond. We refer to both pure

α-diamonds and flawed α-diamonds as α-diamonds. If S1 and S2 are in-stars we also refer to

the resulting α-diamonds as in-diamonds, and otherwise as out-diamonds.

The goal of this section is to prove the following useful characterization precisely describing

classes that are not almost-caterpillars.

◮ Lemma 19. Let H be a class of pattern graphs that is closed under identifying terminals

and transitive closure. Exactly one of the following statements is true:

H ⊆ C∗
λ,δ for some constants λ and δ.

H contains every directed cycle, or every pure in-diamond, or every pure out-diamond,

or every flawed in-diamond, or every flawed out-diamond.

For the proof of Theorem 16, we only need the fact that at least one of these two

statements hold: if the class H is not in C∗
λ,δ, then we can prove hardness by observing that

H contains one of the hard classes. For the sake of completeness, we give a simple proof that

the two statements cannot hold simultaneously in the full version of this extended abstract.

Showing that at least one of the two statements of Lemma 19 hold is not as easy to prove.

First, the following two lemmas show how a large cycle or a large diamond can be identified

if certain structures appear in a pattern. The main part of the proof is to show that if H

contains patterns that are arbitrarily far from being a caterpillar, then one of these two

lemmas can be invoked (see Lemma 22).

◮ Lemma 20. Let H be a class of pattern graphs that is closed under identifying terminals

and transitive closure. If some H ∈ H contains a matching of size α, then H contains a

directed cycle of length α.

Proof. A matching of a graph is a subset M of its edges such that no two edges of M share

a vertex. A matching e1, . . . , eα of α edges can be transformed into a cycle of length α

by identifying the head of ei and tail of ei+1 (and the head of eα with the tail of e1). All

remaining vertices that do not belong to the cycle can then be identified with any vertex of

the cycle, so that the resulting graph consists of the cycle and some additional edges. Since

H is closed under identifying terminals, this graph would be contained in H. As this graph

is strongly connected and H is closed also under transitive equivalence, we can conclude that

H contains a cycle of length α. ◭
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Next we give a sufficient condition for the existence of large diamonds. We say that an

edge uv of a graph H is transitively non-redundant if there is no u → v path in H \ uv.

◮ Lemma 21. Let H be a class of pattern graphs that is closed under identifying terminals

and transitive equivalence. Let H ∈ H be a pattern graph that contains two out-stars (or two

in-stars) S1 and S2 as induced subgraphs, with at least α edges each and roots r1 and r2,

respectively. The class H contains an α-diamond if

1. H contains neither a path from r1 to r2, nor from r2 to r1,

2. the leaves of S1 and S2 have out-degree 0 (if S1 and S2 are out-stars) or in-degree 0 (if

S1 and S2 are in-stars), and

3. the edges of the stars are transitively non-redundant.

To show that at least one of the two statements of Lemma 19 hold, we prove that if the

second statement is false, then the first statement is true. That is, if H does not contain all

cycles (i.e., there is an α1 such that H contains no cycle larger than α1), H does not contain

all pure out-diamonds (i.e., there is an α2 such that H contains no pure out-diamond larger

than α2), etc., then H ⊆ C∗
λ,δ for some constants λ and δ. In other words, if we let α to

be the maximum of α1, α2, etc., then we may assume that H contains no pure of flawed

α-diamond or cycle of length α, and we need to prove H ⊆ C∗
λ,δ under this assumption. Thus

the following lemma completes the proof of Lemma 19.

◮ Lemma 22. Let H be a class of pattern graphs that is closed under identifying terminals and

transitive equivalence. If for some integer α the class H contains neither a pure α-diamond,

flawed α-diamond, nor a cycle of length α, then there exist constants λ and δ (depending

on α) such that H ⊆ C∗
λ,δ.

Proof. Suppose that there is such an integer α. Let λ := 2α and δ := 4α3 + 6α2. Given

any H ′ ∈ H, we show how a transitively equivalent pattern H ∈ Cλ,δ can be constructed,

implying that H ′ belongs to C∗
λ,δ. A vertex cover of a graph is a subset X of its vertices such

that every edge is incident to a vertex of X. By Lemma 20, H ′ cannot contain a matching

of size α. It is well-known that if a graph has no matching of size α, then it has a vertex

cover of size at most 2α (take the endpoints of any maximal matching). Let us fix a vertex

cover X of H ′ having size at most 2α.

To obtain H from H ′, we start with a graph H on V (H ′) having no edges and perform

the following three steps.

1. Let us take the transitive closure on the vertex set X in H ′, i.e., let us introduce into H

every edge uv with u, v ∈ X such that there is a u → v path in H ′.

2. Let us add all edges uv of H ′ to H for which u /∈ X or v /∈ X.

3. Fixing an ordering of the edges introduced in step 2, we remove transitively redundant

edges: following this order, we subsequently remove those edges uv for which there is a

path from u to v in the remaining graph H that is not the edge uv itself.

It is clear that H is transitively equivalent to H ′. Note that X is a vertex cover of H as well,

and hence its complement I = V (H) \X is an independent set, i.e. no two vertices of I are

adjacent. Let EI ⊆ E(H) be the set of edges between X and I. In the rest of the proof, we

argue that the resulting pattern H belongs to Cλ,δ. We show that H can be decomposed

into a path P = (v1, . . . , vλ0
) in X, a star Svi

centered at each vi using the edges in EI , and

a small set of additional edges. This small set of additional edges is constructed in three

steps, by considering a sequence of larger and larger sets F1 ⊆ F2 ⊆ F3.

As EI consists of edges between X and I, it can be partitioned into a set of stars with

roots in X. The following claim shows that almost all of these edges are directed towards X

or almost all of them are directed away from X.
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◮ Claim 23. Either there are less than 2α2 edges uv in EI with head in X, or less than 2α2

edges uv in EI with tail in X.

Assume that the former case of Claim 23 is true, so that the number of edges in EI with

heads in X is bounded by 2α2; the other case can be handled symmetrically. We will use the

out-stars spanned by EI for the caterpillar, which means that we obtain an out-caterpillar.

We use the set F1 to account for the edges in EI with heads in X. Additionally, we will

also introduce into F1 those edges in EI with tails in X that are adjacent to an edge of the

former type. Formally, for any edge uv ∈ Ei with v ∈ X, we introduce into F1 every edge of

EI incident to u. After this step, F1 contains less than 4α3 edges, since there are less than

2α2 edges uv ∈ EI with v ∈ X and u can only be adjacent to vertices in X, which has size

less than 2α.

For any vertex v ∈ X, let Sv denote the out-star formed by the edges of EI \ F incident

to v. Let X ′ ⊆ X contain those vertices v ∈ X for which Sv has at least α leaves.

◮ Claim 24. For any two distinct u, v ∈ X ′, at least one of uv and vu is in H, and the stars

Su and Sv are vertex disjoint.

We extend F1 to F2 by adding all edges of stars Sv with v ∈ X \ X ′ to F2. Since X

contains less than 2α vertices and we extend F1 only by stars with less than α edges, this

step adds less than 2α2 edges, i.e., |F2| ≤ |F1| + 2α2 = 4α3 + 2α2.

By Claim 24, X ′ induces a semi-complete directed graph in H, i.e., at least one of the

edges uv and vu exists for every pair u, v ∈ X ′. It is well-known that every semi-complete

directed graph contains a Hamiltonian path (e.g., [16, Chapter 10, Exercise 1]), and so there

is a path P = (v1, . . . , vλ0
) with λ0 = |X ′| ≤ 2α = λ in H on the vertices of X ′. We extend

F2 to F3 by including any edge induced by vertices of X ′ that is not part of P . There are less

than 4α2 such edges, and hence we have |F3| ≤ |F2| + 4α2 ≤ 4α3 + 6α2 = δ. The edges of H

not in F3 span the path P and disjoint out-stars Svi
with i ∈ {1, . . . , λ0}, i.e., they form a

λ0-caterpillar. This proves that H ∈ Cλ,δ and hence H ′ ∈ C∗
λ,δ, what we had to show. ◭

4.3 Reductions

Lemma 19 implies that in order to prove Theorem 16, we need W[1]-hardness proofs for the

class of all directed cycles, the class of all pure in-diamonds, the class of all pure out-diamonds,

etc. We provide these hardness proofs and then formally show that they imply Theorem 16.

Let us first consider the case when H is the class of all directed cycles. Recall that,

given an arc-weighted directed graph G and a set R ⊆ V (G) of terminals, the Strongly

Connected Steiner Subgraph (SCSS) problem asks for a minimum-cost subgraph that is

strongly connected and contains every terminal in R. This problem is known to be W[1]-hard

parameterized by the number k := |R| of terminals [21]. We can reduce SCSS to an instance

of DSN where the pattern H is a directed cycle on R, which expresses the requirement that

all the terminals are in the same strongly connected component of the solution. Thus the

W[1]-hardness of SCSS immediately implies the W[1]-hardness of H-DSN if H contains all

directed cycles.

◮ Lemma 25 (follows from [21]). If H is the class of directed cycles, then H-DSN is W[1]-hard

parameterized by the number of terminals.

Next we turn our attention to classes containing all diamonds. The following reductions

are from the W[1]-hard Multicoloured Clique problem [19], in which an undirected

graph together with a partition {V1, . . . , Vk} of its vertices into k sets is given, such that for
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any i ∈ {1, . . . , k} no two vertices of Vi are adjacent. The aim is to find a clique of size k, i.e.

a set of pairwise adjacent vertices {w1, . . . , wk} with wi ∈ Vi for each i ∈ {1, . . . , k}.

◮ Lemma 26. If H is the class of all pure out-diamonds, then H-DSN is W[1]-hard paramet-

erized by the number of terminals. The same holds if H is the class of all pure in-diamonds.

The reduction for the case when the pattern is a flawed α-diamond is essentially the same

as the one for pure α-diamonds, as we show next.

◮ Lemma 27. If H is the class of all flawed out-diamonds, then H-DSN is W[1]-hard

parameterized by the number of terminals. The same holds if H is the class of all flawed

in-diamonds.

Given the three reductions above, we can now prove Theorem 16, based on the additional

reduction given in Lemma 17. We defer the final proof to the full version of this extended

abstract.
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