
This is a repository copy of Parameterized approximation algorithms for bidirected steiner
network problems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200959/

Version: Published Version

Proceedings Paper:
Chitnis, R., Feldmann, A.E. orcid.org/0000-0001-6229-5332 and Manurangsi, P. (2018)
Parameterized approximation algorithms for bidirected steiner network problems. In: Azar,
Y., Bast, H. and Herman, G., (eds.) Leibniz International Proceedings in Informatics,
LIPIcs. 26th Annual European Symposium on Algorithms (ESA 2018), 20-24 Aug 2018,
Helsinki, Finland. Leibniz International Proceedings in Informatics, 112 . Schloss
Dagstuhl--Leibniz-Zentrum fuer Informatik , Dagstuhl, Germany . ISBN 978-3-95977-081-1

https://doi.org/10.4230/LIPIcs.ESA.2018.20

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Parameterized Approximation Algorithms for

Bidirected Steiner Network Problems

Rajesh Chitnis1

University of Warwick, UK

rajeshchitnis@gmail.com

Andreas Emil Feldmann2

Charles University, Prague, Czechia

feldmann.a.e@gmail.com

Pasin Manurangsi3

University of California, Berkeley, USA

pasin@berkeley.edu

Abstract

The Directed Steiner Network (DSN) problem takes as input a directed edge-weighted

graph G = (V, E) and a set D ⊆ V × V of k demand pairs. The aim is to compute the cheapest

network N ⊆ G for which there is an s → t path for each (s, t) ∈ D. It is known that this

problem is notoriously hard as there is no k1/4−o(1)-approximation algorithm under Gap-ETH,

even when parameterizing the runtime by k [Dinur & Manurangsi, ITCS 2018]. In light of

this, we systematically study several special cases of DSN and determine their parameterized

approximability for the parameter k.

For the bi-DSNPlanar problem, the aim is to compute a planar optimum solution N ⊆ G in

a bidirected graph G, i.e. for every edge uv of G the reverse edge vu exists and has the same

weight. This problem is a generalization of several well-studied special cases. Our main result

is that this problem admits a parameterized approximation scheme (PAS) for k. We also prove

that our result is tight in the sense that (a) the runtime of our PAS cannot be significantly

improved, and (b) it is unlikely that a PAS exists for any generalization of bi-DSNPlanar, unless

FPT=W[1]. Additionally we study several generalizations of bi-DSNPlanar and obtain upper

and lower bounds on obtainable runtimes parameterized by k.

One important special case of DSN is the Strongly Connected Steiner Subgraph

(SCSS) problem, for which the solution network N ⊆ G needs to strongly connect a given set of

k terminals. It has been observed before that for SCSS a parameterized 2-approximation exists

when parameterized by k [Chitnis et al., IPEC 2013]. We show a tight inapproximability result:

under Gap-ETH there is no (2 − ε)-approximation algorithm parameterized by k (for any ǫ > 0).

To the best of our knowledge, this is the first example of a W[1]-hard problem admitting a non-

trivial parameterized approximation factor which is also known to be tight! Additionally we show

that when restricting the input of SCSS to bidirected graphs, the problem remains NP-hard but

becomes FPT for k.

2012 ACM Subject Classification Theory of computation → Routing and network design prob-

lems, Theory of computation → Fixed parameter tractability

Keywords and phrases Directed Steiner Network, Strongly Connected Steiner Subgraph, Para-

meterized Approximations, Bidirected Graphs, Planar Graphs

1 Supported by ERC grant 2014-CoG 647557. Part of this work was done while at Weizmann Institute of
Science, Israel and supported by Israel Science Foundation grant #897/13

2 Supported by the Czech Science Foundation GAČR (grant #17-10090Y), and by the Center for
Foundations of Modern Computer Science (Charles Univ. project UNCE/SCI/004).

3 This work was done while the author was visiting Weizmann Institute of Science.

© Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 20; pp. 20:1–20:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

20:2 Parameterized Approximations for Bidirected Steiner Networks

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.20

Related Version A full version of this paper can be found in [12], https://arxiv.org/abs/

1707.06499.

Acknowledgements We would like to thank Petr Kolman and Hans Raj Tiwary for giving valu-

able feedback on a draft of this paper.

1 Introduction

In this paper we study the Directed Steiner Network (DSN) problem,4 in which

a directed edge-weighted graph G = (V, E) is given together with a set of k demands

D = {(si, ti)}k
i=1 ⊆ V × V . The aim is to compute a minimum cost (in terms of edge weights)

network N ⊆ G containing a directed si → ti path for each i ∈ {1, . . . , k}. This well-studied

problem has applications in network design [38], and for instance models the setting where

nodes in a radio or ad-hoc wireless network connect to each other unidirectionally [10, 57].

The DSN problem is notoriously hard. First of all, it is NP-hard, and one popular way

to handle NP-hard problems is to efficiently compute an α-approximation, i.e., a solution

that is guaranteed to be at most a factor α worse than the optimum. For this paradigm we

typically demand that the algorithm computing such a solution runs in polynomial time in

the input size n = |V |. However for DSN it is known that even computing an O(2log1−ε n)-ap-

proximation is not possible [18] in polynomial time, unless NP ⊆ DTIME(npolylog(n)). It is

possible to obtain approximation factors O(n2/3+ε) and O(k1/2+ε) though [3, 9, 25]. For

settings where the number k of demands is fairly small, one may aim for algorithms that

only have a mild exponential runtime blow-up in k, i.e., a runtime of the form f(k) · nO(1),

where f(k) is some function independent of n. If an algorithm computing the optimum

solution with such a runtime exists for a computable function f(k), then the problem is

called fixed-parameter tractable (FPT) for parameter k. However it is unlikely that DSN is

FPT for this well-studied parameter, as it is known to be W[1]-hard [31] for k. In fact one

can show [14, 22] that under the Exponential Time Hypothesis (ETH) there is no algorithm

computing the optimum in time f(k) · no(k) for any function f(k) independent of n. ETH

assumes that there is no 2o(n) time algorithm to solve 3SAT [33, 34]. The best we can hope

for is therefore a so-called XP-algorithm computing the optimum in time nO(k), and this was

also shown to exist by Feldman and Ruhl [24].

None of the above algorithms for DSN seem satisfying though, either due to slow runtimes

or large approximation factors, and this is hardly surprising given the problem’s inherent

complexity. To circumvent the hardness of the problem, one may aim for parameterized

approximations, which have recently received increased attention for various problems (see

e.g. [5, 8, 11, 13, 23, 26, 42, 44, 46, 49, 59, 62, 21, 4, 37]). In this paradigm an α-approximation

is computed in time f(k) · nO(1) for parameter k, where f(k) again is a computable function

independent of n. Unfortunately, a recent result by Dinur and Manurangsi [17]5 excludes

significant improvements over the known polynomial time approximation algorithms [3, 9, 25],

even if allowing a runtime parameterized in k. More specifically, no k1/4−o(1)-approximation

4 Also sometimes called Directed Steiner Forest. Note however that in contrast to the undirected
Steiner Forest problem, an optimum solution to DSN is not necessarily a forest.

5 In a previous version of this work, we showed that no ko(1)-approximation is possible for DSN in
time f(k) · nO(1). This result in now subsumed by [17].

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:3

is possible in time f(k) · nO(1) for any function f(k) under the Gap Exponential Time

Hypothesis (Gap-ETH)6, which postulates that there exists a constant ε > 0 such that no

(possibly randomized) algorithm running in 2o(n) time can distinguish whether it is possible

to satisfy all or at most a (1 − ε)-fraction of clauses of any given 3SAT formula [16, 48].

Given these hardness results, the main question we explore is: what approximation factors

and runtimes are possible for special cases of DSN when parametrizing by k? There are two

types of standard special cases that are considered in the literature:

Restricting the input graph G to some special graph class. A typical assumption for

instance is that G is planar.7

Restricting the pattern of the demands in D. For example, one standard restriction is to

have a set R ⊆ V of terminals, a fixed root r ∈ R, and demand set D = {(r, t) | t ∈ R},

which is the well-known Directed Steiner Tree (DST) problem.

In fact, an optimum solution to the DST problem is an arborescence (hence the name),

i.e., it is planar. Thus if an algorithm is able to compute (an approximation to) the cheapest

planar DSN solution in an otherwise unrestricted graph, it can be used for both the above

types of restrictions: it can of course be used if the input graph is planar as well, and it

can also be used if the demand pattern implies that the optimum must be planar. Taking

the structure of the optimum solution into account has been a fruitful approach leading to

several results on related problems, both for approximation and fixed-parameter tractability,

from which we also draw some of the inspiration for our results (cf. Section 1.2). A main

focus of our work is to systematically explore the influence of the structure of optimum

solutions on the complexity of the DSN problem. Formally, fixing a class K of graphs, we

define the DSNK problem, which asks for an optimum solution network N ⊆ G for k given

demands such that N ∈ K. The DSNK problem has been implicitly studied in several results

before for various classes K, in particular when K contains either planar graphs, or graphs of

bounded treewidth8 (cf. Table 1).

Another special case we consider is when the input graph G is bidirected, i.e., for every

edge uv of G the reverse edge vu exists in G as well and has the same weight as uv. This

naturally captures the problem variant between the notoriously hard DSN problem on

directed graphs and its undirected counterpart the Steiner Forest (SF) problem. As the

former does not allow any k1/4−o(1)-approximation in time f(k) · nO(1) under Gap-ETH [17],

while the latter is FPT [53, 27, 19] for parameter k, it is interesting to ask what happens

between these two extremes. Bidirected graphs also model the realistic setting [10, 57, 61, 43]

when the cost of transmitting from a node u to a node v in a wireless network is the same in

both directions, which for instance happens if the nodes all have the same transmitter model.

We meticulously study several special cases of DSN resulting from the above restrictions,

and prove matching upper and lower bounds on runtimes parameterized by k. We now give a

brief overview of the studied problems emphasizing the main insights, and refer to Section 1.1

for a detailed exposition of our obtained results.

bi-DSNPlanar, i.e., the DSNK problem on bidirected inputs, where K is the class of planar

graphs: For this problem we present our main result, which is that bi-DSNPlanar admits a

parameterized approximation scheme (PAS), i.e., an algorithm that for any ε > 0 computes

6 Gap-ETH follows from ETH given other standard conjectures, such as the existence of linear sized
PCPs or exponentially-hard locally-computable one-way functions. See [8, 2] for more details.

7 A directed graph is planar if the underlying undirected graph is.
8 Here the undirected treewidth is meant, i.e., the treewidth of the underlying undirected graph.

ESA 2018

20:4 Parameterized Approximations for Bidirected Steiner Networks

a (1 + ε)-approximation in f(ε, k) · ng(ε) time for some functions f and g. We also prove

that, unless FPT=W[1], no efficient parameterized approximation scheme (EPAS) exists,

i.e., there is no algorithm computing a (1 + ε)-approximation in f(ε, k) · nO(1) time for

any function f . Thus the runtime of our algorithm cannot be significantly improved.

bi-DSN, i.e., the DSN problem on bidirected inputs: The above PAS for the restricted

bi-DSNPlanar problem begs the question of whether a PAS also exists for any more

general problems, such as bi-DSN. However we prove that bi-DSN does not admit a PAS

under Gap-ETH. At the same time it is not too hard to obtain constant approximations

in parameterized or polynomial time, given known algorithms for SF. When aiming for

optimum solutions however, surprisingly we can show that bi-DSN is almost as hard as

DSN (with almost-matching runtime lower bound under ETH). Thus the complexity of

the in-between bidirected setting resembles that of the directed setting in terms of FPT

algorithms, while in terms of approximations it is more similar to the undirected setting.

Apart from the DST problem, another well-studied special case of DSN with restricted

demands is when the demand pairs form a cycle, i.e., we are given a set R = {t1, . . . , tk} of

k terminals and the set of demands is D = {(ti, ti+1)}k
i=1 where tk+1 = t1. Since this implies

that any optimum solution is strongly connected, this problem is accordingly known as the

Strongly Connected Steiner Subgraph (SCSS) problem. In contrast to DST, it is

implicit from [31] (by a reduction from the Clique problem) that optimum solutions to

SCSS do not belong to any minor-closed graph class. Thus SCSS is not easily captured by

some DSNK problem for a restricted class K. Nevertheless it is still possible to exploit the

structure of the optimum solution to SCSS, which results in the following findings.

SCSS: It is known that a 2-approximation is obtainable [13] when parametrizing by k. We

prove that the factor of 2 is best possible under Gap-ETH. To the best of our knowledge,

this is the first example of a W[1]-hard problem having a parameterized approximation

algorithm with non-trivial approximation factor (in this case 2), which is also known to

be tight!

bi-SCSS, i.e., the SCSS problem on bidirected inputs: As for bi-DSN, one might think

that bi-SCSS is easily solvable via its undirected version, i.e., the well-known Steiner

Tree (ST) problem, which is FPT [53, 19] for parameter k. However, it is not the

case that simply taking an optimum undirected solution twice in a bidirected graph will

produce a (near-)optimum solution to bi-SCSS (see Figure 1). Nevertheless we prove

that bi-SCSS is FPT for parameter k as well, while also being NP-hard. Our algorithm

is non-trivial and does not apply any methods used for undirected graphs. To the best of

our knowledge, bidirected inputs are the first example where SCSS remains NP-hard but

turns out to be FPT parameterized by k! Thus in contrast to bi-DSN, the complexity

of the in-between bi-SCSS problem resembles that of the undirected variant (the ST

problem) rather than the directed version (the SCSS problem).

1.1 Our results

Due to space constraints, almost all proofs of the following theorems are deferred to the full

version of the paper [12].

Bidirected inputs with planar solutions. Our main theorem implies the existence of a PAS

for bi-DSNPlanar, where the parameter is the number k of demands.

◮ Theorem 1. For any ε > 0, there is a max
{

2k2O(1/ε)

, n2O(1/ε)
}

time algorithm for

bi-DSNPlanar, that computes a (1 + ε)-approximation.

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:5

Figure 1 A bi-SCSS instance where all vertices are terminals. Left: Black edges show a solution
which takes an undirected optimum twice. Right: The actual optimum solution is shown in black.

As bi-DSNPlanar is a rather restricted special case of DSN, one may at this point

rightfully ask: Should it not be possible to obtain better runtimes and/or should it not be

possible to even compute the optimum solution when parametrizing by k? And could it

not be that a similar result is true in more general settings, when for instance the input is

bidirected but the optimum is not restricted to a planar graph? We prove that both questions

can be answered in the negative.

First off, it is not hard to prove that a polynomial time approximation scheme (PTAS) is

not possible for bi-DSNPlanar, i.e., it is necessary to parametrize by k in Theorem 1. This is

implied by the following result, since (as mentioned before) a PTAS for bi-DSNPlanar would

also imply a PTAS for bi-DST, i.e., the DST problem on bidirected input graphs.

◮ Theorem 2. The bi-DST problem is APX-hard.

One may wonder however, whether parametrizing by k doesn’t make the bi-DSNPlanar

problem FPT, so that approximating the planar optimum as in Theorem 1 would in fact

be unnecessary. Furthermore, even if it is necessary to approximate, one may ask whether

the runtime given in Theorem 1 can be improved. In particular, note that the runtime we

obtain in Theorem 1 is similar to that of a PTAS, i.e., the exponent of n in the running time

depends on ε. Ideally we would like an EPAS, which has a runtime of the form f(k, ε) · nO(1),

i.e., we would like to treat ε as a parameter as well. The following theorem shows that both

approximating and runtime dependence on ε are in fact necessary in Theorem 1.

◮ Theorem 3. The bi-DSNPlanar problem is W[1]-hard parameterized by k. Moreover,

under ETH, for any computable functions f(k) and f(k, ε), and parameters k and ε > 0, the

bi-DSNPlanar problem has no f(k) · no(
√

k) time algorithm to compute the optimum solution,

and has no f(k, ε) · no(
√

k) time algorithm to compute a (1 + ε)-approximation.

It stands out that to compute optimum solutions, this theorem rules out runtimes for

which the dependence of the exponent of n is o(
√

k), while for the general DSN problem,

as mentioned above, the both necessary and sufficient dependence of the exponent is linear

in k [24, 14]. Could it be that bi-DSNPlanar is just as hard as DSN when computing

optimum solutions? The answer is no, as the next theorem shows.

◮ Theorem 4. There is a 2O(k3/2 log k) · nO(
√

k) time algorithm to compute the optimum

solution for bi-DSNPlanar.

This result is an example of the so-called “square-root phenomenon”: planarity often

allows runtimes that improve the exponent by a square root factor in terms of the parameter

when compared to the general case [28, 50, 40, 47, 41, 52, 55, 54, 51]. Interestingly though,

Chitnis et al. [14] show that under ETH, no f(k) · no(k) time algorithm can compute the

optimum solution to DSNplanar. Thus assuming a bidirected input graph in Theorem 4 is

necessary (under ETH) to obtain a factor of O(
√

k) in the exponent of n.

ESA 2018

20:6 Parameterized Approximations for Bidirected Steiner Networks

Bidirected inputs. Since in contrast to bi-DSNPlanar, the bi-DSN problem does not restrict

the optimum solutions, one may wonder whether a parameterized approximation scheme as

in Theorem 1 is possible for this more general case as well. We answer this in the negative

by proving the following result, which implies that restricting the optima to planar graphs

was necessary for Theorem 1.

◮ Theorem 5. Under Gap-ETH, there exists a constant α > 1 such that for any computable

function f(k) there is no f(k) · nO(1) time algorithm that computes an α-approximation

for bi-DSN.

We leave open whether a similar inapproximability result can be obtained for the other

obvious generalization of bi-DSNPlanar, in which the input graph is unrestricted but we

need to compute the planar optimum, i.e., the DSNplanar problem. We conjecture that no

approximation scheme exists for this problem either.

What approximation factors can be obtained for bi-DSN when parametrizing by k, given

the lower bound of Theorem 5 on one hand, and the before-mentioned result [17] that rules

out a k1/4−o(1)-approximation for DSN in time parameterized by k on the other? It turns out

that it is not too hard to obtain a constant approximation for bi-DSN, given the similarity

of bidirected graphs to undirected graphs. In particular, relying on the fact that for the

undirected version of DSN, i.e. the SF problem, there is a polynomial time 2-approximation

algorithm [1], and an FPT algorithm based on [19], we obtain the following theorem, which

is also in contrast to Theorem 2.

◮ Theorem 6. The bi-DSN problem admits a 4-approximation in polynomial time, and a

2-approximation in 2O(k log k) · nO(1) time.

Even if Theorem 5 in particular shows that bi-DSN cannot be FPT under Gap-ETH, it

does not give a strong lower bound on the runtime dependence in the exponent of n. However

using the weaker ETH assumption we can obtain such a lower bound, as the next theorem

shows. Interestingly, the obtained lower bound implies that when aiming for optimum

solutions, the restriction to bidirected inputs does not make DSN much easier than the

general case, as also for bi-DSN the nO(k) time algorithm by [24] is essentially best possible.

This is in contrast to the bi-DSNPlanar problem where the square-root phenomenon takes

effect as shown by Theorem 4.

◮ Theorem 7. The bi-DSN problem is W[1]-hard parameterized by k. Moreover, under ETH

there is no f(k) · no(k/ log k) time algorithm for bi-DSN, for any computable function f(k).

Thus when considering bidirected inputs, which lie between directed and undirected

graphs, by Theorem 6 the complexity of the bi-DSN problem rather resembles the undirected

variant (the SF problem) in terms of approximations, while by Theorem 7 it resembles the

directed version (the DSN problem) in terms of FPT algorithms.

Strongly connected solutions. Just like the more general DSN problem, the SCSS problem

is W[1]-hard [31] parameterized by k, and is also hard to approximate as no polynomial

time O(log2−ε n)-approximation is possible [32], unless NP ⊆ ZTIME(npolylog(n)). However

it is possible to exploit the structure of the optimum to SCSS to obtain a 2-approximation

algorithm parameterized by k, as observed by Chitnis et al. [13]. This is because any strongly

connected graph is the union of two arborescences, and these form solutions to DST. The

2-approximation follows, since DST is FPT by the classic result of [19]. Thus in contrast to

DSN, for SCSS it is possible to beat any approximation factor obtainable in polynomial

time when parametrizing by k.

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:7

◮ Theorem 8 ([13]). The SCSS problem admits a 2-approximation in 3k · nO(1) time.

An obvious question now is whether the approximation ratio of this rather simple algorithm

can be improved. Interestingly we are able to show that this is not the case. To the best

of our knowledge, this is the first example of a W[1]-hard problem having a parameterized

approximation algorithm with non-trivial approximation factor (in this case 2), which is also

known to be tight!

◮ Theorem 9. Under Gap-ETH, for any ε > 0 and any computable function f(k), there is

no f(k) · nO(1) time algorithm that computes a (2 − ε)-approximation for SCSS.

Bidirected inputs with strongly connected solutions. In light of the above results for

restricted cases of DSN, what can be said about restricted cases of SCSS? It is implicit in

the work of Chitnis et al. [14] that SCSSPlanar, i.e., the problem of computing the optimum

strongly connected planar optimum, can be solved in 2O(k log k) · nO(
√

k) time, while under

ETH no f(k) · no(
√

k) time algorithm is possible. Hence SCSSPlanar is slightly easier than

DSNplanar where the exponent of n needs to be linear in k, as mentioned before. On the

other hand, the bi-SCSS problem turns out to be a lot easier to solve than bi-DSN. This is

implied by the next theorem, which stands in contrast to Theorem 5 and Theorem 7. In

particular, the in-between bi-SCSS problem behaves more like the undirected ST problem

than the directed SCSS problem.

◮ Theorem 10. There is a 2O(2k2
−k) · nO(1) time algorithm for bi-SCSS, i.e., it is FPT for

parameter k.

Could it be that bi-SCSS is even solvable in polynomial time? We prove that this is not

the case, as it is NP-hard. To the best of our knowledge, the class of bidirected graphs is

the first example where SCSS remains NP-hard but turns out to be FPT parameterized

by k! Moreover, note that the above algorithm has a doubly exponential runtime in k2. We

conjecture that a single exponential runtime should suffice, and we also obtain a lower bound

result of this form, even if we restrict the optimum solutions to very simple planar graphs,

namely cycles.

◮ Theorem 11. The bi-SCSSCycle problem is NP-hard. Moreover, under ETH there is no

2o(k) · nO(1) time algorithm for bi-SCSSCycle.

◮ Remark. For ease of notation, throughout this paper we chose to use the number of

demands k uniformly as the parameter. Alternatively one might also consider the smaller

parameter |R|, where R =
⋃k

i=1{si, ti} is the set of terminals. Note for instance that in

case of the SCSS problem, k = |R|, while for DSN, k can be as large as Θ(|R|2) (cf. [22]).

However we always have k ≥ |R|/2, since the demands can form a matching in the worst

case. It is interesting to note that all our algorithms for DSN have the same running time

for parameter |R| as for parameter k. That is, we may set k = |R| in Theorem 1, 4, and 6.

1.2 Our techniques

It is already apparent from the above exposition of our results, that understanding the

structure of the optimum solution is a powerful tool when studying DSN and its related

problems (see Table 1). This is also apparent when reading the literature on these problems,

and we draw some of our inspiration from these known results, as described below.

ESA 2018

20:8 Parameterized Approximations for Bidirected Steiner Networks

Table 1 Summary of achievable runtimes for DSN and SCSS when parameterizing by k. Some
of the previous results are implicit and, in the papers, are rather stated for the case when the input
graphs are restricted to the same class as the optimum solutions. Non-bracketed reference numbers
refer to theorems of this paper.

algorithms lower bounds

problem approx. runtime ref. approx. runtime ref.

DSN – nO(k) [24] – f(k) · no(k) [31]

DSN O(k
1
2

+ε) nO(1) [9] k
1
4

−o(1) f(k) · nO(1) [17]

DSNTW: ω – 2O(kω log ω) · nO(ω) [27] – f(k, ω) · no(ω) [27]

bi-DSNPlanar 1 + ε max{2k2O(1/ε)

, n2O(1/ε)

} 1 1 + ε f(ε, k) · no(
√

k) 3

bi-DSNPlanar – 2O(k3/2 log k) · nO(
√

k) 4 – f(k) · no(
√

k) 3

DSNPlanar – nO(k) [24] – f(k) · no(k) [14]

bi-DSN – nO(k) [24] – f(k) · no(k/ log k) 7

bi-DSN 2 2O(k log k) · nO(1) 6 α ∈ Θ(1) f(k) · nO(1) 5

bi-DSN 4 nO(1) 6 α ∈ Θ(1) nO(1) 2

SCSS – nO(k) [24] – f(k) · no(k/ log k) [14]

SCSS 2 3k · nO(1) [13] 2 − ε f(k) · nO(1) 9

SCSSPlanar – 2O(k) · nO(
√

k) [14] – f(k) · no(
√

k) [14]

bi-SCSS – 2O(2k2
−k) · nO(1) 10 – 2o(k) · nO(1) 11

For our approximation scheme for bi-DSNPlanar, we generalize the insights on the

structure of optimum solutions to the classical Steiner Tree (ST) problem for our main

result in Theorem 1. For the ST problem, an undirected edge-weighted graph is given together

with a terminal set R, and the task is to compute the cheapest tree connecting all k terminals.

For the ST problem only polynomial time 2-approximations were known [30, 60], until it

was taken into account [36, 56, 63, 58] that any optimum Steiner tree can be decomposed

into so-called full components, i.e., subtrees for which exactly the leaves are terminals. If a

full component contains only a small subset of size k′ of the terminals, it is the solution to

an ST instance, for which the optimum can be computed efficiently in time (2 + δ)k′ · nO(1)

for any constant δ > 0 using the algorithm of Mölle et al. [53]. A fundamental observation

proved by Borchers and Du [6] is that for any k′ there exists a solution to ST of cost at

most 1 + 1
⌊log2 k′⌋ times the optimum, in which every full component contains at most k′

terminals. Thus setting k′ = 21/ε for some constant ε > 0, all full-components with at most

21/ε terminals can be computed in polynomial time, and among them exists a collection

forming a (1 + ε)-approximation. The key to obtain approximation ratios smaller than

2 for ST is to cleverly select a good subset of all computed full-components. This is for

instance done in [7] via an iterative rounding procedure, resulting in an approximation ratio

of ln(4) + ε < 1.39, which currently is the best one known.

Our main technical contribution is to generalize the Borchers-Du [6] Theorem to the

bi-DSNPlanar problem. In particular, to obtain our approximation scheme of Theorem 1,

we employ a similar approach by decomposing a bi-DSNPlanar solution into sub-instances,

each containing a small number of terminals. As bi-DSNPlanar is W[1]-hard by Theorem 3,

we cannot hope to compute optimum solutions to each sub-instance as efficiently as for ST.

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:9

However, we provide an XP-algorithm with runtime 2O(k3/2 log k) · nO(
√

k) for bi-DSNPlanar

in Theorem 4. Thus if every sub-instance contains at most 21/ε terminals, each can be

solved in n2O(1/ε)

time, and this accounts for the “non-efficient” runtime of our approximation

scheme. Since we allow runtimes parameterized by k, we can then exhaustively search for

a good subset of precomputed small optimum solutions to obtain a solution to the given

demand set D. For the latter solution to be a (1 + ε)-approximation however, we need to

generalize the Borchers-Du [6] Theorem for ST to bi-DSNPlanar (see Theorem 13 for the

formal statement). This constitutes the bulk of the work to prove Theorem 1.

For our exact algorithms for bi-DSNPlanar and bi-SCSS, we note that also from a

parameterized point of view, understanding the structure of the optimum solution to DSN

has lead to useful insights in the past. We will leverage one such recent result by Feldmann

and Marx [27]. In [27] the above mentioned standard special case of restricting the patterns of

the demands in D is studied in depth. The result is a complete dichotomy over which classes

of restricted patterns define special cases of DSN that are FPT and which are W[1]-hard

for parameter k. The high-level idea is that whenever the demand patterns imply optimum

solutions of constant treewidth, there is an FPT algorithm computing such an optimum. In

contrast, the problem is W[1]-hard whenever the demand patterns imply the existence of

optimum solutions of arbitrarily large treewidth. The FPT algorithm from [27] lies at the

heart of all our positive results, and therefore shows that the techniques developed in [27] to

optimally solve special cases of DSN can be extended to find (near-)optimum solutions for

other W[1]-hard special cases as well. It is important to note that the algorithm of [27] can

also be used to compute the cheapest solution of treewidth at most ω, even if there is an

even better solution of treewidth larger than ω (which might be hard to compute). Formally,

the result leveraged in this paper is the following.

◮ Theorem 12 (implicit in Theorem 5 of [27]). If K is the class of graphs with treewidth at

most ω, then the DSNK problem can be solved in time 2O(kω log ω) · nO(ω).

We exploit the algorithm given in Theorem 12 to prove our algorithmic results of

Theorem 4 and Theorem 10. In particular, we prove that any bi-DSNPlanar solution has

treewidth O(
√

k), from which Theorem 4 follows immediately. For bi-SCSS however, we

give an example of an optimum solution of treewidth Ω(k). Hence we cannot exploit the

algorithm of Theorem 12 directly to obtain Theorem 10. In fact on general input graphs, a

treewidth of Ω(k) would imply that the problem is W[1]-hard by the hardness results in [27]

(which was indeed originally shown by Guo et al. [31]). As this stands in stark contrast to

Theorem 10, it is particularly interesting that the problem on bidirected input graphs is

FPT. We prove this result by decomposing an optimum solution to bi-SCSS into instances of

bi-SCSSK, where K is the class of directed graphs of treewidth 1 (so-called poly-trees). For

each such sub-instance we can compute a solution in 2O(k) · nO(1) time by using Theorem 12

(for ω = 1), and then combine them into an optimum solution to bi-SCSS.

Our hardness proofs for bi-DSN are based on reductions from the Grid Tiling prob-

lem [15]. This problem is particularly suited to prove hardness for problems on planar graphs,

due to its grid-like structure. We first develop a specific gadget that can be exploited to

show hardness for bidirected graphs. This gadget however is not planar. We only exploit the

structure of Grid Tiling to show that the optimum solution is planar for Theorem 3. For

Theorem 7 we modify this reduction to obtain a stronger runtime lower bound, but in the

process we lose the property that the optimum is planar.

Our parameterized inapproximability result for SCSS is proved by combining a variant of

a known reduction by Guo et al. [31] with a recent parameterized hardness of approximation

ESA 2018

20:10 Parameterized Approximations for Bidirected Steiner Networks

result for Densest k-Subgraph [8]. Our inapproximability result for bi-DSN is shown by

combining our W[1]-hardness reduction with the same hardness of approximation result of

Densest k-Subgraph.

2 An approximation scheme for bi-DSNPlanar

In this section we prove Theorem 1. Note that since we have k demand pairs, it follows

that the number of terminals |R| is at most 2k, where R =
⋃k

i=1{si, ti}. Henceforth in this

section, we use the upper bound 2k on the number of terminals |R| for ease of presentation

(when instead we could replace k by |R| in the running time of Theorem 1). The bulk of the

proof is captured by the following result, which generalizes the corresponding theorem by

Borchers and Du [6] for the ST problem, and which is our main technical contribution. In

order to facilitate the definition of a sub-instance to DSN, we encode the demands of a DSN

instance using a pattern graph H, as also done in [27]: the vertex set of H is the terminal set

R, and H contains the directed edge st if and only if (s, t) is a demand. Hence the DSN

problem asks for a minimum cost network N ⊆ G having an s → t path for each edge st of

H.

◮ Theorem 13. Let G be a bidirected graph, and H a pattern graph on R ⊆ V (G). Let

N ⊆ G be an optimum bi-DSNPlanar solution to H, i.e. N is planar. For any ε > 0, there

exists a set of patterns H such that for each H ′ ∈ H there is a feasible bi-DSNPlanar solution

NH′ ⊆ G and |V (H ′)| ≤ 2O(1/ε). Furthermore, the union
⋃

H′∈H NH′ of the these solutions

forms a feasible bi-DSNPlanar solution to H with
∑

H′∈H cost(NH′) ≤ (1 + ε) · cost(N).

Based on Theorem 13 our (1 + ε)-approximation algorithm proceeds as follows. The

first step is to compute an optimum solution for every possible pattern graph on at most

g(ε) = 2O(1/ε) terminals. Since any pattern graph has at most 2
(

g(ε)
2

)
< g(ε)2 edges, and

there is a total of 2
(

2k
2

)
< 8k2 possible demands between the 2k terminals, the total number of

pattern graphs is O(k2g(ε)2

) = k2O(1/ε)

. For each pattern the algorithm computes the optimum

bi-DSNPlanar solution in time 2g(ε)3/2 log g(ε) · nO(
√

g(ε)) = n2O(1/ε)

using the algorithm of

Theorem 4. This amounts to a total runtime of k2O(1/ε) · n2O(1/ε)

up to this point. The

algorithm then proceeds by considering each subset H of the pattern graphs, and checking

whether the union of the precomputed optimum solutions to all H ′ ∈ H forms a feasible

solution to the input pattern H on R. As there are 2O(k2g(ε)2
) subsets H, and checking

whether a subset induces a feasible solution can be done in polynomial time, this takes

2O(k2g(ε)2
) ·nO(1) = 2k2O(1/ε)

·nO(1) time. Among all feasible unions the algorithm outputs the

solution with smallest cost. According to Theorem 13 this solution is a (1 +ε)-approximation,

and the total runtime is k2O(1/ε) · n2O(1/ε)

+ 2k2O(1/ε)

· nO(1) = max
{

2k2O(1/ε)

, n2O(1/ε)
}

. Thus

we obtain Theorem 1.

Note that even though the output of the algorithm is a (1 + ε)-approximation to the

optimum bi-DSNPlanar solution, the computed solution may not be planar, as it is the union

of several planar graphs. Theorem 13 shows though that the structure of the optimum can

be exploited to compute a near-optimum solution. We also note that the Borchers-Du[6]

Theorem for the ST problem implies the existence of a polynomial-sized (1 + ε)-approximate

kernel for ST, as recently shown by Lokshtanov et al. [46]. By the same arguments this is

also true for bi-DSNPlanar, due to Theorem 13. We refer to [46] for more details.

◮ Corollary 14 (cf. [46]). The bi-DSNPlanar problem admits a polynomial-size approximate

kernelization scheme (PSAKS) parameterized by k.

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:11

It remains to prove Theorem 13. For this we assume we know the optimum planar

solution N ⊆ G, and first use a standard transformation on N , so that each terminal has

only 1 neighbour, each Steiner vertex has exactly 3 neighbours, and every pair of edges

uv and vu have unique costs. Furthermore, let GN be the graph spanned by the edge set

{uv, vu ∈ E(G) | uv ∈ E(N)}, i.e. it is the underlying bidirected graph of N after performing

the transformations on N . In particular, also in GN each terminal has only 1 neighbour,

each Steiner vertex has exactly 3 neighbours, and every pair of edges uv and vu have unique

costs. It is not hard to see that proving Theorem 13 for the obtained optimum solution

N in GN implies the same result for the original optimum solution in G, by reversing all

transformations.

The proof consists of two parts, of which the first exploits the bidirectedness of GN ,

while the second exploits that the optimum N is planar. The first part will identify paths

connecting each Steiner vertex to some terminal in such a way that the paths do not overlap

much. This will enable us to select a subset of these paths in the second part, so that the

total weight of the selected paths is an ε-fraction of the cost of the optimum solution. This

subset of paths will be used to connect terminals to the boundary vertices of small regions

into which we divide the optimum. These regions extended by the paths then form solutions

to sub-instances to DSN, which together have a cost of 1 + ε times the optimum. The first

part is captured by the next lemma, where cost(G′) denotes the total edge weight of a graph

G′.

◮ Lemma 15. Let N ⊆ GN be the optimum bi-DSNPlanar solution to a pattern graph H

on R ⊆ V (GN). For every Steiner vertex v ∈ V (N) \ R of N there is a path Pv in GN , such

that Pv is a v → t path to some terminal t ∈ R, and the total cost
∑

v∈V (N)\R cost(Pv) of

these paths is O(cost(N)).

For the second part we give each vertex v of N a weight c(v), which is zero for terminals

and equal to cost(Pv) for each Steiner vertex v ∈ V (N) \ R and corresponding path Pv given

by Lemma 15. We now divide the optimum solution N into regions of small size, such that

the boundaries of the regions have small total weight. Formally, a region is a subgraph of N ,

and an r-division is given by a partition of the edges of N , each spanning a region with

at most r vertices. A boundary vertex of an r-division is a vertex that lies in at least two

regions. In a weak r-division, as for instance defined in [35], we bound the total number of

boundary vertices and the number of regions (it is called “weak” since it does not bound the

boundary vertices of each region individually). For unweighted planar graphs it can be shown

that there is an r-division with only O(n/
√

r) boundary vertices and O(n/r) regions [35, 29].

To prove this, a separator theorem is applied recursively until each resulting region is small

enough. The bound on the number of boundary vertices follows from the well-known fact

that any planar graph has a small separator of size O(
√

n).

We however need to bound the total weight of the boundary vertices, i.e. we need a

weighted weak r-division. Unfortunately, separator theorems are not helpful here, since they

only bound the number of vertices in the separator but cannot bound their weight. Instead

we leverage techniques developed for the Klein-Plotkin-Rao (KPR) Theorem [45, 39] in order

to show that there is an r-division for which the total weight of all boundary vertices is an

O(1/ log r)-fraction of the total weight
∑

v∈V (N) c(v), if the graph has constant maximum

degree. We later set r = 21/ε in order to obtain an ε-fraction of the total weight. Even

though the obtained fraction is exponentially worse than the O(1/
√

r)-fraction for unweighted

graphs obtained in [35, 29], it follows from a lower bound result of Borchers and Du [6]

that for weighted graphs this is best possible, even if the graph is a tree. In contrast to the

ESA 2018

20:12 Parameterized Approximations for Bidirected Steiner Networks

unweighted case, we also do not guarantee any bound on the number of regions, and we do

not need such a bound either. Our proof follows the outlines of the proof given by Lee [45]

for the KPR Theorem. In the following, c(S) =
∑

v∈S c(v) for any set of vertices S.

◮ Lemma 16. Let N be a directed planar graph for which each vertex has at most 3 neighbours,

and let each vertex v of N have a weight c(v) ∈ R. For any r ∈ N there is a partition E
of the edges of N for which every set in E spans at most r vertices, and if B is the set of

boundary vertices of the regions spanned by the sets in E, then c(B) = O
(

c(V (N))
log r

)
.

We here only prove some parts of Lemma 15 (cf. [12] for the full version of the paper).

Proof of Lemma 15. We begin by analysing the structure of optimal DSN solutions in

bidirected graphs. Here a condensation graph of a directed graph results from contracting

each strongly connected component, which hence is a DAG. A poly-forest is obtained by

directing the edges of an undirected forest.

◮ Claim 17. For any solution N ⊆ GN to a pattern H, there is a solution M ⊆ GN to H

with cost(M) ≤ cost(N), such that the condensation graph of M is a poly-forest.

By Claim 17 we may assume w.l.o.g. that the condensation graph of the optimum solution

N is a poly-forest. Consider a weakly connected component C of N , i.e. inducing a connected

component of the underlying undirected graph
9
N . We first extend C to a strongly connected

graph C ′ as follows. Let F be the edges of C that do not lie in a strongly connected

component, i.e. they are the edges of the condensation graph of C. Let F̃ = {uv | vu ∈ F}
be the set containing the reverse edges of F , and let C ′ be the strongly connected graph

spanned by all edges of C in addition to the edges in F̃ . Note that adding F̃ to C increases

the cost by at most a factor of two as GN is bidirected, and the number of neighbours of

any vertex does not change. We claim that in fact C ′ is a minimal SCSS solution to the

terminal set RC ⊆ R contained in C, that is, removing any edge of C ′ will disconnect some

terminal pair of RC .

For this, consider any s → t path of C ′ containing an edge e ∈ F̃ for some terminal pair

s, t ∈ RC . As the edges F of the condensation graph of C form a poly-tree, every path from

s to t in C ′ must pass through e. In particular there is no s → t path in C, and thus there is

no edge st in the pattern graph H. Or conversely, for any terminal pair s, t ∈ RC for which

there is a demand st ∈ E(H), no s → t path in C ′ passes through an edge of F̃ . Thus the

set of paths from s to t is the same in C ′ and C. Since every edge e of the weakly connected

component C is necessary for some such pair s, t ∈ RC with st ∈ E(H), the edge e is still

necessary in C ′. Moreover, for any of the added edges uv ∈ F̃ the reverse edge vu ∈ F was

necessary in C to connect some s ∈ RC to some t ∈ RC . As observed above, uv is necessary

to connect t to s in C ′, since the edges F of the condensation graph form a poly-tree.

As C ′ is a minimal SCSS solution to the terminals RC contained within, it is the union

of an in-arborescence Ain and out-arborescence Aout, both with the same root r ∈ RC and

leaf set RC \ {r}, since every terminal only has one neighbour in GN . A branching point of

an arborescence A is a vertex with at least two children in A. We let W ⊆ V (C ′) be the set

consisting of all terminals RC and all branching points of Ain and Aout. We will need that

any vertex of C ′ has a vertex of W in its close vicinity. That is, if ∆[v] = {u ∈ V (C ′) | u =

v ∨ uv ∈ E(C ′) ∨ vu ∈ E(C ′)} denotes the inclusive neighbourhood of a vertex v ignoring

directions of edges and ∆2[v] =
⋃

u∈∆[v] ∆[v], we prove the following.

◮ Claim 18. For every vertex v of C ′, there is a vertex of W in ∆2[v].

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:13

As the graph GN is bidirected, for any v-u path P in the underlying undirected graph
9
GN

of GN , there exists a corresponding directed v → u path in GN of the same cost. Therefore,

we can ignore the directions of the edges in C ′ and the arborescences Aout and Ain to identify

the paths Pv for Steiner vertices v of N . Thus we will only consider paths in the underlying

undirected graphs
9
C ′,

9
A out, and

9
A in from now on. In particular, we exploit the following

observation found in [20] (and also used by [6]) on undirected trees.

◮ Claim 19 ([20, Lemma 3.2]). For any undirected tree T we can find a path Pv ⊆ T for

every branching point v, such that Pv leads from v to some leaf of T , and all these paths Pv

are pairwise edge-disjoint.

If a Steiner vertex v of C ′ is a branching point of Aout (Ain), we let Pv be the corresponding

path in
9
A out (

9
A in) given by Claim 19 from v to some leaf of Aout (Ain), which is a terminal.

Note that paths in
9
A in may overlap with paths in

9
A out. However any edge in the union of

all the paths Pv chosen so far is contained in at most two such paths, one for a branching

point of Aout and one for a branching point of Ain.

It remains to choose a path Pv for every Steiner vertex v that is neither a branching

point of Aout nor of Ain, i.e. for every vertex not in W . By Claim 18 for any such vertex

v /∈ W there is a vertex u ∈ ∆2[v] for which u ∈ W . If u is a terminal, then the path Pv is

simply the edge vu if u ∈ ∆[v] or the corresponding path vwu for some w ∈ ∆[v] otherwise.

If u is not a terminal but a branching point of Aout or Ain, then we chose a path Pu for u

above. In this case, Pv is the path contained in the walk given by extending the path Pu

by the edge vu or the path vwu, respectively. Note that, as any vertex of C ′ has at most

three neighbours, any terminal or branching point u ∈ W can be used in this way for some

vertex v /∈ W at most nine times. Therefore any edge in the union of all chosen paths is

contained in O(1) paths. Consequently the total cost
∑

v∈V (N)\R cost(Pv) is O(cost(C ′)),
and as cost(C ′) ≤ 2 cost(C) we also get

∑
v∈V (N)\R cost(Pv) = O(cost(C)).

We may repeat these arguments for every weakly connected component of N to obtain

the lemma. ◭

References

1 Ajit Agrawal, Philip Klein, and R Ravi. When trees collide: An approximation algorithm

for the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–

456, 1995.

2 Benny Applebaum. Exponentially-Hard Gap-CSP and Local PRG via Local Hardcore

Functions. In FOCS 2017, pages 836–847, 2017. doi:10.1109/FOCS.2017.82.

3 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and

Grigory Yaroslavtsev. Approximation algorithms for spanner problems and directed steiner

forest. Information and Computation, 222:93–107, 2013.

4 Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., and Pasin Manurangsi. Paramet-

erized Intractability of Even Set and Shortest Vector Problem from Gap-ETH. To appear

in ICALP 2018, 2018. arXiv:1803.09717.

5 Edouard Bonnet, Bruno Escoffier, EunJung Kim, and Vangelis T. Paschos. On subexpo-

nential and FPT-time inapproximability. In IPEC, pages 54–65, 2013.

6 Al Borchers and Ding-Zhu Du. The k-Steiner Ratio in Graphs. SIAM Journal on Comput-

ing, 26(3):857–869, 1997.

7 Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree

approximation via iterative randomized rounding. Journal of the ACM, 60(1):6, 2013.

ESA 2018

20:14 Parameterized Approximations for Bidirected Steiner Networks

8 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manur-

angsi, Danupon Nanongkai, and Luca Trevisan. From Gap-ETH to FPT-Inapproximability:

Clique, Dominating Set, and More. In To appear in FOCS, 2017.

9 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems

in undirected graphs and the directed Steiner network problem. ACM Transactions on

Algorithms, 7(2):18, 2011.

10 W-T Chen and N-F Huang. The strongly connecting problem on multihop packet radio

networks. IEEE Transactions on Communications, 37(3):293–295, 1989.

11 Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized domin-

ating set problem. In FOCS, pages 505–514, 2016.

12 Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized Approx-

imation Algorithms for Directed Steiner Network Problems. CoRR, abs/1707.06499, 2017.

arXiv:1707.06499.

13 Rajesh Chitnis, MohammadTaghi Hajiaghayi, and Guy Kortsarz. Fixed-parameter and

approximation algorithms: A new look. In IPEC, pages 110–122, 2013.

14 Rajesh Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Tight bounds for planar

strongly connected Steiner subgraph with fixed number of terminals (and extensions). In

SODA, pages 1782–1801, 2014.

15 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

doi:10.1007/978-3-319-21275-3.

16 Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.

Electronic Colloquium on Computational Complexity (ECCC), 23:128, 2016.

17 Irit Dinur and Pasin Manurangsi. ETH-Hardness of Approximating 2-CSPs and Directed

Steiner Network. In ITCS, pages 36:1–36:20, 2018. doi:10.4230/LIPIcs.ITCS.2018.36.

18 Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise distance. In

STOC 1999, pages 750–759, 1999.

19 S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1(3):195–207,

1971.

20 Ding-Zhu Du, Yanjun Zhang, and Qing Feng. On better heuristic for Euclidean Steiner

minimum trees. In FOCS 1991, pages 431–439, 1991.

21 Pavel Dvorák, Andreas Emil Feldmann, Dusan Knop, Tomás Masarík, Tomas Toufar, and

Pavel Veselý. Parameterized approximation schemes for steiner trees with small number of

steiner vertices. In STACS, pages 26:1–26:15, 2018.

22 Eduard Eiben, Dušan Knop, Fahad Panolan, and Ondřej Suchý. Complexity of the steiner

network problem with respect to the number of terminals. arXiv preprint, 2018. arXiv:

1802.08189.

23 Eduard Eiben, Mithilesh Kumar, Amer E Mouawad, and Fahad Panolan. Lossy kernels for

connected dominating set on sparse graphs. arXiv preprint, 2017. arXiv:1706.09339.

24 Jon Feldman and Matthias Ruhl. The directed Steiner network problem is tractable for a

constant number of terminals. SIAM J. Comput., 36(2):543–561, 2006.

25 Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation algorithms for

directed steiner forest. J. Comput. Syst. Sci., 78(1):279–292, 2012. doi:10.1016/j.jcss.

2011.05.009.

26 Andreas Emil Feldmann. Fixed parameter approximations for k-center problems in

low highway dimension graphs. In ICALP, pages 588–600, 2015. doi:10.1007/

978-3-662-47666-6_47.

27 Andreas Emil Feldmann and Dániel Marx. The complexity landscape of fixed-parameter

directed steiner network problems. CoRR, abs/1707.06808, 2017. arXiv:1707.06808.

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:15

28 Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,

and Saket Saurabh. Subexponential Parameterized Algorithms for Planar and Apex-Minor-

Free Graphs via Low Treewidth Pattern Covering. In FOCS, pages 515–524, 2016. doi:

10.1109/FOCS.2016.62.

29 Greg N Frederickson and Joseph Ja’Ja’. Approximation algorithms for several graph aug-

mentation problems. SIAM Journal on Computing, 10(2):270–283, 1981.

30 E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathem-

atics, 16(1):1–29, 1968.

31 Jiong Guo, Rolf Niedermeier, and Ondrej Suchý. Parameterized complexity of arc-weighted

directed Steiner problems. SIAM J. Discrete Math., 25(2):583–599, 2011.

32 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In STOC,

pages 585–594, 2003.

33 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput.

Syst. Sci., 62(2):367–375, 2001.

34 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly

Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

35 Giuseppe F Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Im-

proved algorithms for min cut and max flow in undirected planar graphs. In STOC 2011,

pages 313–322, 2011.

36 Marek Karpinski and Alexander Zelikovsky. New approximation algorithms for the Steiner

tree problem. Journal of Combinatorial Optimization, 1(1):47–65, 1997.

37 Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the Parameterized Complex-

ity of Approximating Dominating Set. To appear in STOC 2018, 2017. arXiv:1711.11029.

38 Hervé Kerivin and A Ridha Mahjoub. Design of survivable networks: A survey. Networks,

46(1):1–21, 2005.

39 Philip Klein, Serge A. Plotkin, and Satish Rao. Excluded Minors, Network Decomposition,

and Multicommodity Flow. In STOC 1993, pages 682–690, 1993.

40 Philip N. Klein and Dániel Marx. Solving Planar k -Terminal Cut in O(nc
√

k) Time. In

ICALP, pages 569–580, 2012. doi:10.1007/978-3-642-31594-7_48.

41 Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for Subset

TSP on planar graphs. In SODA, pages 1812–1830, 2014. doi:10.1137/1.9781611973402.

131.

42 R. Krithika, Pranabendu Misra, Ashutosh Rai, and Prafullkumar Tale. Lossy kernels

for graph contraction problems. In 36th IARCS Annual Conference on Foundations of

Software Technology and Theoretical Computer Science (FSTTCS 2016), volume 65, pages

23:1–23:14, Dagstuhl, Germany, 2016. doi:10.4230/LIPIcs.FSTTCS.2016.23.

43 Nhat X Lam, Trac N Nguyen, Min Kyung An, and Dung T Huynh. Dual power assign-

ment optimization and fault tolerance in WSNs. Journal of Combinatorial Optimization,

30(1):120–138, 2015.

44 Michael Lampis. Parameterized approximation schemes using graph widths. In ICALP,

pages 775–786, 2014.

45 James Lee. A simpler proof of the KPR theorem, 2012. URL: https://tcsmath.org/

2012/01/11/a-simpler-proof-of-the-kpr-theorem/.

46 Daniel Lokshtanov, Fahad Panolan, MS Ramanujan, and Saket Saurabh. Lossy Kerneliza-

tion. In STOC, pages 224–237, 2017.

47 Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential Parameterized

Odd Cycle Transversal on Planar Graphs. In FSTTCS, pages 424–434, 2012. doi:10.4230/

LIPIcs.FSTTCS.2012.424.

48 Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition Theorem and Com-

plexity of Approximating Dense CSPs. In ICALP, pages 78:1–78:15, 2017.

ESA 2018

20:16 Parameterized Approximations for Bidirected Steiner Networks

49 Dániel Marx. Parameterized complexity and approximation algorithms. The Computer

Journal, 51(1):60–78, 2008.

50 Dániel Marx. A Tight Lower Bound for Planar Multiway Cut with Fixed Number of

Terminals. In ICALP, pages 677–688, 2012. doi:10.1007/978-3-642-31594-7_57.

51 Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. On subexponential parameterized

algorithms for Steiner Tree and Directed Subset TSP on planar graphs. arXiv preprint

arXiv:1707.1707.02190, 2017.

52 Dániel Marx and Michal Pilipczuk. Optimal Parameterized Algorithms for Planar Facility

Location Problems Using Voronoi Diagrams. In ESA, pages 865–877, 2015. doi:10.1007/

978-3-662-48350-3_72.

53 Daniel Mölle, Stefan Richter, and Peter Rossmanith. A faster algorithm for the steiner tree

problem. In STACS, pages 561–570, 2006.

54 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen.

Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs. In

STACS, pages 353–364, 2013. doi:10.4230/LIPIcs.STACS.2013.353.

55 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network

Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs. In FOCS, pages

276–285, 2014. doi:10.1109/FOCS.2014.37.

56 Hans Jürgen Prömel and Angelika Steger. A new approximation algorithm for the Steiner

tree problem with performance ratio 5/3. Journal of Algorithms, 36:89–101, 2000.

57 Ram Ramanathan and Regina Rosales-Hain. Topology control of multihop wireless net-

works using transmit power adjustment. In INFOCOM, volume 2, pages 404–413, 2000.

58 Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph Steiner tree approx-

imation. SIAM Journal on Discrete Mathematics, 19(1):122–134, 2005.

59 Sebastian Siebertz. Lossy kernels for connected distance-r domination on nowhere dense

graph classes. arXiv preprint, 2017. arXiv:1707.09819.

60 Vijay Virkumar Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

61 Chen Wang, Myung-Ah Park, James Willson, Yongxi Cheng, Andras Farago, and Weili Wu.

On approximate optimal dual power assignment for biconnectivity and edge-biconnectivity.

Theoretical Computer Science, 396(1-3):180–190, 2008.

62 Andreas Wiese. A (1 + ǫ)-approximation for unsplittable flow on a path in fixed-parameter

running time. In ICALP 2017, pages 67:1–67:13, 2017.

63 Alexander Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem.

Algorithmica, 9:463–470, 1993.

	Introduction
	Our results
	Our techniques

	An approximation scheme for Bi-DSN_Planar

