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Abstract

In the Steiner Orientation problem, the input is a mixed graph G (it has both

directed and undirected edges) and a set of k terminal pairs T . The question is whether

we can orient the undirected edges in a way such that there is a directed s � t path for

each terminal pair (s, t) ∈ T . Arkin and Hassin [DAM’02] showed that the Steiner

Orientation problem is NP-complete. They also gave a polynomial time algorithm

for the special case when k = 2. From the viewpoint of exact algorithms, Cygan

et al. [ESA’12, SIDMA’13] designed an XP algorithm running in nO(k) time for all

k ≥ 1. Pilipczuk and Wahlström [SODA’16, TOCT’18] showed that the Steiner

Orientation problem is W[1]-hard parameterized by k. As a byproduct of their

reduction, they were able to show that under the Exponential Time Hypothesis (ETH)

of Impagliazzo, Paturi and Zane [JCSS’01] the Steiner Orientation problem does

not admit an f (k) · no(k/ log k) algorithm for any computable function f . In this paper,

we give a short and easy proof that the nO(k) algorithm of Cygan et al. is asymptotically

optimal, even if the input graph is planar. Formally, we show that the Planar Steiner

Orientation problem is W[1]-hard parameterized by the number k of terminal pairs,

and, under ETH, cannot be solved in f (k) · no(k) time for any computable function

f . Moreover, under a stronger hypothesis called Gap-ETH of Dinur [ECCC’16] and

Manurangsi and Raghavendra [ICALP’17], we are able to show that there is no constant

ϑ > 0 such that Planar Steiner Orientation admits an ( 19
20

+ ϑ)-approximation

in FPT time, i.e., no f (k) ·no(k) time algorithm can distinguish between the case when
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all k pairs are satisfiable versus the case when less than k ·( 19
20

+ϑ) pairs are satisfiable.

To the best of our knowledge, this is the first FPT inapproximability result on planar

graphs.

1 Introduction

In the Steiner Orientation problem, the input is a mixed graph G = (V , E) (it

has both directed and undirected edges) and a set of terminal pairs T ⊆ V × V . The

question is whether we can orient the undirected edges in a way such that there is a

directed s � t path for each terminal pair (s, t) ∈ T . This problem has applications in

traffic control (cf. [25] proving Robbins’ theorem on graphs with strong orientations)

and protein-protein interaction (PPI) networks [22].

STEINER ORIENTATION

Input: A mixed graph G = (V , E), and a set T ⊆ V × V of k terminal pairs.

Question: Is there an orientation of the undirected egdes of G such that the resulting

graph has an s � t path for each (s, t) ∈ T ?

Parameter: k

Hassin and Megiddo [13] showed that Steiner Orientation is polynomial time

solvable if the input graph G is completely undirected, i.e., has no directed edges. If

the input graph G is actually mixed, then Arkin and Hassin [1] showed that Steiner

Orientation is NP-complete. They also gave a polynomial time algorithm for the

special case when k = 2. Cygan et al. [10] generalized this by giving an nO(k)-

time algorithm for all k ≥ 1, i.e., Steiner Orientation is in XP parameterized by k.

Although the algorithm of Cygan et al. [10] is polynomial time for fixed k, the degree of

the polynomial changes as k changes. This left open the question of whether one could

design a much more efficient FPT algorithm for Steiner Orientation parameterized

by k, i.e., an algorithm which runs in time f (k) · nO(1) for some computable function

f independent of n.

Pilipczuk and Wahlström [23] answered this question negatively by showing that

Steiner Orientation is W[1]-hard parameterized by k. As a byproduct of their

reduction, they were able to show that under the Exponential Time Hypothesis (ETH)

of Impagliazzo, Paturi and Zane [14,15] the Steiner Orientation problem does not

admit an f (k) · no(k/ log k)-time algorithm for any computable function f [24]. That

is, the nO(k)-time algorithm of Cygan et al. is asymptotically almost optimal. This left

open the following two questions:

– Can we close the gap between the nO(k) algorithm and the f (k)·no(k/ log k) hardness

for Steiner Orientation on general graphs?

– Is Planar Steiner Orientation (see below) FPT parameterized by k , or can

we at least obtain an improved runtime such as f (k) · nO(
√

k)?

Planar Steiner Orientation, the main problem of interest in this paper, is

the restriction of Steiner Orientation to planar mixed graphs. Naturally, these are

mixed graphs for which the union of the graph formed by the undirected edges and

the underlying undirected graph of the graph formed by the directed edges is planar.
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In a preliminary version of this paper [6] the first question was answered by showing

a tight lower bound of f (k) · no(k) for Steiner Orientation under ETH. However,

the constructed graph in [6] had genus 1 which left open the complexity for Planar

Steiner Orientation since planar graphs have genus 0. In this full version, we

completely answer both the above questions. Formally, we show that:

Theorem 1 The Planar Steiner Orientation problem is W[1]-hard parameter-

ized by the number k of terminal pairs. Moreover, under ETH, Planar Steiner

Orientation cannot be solved in f (k) · no(k) time for any computable function f .

Previously, the only result about the complexity of Planar Steiner Orientation

was an NP-completeness proof due to Beck et al. [2]. Since our reduction can be

performed in polynomial time, it also shows NP-completeness of Planar Steiner

Orientation.

Furthermore, using the same reduction with a stronger hypothesis we are able to

show that it is even hard to approximate the number of satisfiable pairs very precisely.

Theorem 2 Assuming Gap-ETH, for each 0 < ϑ ≤ 1
20

there exists a constant ζ > 0

such that for any computable function f there is no algorithm for Planar Steiner

Orientation, which given an instance (G,T ) with G planar, can distinguish between

the following cases in f (k) · nζk time, where n = |V (G)| and k = |T |:

– there is an orientation of G that satisfies all pairs of T and

– any orientation of G satisfies less than ( 19
20

+ ϑ)-fraction of pairs in T .

To the best of our knowledge, the only known results on approximability of Steiner

Orientation are for the case when the input graph is undirected. In this case, there are

several known polynomial time approximation algorithms with ratios O(
log |T |

log log |T | )

[10] and O(
log n

log log n
) [12,22]. We are not aware of any non-trivial approximation algo-

rithms for Steiner Orientation when the input graph is mixed.

Our reduction uses some ideas given by Pilipczuk and Wahlström [23], who

obtained a lower bound of f (k) · no(
√

k) via a rather involved reduction from Multi-

colored Clique. This was later [24] improved by the same authors to f (k)·no(k/ log k)

via the standard trick of reducing from the Partitioned Subgraph Isomorphism

problem [18] instead. In this paper, we give a parameterized reduction from k-Clique

to Steiner Orientation on planar graphs. Typically, W[1]-hardness results for

problems on planar graphs are shown via reductions from the Grid Tiling prob-

lem introduced by Marx [17].1 Indeed, the Grid Tiling problem has turned out

to be quite useful in showing W[1]-hardness for several problems on planar graphs

[5,7,8,19–21]. However, in this paper we chose to give a parameterized reduction from

k-Clique instead so that we can use the same reduction for the FPT inapproximability

result of Theorem 2 as well. Note that there is a simple reduction [9, Thm 14.28] from

k-Clique to k × k Grid Tiling which is also used implicitly in our reduction.

1 In [17] the Grid Tiling problem (under the name of Matrix Tiling) was actually used to rule out

PTASs for several problems under ETH.
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Fig. 1 The instance of Steiner Orientation with O(k) terminal pairs created from an instance of k-

Clique (before the splitting operation). At this point, the only undirected edges are the green path edges. A

gadget Gi, j is highlighted by a dotted rectangle

2 The Reduction

We begin by describing the reduction from an instance (G ′, k) of k-Clique to an

instance of Planar Steiner Orientation with O(k) terminal pairs. We prove the

exact properties of the reduction in subsequent subsections.

2.1 Construction

Consider an instance (G ′, k) of k-Clique. We now build an instance (G,T ) of Pla-

nar Steiner Orientation as follows (refer to Fig. 1). For simplicity we assume

that |V (G ′)| = n − 1 and V (G ′) = {u1, . . . , un−1} (this allows us to make less case

distinctions in some further definitions and descriptions, for example Definitions 2

and 3).
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– Black Grid Edges For each 1 ≤ i, j ≤ 2k we introduce the n × n grid Gi, j .

The grids G2i,2 j will later be modified to represent adjacencies from the graph G ′.
The other grids serve to transfer information. In Fig. 1 we highlight a gadget Gi, j

by a dotted rectangle.

We place the grids Gi, j into a big grid of grids left to right according to growing

i and from top to bottom according to growing j . That is G1,1 is at the top left

corner of the construction, the G2k,1 at the top right corner, etc.

• In Gi, j the column numbers grow from left to right, from 1 to n, and the row

numbers grow from top to bottom, from 1 to n.

• For each 1 ≤ h, ℓ ≤ n the unique vertex which is the intersection of the hth

column and ℓth row of Gi, j is denoted by v
h,ℓ
i, j .

Orient each horizontal edge of the grid Gi, j to the right, and each vertical edge to

the bottom.

– We now define four special sets of vertices for the gadget Gi, j given by

• Left(Gi, j ) = {v1,ℓ
i, j | ℓ ∈ [n]}

• Right(Gi, j ) = {vn,ℓ
i, j | ℓ ∈ [n]}

• Top(Gi, j ) = {vℓ,1
i, j | ℓ ∈ [n]}

• Bottom(Gi, j ) = {vℓ,n
i, j | ℓ ∈ [n]}

– Horizontal Orange Inter-Grid Edges

For each i ∈ [2k − 1], j ∈ [2k]

• Add the directed perfect matching from vertices of Right(Gi, j ) to

Left(Gi+1, j ) given by the set of edges
{
v

n,ℓ
i, j → v

1,ℓ
i+1, j | ℓ ∈ [n]

}
.

– Vertical Orange Inter-Grid Edges

For each i ∈ [2k], j ∈ [2k − 1]

• Add the directed perfect matching from vertices of Bottom(Gi, j ) to

Top(Gi, j+1) given by the set of edges
{
v

h,n
i, j → v

h,1
i, j+1 | h ∈ [n]

}
.

Note that after adding all inter-grid edges, the graph forms one large grid of size

2kn × 2kn with all edges oriented to the right or to the bottom.

– We introduce 12k · n red vertices given by

• Â := {̂aℓ
j | j ∈ [k], ℓ ∈ [n]}

• B̂ := {̂bℓ
j | j ∈ [k], ℓ ∈ [n]}

• Ĉ := {̂ch
i | i ∈ [k], h ∈ [n]}

• D̂ := {d̂h
i | i ∈ [k], h ∈ [n]}

• A := {aℓ
j | j ∈ [2k], ℓ ∈ [n]}

• B := {bℓ
j | j ∈ [2k], ℓ ∈ [n]}

• C := {ch
i | i ∈ [2k], h ∈ [n]}

• D := {dh
i | i ∈ [2k], h ∈ [n]}
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– Blue Connector Edges

• For each j ∈ [2k], ℓ ∈ [n]
• add the directed edge aℓ

j → v
1,ℓ
1, j ,

• add the directed edge v
n,ℓ
2k, j → bℓ

j .

• For each j ∈ [k], ℓ ∈ [n]
• add the directed edge aℓ

2 j−1 → âℓ
j ,

• add the directed edge aℓ
2 j → ân+1−ℓ

j ,

• add the directed edge b̂ℓ
j → bℓ

2 j−1,

• add the directed edge b̂ℓ
j → bn+1−ℓ

2 j .

• For each i ∈ [2k], h ∈ [n]
• add the directed edge ch

i → v
h,1
i,1 ,

• add the directed edge v
h,n
i,2k → dh

i .

• For each i ∈ [k], h ∈ [n]
• add the directed edge ch

2i−1 → ĉh
i ,

• add the directed edge ch
2i → ĉn+1−h

i ,

• add the directed edge d̂h
i → dh

2i−1,

• add the directed edge d̂h
i → dn+1−h

2i .

– Green Path Edges

For each j ∈ [k]

• add the undirected path â1
j − â2

j − â3
j −· · ·− ân−1

j − ân
j , and denote this path2

by Â j ,

• add the undirected path b̂1
j − b̂2

j − b̂3
j − · · · − b̂n−1

j − b̂n
j , and denote this path

by B̂ j .

For each j ∈ [2k]

• add the undirected path a1
j − a2

j − a3
j − · · · − an−1

j − an
j , and denote this path

by A j ,

• add the undirected path b1
j − b2

j − b3
j − · · · − bn−1

j − bn
j , and denote this path

by B j .

For each i ∈ [k]

• add the undirected path ĉ1
i − ĉ2

i − ĉ3
i − · · · − ĉn−1

i − ĉn
i , and denote this path

by Ĉi ,

• add the undirected path d̂1
i − d̂2

i − d̂3
i − · · · − d̂n−1

i − d̂n
i , and denote this path

by D̂i .

For each i ∈ [2k]

• add the undirected path c1
i − c2

i − c3
i − · · · − cn−1

i − cn
i , and denote this path

by Ci ,

2 Sometimes we also abuse notation slightly and use Â j to denote this set of vertices.
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v
h,ℓ
2i,2 j

Splitting Operation v
h,ℓ
2i,2 j,TR

v
h,ℓ
2i,2 j,LB

Fig. 2 The splitting operation for vertex v
h,ℓ
2i,2 j

when (h, ℓ) /∈ Si, j . The idea behind this splitting is that no

matter which way we orient the undirected dotted edge we cannot go both from left to right and from top

to bottom. However, if we just want to go from left to right (top to bottom) then it is possible by orienting

the dotted edge to the right (left), respectively

• add the undirected path d1
i − d2

i − d3
i − · · · − dn−1

i − dn
i , and denote this path

by Di .

– Splitting Operation

We first define the sets Si, j ⊆ [n] × [n] for each i, j ∈ [k]:

• For each i ∈ [k] we let Si,i = {(x, x) | x ∈ [n − 1]}.
• For each i, j ∈ [k] with i 	= j we let Si, j = {(x, y), (y, x) | {ux , u y} ∈

E(G ′)}. That is, Si, j represents the ones in the adjacency matrix of G ′ (with

one extra row and one extra column of zeroes added).

Then for each i, j ∈ [k] and each x, y ∈ [n] we perform the following operation

on the vertex v
x,y
2i,2 j :

• If (x, y) ∈ Si, j then we keep the vertex v
x,y

2i,2 j as is.

• Otherwise we split the vertex v
x,y
2i,2 j into two vertices v

x,y
2i,2 j,LB and v

x,y
2i,2 j,TR.

Note that v
x,y
2i,2 j had 4 incident edges: two incoming (one each from the left and

the top) and two outgoing (one each to the right and the bottom). We change

the edges as follows (see Fig. 2):

• Make the left incoming edge and bottom outgoing edge incident on

v
x,y

2i,2 j,LB (denoted by red color in Fig. 2).

• Make the top incoming edge and right outgoing edge incident on v
x,y
2i,2 j,TR

(denoted by blue color in Fig. 2).

• Add an undirected edge between v
x,y
2i,2 j,LB and v

x,y
2i,2 j,TR (denoted by the

dotted edge in Fig. 2).

By slightly abusing the notation we still refer to the grid as G2i,2 j , even though

some of its vertices were split.

– The set T of terminal pairs is given by
⋃

i∈[k] T
L

i ∪T R
i ∪T T

i ∪T B
i ∪T H

i ∪T V
i ,

where (see also Fig. 3)

• T L
j = {(an

2 j−1, â1
j ), (a

1
2 j−1, ân

j ), (a
1
2 j , â1

j ), (a
n
2 j , ân

j )} for each j ∈ [k],
• T R

j = {(̂b1
j , bn

2 j−1), (̂b
n
j , b1

2 j−1), (̂b
1
j , b1

2 j ), (̂b
n
j , bn

2 j )} for each j ∈ [k],
• T T

i = {(cn
2i−1, ĉ1

i ), (c
1
2i−1, ĉn

i ), (c1
2i , ĉ1

i ), (c
n
2i , ĉn

i )} for each i ∈ [k],
• T B

i = {(d̂1
i , dn

2i−1), (d̂
n
i , d1

2i−1), (d̂
1
i , d1

2i ), (d̂
n
i , dn

2i )} for each i ∈ [k],
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Fig. 3 Illustration of the terminal pairs in two consecutive rows. Each pair is represented by a magenta

arrow between the appropriate vertices. The black labels represent the sets the pair belongs to, i.e., L stands

for T L
j

, R stands for T R
j

, and H stands for T H
j

• T H
j = {(an

2 j−1, b1
2 j−1), (a

n
2 j , b1

2 j )} for each j ∈ [k], and

• T V
i = {(cn

2i−1, d1
2i−1), (c

n
2i , d1

2i )} for each i ∈ [k]

Note that the total number of terminal pairs is (4 · 4 + 2 · 2)k = 20k.

Remark 1 Note that the constructed graph G is planar: Fig. 1 gives a planar embedding

of the graph before the splitting operation, and the splitting operation (see Fig. 2) clearly

preserves planarity.

Remark 2 Note that the index n does not appear in either first or second coordinate of

any pair in the sets Si, j (for any i, j ∈ [k]) as there is no vertex un in G ′. This technical

condition is not necessary for our reduction, but we added it to help simplify3 some of

the definitions and proofs which appear later in the paper. For example, one can now

observe easily that all vertices in Right(G2i,2 j ) and Bottom(G2i,2 j ) are split (for

every i, j ∈ [k]).

Before giving an intuition about and proving the properties of the reduction, we first

introduce some notation concerning orientations of the green path edges (i.e. potential

solutions) of the instance.

Definition 1 For any i ∈ [n], a path on n vertices a1 − a2 − · · · − an is said to be

oriented towards (away from) i if every edge a j−1 − a j is oriented towards (away

from) a j for every j ≤ i and every edge a j − a j+1 is oriented towards (away from)

a j for every j ≥ i , respectively.

We now give some intuition on how the individual terminal pairs enforce the desired

structure on the solution (see Figs. 3 and 4). To satisfy pairs in T L
j the path Â j must

3 In Definitions 2 and 3 , instead of having three conditions (either j is odd or even, and for the case when

j is even we would have two further cases depending on whether or not that vertex is split) for the last black

vertex of a horizontal canonical path, we now only have two conditions (either j is odd and the vertex is

not split, or j is even and the vertex is definitely split).
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Fig. 4 Illustration of the oriented paths in an intended solution in two consecutive rows of the construction.

The arcs used by the paths are drawn in magenta, vertical paths are not drawn. The path Â j is oriented away

from n + 1 − x j in Lemma 1 and away from n + 1 − λ j in Lemmas 4 and 6. The path A2 j−1 is oriented

towards n+1−x j in Lemma 1, towards n+1−λ j in Lemmas 4 and 6, and towards α2 j−1 in Lemma 5. The

path A2 j is oriented towards x j in Lemma 1, towards λ j in Lemmas 4 and 6, and towards α2 j in Lemma 5.

The path B2 j−1 is oriented away from n + 1 − x j in Lemma 1, away from n + 1 − μ j in Lemmas 4 and 6,

and away from β2 j−1 in Lemma 5. The path B2 j is oriented away from x j in Lemma 1, away from μ j in

Lemmas 4 and 6, and away from β2 j in Lemma 5. The path B̂ j is oriented towards n + 1 − x j in Lemma 1

and towards n + 1 − μ j in Lemmas 4 and 6

be oriented away from some index, path A2 j−1 towards the same index and path A2 j

towards the opposite index (see Lemma 4). Similarly, to satisfy pairs in T R
j the path

B̂ j must be oriented towards some index, the path B2 j−1 must be oriented away from

the same index and the path must be oriented B2 j away from the opposite index. Then,

the pairs in T H
j enforce one inequality on the indexes selected on left and right side

each, and to satisfy them, there must be a horizontal path from left to right in each

row (see Lemma 5). Pairs in T T
i , T B

i , and T V
i enforce similar properties on paths

Ĉi , C2i−1, C2i , D̂i , D2i−1, D2i and the existence of a vertical path in each column.

The splitting in grids on the diagonal enforces that the indexes selected in rows are the

same as those selected in the corresponding columns and thus actually correspond to

selecting a vertex of G ′ (see Lemma 6). The splitting in grids off the diagonal ensures

that the selected vertices are adjacent (see Lemma 7).

2.2 Completeness of the Reduction

In this subsection we prove the following lemma.

Lemma 1 On an instance (G ′, k) of k-Clique such that G ′ contains a clique of size k,

the reduction produces an instance (G,T ) of Planar Steiner Orientation which

has a solution satisfying all terminal pairs.

Suppose that G ′ has a clique X of size k. Let the clique be formed by the vertices

ux1 , ux2 , . . . , uxk
. We know that xi ∈ [n] for each i ∈ [k]. We now show that the

constructed instance (G,T ) of Planar Steiner Orientation has a solution that
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satisfies all the terminal pairs. Orient the undirected green path edges as follows (see

Fig. 4 for an illustration). For each i, j ∈ [k]

– orient Â j and B2 j−1 away from n + 1 − x j ,

– orient A2 j−1 and B̂ j towards n + 1 − x j ,

– orient A2 j towards x j ,

– orient B2 j away from x j ,

– orient Ĉi and D2i−1 away from n + 1 − xi ,

– orient C2i−1 and D̂i towards n + 1 − xi .

– orient C2i towards xi ,

– orient D2i away from xi ,

Note that so far we have only oriented the undirected green path edges, and that

the dotted undirected edges arising from the splitting operation (Fig. 2) are not yet

oriented at this step. It is easy to see that the above orientations ensure that all terminal

pairs of
⋃

i∈[k] T
L

i ∪ T R
i ∪ T T

i ∪ T B
i are satisfied (see Fig. 4). We now show that

terminal pairs of
⋃

i∈[k] T
H

i ∪ T V
i are also satisfied. First we need some definitions:

Definition 2 (horizontal canonical paths) For j ∈ [2k] and ℓ ∈ [n], we denote by

Qℓ
j the unique (horizontal) directed aℓ

j → bℓ
j path whose second vertex is v

1,ℓ
1, j and

second-last vertex is v
n,ℓ
2k, j if j is odd and v

n,ℓ
2k, j,TR if j is even. This path starts with

the blue connector edge from aℓ
j to v

1,ℓ
1, j and ends with the blue connector edge from

v
n,ℓ
2k, j or v

n,ℓ
2k, j,TR to bℓ

j . The intermediate edges are obtained by selecting the paths of

black edges given by the ℓth rows of each gadget Gi, j for i ∈ [2k], and connecting

these small paths by horizontal orange edges.

However, we need to address what to do when we encounter a split vertex on this

path. Consider the vertex v
h,ℓ
i, j for some i ∈ [2k] and h ∈ [n]. If v

h,ℓ
i, j is not split,

then we do not have to do anything. Otherwise, if v
h,ℓ
i, j is split, then we add the edge

v
h,ℓ
i, j,LB → v

h,ℓ
i, j,TR to Qℓ

j .

Note that the orientation of G which orients all dotted edges rightwards, i.e., LB →
TR, contains each of the horizontal canonical paths defined above.

Definition 3 (vertical canonical paths) For i ∈ [2k] and h ∈ [n], we denote by Ph
i the

unique (vertical) ch
i → dh

i path whose second vertex is v
h,1
i,1 and second-last vertex

is v
h,n
i,2k if i is odd and v

h,n
i,2k,LB if i is even. This path starts with the blue connector

edge (cℓ
i , v

h,1
i,1 ) and ends with the blue connector edge from v

h,n
i,2k or v

h,n
i,2k,LB to dℓ

i . The

intermediate edges are obtained by selecting the paths of black edges given by the

ℓth columns of each gadget Gi, j for j ∈ [2k], and connecting these small paths by

vertical orange edges.

However, we need to address what to do when we encounter a split vertex on this

path. Consider the vertex v
h,ℓ
i, j for some j ∈ [2k] and ℓ ∈ [n]. If v

h,ℓ
i, j is not split,

then we do not have to do anything. Otherwise, if v
h,ℓ
i, j is split, then we add the edge

v
h,ℓ
i, j,LB ← v

h,ℓ
i, j,TR to Ph

i .
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Note that the orientation of G which orients all dotted edges leftwards, i.e., LB ←
TR, contains each of the vertical canonical paths defined above. Observe that both

the horizontal canonical paths and vertical canonical paths assign orientations to the

dotted edges arising from splitting vertices. Hence, one needs to be careful because the

splitting operation (see Fig. 2) is designed to ensure that the existence of a horizontal

canonical path implies that some vertical canonical path cannot exist (recall that we

are allowed to orient each undirected edge in exactly one direction).

Definition 4 (realizable set of paths) A set of directed paths P in a mixed graph G

is realizable if there is an orientation G∗ of G such that each path P ∈ P appears in

G∗.

Lemma 2 The set of vertical canonical paths {P
n+1−xi

2i−1 , P
xi

2i | i ∈ [k]} together with

the set of horizontal canonical paths {Q
n+1−x j

2 j−1 , Q
x j

2 j | j ∈ [k]} are realizable in G.

Proof Orient each undirected dotted edge which appears on some horizontal path from

{Q
n+1−x j

2 j−1 , Q
x j

2 j | j ∈ [k]} in LB → TR direction and each undirected dotted edge

which appears on some vertical path from {P
n+1−xi

2i−1 , P
xi

2i | i ∈ [k]} in TR → LB

direction. Since, if i = j , then we have (xi , xi ) ∈ Si,i by definition and if i 	= j ,

then uxi
and ux j

are adjacent in G ′ as X is a clique in G ′, implying that we also

have (xi , x j ) ∈ Si, j by definition, no black vertex v
xi ,x j

2i,2 j was split. Thus there is no

undirected dotted edge which would appear on both a horizontal and a vertical path

from the set. To prove the lemma it remains to arbitrarily orient the edges which do

not have a prescribed orientation yet. ⊓⊔

Observe that for each j ∈ [k], the horizontal path Q
n+1−x j

2 j−1 together with the

oriented paths an
2 j−1 → a

n+1−x j

2 j−1 in A2 j−1 and b
n+1−x j

2 j−1 → b1
2 j−1 in B2 j−1 satisfies

the terminal pair (an
2 j−1, b1

2 j−1) of T H
j for each j ∈ [k] (see Fig. 4). The same holds

for the horizontal path Q
x j

2 j , paths in A2 j and B2 j and the terminal pair (an
2 j , b1

2 j ) of

T H
j for each j ∈ [k].
Similarly, for each i ∈ [k], the path P

n+1−xi

2i−1 together with the oriented paths

cn
2i−1 → c

n+1−xi

2i−1 in C2i−1 and d
n+1−xi

2i−1 → d1
2i−1 in D2i−1 satisfies the terminal pair

(cn
2i−1, d1

2i−1) of T V
i . Finally, the path P

xi

2i together with paths in C2i and D2i satisfies

pair (cn
2i , d1

2i ) of T V
i for each i ∈ [k].

Lemma 2 guarantees that these families of canonical vertical and horizontal paths

can be realized by some orientation of G (note that the canonical paths only orient

black edges, and not green path edges whose orientation was already fixed at the start

of this subsection). This implies that (G,T ) has a solution which satisfies all terminal

pairs, concluding the proof Lemma 1.

2.3 Soundness of the Reduction

In this subsection we prove the following lemma.
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Lemma 3 Let (G ′, k)be an input instance of k-Clique, (G,T )be instance of Planar

Steiner Orientation produced by the reduction, and 0 < ϑ ≤ 1
20

. If there is an

orientation G∗ of G which satisfies at least ( 19
20

+ ϑ)-fraction of the terminal pairs,

then there is a clique of size at least 20ϑ · k in G ′. In particular, if G∗ satisfies all

terminal pairs, then G ′ has a clique of size k.

Let G∗ be the orientation which satisfies at least ( 19
20

+ϑ)-fraction of terminal pairs

from T . Note that the set of vertices A∪ B̂ ∪C ∪ D̂ has no incoming edges. Similarly,

the set of vertices Â ∪ B ∪ Ĉ ∪ D has no outgoing edges.

The next lemma restricts the orientations of the undirected paths of green path

edges.

Lemma 4 In the orientation G∗, for each i, j ∈ [k] we have that

– if G∗ satisfies all pairs of T L
j , then there exists an integer λ j ∈ [n] such that the

path Â j is oriented away from n + 1 − λ j , the path A2 j−1 is oriented towards

n + 1 − λ j and the path A2 j is oriented towards λ j .

– if G∗ satisfies all pairs of T R
j , then there exists an integer μ j ∈ [n] such that the

path B̂ j is oriented away from n + 1 − μ j , the path B2 j−1 is oriented away from

n + 1 − μ j and the path B2 j is oriented towards μ j .

– if G∗ satisfies all pairs of T T
i , then there exists an integer δi ∈ [n] such that the

path Ĉi is oriented away from n + 1 − δi , the path C2i−1 is oriented towards

n + 1 − δi and the path C2i is oriented towards δi .

– if G∗ satisfies all pairs of T B
i , then there exists an integer εi ∈ [n] such that the

path D̂i is oriented away from n + 1 − εi , the path D2i−1 is oriented away from

n + 1 − εi and the path D2i is oriented towards εi .

Proof Fix j ∈ [k]. We just prove the lemma for the pairs of T L
j and the paths Â j ,

A2 j−1, and A2 j since the proof for other cases is similar. See again Fig. 4 for an

illustration. Since the only edges incoming to Â are blue connector edges from A (and

A has no incoming edges), it follows that the terminal pairs (an
2 j−1, â1

j ) and (a1
2 j−1, ân

j )

of T L
j are satisfied by edges from the graph G∗[ Â j ∪ A2 j−1]. The path satisfying the

terminal pair (an
2 j−1, â1

j ) has to travel upwards along A2 j−1, use a blue connector edge

and then finally travel upwards along Â j . Similarly, the path satisfying the terminal

pair (a1
2 j−1, ân

j ) has to travel downwards along A2 j−1, use a blue connector edge and

then finally travel downwards along Â j . Since we can only orient each green path

edge in exactly one direction, it follows that both these paths must use the same blue

connector edge, i.e., there exists an integer λ′
i ∈ [n] such that the paths Â j , A2 j−1

are oriented away from, and towards λ′
i , respectively. A similar argument shows that

both the paths satisfying the terminal pairs (a1
2 j , â1

j ) and (an
2 j , ân

j ) have to use the blue

connector edge a
n+1−λ′

i

2 j → â
λ′

i

j . Hence, the path A2 j is oriented towards n + 1 − λ′
i .

Setting λi = n + 1 − λ′
i , we obtain the desired result. ⊓⊔

Lemma 5 Let G∗ be an orientation of G. For each j ∈ [2k] if A j is oriented towards

α j ∈ [n], path B j is oriented away from β j ∈ [n], and the pair (an
j , b1

j ) is satisfied in
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G∗, then α j ≤ β j . If moreover α j = β j , then G∗ contains the horizontal canonical

path Q
α j

j .

For each i ∈ [2k] if Ci is oriented towards γi ∈ [n], path Di is oriented away from

ζi ∈ [n], and the pair (cn
i , b1

i ) is satisfied in G∗, then γi ≤ ζi . If moreover γi = ζi ,

then G∗ contains the vertical canonical path P
γi

i .

Proof We only prove the first two claims, the proof for the other two is completely

analogous. See again Fig. 4 for an illustration. Fix any j ∈ [2k] and consider the

terminal pair (an
j , b1

j ). Since G∗ satisfies the pair (an
j , b1

j ), it contains a path P from an
j

to b1
j . Since Â has no outgoing edges, P does not contain any vertices of Â. Similarly, P

does not contain any vertices of B̂. Hence, the path P consist of the following five parts:

the vertical upwards path an
j → an−1

j → · · · → aτ
j followed by the blue connector

edge aτ
j → v

1,τ
1, j , then a path in the graph G∗

[ ⋃2k
i=1

⋃2k
j ′=1 V (Gi, j ′)

]
followed by a

blue connector edge v
n,υ
2k, j → bυ

j and a vertical upwards path bυ
j → bυ−1

j · · · → b1
j .

If j is even, then the second blue connector edge is actually v
n,υ
2k, j,TR → bυ

j .

Since A j is oriented towards α j , for the first part of P to exist we have α j ≤ τ .

Similarly, since B j is oriented away from β j , we have υ ≤ β j . Furthermore, all

edges in G∗
[ ⋃2k

i=1

⋃2k
j ′=1 V (Gi, j ′)

]
, except for those formed by splitting vertices,

are oriented either downward or to the right. Moreover, the splitting does not really

change the row/column level. Therefore, the central part of P only goes down or right

and τ ≤ υ. Together we obtain α j ≤ τ ≤ υ ≤ β j , and the first claim follows.

Moreover, if α j = β j , then τ = υ = α j and the central part of P only goes right

and from LB to TR within the split vertices. It follows that it is the horizontal canonical

path Q
α j

j . ⊓⊔

Lemma 6 For each i ∈ [k] and j ∈ [k] and integers λ j , μ j , δi , εi as given by Lemma 4

we have the following.

– If G∗ satisfies all pairs in T L
j ∪T R

j ∪T H
j , then λ j = μ j . Moreover, G∗ contains

the horizontal canonical path Q
λ j

2 j .

– If G∗ satisfies all pairs in T T
i ∪ T B

i ∪ T V
i , then δi = εi . Moreover, G∗ contains

the vertical canonical path P
δi

2i .

– If i = j and both previous conditions hold, then moreover λi = δi .

Proof Fix j ∈ [k]. See again Fig. 4 for an illustration. We first prove that λ j = μ j , if

G∗ satisfies the pairs in T L
j ∪T R

j ∪T H
j . In this case, by Lemma 4, A2 j−1 is oriented

towards n + 1 −λ j and B2 j−1 is oriented away from n + 1 −μ j and from Lemma 5 it

follows that n +1−λ j ≤ n +1−μ j . That is, λ j ≥ μ j . Since A2 j is oriented towards

λ j and B2 j is oriented away from μ j , from Lemma 5 it follows that λ j ≤ μ j . Thus

λ j = μ j and applying Lemma 5 again to paths A2 j and B2 j we get that G∗ contains

the horizontal canonical path Q
λ j

2 j .

The proof for the second part is completely analogous to the proof of the first

part. Thus we move to the third part. From the previous two parts we know that G∗

contains both the the horizontal canonical path Q
λi

2i and the vertical canonical path
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P
δi

2i . It follows that the vertex v
δi ,λi

2i,2i was not split, that is (δi , λi ) ∈ Si,i . This implies

δi = λi by the definition of Si,i , concluding the proof. ⊓⊔

Definition 5 An index i ∈ [k] is called good (for G∗) if all terminal pairs from

T L
i ∪ T R

i ∪ T T
i ∪ T B

i ∪ T H
i ∪ T V

i are satisfied in G∗.

Lemma 7 If both i, j ∈ [k], i 	= j are good in G∗, then {uδi
, uδ j

} ∈ E(G ′). In

particular δi 	= δ j .

Proof By Lemma 6, if i, j are good, then G∗ contains the horizontal canonical path

Q
δ j

2 j and the vertical canonical path P
δi

2i . It follows that the vertex v
δi ,δ j

2i,2 j was not split,

that is (δi , δ j ) ∈ Si, j . This implies {uδi
, uδ j

} ∈ E(G ′) by the definition of Si, j . The

second part follows as we do not allow loops. ⊓⊔

Lemma 8 Let Y ⊆ [k] be the set of good indices. For each 0 ≤ ϑ ≤ 1
20

, if G∗ satisfies

at least ( 19
20

+ ϑ)-fraction of the terminal pairs, then |Y | ≥ 20ϑ · k.

Proof If i is good then all 20 pairs from T L
i ∪ T R

i ∪ T T
i ∪ T B

i ∪ T H
i ∪ T V

i are

satisfied in G∗. Otherwise, at most 19 pairs from this set are satisfied. Hence, the total

number of satisfied pairs is at most 20|Y | + 19(k − |Y |) = 19k + |Y |. However, we

know that G∗ satisfies at least ( 19
20

+ ϑ)|T | = ( 19
20

+ ϑ)20k = 19k + 20ϑ · k pairs.

Hence, we have |Y | ≥ 20ϑ · k. ⊓⊔

Proof of Lemma 3 If G∗ satisfies at least ( 19
20

+ ϑ)-fraction of the terminal pairs, then

by Lemma 8 there is a set Y of good indices of size at least 20ϑ · k. By Lemma 7 the

set X = {uδi
| i ∈ Y } forms a clique in G ′ of size at least 20ϑ · k.

2.4 Proving the Lower Bounds

In this subsection we finish the proof of both our theorems.

Proof of Theorem 1 It is easy to see that the graph G has O(n2k2) vertices and can be

constructed in poly(n +k) time. Recall that (Remark 1) the graph G constructed in the

Steiner Orientation instance is planar. Combining this with the two directions from

Lemmas 1 and 3, we get a parameterized reduction from k-Clique to Planar Steiner

Orientation. Hence, the W[1]-hardness of Planar Steiner Orientation follows

from the W[1]-hardness of k-Clique. Chen et al. [4] showed that, for any function f ,

the existence of an f (k) · no(k) algorithm for k-Clique violates ETH. Our reduction

transforms an instance of k-Clique into an equivalent instance of Planar Steiner

Orientation with O(k) demand pairs. We obtain that under ETH there is no f (k) ·
no(k) time algorithm for Planar Steiner Orientation. This concludes the proof.

For the inapproximability proof we need some more definitions. We will use the

recent result on parameterized inapproximability of k-Clique from [3]. To state the

result precisely, let us first state the underlying assumption, the Gap Exponential Time

Hypothesis (Gap-ETH).
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Hypothesis 1 ((Randomized) Gap-ETH [11,16]) There exists a constant δ > 0 such

that, given a 3CNF formula Φ on n variables, no (possibly randomized) 2o(n)-time

algorithm can distinguish between the following two cases correctly with probability

at least 2/3:

– Φ is satisfiable.

– Every assignment to the variables violates at least a δ-fraction of the clauses of Φ.

Here we do not attempt to reason why Gap-ETH is a plausible assumption; for

more detailed discussions on the topic, please refer to [11] or [3]. For now, let us move

on to state the inapproximability result from [3] that we need. Chalermsook et al. [3]

showed that the only way to distinguish graphs with large cliques from those with

small cliques is essentially to enumerate all vertex subsets of certain size, as stated

more formally below.

Theorem 3 ([3, Theorem 18]) Assuming Gap-ETH, there exist constants δ, r0 > 0

such that, for any function g and for any positive integers q ≥ r ≥ r0, there is

no algorithm that, given a graph G ′, can distinguish between the following cases in

g(q, r) · nδr time, where n = |V (G ′)|:

– Clique(G ′) ≥ q and

– Clique(G ′) < r ,

where Clique(G ′) denotes the maximum size of a clique in G ′.

While the construction presented in [3] is randomized, the authors claim that it can

be derandomized so that the assumption can be limited to the (deterministic) Gap-ETH.

Proof of Theorem 2 Let δ and r0 be the constants from Theorem 3, ϑ be a constant

such that 0 < ϑ ≤ 1
20

and let ζ = ϑδ
4

. Let r = max{3, r0} and q = ⌈ r
20ϑ

⌉. Note that

since r > 2, we have q > 2 and, thus q ≤ 2 r
20ϑ

.

Assume for contradiction that there is a function f and an algorithm A that can

distinguish between the two cases:

– there is an orientation of G that satisfies all pairs of T and

– any orientation of G satisfies less than 19
20

+ ϑ fraction of pairs in T

in f (|T |)(|V (G)|ζ |T |) time.

We design an algorithm B that will contradict Theorem 3 for q and r as follows.

Given a graph G ′ we apply our reduction from Sect. 2.1 to the instance (G ′, q) of

Clique. Then we apply algorithm A to the resulting instance (G,T ) of Steiner

Orientation. If G ′ contains a clique of size q, then, by Lemma 1, there is an orien-

tation of G satisfying all pairs from T and the algorithm A recognizes that. If each

clique in G ′ is of size less than r ≤ 20ϑq, then each orientation of G satisfies less

than a 19
20

+ ϑ fraction of pairs in T . Indeed, by Lemma 3, if any orientation satisfied

a 19
20

+ ϑ fraction of pairs in T , then there would be a clique of size 20ϑq ≥ r in G ′.
Again, the algorithm A recognizes that.

Now since |V (G)| = O(q2|V (G ′)|2), the reduction can be performed in linear

time in the size of the output, and A runs in time f (|T )|(|V (G)|ζ |T |), we obtain that

B runs in time
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f (|T |)(|V (G)|ζ |T |) = f (20q)((O(q2|V (G′)|2))ζ ·20q )

= f (20q)((O(q2))ζ ·20q )(|V (G′)|2)ζ ·20q ) = g(q)(|V (G′)|2·ζ ·20q ) ≤ g(q)(|V (G′)|δ·r ),

for suitable g. The last inequality holds since 2ζ ·20q = 2ζ ·20·⌈ r
20ϑ

⌉ ≤ 2ζ ·20·2 r
20ϑ

=
4ζ
ϑ

r = 4ϑδ
4ϑ

r = δr by the definition of ζ .

Thus the existence of A would indeed contradict Theorem 3. ⊓⊔

3 Open Problems

This work completely closes the gap between upper and lower bounds for the Steiner

Orientation problem parameterized by the number of terminal pairs k, even on planar

graphs. However, there are still some interesting open questions to pursue. We list some

of them below:

– Does Steiner Orientation belong to the class W[1]?

– Can we show W[2]-hardness for Steiner Orientation parameterized by k?

– Can we obtain O(1)-FPT approximation for Planar Steiner Orientation

parameterized by k?
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