
This is a repository copy of Tight bounds for planar strongly connected steiner subgraph
with fixed number of terminals (and extensions).

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200952/

Version: Accepted Version

Article:

Chitnis, R.H. orcid.org/0000-0002-6098-7770, Feldmann, A.E. orcid.org/0000-0001-6229-
5332, HajiAghayi, M.T. et al. (1 more author) (2020) Tight bounds for planar strongly
connected steiner subgraph with fixed number of terminals (and extensions). SIAM Journal
on Computing, 49 (2). pp. 318-364. ISSN 0097-5397

https://doi.org/10.1137/18m122371x

© 2020, Society for Industrial and Applied Mathematics. This is an author-produced
version of a paper subsequently published in SIAM Journal on Computing . Uploaded in
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Tight Bounds for Planar Strongly Connected Steiner Subgraph with

Fixed Number of Terminals (and Extensions)∗

Rajesh Chitnis† Andreas Emil Feldmann‡ MohammadTaghi Hajiaghayi§

Dániel Marx¶

Abstract

Given a vertex-weighted directed graph G = (V,E) and a set T = {t1, t2, . . . tk} of k terminals, the

objective of the STRONGLY CONNECTED STEINER SUBGRAPH (SCSS) problem is to find a vertex set

H ⊆V of minimum weight such that G[H] contains a ti→ t j path for each i 6= j. The problem is NP-hard,

but Feldman and Ruhl [FOCS ’99; SICOMP ’06] gave a novel nO(k) algorithm for the SCSS problem,

where n is the number of vertices in the graph and k is the number of terminals. We explore how much

easier the problem becomes on planar directed graphs.

• Our main algorithmic result is a 2O(k) ·nO(
√

k) algorithm for planar SCSS, which is an improvement

of a factor of O(
√

k) in the exponent over the algorithm of Feldman and Ruhl.

• Our main hardness result is a matching lower bound for our algorithm: we show that planar SCSS

does not have an f (k) · no(
√

k) algorithm for any computable function f , unless the Exponential

Time Hypothesis (ETH) fails.

To obtain our algorithm, we first show combinatorially that there is a minimal solution whose

treewidth is O(
√

k), and then use the dynamic-programming based algorithm for finding bounded-

treewidth solutions due to Feldmann and Marx [ICALP ’16]. To obtain the lower bound matching the

algorithm, we need a delicate construction of gadgets arranged in a grid-like fashion to tightly control the

number of terminals in the created instance.

The following additional results put our upper and lower bounds in context:

• Our 2O(k) ·nO(
√

k) algorithm for planar directed graphs can be generalized to graphs excluding a

fixed minor. Additionally, we can obtain this running time for the problem of finding an optimal

planar solution even if the input graph is not planar.

• In general graphs, we cannot hope for such a dramatic improvement over the nO(k) algorithm

of Feldman and Ruhl: assuming ETH, SCSS in general graphs does not have an f (k) ·no(k/ logk)

algorithm for any computable function f .

∗A preliminary version of this paper appeared in SODA 2014 [19]
†School of Computer Science, University of Birmingham. Part of this work was done while at the University of Maryland, USA

and University of Warwick, UK (supported by ERC grant 2014-CoG 647557). Email: rajeshchitnis@gmail.com
‡Department of Applied Mathematics, Charles University, Prague, Czechia. Supported by project CE-ITI (GAČR

no. P202/12/G061) of the Czech Science Foundation, and by the Center for Foundations of Modern Computer Science (Charles Univ.

project UNCE/SCI/004). Email: feldmann.a.e@gmail.com
§Department of Computer Science , University of Maryland at College Park, USA. Supported in part by NSF CAREER award

1053605, ONR YIP award N000141110662, DARPA/AFRL award FA8650-11-1-7162 and a University of Maryland Research and

Scholarship Award (RASA). Email: hajiagha@cs.umd.edu
¶Max Planck Institute for Informatics, Saarbrücken, Germany. Supported by ERC Starting Grant PARAMTIGHT (No. 280152)

and ERC Consolidator Grant SYSTEMATICGRAPH (No. 725978). Email: dmarx@mpi-inf.mpg.de

ar
X

iv
:1

91
1.

13
16

1v
1

 [
cs

.D
S]

 2
9

N
ov

 2
01

9

• Feldman and Ruhl generalized their nO(k) algorithm to the more general DIRECTED STEINER

NETWORK (DSN) problem; here the task is to find a subgraph of minimum weight such that for

every source si there is a path to the corresponding terminal ti. We show that, assuming ETH, there

is no f (k) ·no(k) time algorithm for DSN on acyclic planar graphs.

All our lower bounds hold for the edge-unweighted version, while the algorithm works for the more

general vertex-(un)weighted version.

1 Introduction

The STEINER TREE (ST) problem is one of the earliest and most fundamental problems in combinatorial

optimization: given an undirected graph G = (V,E) and a set T ⊆V of terminals, the objective is to find a

tree of minimum size which connects all the terminals. The ST problem is believed to have been first formally

defined by Gauss in a letter in 1836, and the first combinatorial formulation is attributed independently to

Hakimi [43] and Levin [52] in 1971. The ST problem is known to be NP-complete, and was in fact part

of Karp’s original list [49] of 21 NP-complete problems. In the directed version of the ST problem, called

DIRECTED STEINER TREE (DST), we are also given a root vertex r and the objective is to find a minimum

size arborescence which connects the root r to each terminal from T . An easy reduction from SET COVER

shows that the DST problem is also NP-complete.

Steiner-type problems arise in the design of networks. Since many networks are symmetric, the directed

versions of Steiner-type problems were mostly of theoretical interest. However, in recent years, it has

been observed [65, 67] that the connection cost in various networks such as satellite or radio networks are

not symmetric. Therefore, directed graphs form the most suitable model for such networks. In addition,

Ramanathan [65] also used the DST problem to find low-cost multicast trees, which have applications in

point-to-multipoint communication in high bandwidth networks. We refer the interested reader to Winter [69]

for a survey on applications of Steiner problems in networks.

In this paper we consider two well-studied Steiner-type problems in directed graphs, namely the

STRONGLY CONNECTED STEINER SUBGRAPH and the DIRECTED STEINER NETWORK problems. In

the (vertex-unweighted) STRONGLY CONNECTED STEINER SUBGRAPH (SCSS) problem, given a directed

graph G = (V,E) and a set T = {t1, t2, . . . , tk} of k terminals, the objective is to find a set S⊆V of minimum

size such that G[S] contains a ti→ t j path for each 1≤ i 6= j ≤ k. Thus, just as DST, the SCSS problem is

another directed version of the ST problem, where all terminals need to be connected to each other. The

(vertex-unweighted) DIRECTED STEINER NETWORK (DSN) problem generalizes both DST and SCSS: given

a directed graph G = (V,E) and a set T = {(s1, t1),(s2, t2), . . . ,(sk, tk)} of k pairs of terminals, the objective

is to find a set S ⊆ V of minimum size such that G[S] contains an si→ ti path for each 1 ≤ i ≤ k. We first

describe the known results for both SCSS and DSN before stating our results and techniques.

1.1 Previous work

Since both DSN and SCSS are NP-complete, one can try to design polynomial-time approximation algorithms

for these problems. An α-approximation for DST implies a 2α-approximation for SCSS as follows: fix a

terminal t ∈ T and take the union of the solutions of the DST instances (G, t,T \ t) and (Grev, t,T \ t), where

Grev is the graph obtained from G by reversing the orientations of all edges. The best known approximation

ratio in polynomial time for SCSS is kε for any ε > 0 [14]. A result of Halperin and Krauthgamer [44]

implies SCSS has no Ω(log2−ε n)-approximation for any ε > 0, unless NP has quasi-polynomial Las Vegas

algorithms. For the more general DSN problem, the best approximation ratio known is n2/3+ε for any ε > 0.

Berman et al. [4] showed that DSN has no Ω(2log1−ε n)-approximation for any 0 < ε < 1, unless NP has

quasi-polynomial time algorithms.

2

Rather than finding approximate solutions in polynomial time, one can look for exact solutions in time that

is still better than the running time obtained by brute force algorithms. For (unweighted versions of) both the

SCSS and DSN problems, brute force can be used to check in time nO(p) if a solution of size at most p exists:

one can go through all sets of size at most p. A more efficient algorithm would have runtime f (p) ·nO(1),

where f is some computable function depending only on p. A problem is said to be fixed-parameter tractable

(FPT) with a particular parameter p if it admits such an algorithm; see [23, 28, 37, 62] for more background

on FPT algorithms. A natural parameter for our considered problems is the number k of terminals or terminal

pairs; with this parameterization, it is not even clear if there is a polynomial-time algorithm for every fixed k,

much less if the problem is FPT. It is known that STEINER TREE on undirected graphs is FPT parameterized

by the number k of terminals: the classical algorithm of Dreyfus and Wagner [29] solves the problem in time

3k ·nO(1). The running time was recently improved to 2k ·nO(1) by Björklund et al. [5]. The same algorithms

work for DIRECTED STEINER TREE as well.

For the SCSS and DSN problems, we cannot expect fixed-parameter tractability: Guo et al. [42] showed

that SCSS is W[1]-hard parameterized by the number of terminals k, and DSN is W[1]-hard parameterized

by the number of terminal pairs k. In fact, it is not even clear how to solve these problems in polynomial

time for small fixed values of the number k of terminals/pairs. The case of k = 1 in DSN is the well-known

shortest path problem in directed graphs, which is known to be polynomial time solvable. For the case k = 2

in DSN, an O(n5) algorithm was given by Li et al. [53] which was later improved to O(mn+ n2 logn) by

Natu and Fang [61]. The question regarding the existence of a polynomial time algorithm for DSN when

k = 3 was open. Feldman and Ruhl [35] solved this question by giving an nO(k) algorithm for DSN, where k

is the number of terminal pairs. They first designed an nO(k) algorithm for SCSS, where k is the number of

terminals, and used it as a subroutine in the algorithm for the more general DSN problem.

1.2 Our results and techniques

Given the amount of attention the planar version of Steiner-type problems received from the viewpoint of

approximation (see, e.g., [2, 3, 11, 26, 32]) and the availability of techniques for parameterized algorithms on

planar graphs (see, e.g., [6, 27, 40, 50, 59]), it is natural to explore SCSS and DSN restricted to planar graphs1.

In general, one can have the expectation that the problems restricted to planar graphs become easier, but

sophisticated techniques might be needed to exploit planarity. In particular, a certain square root phenomenon

was observed for a wide range of algorithmic problems: the exponent of the running time can be improved

from O(k) to O(
√

k) (or to O(
√

k logk)) and lower bounds indicate that this improvement is essentially best

possible [1, 24, 38, 39, 50, 51, 55, 58–60, 63]. Our main algorithmic result is also an improvement of this form:

Theorem 1.1. An instance (G,T) of the vertex-weighted STRONGLY CONNECTED STEINER SUBGRAPH

problem with |G|= n and |T |= k can be solved in 2O(k) ·nO(
√

k) time, when the underlying undirected graph

of G is planar.

This algorithm presents a major improvement over the Feldman-Ruhl algorithm for SCSS in general

graphs which runs in nO(k) time. A preliminary version of this paper [19] by a subset of the authors contained

a complicated algorithm with a worse running time of 2O(k·logk) ·nO(
√

k). It relied on modifying the Feldman-

Ruhl token game, and then using the excluded grid theorem for planar graphs followed by treewidth-based

techniques. We briefly give some intuition behind this algorithm and the original nO(k) algorithm of Feldman-

Ruhl. The algorithm of Feldman-Ruhl for SCSS is based on defining a game with 2k tokens and costs

associated with the moves of the tokens such that the minimum cost of the game is equivalent to the minimum

cost of a solution of the SCSS problem; then the minimum cost of the game can be computed by exploring a

state space of size nO(k). The 2O(k·logk) ·nO(
√

k) algorithm was obtained by generalizing the Feldman-Ruhl

1Planarity for directed graph problems refers to the underlying undirected graph being planar

3

token game via introducing supermoves, which are sequences of certain types of moves. The generalized

game still has a state space of nO(k), but it has the advantage that we can now give a bound of O(k) on the

number of supermoves required for the game (such a bound is not possible for the original version of the

game). This gives an O(k)-sized summary of the token game, and hence has treewidth O(
√

k). However,

this summary is “unlabeled”, i.e., we do not explicitly know which vertices occur where in the summary.

Guessing by brute force requires nO(k) time, and the improvement to 2O(k·logk) ·nO(
√

k) is obtained by using an

embedding theorem of Klein and Marx [50].

Unlike the 2O(k·logk) ·nO(
√

k) algorithm of [19], the 2O(k) ·nO(
√

k) algorithm from Theorem 1.1 does not

depend on the Feldman-Ruhl algorithm. It is conceptually much simpler: first we show combinatorially

(see Lemma 2.2) that there is a minimal solution whose treewidth is O(
√

k), and then use the dynamic-

programming based algorithm for finding bounded-treewidth solutions for DSN due to Feldmann and

Marx [36, Theorem 5]. The simplicity of our new approach also allows transparent generalizations in two

directions:

• From planar to H-minor-free graphs: we may use the excluded grid minor theorem for H-minor-free

graphs [25] instead of the excluded grid minor theorem for planar graphs [66] to prove the existence of

a minimal solution of treewidth O(
√

k), which again implies a 2O(k) ·nO(
√

k) time algorithm.

• Between restricted inputs and restricted solutions: our algorithm only exploits the H-minor-freeness

of an optimum solution, and not of the whole input graph. Thus, only the existence of one optimum

H-minor-free solution in an otherwise unrestricted input graph is enough to show that some optimum

solution (which might not necessarily be H-minor-free) can be found in 2O(k) ·nO(
√

k) time2.

Can we get a better speedup in planar graphs than the improvement from O(k) to O(
√

k) in the exponent

of n? Our main hardness result matches our algorithm: it shows that O(
√

k) is best possible under the

Exponential Time Hypothesis (ETH).

Theorem 1.2. The edge-unweighted version of the SCSS problem is W[1]-hard parameterized by the number

of terminals k, even when the underlying undirected graph is planar. Moreover, under ETH, the SCSS problem

on planar graphs cannot be solved in f (k) ·no(
√

k) time where f is any computable function, k is the number

of terminals and n is the number of vertices in the instance.

This also answers the question of Guo et al. [42], who showed the W[1]-hardness of these problems on

general graphs and left the fixed-parameter tractability status on planar graphs as an open question. Recall that

ETH has the consequence that n-variable 3SAT cannot be solved in time 2o(n) [45, 46]. There are relatively

few parameterized problems that are W[1]-hard on planar graphs [7, 13, 33, 58]. The reason for the scarcity

of such hardness results is mainly because for most problems, the fixed-parameter tractability of finding a

solution of size k in a planar graph can be reduced to a bounded-treewidth problem by standard layering

techniques. However, in our case the parameter k is the number of terminals, hence such a simple reduction

to the bounded-treewidth case does not seem to be possible. Our reduction is from the GRID TILING problem

formulated by Marx [56, 58] (see also [23]), which is a convenient starting point for parameterized reductions

for planar problems. For our reduction we need to construct two types of gadgets, namely the connector

gadget and main gadget, which are then arranged in a grid-like structure (see Figure 2). The main technical

part of the reduction is the structural result regarding the existence and construction of particular types of

connector gadgets and main gadgets (Lemma 3.3 and Lemma 3.6). Interestingly, the construction of the

connector gadget poses a greater challenge: here we exploit in a fairly delicate way the fact that the ti ❀ t j

2This can be thought of as an intermediate requirement between the two extremes of either forcing the input graph itself to be

H-minor-free versus the other extreme of finding an optimum solution which is H-minor-free. There has been some recent work in

this direction [17, 18]

4

and the reverse t j ❀ ti paths appearing in the solution subgraph might need to share edges to reduce the

weight.

We present additional results that put our algorithm and lower bound for SCSS in a wider context. Given

our speedup for SCSS in planar graphs, one may ask if it is possible to get any similar speedup in general

graphs. Our next result shows that the nO(k) algorithm of Feldman-Ruhl is almost optimal in general graphs:

Theorem 1.3. Under ETH, the edge-unweighted version of the SCSS problem cannot be solved in time

f (k) ·no(k/ logk) where f is an arbitrary computable function, k is the number of terminals and n is the number

of vertices in the instance.

Our proof of Theorem 1.3 is similar to the W[1]-hardness proof of Guo et al. [42]. They showed

the W[1]-hardness of SCSS on general graphs parameterized by the number k of terminals by giving a

reduction from k-CLIQUE. However, this reduction uses “edge selection gadgets” and since a k-clique has

Θ(k2) edges, the parameter is increased at least to Θ(k2). Combining with the result of Chen et al. [15]

regarding the non-existence of an f (k) ·no(k) algorithm for k-Clique under ETH, this gives a lower bound

of f (k) · no(
√

k) for SCSS on general graphs. To avoid the quadratic blowup in the parameter and thereby

get a stronger lower bound, we use the PARTITIONED SUBGRAPH ISOMORPHISM (PSI) problem as the

source problem of our reduction. For this problem, Marx [57] gave a f (k) · no(k/ logk) lower bound under

ETH, where k = |E(G)| is the number of edges of the subgraph G to be found in graph H. The reduction of

Guo et al. [42] from CLIQUE can be turned into a reduction from PSI which uses only |E(G)| edge selection

gadgets, and hence the parameter is Θ(|E(G)|). Then the lower bound of f (k) · no(k/ logk) transfers from

PSI to SCSS. A natural question is whether we can close the O(logk) factor in the exponent: however, our

reduction is from the PSI problem and the best known lower bound for PSI also has such a gap [57]. Note

that there are many other parameterized problems for which the only known way of proving almost tight

lower bounds is by a similar reduction from PSI, and hence an O(logk) gap appears for these problems as

well [8–10, 12, 18, 20–22, 31, 34, 41, 47, 48, 54, 60, 64].

Even though Feldman and Ruhl were able to generalize their nO(k) time algorithm from SCSS to DSN, we

show that, surprisingly, such a generalization is not possible for our 2O(k) ·nO(
√

k) time algorithm for planar

SCSS.

Theorem 1.4. The edge-unweighted version of the DIRECTED STEINER NETWORK problem is W[1]-hard

parameterized by the number k of terminal pairs, even when the input is restricted to planar directed acyclic

graphs (planar DAGs). Moreover, there is no f (k) ·no(k) time algorithm for any computable function f , unless

the ETH fails.

This implies that the Feldman-Ruhl algorithm for DSN is optimal, even on planar directed acyclic graphs.

As in our lower bound for planar SCSS, the proof is by a reduction from an instance of the k×k GRID TILING

problem. However, unlike in the reduction to SCSS where we needed O(k2) terminals, the reduction to DSN

needs only O(k) pairs of terminals (see Figure 6). Since the parameter blowup is linear, the f (k) ·no(k) lower

bound for GRID TILING from [56] transfers to DSN.

Remark: All our hardness results (Theorem 1.2, Theorem 1.3 and Theorem 1.4) are presented for

weighted-edge versions with polynomially-bounded integer weights (including edges with weight zero). By

splitting each edge of weight W into W edges of weight one, all the results also hold for the unweighted-edge

version. Our algorithm (Theorem 1.1) is presented for the weighted-vertex version. Appendix A shows that

the unweighted-vertex version is more general than the weighted-edge version. Hence all our lower bounds

also hold for the (un)weighted-vertex version too.

Finally, instead of parameterizing by the number of terminals, we can consider parameterization by

the number of edges/vertices of the solution. Let us briefly and informally discuss this parameterization.

Note that the number of terminals is a lower bound on the number of edges/vertices of the solution (up to

5

a factor of 2 in the case of DSN parameterized by the number of edges), thus fixed-parameter tractability

could be easier to obtain by parameterizing with the number of edges/vertices. However, our lower bound

for SCSS on general graphs (as well as the W[1]-hardness of Guo et al. [42]) actually proves hardness also

with these parameterizations, making fixed-parameter tractability unlikely. On the other hand, it follows from

standard techniques that both SCSS and DSN are FPT on planar graphs when parameterizing by the number

k of edges/vertices in the solution. The main argument here is that the solution is fully contained in the

k-neighborhood of the terminals, whose number is at most 2k. It is known that the k-neighborhood of O(k)
vertices in a planar graph has treewidth O(k), and thus one can use standard techniques on bounded-treewidth

graphs (dynamic programming or Courcelle’s Theorem). Alternatively, at least in the unweighted case, one

can formulate the problem as a first order formula of size depending only on k and then invoke the result of

Frick and Grohe [40] stating that such problems are FPT. Therefore, as fixed-parameter tractability is easy to

establish on planar graphs, the challenge here is to obtain optimal dependence on k. One would expect that

sub-exponential dependence on k (e.g., 2O(
√

k) or kO(
√

k)) should be possible at least for SCSS, but this is not

yet fully understood even for undirected STEINER TREE [63]. A slightly different parameterization is to

consider the number k of non-terminal vertices in the solution, which can be much smaller than the number

of terminals. This leads to problems of somewhat different flavour, see e.g. [30, 48].

1.3 Further related work

Subsequent to the conference version [19] of this paper, there have been several related results. Chitnis

et al. [16] considered a variant of SCSS with only 2 terminals but with a requirement of multiple paths.

Formally, in the 2-SCSS-(k1,k2) problem we are given two vertices s, t and the goal is to find a min weight

subset H ⊆ E(G) such that H has k1,k2 paths from s ❀ t, t ❀ s, respectively. The objective function is given

by cost(H) = ∑e∈H φ(e) · cost(e) where φ(e) is the maximum number of times e appears on s ❀ t paths and

t ❀ s paths. Chitnis et al. [16] showed that the 2-SCSS-(k,1) problem can be solved in nO(k) time for any

k ≥ 1, and has a f (k) ·no(k) lower bound under ETH.

Suchý [68] introduced a generalization of DST and SCSS called the q-ROOT STEINER TREE (q-RST)

problem. In this problem, given a set of q roots and a set of k leaves, the task is to find a minimum-cost

network where the roots are in the same strongly connected component and every leaf can be reached from

every root. Generalizing the token game of Feldman and Ruhl [35], Suchý [68] designed a 2O(q) · nO(k)

algorithm for q-RST.

Recently, Chitnis et al. [18] considered the SCSS and DSN problems on bidirected graphs: these are

directed graphs with the guarantee that for every edge (u,v) the reverse edge (v,u) exists and has the same

weight. They showed that on bidirected graphs, the DSN problem stays W[1]-hard parameterized by k but

SCSS becomes FPT (while still being NP-hard). In fact, under ETH, no f (k)no(k/ logk) time algorithm for

DSN on bidirected graphs exists, and thus the problem is essentially as hard as for general directed graphs.

For bidirected planar graphs however, Chitnis et al. [18] show that DSN can be solved in 2O(k3/2 logk)nO(
√

k),

which is in contrast to Theorem 1.4. Some FPT approximability and inapproximability results for SCSS and

DSN were also shown in [17, 18].

Pattern graphs and DSN: The set of pairs {(si, ti) : i ∈ [k]} in the input of DSN can be interpreted

as a directed (unweighted) pattern graph on a set R =
⋃k

i=1{si, ti} of terminals. For a graph class H, the

H-DSN problem takes as input a directed graph H ∈ H on vertex set R and the goal is to find a minimum

cost subgraph N ⊆ E(G) such that N has an s ❀ t path for each (s, t) ∈ E(H). Thus for a fixed class H of

pattern graphs, theH-DSN problem is a restricted special case of the general DSN problem, and it is possible

thatH-DSN is FPT (for example, ifH is the class of out-stars). Feldmann and Marx [36] gave a complete

dichotomy for which graph classes theH-DSN problem is FPT or W[1]-hard parameterized by |R|.
Given an instance of DSN with the pattern graph H = (R,A) on the terminal set R with |A| = k, the

algorithm of Feldman and Ruhl [35] runs in nO(k) time. The f (k) ·no(k) lower bound under ETH for DSN

6

in this paper (Theorem 1.4) has |A| = O(|R|). Hence, for the parameter |R| we have a lower bound of

f (|R|) · no(|R|) and an upper bound of nO(|R|2) (since |A| = O(|R|2) in the worst case). Recently, Eiben et

al. [31] essentially closed this gap by showing a lower bound of f (|R|) ·no(|R|2/ log |R|) under ETH for DSN.

They also gave an algorithm for DSN on bounded genus graphs: for graphs of genus g, the algorithm runs in

f (|R|) ·nOg(|R|) time where Og(·) hides constants depending only on g.

2 Improved algorithm for SCSS on planar graphs

In this section we describe the proof to Theorem 1.1, i.e., we present an algorithm to solve SCSS on planar

graphs in 2O(k) ·nO(
√

k) time. The definitions of some of the graph-theoretic notions used in this section such

as treewidth and minors are deferred to Appendix B to maintain the flow of presentation. The key is to

analyze the structure of edge-minimal solutions, i.e., subgraphs of the input graph G (induced by some set

S⊆V) containing all terminals for which no edge can be removed without also removing all s ❀ t paths for

some terminal pair (s, t). We show that for an edge-minimal solution M of the SCSS problem there is a vertex

set W ⊆ V (M) of size O(k) such that, after removing W from M, each component has constant treewidth.

More formally, we define a WM-component as a connected component of the (underlying undirected) graph

induced by V (M)\W in M, and prove the following.

Lemma 2.1. For any edge-minimal solution M to the edge-weighted SCSS problem there is a set of at most

9k vertices W ⊆V (M) for which every WM-component has treewidth at most 2.

We defer the proof of Lemma 2.1 to Section 2.1. First, we see how we can use Lemma 2.1 to bound the

treewidth of the minimal solution M.

Lemma 2.2. If an edge-minimal solution M to edge-weighted SCSS is planar (or excludes some fixed minor),

then its treewidth is O(
√

k).

Proof. By the planar grid theorem [66], there is a constant cPlanar such that any planar graph G with treewidth

cPlanar ·ω has a ω×ω grid minor. If the treewidth of M is at least cPlanar · ⌈20
√

k⌉, then it follows that M has

a ⌈20
√

k⌉×⌈20
√

k⌉ grid minor M′. It is easy to see that M′ contains at least ⌊ ⌈20
√

k⌉
3
⌋ · ⌊ ⌈20

√
k⌉

3
⌋ (pairwise

vertex-disjoint) grids of size 3×3. For each k≥ 1, one can easily verify that ⌊ ⌈20
√

k⌉
3
⌋ ≥ ⌈4

√
k⌉, and hence the

number of pairwise vertex-disjoint 3×3 grids is at least ⌈4
√

k⌉ · ⌈4
√

k⌉ ≥ 4
√

k ·4
√

k = 16k. By Lemma 2.1,

there is a set of vertices W of size 9k whose deletion makes every WM-component have treewidth at most 2.

Since 16k > 9k, it follows that W does not contain a vertex from at least one of the (pairwise vertex-disjoint)

16k grid minors of size 3×3 in M. Hence, there is a WM-component, which contains a 3×3 grid minor, and

hence has treewidth at least 3, which is a contradiction.

For the case when the input graph is H-minor-free for some fixed graph H, we can instead use the

excluded grid-minor theorem of Demaine and Hajiaghayi [25]: for any fixed graph H, there is a constant cH

(which depends only on |H|) such that any H-minor-free graph of treewidth at least cH ·ω has a ω×ω grid

as a minor.

To prove Theorem 1.1, which is restated below, we invoke an algorithm of [36] to find the optimum

solution of bounded treewidth. The algorithm of [36] is designed for the edge-weighted version, and we state

below the corresponding statement for the more general unweighted vertex version (so that it may also be of

future use).

7

Theorem 2.3. (generalization of [36, Theorem 5]) If there is an optimum solution to an instance on k

terminals of the vertex-weighted version of SCSS which has treewidth at most ω , then an optimum solution3

can be found in 2O(k+ω·logω) ·nO(ω) time.

Proof. In the given graph G, we start by subdividing each edge by adding a non-terminal vertex of weight 0

(note that this does not increase the treewidth). Let us call these vertices we have added as dummy vertices,

and the graph obtained at this point be G∗. Note that each dummy vertex has in-degree one and out-degree

one. Now we reduce the vertex-weighted version of SCSS to the edge-weighted version, using a standard

reduction: substitute each non-terminal vertex u ∈ G of weight W with two new non-terminal vertices u− and

u+ and an edge (u−,u+) of the same weight W . Every edge that had u as its head will now have u− as its

head instead, and every edge that had u as its tail will now have u+ as its tail. We set the weight of all these

edges to be zero. Let the graph obtained after these modifications be G′.
Consider an optimum solution S for the vertex-weighted version of SCSS, and without loss of generality

we can assume that S is minimal under vertex deletions (if it is not, then make it minimal by deleting

unnecessary vertices). Let S′ = (S∩T)∪{{u−,u+} : u ∈ S∩ (V \T)}. We now show that the induced graph

G′[S′] is an edge-minimal solution (with same weight as that of S) for the edge-weighted version of SCSS: we

do this by showing that deletion of any edge from G′[S′] creates a non-terminal source or a non-terminal sink

which contradicts the fact that S was a vertex-minimal solution for vertex-weighted version of SCSS. The

construction of the graph G′ from G implies that any edge e in G must be of either of the following two types:

• Without loss of generality4, the edge is (y,v−) for some dummy vertex y and some non-terminal v ∈ G

in which case deleting this edge makes the non-terminal y to be a sink.

• The edge is (z−,z+) for some non-terminal z ∈ G in which case deleting this edge makes the non-

terminal z+ a source and the non-terminal z− a sink.

Note that G′ is not necessarily planar (or H-minor-free) even if G is. However, the treewidth of G′[S′] is at

most twice the treewidth of G[S] since we can simply replace each non-terminal vertex u in the bags of the

tree decomposition of N by the two vertices u− and u+. Feldmann and Marx [36, Theorem 5] showed that if

the optimum solution to an instance on k terminals of the edge-weighted version of SCSS has treewidth ω ,

then it can be found in 2O(k+ω·logω) ·nO(ω) time. Hence, the claimed running time for the vertex-weighted

version follows.

Finally, we are now ready to prove Theorem 1.1

Theorem 1.1. An instance (G,T) of the vertex-weighted STRONGLY CONNECTED STEINER SUBGRAPH

problem with |G|= n and |T |= k can be solved in 2O(k) ·nO(
√

k) time, when the underlying undirected graph

of G is planar (or more generally, H-minor-free for any fixed graph H).

Proof. Consider a subgraph M of G induced by the optimum solution S ⊆ V , which is also minimal, i.e.,

no edge of M can be removed without destroying the connectivity between some terminal pair (s, t). By

Lemma 2.2 we know that the treewidth of M is O(
√

k). Hence, the claimed running time follows from

Theorem 2.3.

Note that Lemma 2.2 only used the planarity (or H-minor-freeness) of M, and not of the input graph.

Hence, the algorithm of Theorem 1.1 also works for the weaker restriction of finding an optimal planar (or

H-minor-free) solution in an otherwise unrestricted input graph, rather than finding an optimal solution in a

planar (or H-minor-free respectively) graph. It only remains to prove Lemma 2.1, which is done in the next

section.

3Not necessarily the same optimum solution as the one mentioned in the first part of this theorem. For example, the actual

optimum found by this algorithm might have treewidth much larger than ω .
4The other case is the edge being (v+,y) for some dummy vertex y and some non-terminal v ∈ G

8

2.1 Proof of Lemma 2.1

Fix an arbitrary terminal r ∈ T . It is easy to see (observed for example by Feldman and Ruhl [35]) that

any minimal SCSS solution M is the union of an in-arborescence Ain and an out-arborescence Aout, both

having the same root r ∈ T and only terminals as leaves, since every terminal of T can be reached from r,

and conversely every terminal can reach r in M. We construct the set WM by including three different kinds

of vertices. First, WM contains every branching point of Ain and Aout, i.e. every vertex with in-degree at least

2 in Ain and every vertex with out-degree at least 2 in Aout. Since Ain and Aout are arborescences with at

most k leaves (the terminals), they each have at most k branching points. Secondly, WM contains all terminals

of T , which adds another k vertices to the set WM. The third kind of vertices in WM is the following. Note

that every component of the intersection of Ain and Aout forms a path (possibly consisting only of a single

vertex), since every vertex of Ain has out-degree at most 1, while every vertex of Aout has in-degree at most 1.

We call such a component a shared path. If a shared path contains a branching point or a terminal, we add the

endpoints of the shared path to WM. For a branching point or terminal v on such a shared path, we can map

the endpoints of the shared path to v. This maps at most two endpoints of shared paths to each branching

point or terminal, so that the number of vertices of the third kind in WM is at most 6k (as there are k terminals

and at most 2k branching points). Thus the total size of WM is at most 9k.

We claim that every WM-component consists of at most two interacting paths, one from Ain and one from

Aout. More formally, consider a u→ v path P of Ain such that u and v are either terminals or branching points

of Ain, and such that no internal vertex of P is a terminal or branching point of Ain. We call any such path P

an essential path of Ain. Note that we ignore the branching points of Aout in this definition, and that the edge

set of the arborescence Ain is the disjoint union of the edge sets of its essential paths. Analogously we define

the essential paths of Aout as those u→ v paths P in Aout for which u and v are terminals or branching points

of Aout, and no internal vertices of P are of such a type.

Claim 2.4. Every WM-component contains edges of at most two essential paths, one from Ain and one

from Aout.

Proof. Any vertex at which two essential paths of the same arborescence intersect is a terminal or branching

point. These vertices are in WM and therefore not contained in any WM-component. Thus if a WM-component

H contains at least two essential paths then they either coincide on every edge of H, in which case the claim

is clearly true, or H contains the endpoint v of a shared path, i.e., there are two essential paths, one from each

arborescence, that both contain vertex v. We will show that there is only one pair of essential paths that can

meet at an endpoint of a shared path in H, from which the claim follows.

In order to prove this, we label every essential u→ v path P of Ain with those terminals TP ⊆ T that can

reach the start vertex of P in the in-arborescence, i.e. t ∈ TP if and only if there exists a t→ u path in Ain.

Note that no two essential paths of Ain can have the same label. We also label any essential u→ v path Q of

Aout analogously, by setting the label TQ ⊆ T to be the terminals which can be reached from the end vertex

of Q in the out-arborescence, i.e. there is a v→ t path in Aout if and only if t ∈ TQ. Even though no two

essential paths of an individual arborescence have the same label, there can be pairs of essential paths from

Ain and Aout with the same label. Let P and Q be essential paths of Ain and Aout, respectively. We prove

that if P and Q meet at an endpoint v of a shared path, then v ∈WM or TP = TQ.

Assume this is not the case so that v /∈WM and TP 6= TQ. Let I be the shared path in the intersection of

Ain and Aout for which v is an endpoint. If u is the other endpoint of I, assume w.l.o.g. that I is a u→ v

path (the other case is symmetric). If there were any branching points or terminals on I then v ∈WM , since v

would then be one of the third kind of vertices in WM. As this is not the case, I lies in the intersection of P

and Q, there are edges ev ∈ E(P) and fv ∈ E(Q) leaving v such that ev /∈ E(Aout) and fv /∈ E(Ain), and there

are edges eu ∈ E(P) and fu ∈ E(Q) entering u such that eu /∈ Aout and fu /∈ E(Ain).
As TP 6= TQ there is a terminal t contained in one of the two sets but not the other. Consider the case

9

Figure 1: Let H be a WM-component M such that at least two shared paths of M intersect with H. By

Claim 2.4, H contains edges of two essential paths P and Q of Ain and Aout, respectively. Claim 2.5 shows

that H looks roughly as shown in the figure: let P,Q be denoted by light+black paths and dotted+black paths

respectively. Then the black paths are exactly the shared paths. Note though that a shared path may have

length 0.

when t ∈ TQ \TP, i.e. there is a v→ t path in Aout but no t→ u path in Ain. The latter implies that ev cannot

be reached from t in Ain, as the u→ v path I contains no branching point of Ain. The in-arborescence Ain

does however contain a t→ r path from t to the root r. Since ev /∈ E(Aout), this means that the root r can be

reached from v through the v→ t path of Aout and the t→ r path without passing through ev. Hence ev can

safely be removed without making the solution M infeasible. This contradicts the minimality of M.

In case t ∈ TP\TQ a symmetric argument shows that the edge fu is redundant in M, which again contradicts

its minimality. We have thus shown that P and Q are the only essential paths that meet in any endpoint of a

shared path in the WM-component H. Hence H consists of exactly these two paths P and Q, and the claim

follows. y

Consider the case when there is at most one shared path of M that intersects with a WM-component H.

Since by Claim 2.4, H consists of at most two essential paths, it is easy to see that in this case H is a tree, and

thus its treewidth is 1. If at least two shared paths of M intersect with H, by Claim 2.4, H contains edges of

two essential paths P and Q of Ain and Aout respectively. To show that in this case the treewidth of H is at

most 2, we need the following observation on P and Q:

Claim 2.5. Let I1, . . . , Ih be the connected components in the intersection of P and Q, ordered in the way that

P visits them, i.e. for any i ∈ {1, . . . ,h−1} there is a subpath of P with prefix Ii and suffix Ii+1. The path Q

visits the shared paths in the opposite order, i.e. for any i ∈ {1, . . . ,h−1} there is a subpath of Q with suffix

Ii and prefix Ii+1.

Proof. Assume this is not the case, so that there is an index i ∈ {1, . . . ,h−1} such that both P and Q contain

subpaths with prefix Ii and suffix Ii+1. This means that there are edges e ∈ E(P)\E(Q) and f ∈ E(Q)\E(P)
which share the last vertex u of Ii. Hence Q contains a u→ v subpath Q′ to the first vertex v of Ii+1, which

does not contain the edge e, and also P contains a u→ v subpath P′, which does not contain the edge f . As

Q, and therefore also Q′, contains no branching point of Aout, any terminal reachable from u through Q′ in
Aout is also reachable from u via the detour P′. We can therefore remove edge f ∈ E(Aout) without violating

the feasibility of M. This however contradicts its minimality. y

Claim 2.5 implies that the structure of H is roughly as shown in Figure 1 (the black edges shown in

Figure 1 correspond to paths of length 0 or more, while the light and dotted edges correspond to paths of

length at least 1). If we contract each path of length at least 1 to a path of length 1, then the resulting graph is

planar and all vertices belong to the outer face. Such graphs are called outerplanar graphs. In other words, H

is a subdivision of an outerplanar graph. Lemma B.4 shows that treewidth of subdivisions of outerplanar

graphs is at most 2, which proves Lemma 2.1.

10

3 W[1]-hardness for SCSS in planar graphs

The goal of this section is to prove Theorem 1.2. We reduce from the GRID TILING problem5 introduced by

Marx [56]:

k× k GRID TILING

Input : Integers k,n, and k2 non-empty sets Si, j ⊆ [n]× [n] where 1≤ i, j ≤ k

Question: For each 1≤ i, j ≤ k does there exist an entry γi, j ∈ Si, j such that

• If γi, j = (x,y) and γi, j+1 = (x′,y′) then x = x′.

• If γi, j = (x,y) and γi+1, j = (x′,y′) then y = y′.

Under ETH [45, 46], it was shown by Chen et al. [15] that k-CLIQUE
6 does not admit an algorithm

running in time f (k) ·no(k) for any computable function f . There is a simple reduction [23, Theorem 14.28]

from k-CLIQUE to k× k GRID TILING implying the same runtime lower bound for the latter problem. To

prove Theorem 1.2, we give a reduction which transforms the problem of k× k GRID TILING into a planar

instance of SCSS with O(k2) terminals. We design two types of gadgets: the connector gadget and the

main gadget. The reduction from GRID TILING represents each cell of the grid with a copy of the main

gadget, with a connector gadget between main gadgets that are adjacent either horizontally or vertically (see

Figure 2).

The proof of Theorem 1.2 is divided into the following steps: In Section 3.1, we first introduce the

connector gadget and Lemma 3.3 states the existence of a particular type of connector gadget. In Section 3.2,

we introduce the main gadget and Lemma 3.6 states the existence of a particular type of main gadget.

Section 3.3 describes the construction of the planar instance (G∗,T ∗) of SCSS. The two directions implying

the reduction from GRID TILING to SCSS are proved in Section 3.4 and Section 3.5 respectively. Using

Lemmas 3.3 and 3.6 as a blackbox, we prove Theorem 1.2 in Section 3.6. The proofs of Lemmas 3.3 and

Lemma 3.6 are given in Sections 4 and 5 respectively.

3.1 Existence of connector gadgets

A connector gadget CGn is a directed (embedded) planar graph with O(n2) vertices and positive integer

weights7 on its edges. It has a total of 2n+2 distinguished vertices divided into the following 3 types:

• The vertices p,q are called internal-distinguished vertices

• The vertices p1, p2, . . . , pn are called source-distinguished vertices

• The vertices q1,q2, . . . ,qn are called sink-distinguished vertices

Let P = {p1, p2, . . . , pn} and Q = {q1,q2, . . . ,qn}. The vertices P∪Q appear in the clockwise order p1, . . . ,
pn, qn, . . . , q1 on the boundary of the gadget. In the connector gadget CGn, every vertex in P is a source and

has exactly one outgoing edge. Also every vertex in Q is a sink and has exactly one incoming edge.

Definition 3.1. An edge set E ′ ⊆ E(CGn) satisfies the connectedness property if each of the following four

conditions hold for the graph CGn[E
′]:

5The GRID TILING problem has been defined in two (symmetrical) ways in the literature: either the first coordinate or the second

coordinate remains the same in a row. Here, we follow the notation of [56], but the other definition also appears in some places

(e.g. [23]).
6The k-CLIQUE problem asks whether there is a clique of size ≥ k.
7Weights are polynomial in n.

11

1. p can be reached from some vertex in P

2. q can be reached from some vertex in P

3. p can reach some vertex in Q

4. q can reach some vertex in Q

Definition 3.2. An edge set E ′ satisfying the connectedness property represents an integer i ∈ [n] if in E ′ the

only outgoing edge from P is the one incident to pi and the only incoming edge into Q is the one incident to

qi.

The next lemma shows we can construct a particular type of connector gadget:

Lemma 3.3. Given an integer n one can construct in polynomial time a connector gadget CGn and an integer

C∗n such that the following two properties hold 8:

1. For every i ∈ [n], there is an edge set Ei ⊆ E(CGn) of weight C∗n such that Ei satisfies the connectedness

property and represents i. Note that, in particular, Ei contains a pi ❀ qi path (via p or q).

2. If there is an edge set E ′⊆E(CGn) such that E ′ has weight at most C∗n and E ′ satisfies the connectedness

property, then E ′ has weight exactly C∗n and it represents some i ∈ [n].

3.2 Existence of main gadgets

A main gadget MG is a directed (embedded) planar graph with O(n3) vertices and positive integer weights

on its edges. It has 4n distinguished vertices given by the following four sets:

• The set L = {ℓ1, ℓ2, . . . , ℓn} of left-distinguished vertices.

• The set R = {r1,r2, . . . ,rn} of right-distinguished vertices.

• The set T = {t1, t2, . . . , tn} of top-distinguished vertices.

• The set B = {b1,b2, . . . ,bn} of bottom-distinguished vertices.

The distinguished vertices appear in the (clockwise) order t1, . . . , tn, r1, . . . , rn, bn, . . . , b1, ℓn, . . . , ℓ1 on

the boundary of the gadget. In the main gadget MG, every vertex in L∪T is a source and has exactly one

outgoing edge. Also each vertex in R∪B is a sink and has exactly one incoming edge.

Definition 3.4. An edge set E ′ ⊆ E(MG) satisfies the connectedness property if each of the following four

conditions hold for the graph MG[E ′]:

1. There is a directed path from some vertex in L to R∪B

2. There is a directed path from some vertex in T to R∪B

3. Some vertex in R can be reached from L∪T

4. Some vertex in B can be reached from L∪T

8We use the notation C∗n to emphasize that C∗ depends only on n.

12

Definition 3.5. An edge set E ′ ⊆ E(MG) represents a pair (i, j) ∈ [n]× [n] if each of the following five

conditions holds:

• The only edge of E ′ leaving L is the one incident to ℓi

• The only edge of E ′ entering R is the one incident to ri

• The only edge of E ′ leaving T is the one incident to t j

• The only edge of E ′ entering B is the one incident to b j

• E ′ contains an ℓi ❀ ri path and an t j ❀ b j path

The next lemma shows we can construct a particular type of main gadget:

Lemma 3.6. Given a subset S⊆ [n]× [n], one can construct in polynomial time a main gadget MGS and an

integer M∗n such that the following two properties hold 9:

1. For every (i, j) ∈ S there is an edge set Ei, j ⊆ E(MGS) of weight M∗n such that Ei, j represents (i, j).
Note that the last condition of Definition 3.5 implies that Ei, j satisfies the connectedness property.

2. If there is an edge set E ′ ⊆ E(MGS) such that E ′ has weight at most M∗n and satisfies the connectedness

property, then E ′ has weight exactly M∗n and represents some (i, j) ∈ S.

3.3 Construction of the SCSS instance

In order to prove Theorem 1.2, we reduce from the GRID TILING problem. The following assumption will be

helpful in handling some of the border cases of the gadget construction. We may assume that 1 < x,y < n

holds for every (x,y)∈ Si, j: indeed, we can increase n by two and replace every (x,y) by (x+1,y+1) without

changing the problem. This is just a minor technical modification10 which is introduced to make some of the

arguments easier in Section 5 cleaner.

Given an instance (k,n,{Si, j : i, j ∈ [k]}) of GRID TILING, we construct an instance (G∗,T ∗) of SCSS

the following way (see Figure 2):

• We introduce a total of k2 main gadgets and 2k(k+1) connector gadgets.

• For every set Si, j in the GRID TILING instance, we construct a main gadget MGi, j using Lemma 3.6

for the subset Si, j.

• Half of the connector gadgets have the same orientation as in Figure 3 (with the pi vertices on the top

side and the qi vertices on the bottom side), and we call them HCG to denote horizontal connector

gadgets11. The other half of the connector gadgets are rotated anti-clockwise by 90 degrees with

respect to the orientation of Figure 3, and we call them VCG to denote vertical connector gadgets. The

internal-distinguished vertices of the connector gadgets are shown in Figure 2.

• For each 1≤ i, j ≤ k, the main gadget MGi, j is surrounded by the following four connector gadgets:

9We use the notation M∗n to emphasize that M∗ depends only on n, and not on the set S.
10For the interested reader, what this modification does is to ensure no shortcut edge added in Section 5.1 has either endpoint on

the unbounded face of the planar embedding of the main gadget provided in Figure 4. This helps to streamline the proofs by avoiding

the need to have to consider any special cases.
11The horizontal connector gadgets are so called because they connect things horizontally as seen by the reader.

13

Figure 2: An illustration of the reduction from GRID TILING to SCSS on planar graphs.

1. The vertical connector gadgets VCGi, j is on the top and VCGi+1, j is on the bottom. Identify

(or glue together) each sink-distinguished vertex of VCGi, j with the top-distinguished vertex of

MCGi, j of the same index. Similarly identify each source-distinguished vertex of VCGi+1, j with

the bottom-distinguished vertex of MCGi, j of the same index.

2. The horizontal connector gadgets HCGi, j is on the left and HCGi, j+1 is on the right. Identify

(or glue together) each sink-distinguished vertex of HCGi, j with the left-distinguished vertex of

MCGi, j of the same index. Similarly, identify each source-distinguished vertex of HCGi, j+1 with

the right-distinguished vertex of MCGi, j of the same index.

• We introduce two special vertices x∗,y∗ and add an edge (x∗,y∗) of weight 0.

• For each 1≤ i≤ k, add an edge of weight 0 from y∗ to each source-distinguished vertex of the vertical

connector gadget VCG1,i.

• For each 1 ≤ j ≤ k, add an edge of weight 0 from y∗ to each source-distinguished vertex of the

horizontal connector gadget HCG j,1.

• For each 1 ≤ i ≤ k, add an edge of weight 0 from each sink-distinguished vertex of the vertical

connector gadget VCGk+1,i to x∗.

14

• For each 1 ≤ j ≤ k, add an edge of weight 0 from each sink-distinguished vertex of the horizontal

connector gadget HCG j,k+1 to x∗.

• For each i ∈ [k], j ∈ [k+1], denote the two internal-distinguished vertices of HCGi, j by {ph
i, j,q

h
i, j}

• For each i ∈ [k+1], j ∈ [k], denote the two internal-distinguished vertices of VCGi, j by {pv
i, j,q

v
i, j}

• The set of terminals T ∗ for the SCSS instance on G∗ is {x∗,y∗}∪{ph
i, j,q

h
i, j | 1 ≤ i ≤ k+ 1,1 ≤ j ≤

k}∪{pv
i, j,q

v
i, j | 1≤ i≤ k,1≤ j ≤ k+1}.

• We note that the total number of terminals is |T ∗|= 4k(k+1)+2 = O(k2)

• The edge set of G∗ is a disjoint union of

– Edges of main gadgets

– Edges of horizontal connector gadgets

– Edges of vertical connector gadgets

– Edges from y∗ to source-distinguished vertices of the vertical connector gadgets VCG1,i (for each

i ∈ [k]), and from y∗ to source-distinguished vertices of horizontal connector gadgets HCG j,1 (for

each j ∈ [k])

– Edges from sink-distinguished vertices of the vertical connector gadgets VCGk+1,i (for each

i ∈ [k]) to x∗, and from sink-distinguished vertices of horizontal connector gadgets HCG j,k+1 (for

each j ∈ [k]) to x∗

– The edge (x∗,y∗)

Define the following quantity:

W ∗n = k2 ·M∗n +2k(k+1) ·C∗n . (1)

In the next two sections, we show that GRID TILING has a solution if and only if the SCSS instance (G∗,T ∗)
has a solution of weight at most W ∗n .

3.4 GRID TILING has a solution⇒ SCSS has a solution of weight ≤W ∗n

Lemma 3.7. If the GRID TILING instance (k,n,{Si, j : i, j ∈ [k]}) has a solution, then the SCSS instance

(G∗,T ∗) has a solution of weight at most W ∗n .

Proof. Since GRID TILING has a solution, for each 1≤ i, j ≤ k there is an entry (xi, j,yi, j) = γi, j ∈ Si, j such

that

• For every i ∈ [k], we have xi,1 = xi,2 = xi,3 = . . .= xi,k = αi

• For every j ∈ [k], we have y1, j = y2, j = y3, j = . . .= yk, j = β j

We build a solution E∗ for the SCSS instance (G∗,T ∗) and show that it has weight at most W ∗n . In the edge

set E∗, we take the following edges:

1. The edge (x∗,y∗) which has weight 0.

2. For each j ∈ [k] the edge of weight 0 from y∗ to the source-distinguished vertex of VCG1, j of index β j,

and the edge of weight 0 from the sink-distinguished vertex of VCGk+1, j of index β j to x∗.

15

3. For each i ∈ [k] the edge of weight 0 from y∗ to the source-distinguished vertex of HCGi,1 of index αi,

and the edge of weight 0 from the sink-distinguished vertex of HCGi,k+1 of index αi to x∗

4. For each 1≤ i, j ≤ k for the main gadget MGi, j, use Lemma 3.6(1) to generate a solution EM
i, j which

has weight M∗n and represents (αi,β j).

5. For each 1≤ i≤ k and 1≤ j ≤ k+1 for the horizontal connector gadget HCGi, j, use Lemma 3.3(1) to

generate a solution EHC
i, j of weight C∗n which represents αi.

6. For each 1≤ j ≤ k and 1≤ i≤ k+1 for the vertical connector gadget VCGi, j, use Lemma 3.3(1) to

generate a solution EVC
i, j of weight C∗n which represents β j.

The weight of E∗ is k2 ·M∗n + k(k+1) ·C∗n + k(k+1) ·C∗n =W ∗n . It remains to show that E∗ is a solution

for the SCSS instance (G∗,T ∗). Since we have already picked up the edge (x∗,y∗), it is enough to show that

for any terminal t ∈ T ∗ \{x∗,y∗}, both t ❀ x∗ and y∗❀ t paths exist in E∗. Then for any two terminals t1, t2,

there is a t1 ❀ t2 path given by t1 ❀ x∗→ y∗❀ t2.

We now show the existence of both a t ❀ x∗ path and a y∗❀ t path in E∗ when t is a terminal in a vertical

connector gadget. Without loss of generality, let t be the terminal pv
i, j for some 1≤ i≤ k,1≤ j ≤ k+1.

• Existence of pv
i, j ❀ x∗ path in E∗: By Lemma 3.3(1), the terminal pv

i, j can reach the sink-distinguished

vertex of VCGi, j which has the index β j. This vertex is the top-distinguished vertex of the index β j of

the main gadget MGi, j. By Definition 3.5, there is a path from this vertex to the bottom-distinguished

vertex of the index β j of the main gadget MGi, j. However this vertex is exactly the same as the

source-distinguished vertex of the index β j of VCGi+1, j. By Lemma 3.3(1), the source-distinguished

vertex of the index β j of VCGi+1, j can reach the sink-distinguished vertex of the index β j of VCGi+1, j.

This vertex is exactly the top-distinguished vertex of MGi+1, j. Continuing in this way we can reach

the source-distinguished vertex of the index β j of VCGk+1, j. By Lemma 3.3(1), this vertex can reach

the sink-distinguished vertex of the index β j of VCGk+1, j. But E∗ also contains an edge (of weight 0)

from this sink-distinguished vertex to x∗, and hence there is a pv
i, j ❀ x∗ path in E∗.

• Existence of y∗❀ pv
i, j path in E∗: Recall that E∗ contains an edge (of weight 0) from y∗ to the source-

distinguished vertex of the index β j of VCG1, j. If i = 1, then by Lemma 3.3(1), there is a path from

this vertex to pv
1, j. If i ≥ 2, then by Lemma 3.3(1), there is a path from source-distinguished vertex

of the index β j of VCG1, j to the sink-distinguished vertex of the index β j of VCG1, j. But this is the

top-distinguished vertex of MG1, j of the index β j. By Definition 3.5, from this vertex we can reach

the bottom-distinguished vertex of the index β j of MG1, j. However, this vertex is exactly the source-

distinguished vertex of index β j of VCG2, j. Continuing this way we can reach the source-distinguished

vertex of the index β j of VCGi, j. By Lemma 3.3(1), from this vertex we can reach pv
i, j. Hence there is

a y∗❀ pv
i, j path in E∗.

The arguments when t is a terminal in a horizontal connector gadget are similar, and we omit the details

here.

3.5 SCSS has a solution of weight ≤W ∗n ⇒ GRID TILING has a solution

First we show that the following preliminary claim:

Claim 3.8. Let E ′ be any solution to the SCSS instance (G∗,T ∗). Then

• E ′ restricted to each connector gadget satisfies the connectedness property (see Definition 3.1).

16

• E ′ restricted to each main gadget satisfies the connectedness property (see Definition 3.4).

Proof. First we show that the edge set E ′ restricted to each connector gadget satisfies the connectedness

property. Consider a horizontal connector gadget HCGi, j for some 1 ≤ j ≤ k+ 1,1 ≤ i ≤ k. This gadget

contains two terminals: ph
i, j and qh

i, j. The only incoming edges from G∗ \HCGi, j into HCGi, j are incident

onto the source-distinguished vertices of HCGi, j, and the only outgoing edges from HCGi, j into G∗ \HCGi, j

are incident on the sink-distinguished vertices of HCGi, j. Since E ′ is a solution of the SCSS instance (G∗,T ∗)
it follows that E∗ contains a path from ph

i, j to the terminals in T ∗ \ {ph
i, j ∪ qh

i, j}. Since the only outgoing

edges from HCGi, j into G∗ \HCGi, j are incident on the sink-distinguished vertices of HCGi, j, it follows

that ph
i, j can reach some sink-distinguished vertex of HCGi, j in the solution E ′. The other three conditions

of Definition 3.1 can be verified similarly, and hence E ′ restricted to each main connector satisfies the

connectedness property.

Next we argue that E ′ restricted to each main gadget satisfies the connectedness property. Consider a

main gadget MGi, j. Since E ′ is a solution for the SCSS instance (G∗,T ∗) it follows that the terminal ph
i, j

from HCGi, j is able to reach other terminals of T ∗. However, the only outgoing edges from HCGi, j into

G∗ \HCGi, j are incident on the sink-distinguished vertices of HCGi, j. Moreover, each sink-distinguished

vertex of HCGi, j is identified with a left-distinguished vertex of MGi, j of the same index. Hence, these

outward paths from ph
i, j to other terminals of T ∗ must continue through the left-distinguished vertices of

MGi, j. However, the only outgoing edges from MGi, j into G∗ \MGi, j are incident on the right-distinguished

vertices or bottom-distinguished vertices of HCGi, j. Hence, some left-distinguished vertex of MGi, j can

reach some vertex in the set given by the union of right-distinguished and bottom-distinguished vertices

of MGi, j. Hence the first condition of Definition 3.4 is satisfied. Similarly it can be shown the other three

conditions of Definition 3.4 also hold, and hence E ′ restricted to each main gadget satisfies the connectedness

property.

Now we are ready to prove the following lemma:

Lemma 3.9. If the SCSS instance (G∗,T ∗) has a solution E ′′ of weight at most W ∗n , then the GRID TILING

instance (k,n,{Si, j : i, j ∈ [k]}) has a solution.

Proof. By Claim 3.8, the edge set E ′′ restricted to any connector gadget satisfies the connectedness property

and the edge set E ′′ restricted to any main gadget satisfies the connectedness property. Let C andM be the

sets of connector and main gadgets respectively. Recall that |C|= 2k(k+1) and |M|= k2. Recall that we

have defined W ∗n as k2 ·M∗n + 2k(k+ 1)C∗n . Let C′ ⊆ C be the set of connector gadgets that have weight at

most C∗n in E ′′. By Lemma 3.3(2), each connector gadget from the set C′ has weight exactly C∗n . Since all

edge-weights in connector gadgets are positive integers, each connector gadget from the set C \C′ has weight

at least C∗n +1. Similarly, letM′ ⊆M be the set of main gadgets which have weight at most M∗n in E ′′. By

Lemma 3.6(2), each main gadget from the setM′ has weight exactly M∗n . Since all edge-weights in main

gadgets are positive integers, each main gadget from the setM\M′ has weight at least M∗n +1. As any two

gadgets are pairwise edge-disjoint, we have

W ∗n = k2 ·M∗n +2k(k+1)C∗n
≥ |M\M′| · (M∗n +1)+ |M′| ·M∗n + |C \C′| · (C∗n +1)+ |C′| ·C∗n
= |M| ·M∗n + |C| ·C∗n + |M\M′|+ |C \C′|
= k2 ·M∗n +2k(k+1) ·C∗n + |M\M′|+ |C \C′|
=W ∗n + |M\M′|+ |C \C′|.

This implies |M\M′| = 0 = |C \ C′|. However, we hadM′ ⊆M and C′ ⊆ C. Therefore,M′ =M and

C′ = C. Hence in E ′′, each connector gadget has weight C∗n and each main gadget has weight M∗n . From

Lemma 3.3(2) and Lemma 3.6(2), we have

17

• For each vertical connector gadget VCGi, j, the restriction of the edge set E ′′ to VCGi, j represents an

integer βi, j ∈ [n] where i ∈ [k+1], j ∈ [k].

• For each horizontal connector gadget HCGi, j, the restriction of the edge set E ′′ to HCGi, j represents

an integer αi, j where i ∈ [k], j ∈ [k+1].

• For each main gadget MGi, j, the restriction of the edge set E ′′ to MGi, j represents an ordered pair

(α ′i, j,β
′
i, j) ∈ Si, j where i, j ∈ [k].

Consider the main gadget MGi, j for any 1≤ i, j ≤ k. We can make the following observations:

• βi, j = β ′i, j: By Lemma 3.3(2) and Definition 3.2, the terminal vertices in VCGi, j can exit the vertical

connector gadget only via the unique edge entering the sink-distinguished vertex of index βi, j. By

Lemma 3.6(2) and Definition 3.5, the only edge in E ′′ incident to any top-distinguished vertex of MGi, j

is the unique edge leaving the top-distinguished vertex of the index β ′i, j. Hence if βi, j 6= β ′i, j then the

terminals in VCGi, j will not be able to exit VCGi, j and reach other terminals.

• β ′i, j = βi+1, j: By Lemma 3.3(2) and Definition 3.2, the unique edge entering VCGi+1, j is the edge

entering the source-distinguished vertex of the index βi+1, j. By Lemma 3.6(2) and Definition 3.5, the

only edge in E ′′ incident to any bottom-distinguished vertex of MGi, j is the unique edge entering the

bottom-distinguished vertex of index β ′i, j. Hence if β ′i, j 6= βi+1, j, then the terminals in VCGi+1, j cannot

be reached from the other terminals.

• αi, j = α ′i, j: By Lemma 3.3(2) and Definition 3.2, the paths starting at the terminal vertices in HCGi, j

can leave the horizontal connector gadget only via the unique edge entering the sink-distinguished

vertex of index αi, j. By Lemma 3.6(2) and Definition 3.5, the only edge in E ′′ incident to any left-

distinguished vertex of MGi, j is the unique edge leaving the left-distinguished vertex of the index α ′i, j.
Hence if αi, j 6= α ′i, j then the terminals in HCGi, j will not be able to reach other terminals.

• α ′i, j = αi, j+1: By Lemma 3.3(2) and Definition 3.2, the unique edge entering HCGi, j+1 is the edge

entering the source-distinguished vertex of index αi, j+1. By Lemma 3.6(2) and Definition 3.5, the

only edge in E ′′ incident to any right-distinguished vertex of MGi, j is the unique edge entering the

right-distinguished vertex of index α ′i, j. Hence if α ′i, j 6= αi, j+1, then the terminals in HCGi, j+1 cannot

be reached from the other terminals.

We claim that for 1≤ i, j ≤ k, the entries (α ′i, j,β
′
i, j) ∈ Si, j form a solution for the GRID TILING instance. For

this we need to check two conditions:

• α ′i, j = α ′i, j+1: This holds because αi, j = α ′i, j = αi, j+1 = α ′i, j+1.

• β ′i, j = β ′i+1, j: This holds because βi, j = β ′i, j = βi+1, j = β ′i+1, j.

This completes the proof of the lemma.

3.6 Proof of Theorem 1.2

Finally we are ready to prove Theorem 1.2 which is restated below:

Theorem 1.2. The edge-unweighted version of the SCSS problem is W[1]-hard parameterized by the number

of terminals k, even when the underlying undirected graph is planar. Moreover, under the ETH, the SCSS

problem on planar graphs cannot be solved in f (k) ·no(
√

k) time where f is any computable function, k is the

number of terminals and n is the number of vertices in the instance.

18

Proof. Each connector gadget has O(n2) vertices and G∗ has O(k2) connector gadgets. Each main gadget has

O(n3) vertices and G∗ has O(k2) main gadgets. It is easy to see that the graph G∗ has O(n3k2) = poly(n,k)
vertices. Moreover, the graph G∗ can be constructed in poly(n+ k) time: recall that each connector gadget

(Lemma 3.3) and main gadget (Lemma 3.6) can be constructed in polynomial time. Each main gadget and

connector gadget is planar, and any two gadgets are pairwise edge-disjoint. Moreover, the 0-weight edges

incident on x∗ or y∗ do not affect planarity (see Figure 2 for a planar embedding). Hence, G∗ is planar.

It is known [23, Theorem 14.28] that k× k GRID TILING is W[1]-hard parameterized by k, and under

ETH cannot be solved in f (k) · no(k) for any computable function f . Combining the two directions from

Section 3.4 and Section 3.5, we get a parameterized reduction from k× k GRID TILING to a planar instance

of SCSS with O(k2) terminals. Hence, it follows that SCSS on planar graphs is W[1]-hard and under ETH

cannot be solved in f (k) ·no(
√

k) time for any computable function f .

This shows that the 2O(k) ·nO(
√

k) algorithm for SCSS on planar graphs given in Theorem 1.1 is asymptot-

ically optimal.

4 Proof of Lemma 3.3: constructing connector gadgets

We prove Lemma 3.3 in this section, by constructing a connector gadget satisfying the specifications of

Section 3.1.

19

p q

p1 p2 p3

q1 q2 q3

R3

R2

R4

R5

R6

R7

C7 C8 C10C9 C12C11

e3

e1

e2

f1

f3

f2
w3

1

w2
2

w3
1

w4
4

w5
3

w6
2

R8

R9

C0 C1 C2 C3 C4 C5 C6

R1

R0

Figure 3: The connector gadget for n = 3. A set of edges representing 3 is highlighted in the figure.

20

4.1 Different types of edges in connector gadget

Before proving Lemma 3.3, we first describe the construction of the connector gadget in more detail (see

Figure 3). The connector gadget has 2n+4 rows denoted by R0,R1,R2, . . . ,R2n+3 and 4n+1 columns denoted

by C0,C1, . . . ,C4n. Let us denote the vertex at the intersection of row Ri and column C j by v
j
i . We now

describe the different kinds of edges present in the connector gadget.

1. Source Edges: For each i ∈ [n], there is an edge (pi,v
2i−1
0). These edges are together called source

edges.

2. Sink Edges: For each i ∈ [n], there is an edge (v2n+2i−1
2n+3 ,qi). These edges are together called sink

edges.

3. Terminal Edges: The union of the sets of edges incident to the terminals p or q are called terminal

edges. The set of edges incident on p is {(p,v0
2i+1 : i ∈ [n])}∪{(v0

2i, p : i ∈ [n])}. The set of edges

incident on q is {(q,v4n
2i+1 : i ∈ [n])}∪{(v4n

2i ,q : i ∈ [n])}.

4. Inrow Edges:

• Inrow Up Edges: For each 0≤ i≤ n+1, we call the ↑ edges connecting vertices of row R2i+1 to

R2i as inrow up edges. Explicitly, this set of edges is given by {(v2 j
2i+1,v

2 j
2i) : 0≤ j ≤ 2n}.

• Inrow Down Edges: For each 0≤ i≤ n+1, we call the ↓ edges connecting vertices of row R2i to

R2i+1 as inrow down edges. Explicitly, this set of edges is given by {(v2 j−1
2i ,v2 j−1

2i+1) : 1≤ j≤ 2n}.
• Inrow Left Edges: For each 0 ≤ i ≤ 2n+ 3, we call the ← edges connecting vertices of row

Ri as inrow left edges. We explicitly list the set of inrow left edges for even-numbered and

odd-numbered rows below:

– For each 0≤ i≤ n+1, the set of inrow left edges for the row R2i is given by {(v2 j
2i ,v

2 j−1
2i) :

j ∈ [2n]}
– For each 0≤ i≤ n+1, the set of inrow left edges for the row R2i+1 is given by {(v2 j−1

2i+1 ,v
2 j−2
2i+1) :

j ∈ [2n]}
• Inrow Right Edges: For each 0 ≤ i ≤ 2n+ 3, we call the→ edges connecting vertices of row

Ri as inrow right edges. We explicitly list the set of inrow right edges for even-numbered and

odd-numbered rows below:

– For each 0≤ i≤ n+1, the set of inrow right edges for the row R2i is given by {(v2 j−2
2i ,v2 j−1

2i) :

j ∈ [2n]}
– For each 0≤ i≤ n+1, the set of inrow right edges for the row R2i+1 is given by {(v2 j−1

2i+1 ,v
2 j
2i+1) :

j ∈ [2n]}

5. Interrow Edges: For each i ∈ [n+ 1] and each j ∈ [2n], we subdivide the edge (v2 j−1
2i−1 ,v

2 j−1
2i) by

introducing a new vertex w
j
i and adding the edges (v2 j−1

2i−1 ,w
j
i) and (w j

i ,v
2 j−1
2i). All these edges are

together called interrow edges. Note that there is a total of 4n(n+1) interrow edges.

6. Shortcuts: There are 2n shortcut edges, namely e1,e2, . . . ,en and f1, f2, . . . , fn. They are drawn as

follows:

• The edge ei is given by (v2i−2
2n−2i+2,w

i
n−i+1).

• The edge fi is given by (wn+i
n−i+2,v

2n+2i
2n−2i+3).

21

4.2 Assigning weights in the connector gadget

Fix the quantity B = 18n2. We assign weights to the edges as follows

1. For i ∈ [n], the source edge (pi,v
2i−1
0) has weight B5 +(n− i+1).

2. For i ∈ [n], the sink edge (v2n+2i−1
2n+3 ,qi) has weight B5 + i.

3. Each terminal edge has weight B4.

4. Each inrow up edge has weight B3.

5. Each interrow edge has weight
B2

2
each.

6. Each inrow right edge has weight B.

7. For each i ∈ [n], the shortcut edge ei has weight n · i.

8. For each j ∈ [n], the shortcut edge f j has weight n(n− j+1).

9. Each inrow left edge and inrow down edge has weight 0.

Now we define the quantity C∗n stated in statement of Lemma 3.3:

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2. (2)

In the next two sections, we prove the two statements of Lemma 3.3.

4.3 For every i ∈ [n], there is a solution Ei of weight C∗n that satisfies the connectedness

property and represents i

Let Ei be the union of the following sets of edges:

• Select the edges (pi,v
2i−1
0) and (v2n+2i−1

2n+3 ,qi). This incurs a weight of B5 +(n− i+ 1)+B5 + i =
2B5 +(n+1).

• The two terminal edges (p,v0
2n−2i+3) and (v0

2n−2i+2, p). This incurs a weight of 2B4.

• The two terminal edges (q,v4n
2n−2i+3) and (v4n

2n−2i+2,q). This incurs a weight of 2B4.

• All 2n inrow right edges and 2n inrow left edges which occur between vertices of R2n−2i+2. This incurs

a weight of 2n ·B since each inrow left edge has weight 0 and each inrow right edge has weight B.

• All 2n inrow right edges and 2n inrow left edges which occur between vertices of R2n−2i+3. This incurs

a weight of 2n ·B since each inrow left edge has weight 0 and each inrow right edge has weight B.

• All the 2n+ 1 inrow up edges that are between vertices of R2n−2i+2 and R2n−2i+3. These edges are

given by (v2 j
2n−2i+3,v

2 j
2n−2i+2) for 0≤ j ≤ 2n. This incurs a weight of (2n+1)B3.

• All 2n inrow down edges that occur between vertices of row R2n−2i+2 and row R2n−2i+3. This incurs a

weight of 0, since each inrow down edge has weight 0.

• The vertically downward v2i−1
0 ❀ v2i−1

2n−2i+3 path P1 formed by interrow edges and inrow down edges,

and the vertically downward v2n+2i−1
2n−2i+2 ❀ v2n+2i−1

2n+3 path P2 formed by interrow edges and inrow down

edges. These two paths together incur a total weight of (n+1)B2, since the inrow down edges have

weight 0.

22

• The edges ei and fi. This incurs a weight of n · i+n(n− i+1) = n(n+1).

Finally, remove the two inrow right edges (v2i−2
2n−2i+2,v

2i−1
2n−2i+2) and (v2n+2i−1

2n−2i+3,v
2n+2i
2n−2i+3) from Ei. This

saves a weight of 2B. From the above paragraph and Equation 2 it follows that the total weight of Ei is

exactly C∗n . Note that even though we removed the edge (v2i−2
2n−2i+2,v

2i−1
2n−2i+2) we can still travel from v2i−2

2n−2i+2

to v2i−1
2n−2i+2 in Ei using the edge ei as follows: take the path v2i−2

2n−2i+2→ wi
n−i+1→ v2i−1

2n−2i+2. Similarly, even

though we removed the edge (v2n+2i−1
2n−2i+3,v

2n+2i
2n−2i+3) we can still travel from v2n+2i−1

2n−2i+3 to v2n+2i
2n−2i+3 in Ei using the

edge fi as follows: take the path v2n+2i−1
2n−2i+3→ wn+i

n−i+2→ v2n+2i
2n−2i+3.

It remains to show that Ei satisfies the connectedness property and it represents i. It is easy to see Ei

represents i since the only edge in Ei which is incident to P is the edge leaving pi. Similarly, the only edge

in Ei incident to Q is the one entering qi. We show that the connectedness property holds as follows (recall

Definition 3.1):

1. There is a pi ❀ p path in Ei by starting with the source edge leaving pi and then following downward

path P1 from v2i−1
0 ❀ v2i−1

2n−2i+3. Then travel towards the left from v2i−1
2n−2i+3 to p by using inrow left,

inrow up and inrow down edges from rows R2n−2i+2 and R2n−2i+3. Finally, use the edge (v0
2n−2i+2, p)

2. For the existence of a pi ❀ q path in Ei, we have seen above that there is a pi ❀ v2i−1
2n−2i+3 path. Then

travel towards the right from v2i−1
2n−2i+2 to q by using inrow right, inrow up and inrow down edges from

rows R2n−2i+2 and R2n−2i+3 to reach the vertex v4n
2n−2i+2. The only potential issue is that the inrow

right edge (v2n+2i−1
2n−2i+3,v

2n+2i
2n−2i+3) is missing in Ei: however this is not a problem since we have the path

v2n+2i−1
2n−2i+3→ wn+i

n−i+2→ v2n+2i
2n−2i+3 in Ei. Finally, use the edge (v4n

2n−2i+2,q).

3. For the existence of a p ❀ qi path in Ei, first use the edge (p,v0
2n−2i+3). Then travel towards the right

by using inrow up, inrow right and inrow down edges from rows R2n−2i+2 and R2n−2i+3 to reach the

vertex v2n+2i−1
2n−2i+2. The only potential issue is that the inrow right edge (v2i−2

2n−2i+2,v
2i−1
2n−2i+2) is missing in

Ei: however this is not a problem since we have the path v2i−2
2n−2i+2→ wi

n−i+1→ v2i−1
2n−2i+2 in Ei. Then

take the downward path P2 from v2n+2i−1
2n−2i+2 to v2n+2i−1

2n+3 . Finally, use the sink edge (v2n+2i−1
2n+3 ,qi) incident

to qi.

4. For the existence of a q ❀ qi path in Ei, first use the terminal edge (q,v4n
2n−2i+3). Then travel towards

the left by using inrow up, inrow left and inrow down edges from rows R2n−2i+2 and R2n−2i+3 until

you reach the vertex v2n+2i−1
2n−2i+2. Then take the downward path P2 from v2n+2i−1

2n−2i+2 to v2n+2i−1
2n+3 . Finally, use

the sink edge (v2n+2i−1
2n+3 ,qi) incident to qi.

Therefore, Ei indeed satisfies the connectedness property.

4.4 E ′ satisfies the connectedness property and has weight at most C∗n⇒ E ′ represents some

β ∈ [n] and has weight exactly C∗n

Next we show that if a set of edges E ′ satisfies the connectedness property and has weight at most C∗n , then

in fact the weight of E ′ is exactly C∗n and it represents some β ∈ [n]. We do this via the following series of

claims and observations.

Claim 4.1. E ′ contains exactly one source edge and one sink edge.

Proof. Since E ′ satisfies the connectedness property it must contain at least one source edge and at least one

sink edge. Without loss of generality, suppose that there are at least two source edges in E ′. Then the weight

of E ′ is a least the sum of the weights of these two source edges plus the weight of at least one sink edge.

23

Thus if E ′ contains at least two source edges, then its weight is at least 3B5. However, from Equation 2 we

get that

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2

≤ 2B5 +4n ·B4 +3n ·B4 +2n ·B4 +4n ·B4 +4n ·B4

≤ 2B5 +17n ·B4

< 3B5,

since B = 18n2 > 17n.

Thus we know that E ′ contains exactly one source edge and exactly one sink edge. Let the source edge

be incident to pi′ and the sink edge be incident to q j′ .

Claim 4.2. E ′ contains exactly four terminal edges.

Proof. Since E ′ satisfies the connectedness property, it must contain at least one incoming and one outgoing

edge for both p and q. Therefore, we need at least four terminal edges. Suppose we have at least five terminal

edges in E ′. We already know that the source and sink edges contribute at least 2B5 to weight of E ′, hence

the weight of E ′ is at least 2B5 +5B4. However, from Equation 2, we get that

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2

≤ 2B5 +4B4 +3n ·B3 +2n ·B3 +4n ·B3 +4n ·B3

= 2B5 +4B4 +13n ·B3

< 2B5 +5B4,

since B = 18n2 > 13n.

Hence we know that E ′ contains exactly four terminal edges.

Claim 4.3. E ′ contains exactly 2n+1 inrow up edges, one from each column C2i for 0≤ i≤ 2n.

Proof. Observe that for each 1≤ j ≤ 2n−1, the inrow up edges in column C2 j form a cut between vertices

from columns C2 j−1 and C2 j+1. Since E ′ must have a pi′ ❀ p path, we need to use at least one inrow up edge

from each of the columns C0,C2, . . . ,C2i′−2. Since E ′ must have a pi′ ❀ q, path we need to use at least one

inrow up edge from each of the columns C2i′ ,C2i′+2, . . . ,C4n. Hence E ′ has at least 2n+1 inrow up edges, as

we require at least one inrow up edge from each of the columns C0,C2, . . . ,C4n.

Suppose E ′ contains at least 2n+ 2 inrow up edges. We already know that E ′ has a contribution of

2B5 +4B4 from source, sink, and terminal edges. Hence the weight of E ′ is at least 2B5 +4B4 +(2n+2)B3.

However, from Equation 2, we get that

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2

≤ 2B5 +4B4 +(2n+1)B3 +2n ·B2 +4n ·B2 +4n ·B2

= 2B5 +4B4 +(2n+1)B3 +10n ·B2

< 2B5 +4B4 +(2n+2)B3,

since B = 18n2 > 10n.

24

Therefore, we know that E ′ contains exactly one inrow edge per column C2i for every 0 ≤ i ≤ 2n. By

Claim 4.2, we know that exactly two terminal edges incident to p are selected in E ′. Observe that the terminal

edge leaving p should be followed by an inrow up edge, and similarly, the terminal edge entering p follows

an inrow up edge. Since we select exactly one inrow up edge from column C0, it follows that the two terminal

edges in E ′ incident to p must be incident to the rows R2ℓ+1 and R2ℓ respectively for some ℓ ∈ [n]. Similarly,

the two terminal edges in E ′ incident to q must be incident to the rows R2ℓ′+1 and R2ℓ′ for some ℓ′ ∈ [n]. We

summarize this in the following claim:

Observation 4.4. There exist integers ℓ,ℓ′ ∈ [n] such that

• the only two terminal edges in E ′ incident to p are (p,v0
2ℓ+1) and (v0

2ℓ, p), and

• the only two terminal edges in E ′ incident to q are (q,v4n
2ℓ′+1) and (v4n

2ℓ′ ,q).

Definition 4.5. For i ∈ [n+ 1], we call the 4n interrow edges which connect vertices from row R2i−1 to

vertices from R2i as Type(i) interrow edges. We can divide the Type(i) interrow edges into 2n “pairs” of

adjacent interrow edges given by (v2 j−1
2i−1 ,w

j
i) and (w j

i ,v
2 j−1
2i) for each 1≤ j ≤ 2n

Note that there are a total of n+1 types of interrow edges.

Claim 4.6. E ′ contains a pair of interrow edges of Type(r) for each r ∈ [n+1]. Moreover, these two edges

are the only interrow edges of Type(r) chosen in E ′.

Proof. First we show that E ′ contains at least one pair of interrow edges of each type. Observation 4.4

implies that we cannot avoid using interrow edges of any type by, for example, going into p via an edge from

some R2i and then exiting p via an edge to some R2 j+1 for any j > i (similarly for q). By the connectedness

property, set E ′ contains a pi′ ❀ p path P1. By Observation 4.4, the only edge entering p is (v0
2ℓ, p). Hence

E ′ must contain at least one pair of interrow edges of Type(r) for 1≤ r ≤ ℓ since the only way to travel from

row R2r−1 to R2r (for each r ∈ [ℓ]) is by using a pair of interrow edges of Type(r) . Similarly E ′ contains

a p ❀ qi path and the only outgoing edge from p is (p,v0
2ℓ+1). Hence E ′ must contain at least one pair of

interrow edges of Type(r) for each ℓ+1≤ r ≤ n+1 since the only way to travel from row R2r−1 to R2r is by

using a pair of interrow edges of Type(r). Therefore, the edge set E ′ contains at least one pair of interrow

edges of each Type(r) for 1≤ r ≤ n+1.

Next we show that E ′ contains exactly two interrow edges of Type(r) for each r ∈ [n+1]. Suppose E ′

contains at least three interrow edges of some Type(r) for some r ∈ [n+1]. Since weight of each interrow

edge is B2/2, this implies E ′ gets a weight of at least (n+ 1+ 1
2
) ·B2 from the interrow edges. We have

already seen E ′ has contribution of 2B5 +4B4 +(2n+1)B3 from source, sink, terminal, and inrow up edges.

Hence the weight of E ′ is at least 2B5 +4B4 +(2n+1)B3 +(n+1+ 1
2
) ·B2. However, from Equation 2, we

get that

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2

≤ 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +4n ·B+4n ·B
= 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +8n ·B

< 2B5 +4B4 +(2n+1)B3 +(n+1+
1

2
)B2,

since B
2
= 9n2 > 8n. Hence, E ′ contains exactly two interrow edges of Type(r) for each r ∈ [n+1].

Claim 4.7. For each r ∈ [n+1], let the unique pair of interrow edges in E ′ (guaranteed by Claim 4.6) of

Type(r) belong to column C2ℓr−1. If the unique source and sink edges in E ′ (guaranteed by Claim 4.1) are

incident to pi′ and q j′ , respectively, then we have i′ ≤ ℓ1 ≤ ℓ2 ≤ . . .≤ ℓn+1 ≤ n+ j′.

25

Proof. Observation 4.4 implies the only way to get from row R2i−1 to R2i is to use a pair of interrow edges of

Type(i). By Claim 4.6, we use exactly one pair of interrow edges of each type. Recall that there is a walk

P = pi′ ❀ p ❀ q j′ in E ′, and this walk must use each of these interrow edges.

First we show that ℓ1 ≥ i′. Suppose ℓ1 < i′ ≤ n. Since we use the source edge incident to pi′ , we must

reach vertex v2i′−1
0 . Since i′ > ℓ1, to use the pair of interrow edges to travel from v

2ℓ1−1
1 to v

2ℓ1−1
2 , the walk

P must contain a v2i′−1
0 ❀ v

2ℓ1−1
1 subwalk P′. By the construction of the connector gadget this subwalk P′

must use the inrow up edge (v2i′−2
1 ,v2i′−2

0). Now the walk P has to reach column C2n+2 j′−1 from column

C2ℓ1−1, and so it must use another inrow edge from column C2i′−2 (between rows R2i and R2i+1 for some

i≥ 1), which contradicts Claim 4.3.

Now we prove ℓn+1 ≤ n+ j′. Suppose to the contrary that ℓn+1 > n+ j′. Then by reasoning similar to

that of above one can show that at least two inrow up edges from column C2n+2 j′ are used, which contradicts

Claim 4.3.

Finally suppose there exists r ∈ [n] such that ℓr > ℓr+1. We consider the following three cases:

• ℓr+1 < ℓr ≤ n: Then by using the fact that there is a pi′ ❀ q j′ walk in E ′ we get at least two inrow up

edges are used from column C2ℓr−2, which contradicts Claim 4.3.

• n < ℓr ≤ n+ j′: Then we need to use at least two inrow up edges from column C2ℓr−2, which contradicts

Claim 4.3.

• ℓr > n+ j′: Then we need to use at least two inrow up edges from column C2n+2 j′ , which contradicts

Claim 4.3.

Claim 4.8. E ′ contains at most two shortcut edges.

Proof. For the proof we will use Claim 4.7. We will show that we can use at most one e-shortcut. The proof

for f -shortcut is similar.

Suppose we use two e-shortcuts viz. ex and ey such that x > y. Note that it makes sense to include a

shortcut into E ′ only if we use the interrow edge that continues it. Hence ℓx = x and ℓy = y. By Claim 4.7, we

have y = ℓy ≥ ℓx = x, which is a contradiction.

Claim 4.9. E ′ contains exactly 4n−2 inrow right edges.

Proof. Since E ′ contains a p ❀ q j′ path, it follows that E ′ has a path connecting some vertex from the column

Ci to some vertex from column Ci+1 for each 0≤ i≤ 2n+2 j′−2. Since E ′ contains a pi′ ❀ q path, it follows

that E ′ has a path connecting some vertex from the column C j to some vertex from the column C j+1 for each

2i′−1≤ j ≤ 4n−1.

Since 2n+2 j′−2≥ 2n and 2i′−1≤ 2n, it follows that for each 0≤ i≤ 4n−1 the solution E ′ must contain

a path connecting some vertex from column Ci to some vertex from column Ci+1. Each such path has to either

be a path of one which must be an inrow right edge, or a path of two edges consisting of a shorcut and an

interrow edge. But Claim 4.8 implies E ′ contains at most two shortcuts. Therefore, E ′ contains at least 4n−2

inrow right edges. Suppose E ′ contains at least 4n−1 inrow right edges. We have already seen the contribution

of source, sink, terminal, inrow up and interrow edges is 2B5+4B4+(2n+1)B3+(n+1)B2. If E ′ contains at

least 4n−1 inrow right edges, then the weight of E ′ is at least 2B5+4B4+(2n+1)B3+(n+1)B2+(4n−1)B.

However, from Equation 2, we get that

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2

= 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+4n2

< 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−1)B,

26

since B = 18n2 > 4n2.

From Claim 4.8 and the proof of Claim 4.9, we can make the following observation:

Observation 4.10. E ′ contains exactly two shortcuts.

Let the shortcuts used be ei′′ and f j′′ . Recall that Claim 4.1 implies that at most one edge incident to P

and at most one edge incident to Q is used in E ′. Therefore, if we show that i′ = j′, then it follows that E ′

represents β = i′ = j′.

Claim 4.11. The following inequalities hold:

• i′′ ≥ i′ and j′′ ≤ j′

• i′′ ≥ j′′

Proof. To use the shortcut ei′′ , we need to use the lower half of a pair of interrow edges from column C2i′′−1.

Claim 4.7 implies i′ ≤ ℓ1 and the pairs of interrow edges used are monotone from left to right. Hence i′′ ≥ i′.
Similarly, to use the shortcut f j′′ , we need to use the upper half of an interrow edge from Column C2n+2 j′′−1.

Claim 4.7 implies n+ j′ ≥ ℓn+1 ≥ n+ j′′. Hence j′′ ≤ j′.
Since we use the shortcut ei′′ it follows that ℓn−i′′+1 = i′′. Similarly, since we use the shortcut f j′′ it follows

that ℓn− j′′+2 = n+ j′′. As 1≤ i′′, j′′ ≤ n it follows that n+ j′′ > i′′. By mono tonicity of the ℓ-sequence shown

in Claim 4.7, we have n− j′′+2 > n− i′′+1, i.e., i′′ ≥ j′′.

Theorem 4.12. The weight of E ′ is exactly C∗n , and E ′ represents some integer β ∈ [n].

Proof. As argued above it is enough to show that i′ = j′. We have already seen E ′ has the following

contribution to its weight:

• The source edge incident to pi′ has weight B5 +(n− i′+1) by Claim 4.1.

• The sink edge incident to q j′ has weight B5 + j′ by Claim 4.1.

• The terminal edges incur weight 4B4 by Claim 4.2.

• The inrow up edges incur weight (2n+1)B3 by Claim 4.3.

• The interrow edges incur weight (n+1)B2 by Claim 4.6.

• The inrow right edges incur weight (4n−2)B by Claim 4.9.

• The shortcut ei′′ incurs weight n · i′′ and f j′′ incurs weight n(n− j′′+1) by Claim 4.10.

Thus we already have a weight of

C∗∗ = (2B5 +(n− i′+ j′+1))+4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+n(n− j′′+ i′′+1) (3)

Observe that adding any edge of non-zero weight to E ′ (other than the ones mentioned above) increases

the weight C∗∗ by at least B, since Claim 4.8 does not allow us to use any more shortcuts. Equation 2

and Equation 3 imply C∗∗+B−C∗n = B− n(i′− j′)− (j′′− i′′) ≥ 20n3− n(i′− j′)− (j′′− i′′) ≥ 0, since

i′, i′′, j′, j′′ ∈ [n]. This implies that the weight of E ′ is exactly C∗∗. We now show that in fact C∗∗−C∗n ≥ 0,

which will imply that C∗∗ =C∗n . From Equation 2 and Equation 3, we have C∗∗−C∗n = (j′− i′)+n(i′′− j′′).
We now show that this quantity is non-negative. Recall that from Claim 4.11, we have i′′ ≥ j′′.

27

• If i′′> j′′ then n(i′′− j′′)≥ n. Since j′, i′ ∈ [n], we have j′− i′≥ 1−n. Therefore, (j′− i′)+n(i′′− j′′)≥
n+(1−n) = 1

• If i′′= j′′ then by Claim 4.11 we have i′≤ i′′= j′′≤ j′. Hence (j′− i′)≥ 0 and so (j′− i′)+n(i′′− j′′)≥
0.

Therefore C∗∗ =C∗n , i.e., E ′ has weight exactly C∗n . However C∗n =C∗∗ implies

j′− i′+n(i′′− j′′) = 0 (4)

Since i′, j′ ∈ [n] we have n−1≥ j′− i′ ≥ 1−n. If i′′ 6= j′′ then n(i′′− j′′)≥ n and hence j′− i′+n(i′′− j′′)≥
(1−n)+n≥ 1. Contradiction. Hence, we have j′′ = i′′ and therefore Equation 4 implies j′ = i′, i.e, E ′ is

represented by i′ = j′ ∈ [n].

28

5 Proof of Lemma 3.6: constructing the main gadget

ℓ1

t1 t2 t3

b1 b3 b4

R1

ℓ′1

C0 C1 C2 C3

C7C5 C9C8

g2
2e2,2

b2

C6

t4

C4

r1
r′1

ℓ2
ℓ′2 h2

2
f2,2

r2
r′2

ℓ3
ℓ′3

r3
r′3

ℓ4
ℓ′4

r4
r′4

R4

R5

R8

R9

R12

R13

R16

g3
2e2,,3

g2
3e3,2

h3
2

f2,3

h2
3

f3,2

Figure 4: The main gadget (for n = 4) representing the set {(2,2),(2,3),(3,2)}. The highlighted edges

represent the pair (2,3).

29

We prove Lemma 3.6 in this section, by constructing a main gadget satisfying the specifications of Section 3.2.

Recall that, as discussed at the start of Section 3.3, we may assume that 1 < x,y < n holds for every

(x,y) ∈ Si, j.

5.1 Different types of edges in main gadget

Before proving Lemma 3.6, we first describe the construction of the main gadget in more detail (see Figure 4).

The main gadget has n2 rows denoted by R1,R2, . . . ,Rn2 and 2n+ 1 columns denoted by C0,C1, . . . ,C2n+1.

Let us denote the vertex at intersection of row Ri and column C j by v
j
i . We now describe the various different

kinds of edges in the main gadget.

1. Left Source Edges: For every i ∈ [n], the edge (ℓi, ℓ
′
i) is a left source edge.

2. Right Sink Edges: For every i ∈ [n], the edge (r′i,ri) is a right sink edge.

3. Top Source Edges: For every i ∈ [n], the edge (ti,v
i
1) is a top source edge.

4. Bottom Sink Edges: For every i ∈ [n], the edge (vn+i
n2 ,bi) is a bottom sink edge.

5. Source Internal Edges: This is the set of n2 edges of the form (ℓ′i,v
0
j) for i ∈ [n] and n(i−1)+1≤

j ≤ n · i. We number the source internal edges from top to bottom, i.e., the edge (ℓ′i,v
0
j) is called the jth

source internal edge, where i ∈ [n] and n(i−1)+1≤ j ≤ n · i.

6. Sink Internal Edges: This is the set of n2 edges of the form (v2n+1
j ,r′i) for i ∈ [n] and n(i−1)+1≤

j ≤ n · i. We number the sink internal edges from top to bottom, i.e., the edge (v2n+1
j ,r′i) is called the

jth sink internal edge, where i ∈ [n] and n(i−1)+1≤ j ≤ n · i.

7. Bridge Edges: This is the set of n2 edges of the form (vn
i ,v

n+1
i) for 1≤ i≤ n2. We number the bridge

edges from top to bottom, i.e., the edge (vn
i ,v

n+1
i) is called the ith bridge edge. These edges are shown

in red color in Figure 4.

8. Inrow Right Edges: For each i ∈ [n2] we call the→ edges (except the bridge edge (vn
i ,v

n+1
i)) connect-

ing vertices of row Ri as inrow right edges. Formally, the set of inrow right edges of row Ri are given

by {(v j
i ,v

j+1
i) : 0≤ j ≤ n−1}⋃{(v j

i ,v
j+1
i) : n+1≤ j ≤ 2n}

9. Interrow Down Edges: For each i ∈ [n2−1] we call the 2n ↓ edges connecting vertices of row Ri to

Ri+1 as interrow down edges. The 2n interrow edges between row Ri and Ri+1 are (v j
i ,v

j
i+1) for each

1≤ j ≤ 2n.

10. Shortcut Edges: There are 2|S| shortcut edges, namely e1,e2, . . . ,e|S| and f1, f2, . . . , f|S|. The shortcut

edge for a (x,y) ∈ S for some 1 < x,y < n is defined the following way:

• Introduce a new vertex g
y
x at the middle of the edge (vy

n(x−1)+y−1
,vy

n(x−1)+y
) to create two new

edges (vy

n(x−1)+y−1
,gy

x) and (gy
x,v

y

n(x−1)+y
). Then the edge ex,y is (vy−1

n(x−1)+y
,gy

x).

• Introduce a new vertex h
y
x at the middle of the edge (vn+y

n(x−1)+y
,vn+y

n(x−1)+y+1
) to create two new

edges (vn+y

n(x−1)+y
,hy

x) and (hy
x,v

n+y

n(x−1)+y+1)). Then the edge fx,y is (hy
x,v

n+y+1

n(x−1)+y
).

30

5.2 Assigning weights in the main gadget

Define B = 11n2. We assign weights to the edges as follows:

1. Each left source edge has weight B4.

2. Each right sink edge has weight B4.

3. For every 1≤ i≤ n, the ith top source edge (ti,v
i
1) has weight B4.

4. For every 1≤ i≤ n, the ith bottom sink edge (vn+i
n2 ,bi) has weight B4.

5. For each i ∈ [n2], the ith bridge edge (vn
i ,v

n+1
i) has weight B3.

6. For each i ∈ [n2], the ith source internal edge has weight B2(n2− i).

7. For each j ∈ [n2], the jth sink internal edge has weight B2 · j.

8. Each inrow right edge has weight 3B.

9. For each (x,y) ∈ S, both the shortcut edges ex,y and fx,y have weight B each.

10. Each interrow down edge that does not have a shortcut incident to it has weight 2. If an interrow edge

is split into two edges by the shortcut incident to it, then we assign a weight 1 to each of the two parts.

Now we define the quantity M∗n stated in Lemma 3.6:

M∗n = 4B4 +B3 +B2n2 +B(6n−4)+2(n2−1). (5)

Next we are ready to prove the statements of Lemma 3.6.

5.3 For every (x,y) ∈ S, there is a solution Ex,y of weight M∗n that represents (x,y)

For (x,y) ∈ S⊆ [n]× [n] define z = n(x−1)+ y. Let Ex,y be the union of the following sets of edges:

• The xth left source edge and xth right sink edge. This incurs a weight of 2B4.

• The yth top source edge and the yth bottom sink edge. This incurs a weight of 2B4.

• The zth bridge edge. This incurs a weight of B3.

• The zth source internal edge and zth sink internal edge. This incurs a weight of B2n2.

• All inrow right edges from row Rz except (vy−1
z ,vy

z) and (vn+y
z ,vn+y+1

z). This incurs a weight of

3B · (2n−2).

• The shortcut edges ex,y and fx,y. This incurs a weight of 2B.

• The vertically downward path v
y
1→ v

y
2→ . . .→ v

y
z formed by interrow down edges in column Cy. This

incurs a weight of 2(z−1).

• The vertically downward path v
n+y
z → v

n+y
z+1 → . . .→ v

n+y

n2 formed by interrow down edges in column

Cn+y. This incurs a weight of 2(n2− z).

31

From the above paragraph and Equation 5, it follows the total weight of Ex,y is exactly M∗n . Note that we

did not include two inrow right edges, (vy−1
z ,vy

z) and (vn+y
z ,vn+y+1

z), from row Rz in Ex,y. However, we can

mimic the function of both these inrow right edges using shortcut edges and interrow down edges in Ex,y as

follows:

• We can still travel from v
y−1
z to v

y
z in Ex,y as follows: take the path (vy−1

z → g
y
x→ v

y
z).

• We can still travel from (vn+y
z to v

n+y+1
z) in Ex,y via the path (vn+y

z → hx,y→ v
n+y+1
z).

The following observation follows from the previous paragraph:

Observation 5.1. In Ex,y we can reach v
j
z from vi

z for any 2n+1≥ j ≥ i≥ 0.

It remains to show that Ex,y represents (x,y) ∈ S. It is easy to see that the first four conditions of

Definition 3.5 are satisfied since the definition of Ex,y itself gives the following:

• In Ex,y the only outgoing edge from L is the one incident to ℓx

• In Ex,y the only incoming edge to R is the one incident to rx

• In Ex,y the only outgoing edge from T is the one incident to ty

• In Ex,y the only incoming edge to B is the one incident to by

We now show that the last condition of Definition 3.5 is also satisfied by Ex,y:

1. There is a ℓx ❀ rx path in Ex,y obtained by taking the edges in the following order:

• the left source edge (ℓx, ℓ
′
x),

• the source internal edge (ℓ′x,v
0
z),

• the horizontal path v0
z → v1

z → . . .vn
z given by Observation 5.1,

• the bridge edge (vn
z ,v

n+1
z),

• the horizontal path vn+1
z → vn+2

z → . . .v2n+1
z given by Observation 5.1,

• the sink internal edge (v2n+1
z ,r′x), and

• the right sink edge (r′x,rx).

2. There is a ty ❀ by path in Ex,y obtained by taking the edges in the following order:

• the top source edge (ty,v
y
1),

• the downward path v
y
1→ v

y
2→ . . .vy

z given by interrow down edges in column Cy,

• the horizontal path v
y
z → v

y+1
z → . . .vn

z given by Observation 5.1,

• the bridge edge (vn
z ,v

n+1
z),

• the horizontal path vn+1
z → vn+2

z → . . .vn+y
z given by Observation 5.1,

• the downward path v
n+y
z → v

n+y
z+1 → . . .vn+y

n2 given by interrow down edges in column Cn+y, and

• the bottom sink edge (vn+y

n2 ,by).

Therefore, Ex,y has weight M∗n and represents (x,y).

32

5.4 E ′ satisfies the connectedness property and has weight at most M∗n ⇒ E ′ represents some

(α,β) ∈ S and has weight exactly M∗n

In this section we show that if a set of edges E ′ satisfies the connectedness property and has weight M∗n , then

it represents some (α,β) ∈ S. We do this via the following series of claims and observations.

Claim 5.2. E ′ contains

• exactly one left source edge,

• exactly one right sink edge,

• exactly one top source edge, and

• exactly one bottom sink edge.

Proof. Since E ′ satisfies the connectedness property, it must contain at least one edge of each of the above

types. Without loss of generality, suppose we have at least two left source edges in E ′. Then the weight of the

edge set E ′ is greater than or equal to the sum of weights of these two left source edges and the weight of a

right sink edge, the weight of a top source edge, and the weight of a bottom sink edge. Thus if E ′ contains at

least two left source edges, then its weight is at least 5B4. However, from Equation 5, we get that

M∗n = 4B4 +B3 +B2n2 +B(6n−4)+2(n2−1)

≤ 4B4 +n ·B3 +n ·B3 +6n ·B3 +2n ·B3

= 4B4 +10n ·B3

< 5B4,

since B = 11n2 > 10n.

Therefore, we can set up the following notation:

• Let iL ∈ [n] be the unique index such that the left source edge in E ′ is incident to ℓiL .

• Let iR ∈ [n] be the unique index such that the right sink edge in E ′ is incident to riR .

• Let iT ∈ [n] be the unique index such that the top source edge in E ′ is incident to tiT .

• Let iB ∈ [n] be the unique index such that the bottom sink edge in E ′ is incident to biB .

Claim 5.3. The edge set E ′ contains exactly one bridge edge.

Proof. To satisfy the connectedness property, we need at least one bridge edge, since the bridge edges form

a cut between the top-distinguished vertices and the right-distinguished vertices as well as between the

top-distinguished vertices and the bottom-distinguished vertices. Suppose that the edge set E ′ contains at

least two bridge edges. This contributes a weight of 2B3. We already have a contribution on 4B4 to weight of

E ′ from Claim 5.2. Therefore, the weight of E ′ is at least 4B4 +2B3. However, from Equation 5, we get that

M∗n = 4B4 +B3 +B2n2 +B(6n−4)+2(n2−1)

≤ 4B4 +B3 +B2n2 +6n ·B+2n2

≤ 4B4 +B3 +B2n2 +6n2B2 +2n2B2

= 4B4 +B3 +9B2n2

< 4B8 +2B3,

since B = 11n2 > 9n2.

33

Let the index of the unique bridge edge in E ′ (guaranteed by Claim 5.3) be γ ∈ [n2]. The connectedness

property implies that we need to select at least one source internal edge incident to ℓ′iL and at least one sink

internal edge incident to r′iR . Let the index of the source internal edge incident to ℓ′iL be jL and the index of

the sink internal edge incident to r′iR be jR.

Claim 5.4. iL = iR and jL = jR = γ .

Proof. By the connectedness property, there is a path from ℓiL to some vertex in riR ∪biB . The paths starts

with ℓiL → ℓ′iL → v1
jL

and has to use the γ th bridge edge. By the construction of the main gadget (all edges are

either downwards or towards the right), this path can never reach any row Rℓ for ℓ < jL. Therefore, γ ≥ jL.

By similar logic, we get jR ≥ γ . Therefore jR ≥ jL.

If jR > jL, then the weight of the source internal edge and the sink internal edge is B5(n2− jL + jR)≥
B5(n2 +1). We already have a contribution of 4B4 +B3 to the weight of E ′ from Claim 5.2 and Claim 5.3.

Therefore, the weight of E ′ is at least 4B4 +B3 +B2(n2 +1). However, from Equation 5, we get that

M∗n = 4B4 +B3 +B2n2 +B(6n−4)+2(n2−1)

≤ 4B4 +B3 +B2n2 +6n ·B+2n2

≤ 4B4 +B3 +B2n2 +6n2 ·B+2n2 ·B
= 4B4 +B3 +B2n2 +8n2 ·B
< 4B4 +B3 +B2(n2 +1),

since B = 11n2 > 8n2. Hence jR = jL = γ . Observing that iL = ⌈ jL
n
⌉ and iR = ⌈ jR

n
⌉, we obtain iL = iR.

Let iL = iR = α and γ = n(α − 1) + β . We will now show that E ′ represents the pair (α,β). By

Definition 3.5, we need to prove the following four conditions:

1. The only left source edge in E ′ is the one incident to ℓα and the only right sink edge in E ′ is the one

incident to rα .

2. The pair (α,β) is in S.

3. The only top source edge in E ′ is the one incident to tβ and the only bottom sink edge in E ′ is the one

incident to bβ .

4. E ′ has an ℓα ❀ rα path and an tβ ❀ bβ path.

The first statement above follows from Claim 5.2 and Claim 5.4. We now continue with the proof of the

other three statements mentioned above:

Claim 5.5. E ′ contains exactly 2n−2 inrow right edges, all of them from row Rγ . As a corollary, we get that

there are two shortcuts incident to row Rγ , i.e., (α,β) ∈ S and also that E ′ uses both these shortcuts.

Proof. Note that by the construction of the main gadget, there can be at most two shortcut edges incident on

the vertices of row Rγ .

Claim 5.4 implies jL = jR = γ . Hence the ℓα ❀ rα ∪biB path in E ′ contains a v0
γ ❀ vn

γ subpath P1. By the

construction of the main gadget, we cannot reach an upper row from a lower row. Hence this subpath P1 must

be the path v0
γ → v2

γ → . . .→ vn
γ . This path P1 can at most use the unique shortcut edge incident to row Rγ

and column Cβ to replace an inrow right edge. Hence P1 uses at least n−1 inrow right edges, with equality

only if Rγ has a shortcut incident to it.

Similarly, the ℓα ∪ tiT ❀ rα path in E ′ contains a vn+1
γ ❀ v2n+1

γ subpath P2. By the construction of the

main gadget, we cannot reach an upper row from a lower row. Hence this subpath P2 must be the path

34

vn+1
γ → vn+2

γ → . . .→ v2n+1
γ . This path P2 can at most use the unique shortcut edge incident to row Rγ and

column Cn+β to replace an inrow right edge. Hence P2 uses at least n−1 inrow right edges, with equality

only if Rγ has a shortcut incident to it.

Clearly, the sets of inrow edges used by P1 and P2 are disjoint, and hence E ′ contains at least 2n−2 inrow

right edges from row Rγ . Suppose E ′ contains at least 2n−1 inrow right edges. Then it incurs a weight of

3B · (2n−1). From Claim 5.2, Claim 5.3 and Claim 5.4 we already have a contribution of 4B4 +B3 +B2n2.

Therefore the weight of E ′ is at least 4B4 +B3 +B2n2 +3B · (2n−1).
However, from Equation 5, we get that

M∗n = 4B4 +B3 +B2n2 +B(6n−4)+2(n2−1)

≤ 4B4 +B3 +B2n2 +B(6n−4)+2n2

< 4B4 +B3 +B2n2 +3B · (2n−1),

since B = 11n2 > 2n2. Therefore, E ′ can only contain at most 2n−2 inrow right edges. Hence there must be

two shortcut edges incident to row Rγ , which are both used by E ′. Since γ = n(α−1)+β , the fact that row

Rγ has shortcut edges incident to it implies (α,β) ∈ S.

To prove the third claim it is sufficient to show that iT = iB = β , since Claim 5.2 implies E ′ contains

exactly one top source edge and exactly one bottom sink edge. Note that the remaining budget left for the

weight of E ′ is at most 2(n2−1).

Claim 5.6. iT = iB = β

Proof. Recall that the only bridge edge used is the one on row Rγ . Moreover, the bridge edges form a

cut between T and R∪B. Hence, to satisfy the connectedness property it follows that the tiT ❀ rα ∪ biB

path in E ′ contains a v
iT
1 ❀ vn

γ subpath P3. By Claim 5.5, all inrow right edges are only from row Rγ .

As the only remaining budget is 2(n2− 1), we cannot use any other shortcuts or inrow right edges since

B = 11n2 > 2(n2−1). Therefore, P3 contains another v
iT
1 → v

iT
γ subpath P′3. If iT 6= β , then P′3 incurs weight

2(γ−1). Note that we also pay a weight of 1 to use half of the interrow edge when we use the shortcut edge

(which we have to use due to Claim 5.5) which is incident to row Rγ and column Cβ .

Similarly, the ℓα ∪ tiT ❀ biB path in E ′ contains a vn+1
γ ❀ v

n+iB
n2 subpath P′4. By Claim 5.5, all inrow

horizontal edges are only from row Rγ . As the only remaining budget is 2(n2−1), we cannot use any other

shortcuts or inrow right edges. Therefore, P4 contains another v
n+iB
γ ❀ v

n+iB
n2 subpath P′4. If iB 6= β , then P′4

incurs weight 2(n2− γ). Note that we also pay a weight of 1 to use (half of) the interrow edge when we use

the shortcut edge (which we have to use due to Claim 5.5) which is incident to row Rγ and column Cn+β .

Suppose without loss of generality that iT 6= β . Then P′3 incurs a weight of 2(γ−1), and the half interrow

edge used incurs an additional weight of 1. In addition, path P′4 incurs a weight of 2(n2− γ). Hence the total

weight incurred is 2(γ−1)+1+2(n2− γ) = 2(n2−1)+1 which is greater than our allowed budget. Hence

iT = β . It can be shown similarly that iB = β .

Claim 5.7. E ′ has an ℓα ❀ rα path and an tβ ❀ bβ path.

Proof. First we show that E ′ has an ℓα ❀ rα path by taking the following edges (in order)

• The path ℓα → ℓ′α → v0
γ which exists since iL = α and jL = γ

• The v0
γ ❀ vn

γ path P1 guaranteed in proof of Claim 5.5

• The bridge edge vn
γ → vn+1

γ guaranteed by Claim 5.3

• The vn+1
γ ❀ v2n+1

γ path P2 guaranteed in proof of Claim 5.5

35

• The path rα ← r′α ← v2n+1
γ which exists since iR = α and jR = γ

Next we show that E ′ has an tβ ❀ bβ path by taking the following edges (in order)

• The edge tβ → v
β
1 which exists since iT = β

• The v
β
1 ❀ vn

γ path P3 guaranteed in proof of Claim 5.6

• The bridge edge vn
γ → vn+1

γ guaranteed by Claim 5.3

• The vn+1
γ ❀ v

n+β

n2 path P4 guaranteed in proof of Claim 5.6

• The edge bβ ← v
n+β

n2 which exists since iB = β

Claim 5.2, Claim 5.4, Claim 5.5, Claim 5.6 and Claim 5.7 together imply that E ′ represents (α,β) ∈ S

(see Definition 3.5). We now show that weight of E ′ is exactly M∗n .

Lemma 5.8. Weight of E ′ is exactly M∗n

Proof. Claim 5.2 contributes a weight of 4B4 to E ′. Claim 5.3 contributes a weight of B3 to E ′. From the

proof of Claim 5.4, we can see that E ′ incurs weight B2n2 from the source internal edge and sink internal

edge. Claim 5.5 implies that E ′ contains exactly 2n−2 inrow right edges from row Rγ and also both shortcuts

incident to row Rγ . This incurs a cost of 3B(2n−2)+2B=B(6n−4). By arguments similar to that in the proof

of Claim 5.6, E ′ contains at least (γ−1) interrow edges from column Cβ and at least (n2− γ) interrow edges

from column Cn+β . Therefore, we have weight of E ′≥ 4B4+B3+B2n2+B ·(6n−4)+2(γ−1)+2(n2−γ) =
4B4 +B3 +B2n2 +B · (6n−4)+2(n2−1) = M∗n . Hence the weight of E ′ is exactly M∗n .

This completes the proof of the second statement of Lemma 3.6.

6 W[1]-hardness for SCSS in general graphs

The main goal of this section is to prove Theorem 1.3. We note that the reduction of Guo et al. [42] gives a

reduction from MULTICOLORED CLIQUE which builds an equivalent instance of STRONGLY CONNECTED

STEINER SUBGRAPH with quadratic blowup in the number of terminals. Hence using the reduction of Guo

et al. [42] only an f (k) · no(
√

k) algorithm for SCSS can be ruled out under ETH. We are able to improve

upon this hardness by using the PARTITIONED SUBGRAPH ISOMORPHISM (PSI) problem introduced by

Marx [57]. Our reduction is also slightly simpler than the one given by Guo et al.

PARTITIONED SUBGRAPH ISOMORPHISM (PSI)

Input : Undirected graphs G = (VG = {g1,g2, . . . ,gℓ},EG) and H = (VH ,EH), and a partition of VH

into disjoint subsets H1,H2, . . . ,Hℓ

Question: Is there an injection φ : VG→VH such that

1. For every i ∈ [ℓ] we have φ(gi) ∈ Hi.

2. For every edge {gi,g j} ∈ EG we have {φ(gi),φ(g j)} ∈ EH .

The PSI problem is so-called because the vertices of H are partitioned into parts: one part corresponding

to every vertex of G. Marx [57] showed the following hardness result:

36

𝑐𝑣

𝑎𝑣𝑢𝑑𝑣𝑢

ℎ𝑤𝑐𝑤ℎ𝑣

𝑓𝑖𝑗
𝑑𝑤𝑢

𝑏𝑗

𝑎𝑤𝑢

𝑏𝑖

𝑓𝑗𝑖

𝑐𝑢 ℎ𝑢

𝑎𝑢𝑤𝑑𝑢𝑤𝑎𝑢𝑣𝑑𝑢𝑣

Figure 5: An illustration of the reduction from PSI to SCSS described in Theorem 1.3 for the special case

when VG = {g1,g2},EG = g1−g2 and H is a path on three vertices v−u−w with H1 = {v,w} and H2 = {u}.

Theorem 6.1. Unless ETH fails, PARTITIONED SUBGRAPH ISOMORPHISM cannot be solved in time

f (r) ·no(r/ logr) where f is any computable function, r is the number of edges in G and n is the number of

vertices in H.

By giving a reduction from PARTITIONED SUBGRAPH ISOMORPHISM to STRONGLY CONNECTED

STEINER SUBGRAPH where k = O(|EG|) we will obtain a f (k) · no(k/ logk) hardness for SCSS under the

ETH, where k is the number of terminals. Consider an instance (G,H) of PARTITIONED SUBGRAPH

ISOMORPHISM. We now build an instance (G∗,T ∗) of STRONGLY CONNECTED STEINER SUBGRAPH as

follows:

• B = {bi | i ∈ [ℓ]}

• C = {cv | v ∈VH}

• H = {hv | v ∈VH}

• D = {duv∪dvu | {u,v} ∈ EH}

• A = {auv∪avu | {u,v} ∈ EH}

• F = { fi j | 1≤ i, j ≤ ℓ | gig j ∈ EG}

• V ∗ = B∪C∪H ∪D∪A∪F

• E1 = {(cv,bi) | v ∈ Hi,1≤ i≤ ℓ}

37

• E2 = {(bi,hv) | v ∈ Hi,1≤ i≤ ℓ}

• E3 = {(hv,cv) | v ∈VH}

• E4 = {(cv,dvu) | {u,v} ∈ EH}

• E5 = {(avu,hu) | {u,v} ∈ EH}

• E6 = {(dvu,avu) | {u,v} ∈ EH}

• E7 = {(fi j,dvu)∪ (avu, fi j) | {u,v} ∈ EH ;v ∈ Hi;u ∈ H j;1≤ i, j ≤ ℓ}

• E∗ = E1∪E2∪E3∪E4∪E5∪E6∪E7

• The set of terminals is T ∗ = B∪F .

This completes the construction of the graph G∗ = (V ∗,E∗). An illustration of the construction for a

small graph is given in Figure 5. In the instance of PARTITIONED SUBGRAPH ISOMORPHISM we can assume

the graph G is connected, otherwise we can solve the problem for each connected component. Therefore, we

have that k = |T |= ℓ+2|EG|= O(|EG|). For ease of argument, we distinguish the different types of edges of

G∗ as follows (see Figure 5):

• Edges of E1∪E2∪E3 are denoted using black edges

• Edges of E4∪E5 are denoted using light/gray edges

• Edges of E6∪E7 are denoted using dotted edges

We now show two lemmas which complete the reduction from PARTITIONED SUBGRAPH ISOMORPHISM

to STRONGLY CONNECTED STEINER SUBGRAPH .

Lemma 6.2. If the instance (G,H) of PARTITIONED SUBGRAPH ISOMORPHISM answers YES then the

instance (G∗,T ∗) of STRONGLY CONNECTED STEINER SUBGRAPH has a solution of size ≤ 3ℓ+10|EG|.

Proof. Suppose the instance (G,H) of PARTITIONED SUBGRAPH ISOMORPHISM answers YES and let φ be

the injection from VG→VH . Then we claim the following set M′ of 3ℓ+10|EG| edges forms a solution for

the STRONGLY CONNECTED STEINER SUBGRAPH instance:

• M1 = {(hφ(gi),cφ(gi)) | i ∈ [ℓ]}

• M2 = {(bi,hφ(gi)) | i ∈ [ℓ]}

• M3 = {(cφ(gi),bi) | i ∈ [ℓ]}

• M4 = {(cφ(gi),dφ(gi)φ(g j))∪ (dφ(gi)φ(g j),aφ(gi)φ(g j))∪ (aφ(gi)φ(g j),hφ(g j)) | gig j ∈ EG;1≤ i, j ≤ ℓ}.

• M5 = {(fi j,dφ(gi)φ(g j))∪ (aφ(gi)φ(g j), fi j) | gig j ∈ EG;1≤ i, j ≤ ℓ}.

• M′ = M1∪M2∪M3∪M4∪M5

First consider i 6= j such that gig j ∈ EG. Then there is a bi ❀ b j path in M′, namely bi→ hφ(gi)→ cφ(gi)→
dφ(gi)φ(g j)→ aφ(gi)φ(g j)→ hφ(g j)→ cφ(g j)→ b j. Generalizing this and observing G is connected we can see

any two terminals in B are strongly connected. Now consider two terminals fi j and bq such that 1≤ i, j,q≤ ℓ.
The existence of the terminal fi j implies gig j ∈ EG and hence φ(gi)φ(g j) ∈ EH . There is a path in M′ from

fi j to bq: use the path fi j ❀ dφ(gi)φ(g j)→ aφ(gi)φ(g j)→ hφ(g j)→ cφ(g j)→ b j followed by the b j ❀ bq path

38

(which was shown to exist above). Similarly there is a path in M′ from bq to fi j: use the bq ❀ bi path (which

was shown to exist above) followed by the path bi ❀ hφ(gi)→ cφ(gi)→ dφ(gi)φ(g j)→ aφ(gi)φ(g j)→ fi j. Hence

each terminal in B can reach every terminal in F and vice versa. Finally consider any two terminals fi j and

fst in F : the terminal fi j can first reach bi and we have seen above that bi can reach any terminal in F . This

shows M′ forms a solution for the STRONGLY CONNECTED STEINER SUBGRAPH instance.

Lemma 6.3. If the instance (G∗,T ∗) of STRONGLY CONNECTED STEINER SUBGRAPH has a solution of

size ≤ 3ℓ+10|EG| then the instance (G,H) of PARTITIONED SUBGRAPH ISOMORPHISM answers YES.

Proof. Let X be a solution of size 3ℓ+10|EG| for the instance (G∗,T ∗) of SCSS. Consider a terminal fi j ∈ F .

The only out-neighbors of fi j are vertices from D, and hence X must contain an edge (fi j,dvu) such that

v ∈ Hi and u ∈ H j. However the only neighbor of dvu is avu, and hence X has to contain this edge as well.

Finally, X must also contain one incoming edge into fi j since we desire strong connectivity. So for each

terminal fi j, we need three “private” dotted edges in the sense that every terminal in F needs three such edges

in any optimum solution. This uses up 6|EG| of the budget since |F |= 2|EG|. Referring to Figure 5, we can

see any fi j ∈ F needs two “private” light edges in X : one edge coming out of some vertex in A and some

edge going into a vertex of D. This uses up 4|EG| more from the budget leaving us with only 3ℓ edges.

Consider bi for i ∈ [ℓ]. First we claim that X must contain at least three black edges for bi to have

incoming and outgoing paths to the other terminals. The only outgoing edge from bi is to vertices of H, and

hence we need to pick an edge (bi,hv) such that v ∈Hi. Since the only out-neighbor of hv is cv, it follows that

X must pick this edge as well. Additionally, X also needs to contain at least one incoming edge into bi to

account for incoming paths from other terminals to bi. So each bi needs to have at least three edges selected in

order to have incoming and outgoing paths to other terminals. Moreover, all these edges are clearly “private”,

i.e., different for each bi. But as seen in the previous paragraph, our remaining budget was at most 3ℓ. Hence

X selects exactly three such edges for each bi. We now claim that once X contains the edges (bi,hv) and

hv,cv such that v ∈ Hi then X must also contain the edge (cv,bi). Suppose not, and for incoming towards bi

the solution X selects the edge (cw,bi) for some w ∈ Hi such that w 6= v. Then since hw is the only neighbor

of cw, the solution X would be forced to select this edge as well. This implies that at least four edges have

been selected for bi, which is a contradiction. So for every i ∈ [ℓ], there is a vertex vi ∈ Hi such that the

edges (bi,hvi
),(hvi

,cvi
) and (cvi

,bi) are selected in the solution for the STRONGLY CONNECTED STEINER

SUBGRAPH instance. Further these are the only black edges in X corresponding to bi (refer to Figure 5). It

also follows for each fi j ∈ F , the solution X contains exactly three of the dotted edges (we argued above that

each fi j needs three dotted edges, and the budget now implies that this is the maximum we can allow).

Define φ : VG→VH by φ(gi) = vi for each i ∈ [ℓ]. Since vi ∈Hi and the sets H1,H2, . . . ,Hℓ form a disjoint

partition of VH , it follows that the function φ is an injection. Consider any edge gig j ∈ EG. We have seen

above that the solution X contains exactly three dotted edges per fi j ∈ F . Suppose for fi j ∈ F the solution

X contains the edges (fi j,dvu),(dvu,avu) and (avu, fi j) for some v ∈ Hi,u ∈ H j. The only incoming path for

fi j is via dvu. Also the only outgoing path from bi is via cvi
. If vi 6= v then we will need two other dotted

edges to reach fi j, which is a contradiction since have already picked the allocated budget of three such edges.

Hence, vi = v. Similarly, it follows that v j = u. Finally, the existence of the vertex dvu implies vu ∈ EH , i.e.,

φ(gi)φ(g j) ∈ EH .

6.1 Proof of Theorem 1.3

Finally, we are now ready to prove Theorem 1.3 which is restated below:

Theorem 1.3. Under ETH, the edge-unweighted version of the SCSS problem cannot be solved in time

f (k) · no(k/ logk) where f is any computable function, k is the number of terminals and n is the number of

vertices in the instance.

39

Proof. Lemma 6.2 and Lemma 6.3 together give a parameterized reduction from PSI to SCSS. Observe

that the number of terminals k of the SCSS instance is |B∪F |= |VG|+2|EG|= O(|EG|) since we had the

assumption that G is connected. The number of vertices in the SCSS instance is |V ∗|= |VG|+2|VH |+4|EH |+
2|EG|= O(|EH |). Therefore from Theorem 6.1 we can conclude that under ETH there is no f (k) ·no(k/ logk)

algorithm for SCSS where n is the number of vertices in the graph and k is the number of terminals.

7 W[1]-hardness for DSN in planar DAGs

The main goal of this section is to prove Theorem 1.4 which is restated below

Theorem 1.4. The edge-unweighted version of the DIRECTED STEINER NETWORK problem is W[1]-hard

parameterized by the number k of terminal pairs, even when the input is restricted to planar directed acyclic

graphs (DAGs). Moreover, there is no f (k) ·no(k) algorithm for any computable function f , unless the ETH

fails.

Note that this shows that the nO(k) algorithm of Feldman-Ruhl is asymptotically optimal. To prove

Theorem 1.4, we reduce from the GRID TILING problem introduced by Marx [57].

k× k GRID TILING

Input : Integers k,n, and k2 non-empty sets Si, j ⊆ [n]× [n] where 1≤ i, j ≤ k

Question: For each 1≤ i, j ≤ k does there exist an entry si, j ∈ Si, j such that

• If si, j = (x,y) and si, j+1 = (x′,y′) then x = x′.

• If si, j = (x,y) and si+1, j = (x′,y′) then y = y′.

Consider an instance (k,n,{Si, j : 1≤i, j≤k}) of GRID TILING. We now build an instance (G,T) of edge-

weighted DIRECTED STEINER NETWORK as shown in Figure 6. Set T = {(ai,bi)∪ (ci,di) : i ∈ [k]}, i.e., we

have 2k terminal pairs. We introduce k2 red gadgets where each gadget is an n×n grid. Set the weight of

each black edge to 2.

Definition 7.1. An ai ❀ bi canonical path is a path from ai to bi which starts with a blue edge coming out of

ai, then follows a horizontal path of black edges and finally ends with a blue edge going into bi. Similarly, a

c j ❀ d j canonical path is a path from c j to d j which starts with a blue edge coming out of c j, then follows a

vertically downward path of black edges and finally ends with a blue edge going into d j.

There are n edge-disjoint ai ❀ bi canonical paths: let us call them P1
i ,P

2
i , . . . ,P

n
i as viewed from top

to bottom. They are named using magenta color in Figure 6. Similarly we call the canonical paths from

c j to d j as Q1
j ,Q

2
j , . . . ,Q

n
j when viewed from left to right. For each i ∈ [k] and ℓ ∈ [n] we assign a weight

of ∆(n+ 1− ℓ) and ∆ℓ to the first and last blue edges of Pℓ
i , respectively. Similarly for each j ∈ [k] and

ℓ ∈ [n] we assign a weight of ∆(n+1− ℓ) and ∆ℓ to the first and last blue edges of Qℓ
j, respectively. Thus

the total weight of the first and the last blue edges on any canonical path is exactly ∆(n+1). The idea is to

choose ∆ large enough such that in any optimum solution the paths between the terminals will be exactly the

canonical paths. We will see later that ∆ = 5n2 will suffice for this purpose. Any canonical path consists of

the following set of edges:

• Two blue edges (which sum up to ∆(n+1))

• (k+1) black edges not inside the gadgets

• (n−1) black edges inside each gadget

40

𝑎1

𝑎𝑘

𝑎𝑖

𝑏1

𝑏𝑘

𝑏𝑖

𝑐1

𝑐𝑘

𝑐𝑗

𝑑1 𝑑𝑗 𝑑𝑘

Δ

Δ(n-1)

Δn

Δ

 2 Δ

 Δ n

Δ n

Δ n

Δ n

Δn

Δn

Δn

Δn

Δn

Δn

Δ(n-1)

Δ(n-1) Δ(n-1) Δ(n-1)

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

2 Δ

2 Δ

2Δ

2Δ

2Δ

Δ

Δ n

 Δ(n-1) Δ

𝑃𝑖1

 𝑃𝑖𝑛

𝑄𝑗1

𝑄𝑗𝑛

Figure 6: The instance of DIRECTED STEINER NETWORK created from an instance of GRID TILING.

Since the number of gadgets each canonical path visits is k and the weight of each black edge is 2, we have

the total weight of any canonical path is ∆(n+1)+2(k+1)+2k(n−1).
Intuitively the k2 gadgets correspond to the k2 sets in the GRID TILING instance. Let us denote by Gi, j

the gadget which contains all vertices which lie on the intersection of any ai ❀ bi path and any c j ❀ d j

path. If (x,y) ∈ Si, j then we color green the vertex in the gadget Gi, j which is the unique intersection of the

canonical paths Px
i and Q

y
j. Then we add a shortcut as shown in Figure 7. The idea is if both the ai ❀ bi path

and c j ❀ d j path pass through the green vertex then the ai ❀ bi path can save a weight of 1 by using the

green edge and a vertical edge to reach the green vertex, instead of paying a weight of 2 to use the horizontal

edge reaching the green vertex. It is easy to see that there is a solution (without using green edges) for the

DSN instance of weight B∗ = 2k
(

∆(n+1)+2(k+1)+2k(n−1)
)

: each terminal pair just uses a canonical

path and these canonical paths are pairwise edge-disjoint.

The following assumption will be helpful in handling some of the border cases of the gadget construction.

We may assume that 1 < min{x,y} holds for every (x,y) ∈ Si, j: indeed, we can increase n by one and replace

every (x,y) by (x+1,y+1) without changing the problem. Hence, no green vertex can be in the first row or

first column of any gadget. Combining this fact with the orientation of the edges we get the only gadgets

which can intersect any ai ❀ bi path are Gi,1,Gi,2, . . . ,Gi,k. Similarly the only gadgets which can intersect any

c j ❀ d j path are G1, j,G2, j, . . . ,Gk, j. This completes the construction of the instance (G,T) of DIRECTED

41

1

2

1

1

u v

x

y

Figure 7: Let u,v be two consecutive vertices on the canonical path Pℓ
i . Let v be on the canonical path Qℓ′

j

and let y be the vertex preceding it on this path. If v is a green vertex then we subdivide the edge (y,v) by

introducing a new vertex x and adding two edges (y,x) and (x,v) of weight 1. We also add an edge (u,x)
of weight 1. The idea is if both the edges (y,v) and (u,v) were being used initially then now we can save a

weight of 1 by making the horizontal path choose (u,x) and then we get (x,v) for free, as it is already being

used by the vertical canonical path.

STEINER NETWORK.

Lemmas 7.2 and 7.6 below prove that the reduction described above is indeed a correct reduction from

GRID TILING to DSN.

Lemma 7.2. If the instance (k,n,{Si, j : 1≤i, j≤k}) of GRID TILING has a solution then the instance (G,T) of

DIRECTED STEINER NETWORK has a solution of weight at most B∗− k2.

Proof. For each 1≤ i, j ≤ k let si, j ∈ Si, j be the entry in the solution of the GRID TILING instance. Therefore

for every i ∈ k we know that each of the k entries si,1,si,2, . . . ,si,k have the same first coordinate αi. Similarly

for every j ∈ [k] each of the k vertices s1, j,s2, j, . . . ,sk, j has the same second coordinate γ j. For each

j ∈ [k] we use the canonical path Q
γ j

j to satisfy the terminal for (c j,d j). For each i ∈ [k], we essentially

use the canonical path P
αi

i with the following modifications: for each j ∈ [k], take the shortcut green

edge (as shown in Figure 7) when we encounter the green vertex (this is guaranteed to happen since

(αi,γ j) = si, j ∈ Si, j) in Gi, j at intersection of the canonical paths P
αi

i and Q
γ j

j . Hence, overall we save a total

of k2: a saving of one per gadget. Thus, we have produced a solution for the instance (G,T) of weight

2k
(

∆(n+1)+2(k+1)+2k(n−1)
)

− k2 = B∗− k2.

We now prove the other direction which is more involved. First we show some preliminary claims:

Claim 7.3. Any optimum solution for (G,T) contains a c j ❀ d j canonical path for each j ∈ [k].

Proof. Suppose to the contrary that there is an optimum solution N for (G,T) which does not contain a

canonical c j ❀ d j path for some j ∈ [k]. From the orientation of the edges, we know that there is a c j ❀ d j

path in N that starts with the blue edge from Qℓ
j and ends with a blue edge from Qℓ′

j for some ℓ′ > ℓ. We

create a new set of edges N′ from N as follows:

• Add all those edges of Qℓ
j which were not present in N. In particular, we add the last blue edge of Qℓ

j

since ℓ′ > ℓ

• Delete the last blue edge of Qℓ′
j .

It is easy to see that N′ is also a solution for (G,T): this is because N′ contains the canonical path Qℓ
j to

satisfy the pair (c j,d j), and the last (blue) edge of any c j ❀ d j canonical path cannot be on any ai ❀ bi path

for any i ∈ [k]. Changing the last blue edge saves us (ℓ′− ℓ)∆ ≤ ∆ = 5n2. However we have to be careful

42

since we added some edges to the solution. But these edges are the internal (black) edges of Qℓ
j, and their

weight is ≤ 2(k+1)+2k(n−1) = 2kn+2 < 5n2 = ∆ since 1≤ k≤ n. Therefore we are able to create a new

solution N′ whose weight is less than that of an optimum solution N, which is a contradiction.

Definition 7.4. An ai ❀ bi path is called an almost canonical path if its first and last edges are blue edges

from the same ai ❀ bi canonical path.

Hence, an ai ❀ bi almost canonical path looks very similar to an ai ❀ bi canonical path, except it can

replace some of the horizontal black edges by green edges and vertical black edges as shown in Figure 7.

However, note that by definition, an almost canonical path must however end on the same horizontal level on

which it began. The proof of the next claim is very similar to that of Claim 7.3.

Claim 7.5. Any optimum solution for DSN contains an ai ❀ bi almost canonical path for every i ∈ [k].

Proof. Suppose to the contrary that there is an optimum solution N which does not contain an almost

canonical ai ❀ bi path for some i ∈ [k]. Hence, the ai ❀ bi path in N starts and ends at different levels. From

the orientation of the edges, we know that there is a ai ❀ bi path in the optimum solution that starts with the

blue edge from Pℓ
i and ends with a blue edge from Pℓ′

i for some ℓ′ > ℓ (note that the construction in Figure 7

does not allow any ai ❀ bi path to climb onto an upper level).

We create a new set of edges N′ from N as follows:

• Add all those edges of Pℓ
i which were not present in N. Note that in particular, we add the last blue

edge of Pℓ
i since ℓ′ > ℓ.

• Delete the last blue edge of Pℓ′
i .

It is easy to see that N′ is also a solution for (G,T): this is because N′ contains the canonical path Pℓ
i to

satisfy the pair (ai,bi), and the last (blue) edge of any ai ❀ bi canonical path cannot be on any c j ❀ d j path for

any j ∈ [k]. Changing the last edge saves us (ℓ′− ℓ)∆≤ ∆ = 5n2. But we have to careful since we also added

some edges to the solution. The total weight of edges added is ≤ 2(k+1)+2k(n−1) = 2kn+2 < 5n2 = ∆

since 1≤ k ≤ n. So we are able to create a new solution N′ whose weight is less than that of an optimum

solution N, which is a contradiction.

Lemma 7.6. If the instance (G,T) of DIRECTED STEINER NETWORK has a solution of weight at most

B∗− k2 then the instance (k,n,{Si, j : 1≤i, j≤k}) of GRID TILING has a solution.

Proof. Consider any optimum solution X . By Claim 7.3 and Claim 7.5 we know that X has an ai ❀ bi almost

canonical path and a c j ❀ d j canonical path for every 1≤ i, j ≤ k. Moreover these set of 2k paths form a

solution for DSN. Since any optimum solution is minimal, X is the union of these 2k paths: one for each

terminal pair. For each i, j ∈ [k] let the ai ❀ bi almost canonical path in X be P
αi

i and the c j ❀ d j canonical

path in X be Q
γ j

j .

The ai ❀ bi almost canonical path P
αi

i and c j ❀ d j canonical path Q
γ j

j in X intersect in a unique vertex in

the gadget Gi, j. If each ai ❀ bi path was canonical instead of almost canonical, then the weight of X would

have been exactly B∗. However we know that weight of X is at most B∗− k2. It is easy to see any ai ❀ bi

almost canonical path and any c j ❀ d j canonical path can have at most one edge in common: the edge which

comes vertically downwards into the green vertex (see Figure 7). There are k2 gadgets, and there is at most

one edge per gadget which is used for two paths in X . Hence for each gadget Gi, j there is exactly one edge

which is used by both the ai ❀ bi almost canonical path and the c j ❀ d j canonical path in X . So the endpoint

of each of these common edges must be a green vertex, i.e., (αi,γ j) ∈ Si, j for each i, j ∈ [k].

43

7.1 Proof of Theorem 1.4

Finally, we are now ready to prove Theorem 1.4 which is restated below:

Theorem 1.4. The edge-unweighted version of the DIRECTED STEINER NETWORK problem is W[1]-hard

parameterized by the number k of terminal pairs, even when the input is restricted to planar directed acyclic

graphs (DAGs). Moreover, there is no f (k) ·no(k) algorithm for any computable function f , unless the ETH

fails.

Proof. Given an instance (k,n,{Si, j : 1≤i, j≤k}) of GRID TILING, we use the reduction described earlier in

this section to build an instance (G,T) of edge-weighted DIRECTED STEINER NETWORK (see Figure 6

for an illustration). It is easy to see that the total number of vertices in G is O(n2k2) and moreover can be

constructed in poly(n,k) time. Each grid is planar (green shortcut edges do not destroy planarity), and the

grids are arranged again in a grid-like manner. Figure 6 actually gives a planar embedding of G. Moreover, it

is not hard to observe that G is a DAG.

It is known [23, Theorem 14.28] that k× k GRID TILING is W[1]-hard parameterized by k, and under

ETH cannot be solved in f (k) · no(k) for any computable function f . Combining the two directions from

Lemma 7.2 and Lemma 7.6, we get a parameterized reduction from k× k GRID TILING to an instance of

DSN which is a planar DAG and has O(k) terminal pairs. Hence, it follows that DSN on planar DAGs is

W[1]-hard and under ETH cannot be solved in f (k) ·no(k) time for any computable function f .

Note that Theorem 1.4 shows that the nO(k) algorithm of Feldman-Ruhl [35] for DSN is asymptotically

optimal.

44

References

[1] Aboulker, P., Brettell, N., Havet, F., Marx, D., Trotignon, N.: Coloring graphs with constraints on

connectivity. Journal of Graph Theory 85(4), 814–838 (2017), https://doi.org/10.1002/jgt.

22109

[2] Bateni, M., Chekuri, C., Ene, A., Hajiaghayi, M.T., Korula, N., Marx, D.: Prize-collecting Steiner

Problems on Planar Graphs. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011. pp. 1028–1049

(2011), https://doi.org/10.1137/1.9781611973082.79

[3] Bateni, M., Hajiaghayi, M.T., Marx, D.: Approximation Schemes for Steiner Forest on Planar Graphs

and Graphs of Bounded Treewidth. J. ACM 58(5), 21:1–21:37 (2011), https://doi.org/10.1145/

2027216.2027219

[4] Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavtsev, G.: Approximation

algorithms for spanner problems and directed steiner forest. Inf. Comput. 222, 93–107 (2013), https:

//doi.org/10.1016/j.ic.2012.10.007

[5] Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In:

Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California,

USA, June 11-13, 2007. pp. 67–74 (2007), https://doi.org/10.1145/1250790.1250801

[6] Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta)

Kernelization. J. ACM 63(5), 44:1–44:69 (2016), https://doi.org/10.1145/2973749

[7] Bodlaender, H.L., Lokshtanov, D., Penninkx, E.: Planar Capacitated Dominating Set Is W[1]-Hard.

In: Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen,

Denmark, September 10-11, 2009, Revised Selected Papers. pp. 50–60 (2009), https://doi.org/10.

1007/978-3-642-11269-0_4

[8] Bonnet, É., Giannopoulos, P., Lampis, M.: On the Parameterized Complexity of Red-Blue Points

Separation. In: 12th International Symposium on Parameterized and Exact Computation, IPEC 2017,

September 6-8, 2017, Vienna, Austria. pp. 8:1–8:13 (2017), https://doi.org/10.4230/LIPIcs.

IPEC.2017.8

[9] Bonnet, É., Miltzow, T.: Parameterized Hardness of Art Gallery Problems. In: 24th Annual European

Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark. pp. 19:1–19:17 (2016),

https://doi.org/10.4230/LIPIcs.ESA.2016.19

[10] Bonnet, É., Sikora, F.: The Graph Motif problem parameterized by the structure of the input graph.

Discrete Applied Mathematics 231, 78–94 (2017), https://doi.org/10.1016/j.dam.2016.11.

016

[11] Borradaile, G., Klein, P.N., Mathieu, C.: An O(n log n) approximation scheme for Steiner tree in planar

graphs. ACM Trans. Algorithms 5(3), 31:1–31:31 (2009), https://doi.org/10.1145/1541885.

1541892

[12] Bringmann, K., Kozma, L., Moran, S., Narayanaswamy, N.S.: Hitting set for hypergraphs of low

vc-dimension. In: 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016,

Aarhus, Denmark. pp. 23:1–23:18 (2016), https://doi.org/10.4230/LIPIcs.ESA.2016.23

45

[13] Cai, L., Fellows, M.R., Juedes, D.W., Rosamond, F.A.: The Complexity of Polynomial-Time

Approximation. Theory Comput. Syst. 41(3), 459–477 (2007), https://doi.org/10.1007/

s00224-007-1346-y

[14] Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation Algorithms

for Directed Steiner Problems. J. Algorithms 33(1), 73–91 (1999), https://doi.org/10.1006/

jagm.1999.1042

[15] Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized

complexity. J. Comput. Syst. Sci. 72(8), 1346–1367 (2006), https://doi.org/10.1016/j.jcss.

2006.04.007

[16] Chitnis, R., Esfandiari, H., Hajiaghayi, M.T., Khandekar, R., Kortsarz, G., Seddighin, S.: A Tight

Algorithm for Strongly Connected Steiner Subgraph on Two Terminals with Demands. Algorithmica

77(4), 1216–1239 (2017), https://doi.org/10.1007/s00453-016-0145-8

[17] Chitnis, R., Feldmann, A.E.: FPT Inapproximability of Directed Cut and Connectivity Problems. To

appear in IPEC (2019)

[18] Chitnis, R., Feldmann, A.E., Manurangsi, P.: Parameterized Approximation Algorithms for Bidirected

Steiner Network Problems. In: 26th Annual European Symposium on Algorithms, ESA 2018, August

20-22, 2018, Helsinki, Finland. pp. 20:1–20:16 (2018), https://doi.org/10.4230/LIPIcs.ESA.

2018.20

[19] Chitnis, R.H., Hajiaghayi, M., Marx, D.: Tight Bounds for Planar Strongly Connected Steiner Subgraph

with Fixed Number of Terminals (and Extensions). In: Proceedings of the Twenty-Fifth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014.

pp. 1782–1801 (2014), https://doi.org/10.1137/1.9781611973402.129

[20] Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs.

In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2017, Montreal, QC, Canada, June 19-23, 2017. pp. 210–223 (2017), https://doi.org/10.1145/

3055399.3055502

[21] Curticapean, R., Marx, D.: Complexity of counting subgraphs: Only the boundedness of the vertex-

cover number counts. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS

2014, Philadelphia, PA, USA, October 18-21, 2014. pp. 130–139 (2014), https://doi.org/10.

1109/FOCS.2014.22

[22] Curticapean, R., Xia, M.: Parameterizing the permanent: Genus, apices, minors, evaluation mod 2k. In:

IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,

17-20 October, 2015. pp. 994–1009 (2015), https://doi.org/10.1109/FOCS.2015.65

[23] Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,

S.: Parameterized Algorithms. Springer (2015), https://doi.org/10.1007/978-3-319-21275-3

[24] Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized

algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52(6), 866–893 (2005),

https://doi.org/10.1145/1101821.1101823

[25] Demaine, E.D., Hajiaghayi, M.T.: Graphs excluding a fixed minor have grids as large as treewidth,

with combinatorial and algorithmic applications through bidimensionality. In: Proceedings of the

46

Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British

Columbia, Canada, January 23-25, 2005. pp. 682–689 (2005), http://dl.acm.org/citation.cfm?

id=1070432.1070528

[26] Demaine, E.D., Hajiaghayi, M.T., Klein, P.N.: Node-Weighted Steiner Tree and Group Steiner Tree

in Planar Graphs. ACM Trans. Algorithms 10(3), 13:1–13:20 (2014), https://doi.org/10.1145/

2601070

[27] Demaine, E.D., Hajiaghayi, M.: The Bidimensionality Theory and Its Algorithmic Applications.

Comput. J. 51(3), 292–302 (2008), https://doi.org/10.1093/comjnl/bxm033

[28] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science, Springer

(1999), https://doi.org/10.1007/978-1-4612-0515-9

[29] Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1(3), 195–207 (1971), https:

//doi.org/10.1002/net.3230010302

[30] Dvorák, P., Feldmann, A.E., Knop, D., Masarı́k, T., Toufar, T., Veselý, P.: Parameterized Approximation

Schemes for Steiner Trees with Small Number of Steiner Vertices. In: 35th Symposium on Theoretical

Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France. pp. 26:1–

26:15 (2018), https://doi.org/10.4230/LIPIcs.STACS.2018.26

[31] Eiben, E., Knop, D., Panolan, F., Suchý, O.: Complexity of the Steiner Network Problem with

Respect to the Number of Terminals. In: 36th International Symposium on Theoretical Aspects of

Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany. pp. 25:1–25:17 (2019), https:

//doi.org/10.4230/LIPIcs.STACS.2019.25

[32] Eisenstat, D., Klein, P.N., Mathieu, C.: An efficient polynomial-time approximation scheme for Steiner

forest in planar graphs. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012. pp. 626–638 (2012), https:

//doi.org/10.1137/1.9781611973099.53

[33] Enciso, R., Fellows, M.R., Guo, J., Kanj, I.A., Rosamond, F.A., Suchý, O.: What Makes Equitable

Connected Partition Easy. In: Parameterized and Exact Computation, 4th International Workshop,

IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers. pp. 122–133

(2009), https://doi.org/10.1007/978-3-642-11269-0_10

[34] Eppstein, D., Lokshtanov, D.: The Parameterized Complexity of Finding Point Sets with Hereditary

Properties. In: 13th International Symposium on Parameterized and Exact Computation, IPEC 2018,

August 20-24, 2018, Helsinki, Finland. pp. 11:1–11:14 (2018), https://doi.org/10.4230/LIPIcs.

IPEC.2018.11

[35] Feldman, J., Ruhl, M.: The Directed Steiner Network Problem is Tractable for a Constant

Number of Terminals. SIAM J. Comput. 36(2), 543–561 (2006), https://doi.org/10.1137/

S0097539704441241

[36] Feldmann, A.E., Marx, D.: The Complexity Landscape of Fixed-Parameter Directed Steiner Network

Problems. A preliminary version appeared in ICALP 2016. CoRR abs/1707.06808 (2017), http:

//arxiv.org/abs/1707.06808

[37] Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An

EATCS Series, Springer (2006), https://doi.org/10.1007/3-540-29953-X

47

[38] Fomin, F.V., Kolay, S., Lokshtanov, D., Panolan, F., Saurabh, S.: Subexponential Algorithms for

Rectilinear Steiner Tree and Arborescence Problems. In: 32nd International Symposium on Com-

putational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA. pp. 39:1–39:15 (2016),

https://doi.org/10.4230/LIPIcs.SoCG.2016.39

[39] Fomin, F.V., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Subexponential

Parameterized Algorithms for Planar and Apex-Minor-Free Graphs via Low Treewidth Pattern Covering.

In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October

2016, New Brunswick, New Jersey, USA. pp. 515–524 (2016), https://doi.org/10.1109/FOCS.

2016.62

[40] Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM

48(6), 1184–1206 (2001), https://doi.org/10.1145/504794.504798

[41] Guo, J., Hartung, S., Niedermeier, R., Suchý, O.: The Parameterized Complexity of Local

Search for TSP, More Refined. Algorithmica 67(1), 89–110 (2013), https://doi.org/10.1007/

s00453-012-9685-8

[42] Guo, J., Niedermeier, R., Suchý, O.: Parameterized Complexity of Arc-Weighted Directed Steiner

Problems. SIAM J. Discrete Math. 25(2), 583–599 (2011), https://doi.org/10.1137/100794560

[43] Hakimi, S.L.: Steiner’s problem in graphs and its implications. Networks 1(2), 113–133 (1971),

https://doi.org/10.1002/net.3230010203

[44] Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings of the 35th Annual

ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA. pp. 585–594

(2003), https://doi.org/10.1145/780542.780628

[45] Impagliazzo, R., Paturi, R.: On the Complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001),

https://doi.org/10.1006/jcss.2000.1727

[46] Impagliazzo, R., Paturi, R., Zane, F.: Which Problems Have Strongly Exponential Complexity? J.

Comput. Syst. Sci. 63(4), 512–530 (2001), https://doi.org/10.1006/jcss.2001.1774

[47] Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. J.

Comput. Syst. Sci. 79(1), 39–49 (2013), https://doi.org/10.1016/j.jcss.2012.04.004

[48] Jones, M., Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Suchý, O.: Parameterized Complexity of

Directed Steiner Tree on Sparse Graphs. SIAM J. Discrete Math. 31(2), 1294–1327 (2017), https:

//doi.org/10.1137/15M103618X

[49] Karp, R.M.: Reducibility Among Combinatorial Problems. In: Proceedings of a Symposium on the

Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson

Research Center, Yorktown Heights, New York, USA. pp. 85–103 (1972), https://doi.org/10.

1007/978-1-4684-2001-2_9

[50] Klein, P.N., Marx, D.: Solving Planar k-Terminal Cut in O(nc
√

k) Time. In: Automata, Languages,

and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012,

Proceedings, Part I. pp. 569–580 (2012), https://doi.org/10.1007/978-3-642-31594-7_48

[51] Klein, P.N., Marx, D.: A subexponential parameterized algorithm for Subset TSP on planar graphs. In:

Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,

48

Portland, Oregon, USA, January 5-7, 2014. pp. 1812–1830 (2014), https://doi.org/10.1137/1.

9781611973402.131

[52] Levin, A.: Algorithm for the shortest connection of a group of graph vertices. Soviet Math. Dokl. 12,

1477–1481 (1971), http://dx.doi.org/10.4086/toc.2010.v006a005

[53] Li, C., McCormick, S.T., Simchi-Levi, D.: The point-to-point delivery and connection problems:

complexity and algorithms. Discrete Applied Mathematics 36(3), 267–292 (1992), https://doi.org/

10.1016/0166-218X(92)90258-C

[54] Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Zehavi, M.: Parameterized Complexity and Approx-

imability of Directed Odd Cycle Transversal. To appear in SODA 2020. CoRR abs/1704.04249 (2017),

http://arxiv.org/abs/1704.04249

[55] Lokshtanov, D., Saurabh, S., Wahlström, M.: Subexponential Parameterized Odd Cycle Transversal on

Planar Graphs. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India. pp. 424–434 (2012),

https://doi.org/10.4230/LIPIcs.FSTTCS.2012.424

[56] Marx, D.: On the Optimality of Planar and Geometric Approximation Schemes. In: 48th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI,

USA, Proceedings. pp. 338–348 (2007), https://doi.org/10.1109/FOCS.2007.50

[57] Marx, D.: Can You Beat Treewidth? Theory of Computing 6(1), 85–112 (2010), https://doi.org/

10.4086/toc.2010.v006a005

[58] Marx, D.: A Tight Lower Bound for Planar Multiway Cut with Fixed Number of Terminals.

In: Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, War-

wick, UK, July 9-13, 2012, Proceedings, Part I. pp. 677–688 (2012), https://doi.org/10.1007/

978-3-642-31594-7_57

[59] Marx, D., Pilipczuk, M., Pilipczuk, M.: On Subexponential Parameterized Algorithms for Steiner

Tree and Directed Subset TSP on Planar Graphs. In: 59th IEEE Annual Symposium on Foundations

of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018. pp. 474–484 (2018), https:

//doi.org/10.1109/FOCS.2018.00052

[60] Marx, D., Pilipczuk, M.: Optimal Parameterized Algorithms for Planar Facility Location Problems

Using Voronoi Diagrams. In: Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras,

Greece, September 14-16, 2015, Proceedings. pp. 865–877 (2015), https://doi.org/10.1007/

978-3-662-48350-3_72

[61] Natu, M., Fang, S.: The Point-to-point Connection Problem - Analysis and Algorithms. Discrete Applied

Mathematics 78(1-3), 207–226 (1997), https://doi.org/10.1016/S0166-218X(97)00010-3

[62] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006), https:

//doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001

[63] Pilipczuk, M., Pilipczuk, M., Sankowski, P., van Leeuwen, E.J.: Subexponential-Time Parameterized

Algorithm for Steiner Tree on Planar Graphs. In: 30th International Symposium on Theoretical Aspects

of Computer Science, STACS 2013, February 27 - March 2, 2013, Kiel, Germany. pp. 353–364 (2013),

https://doi.org/10.4230/LIPIcs.STACS.2013.353

49

[64] Pilipczuk, M., Wahlström, M.: Directed Multicut is W[1]-hard, Even for Four Terminal Pairs. TOCT

10(3), 13:1–13:18 (2018), https://doi.org/10.1145/3201775

[65] Ramanathan, S.: Multicast tree generation in networks with asymmetric links. IEEE/ACM Trans. Netw.

4(4), 558–568 (1996), https://doi.org/10.1109/90.532865

[66] Robertson, N., Seymour, P.D., Thomas, R.: Quickly Excluding a Planar Graph. J. Comb. Theory, Ser. B

62(2), 323–348 (1994), https://doi.org/10.1006/jctb.1994.1073

[67] Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of Multicast Routing Algorithms for Real-Time

Communication on High-Speed Networks. IEEE Journal on Selected Areas in Communications 15(3),

332–345 (1997), https://doi.org/10.1109/49.564132

[68] Suchý, O.: On Directed Steiner Trees with Multiple Roots. In: Graph-Theoretic Concepts in Computer

Science - 42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected

Papers. pp. 257–268 (2016), https://doi.org/10.1007/978-3-662-53536-3_22

[69] Winter, P.: Steiner problem in networks: A survey. Networks 17(2), 129–167 (1987), https://doi.

org/10.1002/net.3230170203

A Vertex-unweighted versions are more general than edge-weighted ver-

sions with integer weights

In this section, for both the SCSS and DSN problems we show that the edge-weighted version (with

polynomially-bounded integer weights) can be solved using the vertex-unweighted version. Hence all our

hardness results from Theorem 1.2, Theorem 1.3 and Theorem 1.4 hold for the vertex-(un)weighted versions

as well.

We give a formal proof for the DSN problem; the proof for the SCSS problem is similar. Consider an

instance I1 = (G,T) of edge-weighted DSN with integer weights where T = {(si, ti) | i ∈ [k]}. Replace each

edge of weight ℓ by nℓ internal vertices where |G|= n. Let the new graph be G′. Consider the instance I2 of

vertex-unweighted version where the set of terminals is the same as in I1.

Theorem A.1. The instance I1 of edge-weighted DSN has a solution of weight at most C if and only if the

instance I2 of vertex-unweighted DSN has a solution with at most Cn+n vertices.

Proof. Suppose there is a solution E1 for I1 of weight at most C. For each edge in E1 pick all its internal

vertices and two endpoints in E2. Clearly E2 is a solution for I2. The number of vertices in E2 is Cn+ γ where

γ is the number of vertices of G incident to the edges in E1. Since γ ≤ n we are done.

Suppose there is a (vertex-minimal) solution E2 for I2 having at most Cn+n vertices. For any edge e ∈G

of weight c we need to pick all the cn internal vertices (plus the two endpoints of e) in E2 if we actually want

to use e in a solution for I1. So for every edge e ∈ E we know that E2 contains either all or none of the internal

vertices obtained after splitting up e according to its weight in G. Let the set of edges of G all of whose

internal vertices are in E2 be E1 = {e1,e2, . . . ,er} and their weights be c1,c2, . . . ,cr respectively. Since E2 is

a solution for I2 it follows that E1 is a solution for I1. Let S be the union of set of endpoints of the edges in E1.

Therefore Cn+n≥ |S|+n(∑r
i=1 ci). Since |S| ≥ 1 we have C ≥ ∑

r
i=1 ci, i.e., E1 has weight at most C.

Note that the above reduction works even in the case when the edges have zero weight12: in this case we

simply wont be adding any internal vertices.

12We mention this explicitly because some of the reductions in this paper do have edges with zero weight

50

B Treewidth and Minors

Definition B.1. (treewidth) Let G be a given undirected graph. Let T be a tree and B : V (T)→ 2V (G). The

pair (T ,B) is called as a tree decomposition of an undirected graph G is a tree T in which every vertex

x ∈ V (T) has an assigned set of vertices Bx ⊆ V (G) (called a bag) such that the following properties are

satised:

• (P1):
⋃

x∈V (T) Bx =V (G).

• (P2): For each {u,v} ∈ E(G), there exists an x ∈V (T) such that u,v ∈ Bx.

• (P3): For each v ∈V (G), the set of vertices of T whose bags contain v induce a connected subtree of

T .

The width of the tree decomposition (T ,B) is maxx∈V (T) |Bx|−1. The treewidth of a graph G, usually denoted

by tw(G), is the minimum width over all tree decompositions of G.

Definition B.2. (minor) Let G,H be undirected graphs. Then H is called a minor of G if H can be obtained

from G by deleting edges, deleting vertices and by contracting edges.

Definition B.3. (subdivision) Let G be an undirected graph. An edge e = u− v is subdivided by adding a

new vertex w and the edges u−w and v−w. An undirected graph H is called a subdivision of G if H can be

obtained from G by subdividing edges of G.

Lemma B.4. Subdivisions of outerplanar graphs have treewidth at most 2.

Proof. Outerplanar graphs are known to be a subclass of series parallel graphs, and hence have treewidth

at most 2. To prove this lemma, it is enough to show that subdividing one edge of an outerplanar does not

increase the treewidth. Let G be an outerplanar graph, and (T ,B) be a tree-decomposition of G of width at

most 2. Let e = u− v be an edge in G which is subdivided by adding a vertex w and the edges u−w and

v−w. We now build a tree decomposition for the resulting graph G′. We add only one vertex to V (T): by

property (P2), there exists t ∈V (T) such that u,v ∈ Bt . Add a new vertex t ′ and set Bt ′ = {u,v,w}. Make t ′

adjacent only to t. It is easy to check that V (T)∪{t ′} is a tree-decomposition for G′ of treewidth at most

2.

51

	1 Introduction
	1.1 Previous work
	1.2 Our results and techniques
	1.3 Further related work

	2 Improved algorithm for SCSS on planar graphs
	2.1 Proof of Lemma 2.1

	3 W[1]-hardness for SCSS in planar graphs
	3.1 Existence of connector gadgets
	3.2 Existence of main gadgets
	3.3 Construction of the SCSS instance
	3.4 Grid Tiling has a solution SCSS has a solution of weight W*n
	3.5 SCSS has a solution of weight W*n Grid Tiling has a solution
	3.6 Proof of Theorem 1.2

	4 Proof of Lemma 3.3: constructing connector gadgets
	4.1 Different types of edges in connector gadget
	4.2 Assigning weights in the connector gadget
	4.3 For every i[n], there is a solution Ei of weight C*n that satisfies the connectedness property and represents i
	4.4 E' satisfies the connectedness property and has weight at most C*n E' represents some [n] and has weight exactly C*n

	5 Proof of Lemma 3.6: constructing the main gadget
	5.1 Different types of edges in main gadget
	5.2 Assigning weights in the main gadget
	5.3 For every (x,y)S, there is a solution Ex,y of weight M*n that represents (x,y)
	5.4 E' satisfies the connectedness property and has weight at most M*n E' represents some (,)S and has weight exactly M*n

	6 W[1]-hardness for SCSS in general graphs
	6.1 Proof of Theorem 1.3

	7 W[1]-hardness for DSN in planar DAGs
	7.1 Proof of Theorem 1.4

	A Vertex-unweighted versions are more general than edge-weighted versions with integer weights
	B Treewidth and Minors

