
This is a repository copy of Recoloring interval graphs with limited recourse budget.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200951/

Version: Published Version

Proceedings Paper:
Bosek, B., Disser, Y., Feldmann, A.E. orcid.org/0000-0001-6229-5332 et al. (2 more
authors) (2020) Recoloring interval graphs with limited recourse budget. In: Albers, S.,
(ed.) Leibniz International Proceedings in Informatics, LIPIcs. 17th Scandinavian
Symposium and Workshops on Algorithm Theory (SWAT 2020), 22-24 Jun 2020,
Tórshavn, Faroe Islands. Schloss Dagstuhl--Leibniz-Zentrum für Informatik , 17:1-17:23.
ISBN 9783959771504

https://doi.org/10.4230/LIPIcs.SWAT.2020.17

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Recoloring Interval Graphs

with Limited Recourse Budget

Bartłomiej Bosek
Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University in Kraków, Poland
bosek@tcs.uj.edu.pl

Yann Disser
Department of Mathematics, TU Darmstadt, Germany
disser@mathematik.tu-darmstadt.de

Andreas Emil Feldmann
Department of Applied Mathematics, Charles University in Prague, Czech Republic
https://sites.google.com/site/aefeldmann

Andreas.Feldmann@mff.cuni.cz

Jakub Pawlewicz
University of Warsaw, Poland
pan@mimuw.edu.pl

Anna Zych-Pawlewicz
University of Warsaw, Poland
anka@mimuw.edu.pl

Abstract

We consider the problem of coloring an interval graph dynamically. Intervals arrive one after the
other and have to be colored immediately such that no two intervals of the same color overlap. In
each step only a limited number of intervals may be recolored to maintain a proper coloring (thus
interpolating between the well-studied online and offline settings). The number of allowed recolorings
per step is the so-called recourse budget. Our main aim is to prove both upper and lower bounds on
the required recourse budget for interval graphs, given a bound on the allowed number of colors.

For general interval graphs with n vertices and chromatic number k it is known that some
recoloring is needed even if we have 2k colors available. We give an algorithm that maintains a
2k-coloring with an amortized recourse budget of O(log n). For maintaining a k-coloring with k ≤ n,
we give an amortized upper bound of O(k · k! · √

n), and a lower bound of Ω(k) for k ∈ O(
√

n),
which can be as large as Ω(

√
n).

For unit interval graphs it is known that some recoloring is needed even if we have k + 1 colors
available. We give an algorithm that maintains a (k + 1)-coloring with at most O(k2) recolorings
per step in the worst case. We also give a lower bound of Ω(log n) on the amortized recourse budget
needed to maintain a k-coloring.

Additionally, for general interval graphs we show that if one does not insist on maintaining an
explicit coloring, one can have a k-coloring algorithm which does not incur a factor of O(k · k! · √

n)
in the running time. For this we provide a data structure, which allows for adding intervals in
O(k2 log3 n) amortized time per update and querying for the color of a particular interval in O(log n)
time. Between any two updates, the data structure answers consistently with some optimal coloring.
The data structure maintains the coloring implicitly, so the notion of recourse budget does not apply
to it.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Theory of
computation → Online algorithms; Theory of computation → Data structures design and analysis

Keywords and phrases Colouring, Dynamic Algorithms, Recourse Budget, Interval Graphs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.17

© Bartłomiej Bosek, Yann Disser, Andreas Emil Feldmann, Jakub Pawlewicz, and Anna
Zych-Pawlewicz;
licensed under Creative Commons License CC-BY

17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Editor: Susanne Albers; Article No. 17; pp. 17:1–17:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

17:2 Recoloring Interval Graphs with Limited Recourse Budget

Funding

Bartłomiej Bosek: National Science Centre of Poland, project number 2017/26/D/ST6/00264.
Yann Disser : ‘Excellence Initiative’ of the German Federal and State Governments, and Graduate
School CE at TU Darmstadt.
Andreas Emil Feldmann: Czech Science Foundation GAČR (grant #17-10090Y), and Center for
Foundations of Modern Computer Science (Charles Univ. project UNCE/SCI/004).
Anna Zych-Pawlewicz: National Science Centre of Poland, project number 2017/26/D/ST6/00264.

1 Introduction

Graph coloring is one of the most prominent disciplines within graph theory, with plenty

of variants, applications, and deep connections to theoretical computer science. A proper

k-coloring of a graph, for a positive integer k, is an assignment of colors in {1, . . . , k} to

the vertices of the graph in such a way that no two adjacent vertices share a color. The

chromatic number of the graph is the smallest integer k for which a proper k-coloring exists.

In general, it is NP-hard [17, 36] to approximate the chromatic number of an n-vertex graph

to within a factor of n1−ǫ for any constant ǫ > 0. The literature offers many results for

restricted graph classes.

In this paper, we consider the class of interval graphs, for which a linear time greedy

algorithm achieves the optimum coloring [26]. Our main interest is in a dynamic setting,

where intervals arrive one at a time, and one needs to maintain the coloring after each

interval addition. We mainly study how many vertex recolorings are needed to maintain

a reasonable coloring. The number of changes one needs to introduce to the maintained

solution (in our case vertex recolorings) upon an update is referred to as recourse bound

or recourse budget in the literature. A recourse budget of zero coincides with the online

setting, where the algorithm’s decisions are irrevocable. The online model is natural for many

problems [14, 24, 27, 29] and has been widely studied, very often revealing pessimistic lower

bounds. It is natural to ask if the situation improves if one allows a limited recourse budget.

This model has been successfully applied to a variety of problems, including spanning tree

and Steiner tree variants, bipartite matchings, and coloring [2, 3, 9, 10, 11, 16, 23, 21]. The

proposed algorithms could often be efficiently implemented [3, 9, 21].

Formally, we are interested in the following problem. We get a sequence of half-open

intervals {[ai, bi)}n
i=1, which defines a sequence of instances Ij = {[ai, bi)}j

i=1, where Ij

differs from Ij−1 by one interval. The instances may be interpreted as graphs, where the

nodes are intervals and the edges connect intersecting intervals. The intervals arrive one at a

time. After the j-th interval is revealed, the algorithm needs to compute a proper coloring

Cj for the intersection graph of Ij . We wish to minimize the recourse budget, which is the

number of vertices with different colors in Cj and Cj−1. We also consider the special case of

unit interval graphs, where each interval is of the form bi = ai + 1. For the sake of simplicity

we assume that every instance Ij is k-colorable and k is known a priori, but it is not difficult

to get rid of this assumption. Our results are summarized in Table 1 together with some

known results from the literature for comparison. Unless stated otherwise, all the bounds in

the table are amortized, i.e., they bound the average recourse budget per insertion.

For general interval graphs our first result shows that if we allow O(log n) recolorings

per interval insertion, we can improve the ratio of 3 of the online algorithm by Kierstead

and Trotter [20] to 2. Since the ratio of 3 is best possible in the online setting, our result

shows that only a modest number of recolorings are needed to obtain an improvement. If

we allow a higher number of O(k · k! · √
n) recolorings per update, we can even maintain an

optimal solution. A trivial algorithm that recolors all intervals in each step has a recourse

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:3

Table 1 Our results for interval graphs (top) and unit interval graphs (bottom). All runtimes
are amortized, if not otherwise stated.

recourse budget
colors upper bound lower bound

general

3k − 2 0 [20] 0
2k O(log n) (Thm 5) > 0 [20]

k min{n, O(k · k! · √
n)} (Thm 10)











Ω(k) (Cor 21) for k ∈ O(
√

n)

Ω(
√

n) (Cor 20) for k ∈ Θ(
√

n)

Ω(log n) (Thm 1) for k = 2

unit
interval

2k − 1 0 [5] 0
k + 1 O(k2) worst case (Thm 2) > 0 [5]

k min{n, O(k · k! · √
n)} (Thm 10) Ω(log n) (Thm 1)

budget of n, resulting in the bound min{n, O(k · k! · √
n)} of Table 1. Note that this bound

is non-trivial (i.e., smaller than n) for k ∈ O(log n
log log n). We complement these results with a

lower bound for the budget of Ω(k), which can be as high as Ω(
√

n) if k grows with n. We

obtain another lower bound of Ω(log n) for k = 2. The latter bound is even valid for unit

interval graphs, for which we also show that if we allow a budget of O(k2) recolorings (i.e.,

independent of n), we can maintain a solution using just one extra color compared to the

optimum. Due to our lower bound of Ω(log n) for maintaining an optimal coloring, it is clear

that an extra color is necessary if we want to keep the budget constant for a constant k.

It is straightforward to see that our algorithms, except for the exact algorithm for general

interval graphs that uses an amortized recourse budget of O(k · k! · √
n), can be implemented

efficiently. However, we can improve the exact algorithm significantly if we do not insist

on maintaining an explicit coloring, i.e., if we do not require that the color of an interval

can be retrieved in constant time. In Section 5 we provide a data structure, which allows

for adding intervals in O(k2 log3 n) amortized time per update and querying for the color

of a particular interval in O(log n) time. Between two updates the data structure answers

queries consistently with some optimal coloring. The data structure maintains the coloring

implicitly, so the notion of recourse budget does not apply to it.

1.1 Related work

Due to the inapproximability of the graph coloring problem, the positive results for dynamic

coloring of general graphs are mostly of heuristic and experimental nature [25, 28, 30, 32, 35].

From the theoretical perspective, just recently there have been a few results concerning the

recourse budget for coloring general graphs [2, 33] and dynamic general graph coloring with

∆ + 1 colors [4], where ∆ is the maximum degree in the graph.

Barba et al. [2] devise two complementary algorithms for the regime of adding and

removing edges. For any d > 0, the first (resp. second) algorithm maintains a k(d + 1)-

coloring (resp. k(d + 1)n1/d-coloring) of a k-colorable graph and recolors at most (d + 1)n1/d

(resp. d) vertices per update, where updates include edge and vertex additions and removals.

The authors also show that the first trade-off is essentially tight, and the bad example is a

tree. So if one insists on a constant approximation ratio, one must incur polynomial recourse

budget for every class of graphs that contains trees. The symmetry between these trade-offs

may make it tempting to believe that the second trade-off is also tight. However, Solomon

SWAT 2020

17:4 Recoloring Interval Graphs with Limited Recourse Budget

and Wein [33] show, that in the regime of adding and removing edges, there is a deterministic

algorithm for maintaining an O(k
d log3 n)-coloring with O(d) recolorings per update step for

any d ∈ O(log n). They also show that a randomized algorithm performs slightly better.

Solomon and Wein additionally consider bounded arboricity graphs, for which, using their

result on the recourse budget, they provide an efficient dynamic algorithm maintaining an

O(α log2 n)-coloring with polyloglog amortized time per update. Bhattacharya et al. [4]

studied the problem of efficient dynamic coloring when the maximum degree of the dynamic

graph remains bounded by ∆ at all times. They present a randomized (resp. deterministic)

algorithm for maintaining a (∆ + 1)-coloring (resp. ∆(1 + o(1))-coloring) with amortized

O(log ∆) (resp. polylog(∆)) update time.

To the best of our knowledge, no dynamic algorithms for the class of interval graphs

have been proposed in the literature. Our motivation for studying this class of graphs in the

incremental regime stems from the rich literature on the problem of online poset coloring.

Schmerl asked whether an effective online chain partitioning algorithm exists, and this was

answered in the affirmative by Kierstead in [18]. His algorithm uses at most (5w −1)/4 chains

on posets of width w. Szemerédi proved a quadratic lower bound of
(

w+1
2

)

(see [5, 19] for a

proof). In [7], Bosek and Krawczyk provide an online algorithm that partitions posets of

width w into at most w13 log2 w chains. This yields the first subexponential upper bound for

the online chain partitioning problem. In [6] Bosek et al. improve this to w6.5 log2 w+7 with a

shorter proof. Very recently, in [8] Bosek and Krawczyk present an online algorithm that

partitions posets of width w into wO(log log w) chains. At this point, the problem of whether

there is an online algorithm using polynomially many chains is still open.

The problem of online interval poset chain coloring is equivalent to the problem we are

studying with the recoloring budget limited to zero. It has been extensively studied in

many different variants [1, 5, 12, 20]. A well-known theorem of Kierstead and Trotter [20],

translated to our setting, states that a (3k−2)-coloring of k-colorable graph can be maintained

online and this is the best we can do if we do not allow recolorings. A folklore result [5]

states that for unit interval graphs a (2k − 1)-coloring of k-colorable graph can be maintained

online and this is also tight. It is natural to wonder how many recolorings we need when

the approximation ratio is going from 3 down to 1 for general interval graphs, or from 2

down to 1 for unit interval graphs. This is the main question we aim to answer in this paper.

Nevertheless, it is not hard to show that our (k + 1)-coloring algorithm for unit interval

graphs can be extended to a fully dynamic setting (allowing also interval removals). In

particular, this gives one more non-trivial class of graphs where the lower bound of Barba et

al. [2] does not apply.

2 Unit intervals

In this section we focus on the class of unit interval graphs. This class is equivalent with proper

interval graphs, i.e., interval graphs where no interval is contained in another interval [31].

We show a lower-bound of Ω(log n) for the recourse budget for maintaining an optimal

coloring.

◮ Theorem 1. Maintaining an optimum coloring of a 2-colorable unit interval graph requires

an amortized recourse budget of Ω(log n).

Proof. We describe a 2-colorable interval graph that appears online in the form of recursively

constructed gadgets. We start with with the gadget G0 consisting of the two intersecting

intervals [0, 1) and [0.5, 1.5) that can be 2-colored without recoloring. Obviously, G0 admits

a unique 2-coloring (up to renaming colors).

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:5

Now, for i ∈ {1, 2, . . . }, assume we have a recursive construction Gi−1 that admits a

unique 2-coloring (up to renaming colors), and that all intervals in this coloring fall into [a, b)

in one color and into [a+0.5, b+0.5) in the other color. This means that, regarding 2-colorings,

Gi−1 behaves macroscopically exactly like two intervals of the form [a, b), [a + 0.5, b + 0.5).

To obtain Gi, we first introduce, one after the other, two Gi−1 gadgets shifted so that they

behave exactly like the pairs of intervals [a, b), [a + 0.5, b + 0.5) and [b + 1, c), [b + 1.5, c + 0.5),

respectively. See Fig. 1 along with the following.

Up to renaming colors, there are two ways of coloring the gadgets. If [a, b) and [b + 1, c)

receive the same color, we introduce the additional intervals [b + 0.25, b + 1.25) and [c, c + 1).

Otherwise, [a, b) and [b + 1.5, c + 0.5) receive the same color, and we introduce the additional

intervals [b, b + 1) and [b + 0.5, b + 1.5). In both cases, there is no way of consistently coloring

the new intervals without recoloring one of the two gadgets. Since the gadgets admit a unique

2-coloring up to renaming colors, we need to completely recolor one of them by changing

the color of all of its intervals. Afterwards, Gi admits a unique 2-coloring (up to renaming

colors), and all intervals fall into [a, c + 0.5) in one color and [a + 0.5, c + 1) in the other color.

We can therefore proceed with the recursive construction.

The number of intervals ni of Gi is given by n0 = 2 and ni = 2ni−1 + 2 for i ∈ {1, 2, . . . },

which yields ni = 2i+1 +
∑i

j=1 2j = 2i+2 − 2. The number of recolorings required during the

recursive construction of Gi is given by r0 = 0 and ri = 2ri−1 + ni−1 for i ∈ {1, 2, . . . }, which

yields ri =
∑i

j=1 2i−jnj−1 =
∑i

j=1 2i−j(2j+1 − 2) = i · 2i+1 − 2
∑i−1

j=0 2j = i · 2i+1 − 2i + 1.

This means that, asymptotically, we have ni = Θ(2i) and the amortized number of required

recolorings is ri/ni = Θ(i) = Θ(log(ni)). ◭

We now prove an upper bound of O(k2) for the worst-case recourse budget, which holds if

the algorithm can use one extra color. This is in contrast with the lower bound of Theorem 1,

which is Ω(log n) recourse budget per update for an exact algorithm. We note that our

algorithm can also be made to work in the fully dynamic setting (allowing also interval

removals) with the same bounds on the required recolorings.

Before we begin, we introduce some definitions. Let I = {[a1, b1), . . . [an, bn)} be a unit

interval instance ordered by ai. A left boundary ξl(I) (respectively right boundary ξr(I)) is

a set of intervals intersecting the largest integer smaller than b1 (respectively the smallest

integer larger or equal an). Note that [a1, b1) ∈ ξl(I) and [an, bn) ∈ ξr(I). A circular arc

graph is an intersection graph of (open) arcs lying on the same circle.

◮ Theorem 2. There exists an algorithm which maintains a (k + 1)-coloring of a k-colorable

unit interval graph with O(k2) worst case recourse budget per update.

Proof. We partition the current instance I into smaller instances I1, I2, . . . , Im and separa-

tors between them. Each instance is of size at least lk (except for the last one, which may

be smaller), and at most 2lk + k for l = max{4, k + 1}. The reason for this particular choice

of l will become apparent later. In the beginning there is just one instance I1. Whenever

an instance Ii grows above size 2lk + k, we pick a point p, such that there are at least lk

intervals in Ii completely to the left and lk intervals completely to the right of p. This point

Gi-1 Gi-1 Gi-1 Gi-1

Figure 1 Illustration of the two cases in the recursive construction of Gi.

SWAT 2020

17:6 Recoloring Interval Graphs with Limited Recourse Budget

S1 I S2

p

Figure 2 Illustration of the proof of Lemma 3 for k = 5.

partitions Ii in the desired way. We declare the intervals intersecting p to be a separator Si.

At any point in time we maintain a partition of the current instance I into small instances

and separators: I = I1 ∪ S1 ∪ I2 ∪ S2 . . . ∪ Sm−1 ∪ Im, where m ∈ Θ(n/(k2)). When adding

a new interval, we will recolor the instance Ii into which the new interval falls, or separator

Si with neighboring instances if the new interval hits the integer point defining Si. The next

lemma will be used to do this with at most k + 1 colors without changing the colors of the

neighboring separators (which are given by some boundary integer points).

◮ Lemma 3. Let I be a k-colorable unit interval instance. If |I| ≥ lk for l = max{4, k + 1},

then, for any fixed coloring on ξl(I) and ξr(I) using colors from [k], one can complete this

coloring on I using colors from [k + 1].

Proof. We first reduce the color completion problem from the lemma statement to the

problem of coloring circular arc graphs. This reduction is shown in Figure 2. We draw the

intervals of I as arcs on the north half of a circle, in a way that preserves the intersection

relation. Let p be the south pole of the circle, i.e., the point extending the most to the south.

For each pair of intervals (I1, I2) ∈ ξl(I) × ξr(I) such that I1 and I2 are precolored with the

same color, we stretch I1 (respectively I2) anticlockwise (respectively clockwise) so that they

reach p and then glue them together to form the same arc. The remaining intervals of ξl(I)

and ξr(I) are only stretched to reach (and intersect) p and are not glued with anything.

We now make use of the following lemma from [34], which allows us to color the obtained

circular arc graph instance. We note that this theorem was also used in [15].

◮ Lemma 4 ([34]). Let G be a circular arc graph, L(G) be the maximum number of arcs

intersecting a common point on the circle, and l(G) be the smallest number of intervals that

cover the circle. If l(G) ≥ 5 then
⌈

l(G)−1
l(G)−2 L(G)

⌉

colors suffice to color G and there is a linear

time coloring algorithm.

In order to apply Lemma 4, we need to consider quantities L(G) and l(G) for the instance

G that we created. Before the transformation, since I is k-colorable, there are at most

k intervals intersecting one point. After the transformation, if we cut out from the circle

[p − ǫ, p + ǫ] for some ǫ > 0, we get a stretched instance I. So for any point on the circle

outside [p − ǫ, p + ǫ] there are at most k arcs intersecting it. Within [p − ǫ, p + ǫ] also at

most k arcs intersect, since for every color used on ξl(I) and ξr(I) there is precisely one

arc intersecting p. So L(G) ≤ k. Also, because |I| ≥ lk and all intervals have unit length,

the distance between ξl(I) and ξr(I) is at least l, and so the minimal number of intervals

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:7

needed to cover the circle is at least l + 1, i.e., l(G) ≥ l + 2. Setting l = max{4, k + 1}
ensures l(G) ≥ 5 so that the assumptions of Lemma 4 are satisfied and we ensure that

l(G) ≥ k + 2. Due to Lemma 4, we can color I with a number of colors bounded by
⌈

l(G)−1
l(G)−2 L(G)

⌉

=
⌈

(1 + 1
l(G)−2)L(G)

⌉

≤
⌈

(1 + 1
k)k

⌉

= k + 1. Also, any intervals I1 ∈ ξl(I)

and I2 ∈ ξr(I) are colored the same if and only if their precoloring is the same. Hence, we

can permute colors in the obtained coloring so that it complies with the precoloring on ξl(I)

and ξr(I). ◭

When a new interval Inew is added, it either fits into an instance Ii or it belongs to a

separator Sj . In the first case, we recolor Ii ∪ {Inew} consistently with the current coloring

on Si−1 and Si. In the second case, we color the new interval Inew with the first color not

used on Sj and recolor Ij and Ij+1 consistently with the current coloring on Sj−1, Sj , and

Sj+1. What remains to be proved is that we can always recolor the chosen piece using k + 1

colors. This follows directly from Lemma 3. ◭

3 Low recourse budget for general interval graphs

In this section we focus on presenting the exact algorithm for arbitrary interval graphs with

an amortized recourse budget of min{n, O(k · k! · √
n)}. Before we move to that, let us

mention the bounds for approximating the number of colors (maintaining a ck-coloring is

referred to as c-approximation). The algorithm of Kierstead and Trotter [20] can be turned

into a 2-approximation if we allow an amortized O(log n) recourse budget. The proof of

Theorem 5 can be divided into two lemmas that follow below.

◮ Theorem 5. There is an algorithm maintaining a 2-approximate coloring of an interval

graph with amortized recourse budget O(log n).

◮ Lemma 6 ([20]). There is an online algorithm which receives an interval graph G in an

online way and produces a partition of G into subgraphs P1, . . . , Pω, where each Pi is a sum

of disconnected paths and ω is a clique number of G.

◮ Lemma 7. There is an incremental algorithm which uses 2 colors on a sum of disconnected

paths P with n log2 n total changes, where n is a size of P .

Proof of Lemma 6. While the algorithm receives next vertices, it tries to satisfy the following

invariant.

(I) For any j ≤ ω each clique in P1 ∪ P2 ∪ . . . ∪ Pj , has size at most j.

(II) For any j ≤ ω and for any vertex u ∈ Pj there is a clique in P1 ∪ P2 ∪ . . . ∪ Pj−1 ∪ {u}
of size j.

When new vertex v is presented, the algorithm finds the last j for which the invariant (I) does

not hold plus one, i.e. algorithm finds j0 := max{j ∈ N : ω(P1 ∪ P2 ∪ . . . ∪ Pj−1 ∪ {v}) ≥ j}.

Than, it adds v to Pj0
, i.e., defines a new partition P +

1 , . . . , P +
ω of a new graph G+ =

G ∪ {v} in this way that P +
j0

:= Pj0 ∪ {v} and P +
i := Pi for i 6= j0. The invariant

(I) for P +
j ’s is trivially satisfied. The number j0 − 1 is too small, i.e., there is a clique

K ∈ P1 ∪ P2 ∪ . . . ∪ Pj0−1 ∪ {v} of size j0, which contains the newly presented vertex v.

Exactly this clique K ⊆ P +
1 ∪ . . . ∪ P +

j0−1 ∪ {v} is a witness for the invariant (II) for v.

Moreover, the number j0 is defined so that it will never be greater than the clique number of

the graph G.

To understand why each Pi is a sum of disconnected paths, let’s consider the interval

representation I of graph G. It means that I is a family of closed intervals in R. Moreover,

for each j ≤ ω let’s define Ij as a family of intervals corresponding to the vertices of Pj .

First, we note the following claim.

SWAT 2020

17:8 Recoloring Interval Graphs with Limited Recourse Budget

⊲ Claim 8. There is no interval in Ij which is covered by the rest of the intervals from Ij .

Proof. For the contradiction let’s assume that there are different intervals I0, I1, . . . , It ∈ Ij

such that I0 ⊆ I1 ∪ . . . ∪ It. Let’s K ⊆ P1 ∪ . . . ∪ Pj be a clique for I0 from invariant (II).

Each clique in the interval representation can be identified with some real number that

belongs to all intervals corresponding to elements from that clique. Let’s r ∈ R be such a

number corresponding to the clique K. Then r ∈ I1 ∪ . . . ∪ It and in consequence r ∈ Is for

some s ≤ t. If vertex vs corresponds to the interval Is then K ∪ {vs} ⊆ P1 ∪ . . . ∪ Pj forms a

clique of size j + 1 which contradicts the invariant (I). ⊳

The above claim directly implies the following statement.

⊲ Claim 9. Each vertex in Pj has at most two neighbours in Pj .

Proof. Again, let’s Ij be a family of interval corresponding to vertices from Pj . For the

contradiction let’s assume that v0 has three neighbours v1, v2, v3 which corresponds to the

intervals I0, I1, I2, I3. At the beginning, notice that the sum I0 ∪ I1 ∪ I2 ∪ I3 form also some

interval in R. Let’s l and r be the left and the right endpoint of I0 ∪ I1 ∪ I2 ∪ I3, respectively.

One of the intervals I1, I2, I3 does not contain any points of l, r. Without loss of generality

let us assume that this interval is I3. Then I3 ⊆ I0 ∪ I1 ∪ I2 which is contradictory to the

previous claim. ⊳

Finally, it is worth noting that interval graphs are also chordal, so they can not contain

simple cycles. So, the only possibility is that Pj is a sum of disconnected paths. ◭

Proof of Lemma 7. When new vertex v is coming, it combines two paths. If neighbours of

v have the same color then the algorithm colors vertex v on the other one. If neighbours of v

have the different colors then the algorithm recolors the shortest path. The given vertex u

was recolored when the length of the path containing u increased by at least twice. This

causes the vertex u to be recolored at most log2 n times. Which gives the total number of

recoloring equal n log2 n. ◭

In the remainder of this section we show a k-coloring algorithm with min{n, O(k ·k! ·√n)}
recourse budget. Both for the algorithm and the analysis we use the greedy algorithm for

coloring interval graphs [26]. The greedy algorithm sorts intervals by their begin coordinates.

It processes intervals in that order, and assigns the smallest available colour to the currently

processed interval. This simple algorithm was proven optimal [26]. We are now ready to

prove the main theorem of this section.

◮ Theorem 10. There is an algorithm maintaining an optimum coloring of a k-chromatic

interval graph with an amortized recourse budget of min{n, O(k · k! · √
n)}.

Proof. Note that a trivial algorithm, which recolors all intervals in each step has recourse

budget n. We will show that there also is an algorithm with amortized budget O(k · k! · √
n),

which proves the claim. This algorithm is directly implied by Lemma 11, which is proved

next. Due to this lemma n interval insertions into an n-element instance can be executed

with a total recourse budget of O(k · k! · n
√

n). The implication is as follows. Imagine we

make a total of m insertions. We break the insertion sequence into powers of 2: once we

inserted 2i intervals, we add 2i more using O(k · k! · 2i
√

2i) recolorings. Let s be such that

2s−1 < m ≤ 2s. The total number of recolorings is bounded by
∑s

i=1 O(k · k! · 2i
√

m) =

O(k · k! · √
m

∑s
i=1 2i) = O(2s+1k · k! · √

m) = O(k · k! · m
√

m). ◭

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:9

◮ Lemma 11. There is an algorithm, which, given n intervals, maintains the exact coloring

over the course of n interval insertions and recolors a total of O(k · k! · n
√

n) intervals.

Proof. We move on to presenting the algorithm, followed by the analysis. The idea is

to maintain a partition of the dynamically changing instance I into l disjoint instances

I1, I2, . . . , Il. We maintain the invariant that the size of each instance is at most 2⌈√
n⌉ + 2k,

and that the size of each instance but the last one is at least ⌈√
n⌉. This invariant guarantees

that l ∈ O(
√

n). At the beginning, the algorithm starts with n intervals, so |I| = n. Then, it

is easy to find such a partition. Let I = {[a1, b1), . . . [an, bn)} be sorted by end coordinates.

We let x1 = b⌈√
n⌉ be the first separator point. It may happen that up to k intervals end in

the same coordinate, so there are at most ⌈√
n⌉ + k intervals to the left of x1. We remove

intervals to the left and intersecting x1 from I and continue in the same manner in order

to find separating points x2 . . . xl−1. We let Ii be the intervals contained between xi−1 and

xi, and we define separator Si to be the set of all intervals intersecting xi. Note that the

separators are not necessarily disjoint, since intervals can span a long stretch in which many

smaller intervals live.

Now consider the dynamically growing instance. If at any time some instance Ii grows to

more than 2⌈√
n⌉ + 2k, we split it into instances I ′

i and I ′′
i , both of size at least ⌈√

n⌉, since

the separator takes away at most k intervals, and we possibly have to put ⌈√
n⌉ + k intervals

into I ′
i. At this point Ii ceases to exist. This ensures that our size invariant remains satisfied

at all times.

In each step, the algorithm takes a new interval Inew as input. It uses a procedure

total-recolor(i, j) as a subroutine. Procedure total-recolor(i, j) takes two numbers

i, j ∈ {1, . . . , l − 1}, i ≤ j as parameters. It is an invariant that Inew is entirely contained

in (xi−1, xj). The procedure recolors the new instance I ∪ {Inew} in the following way. It

leaves the current coloring as it is on I1, S1, I2, S2, . . . , Ii−1, Si−1. Starting with the current

coloring on Si−1, it colors Ii ∪ Si ∪ . . . ∪ Ij ∪ Sj ∪ {Inew} greedily. The greedy coloring is

consistent with the coloring of Si−1, but may not be consistent with the current coloring

on Sj . Nevertheless, we can permute the colors in order to obtain the new greedy coloring

on Sj . The procedure permutes the colors in the same way on the remaining part of the

instance, i.e., for Ij+1, Sj+1, . . . , Sl−1, Il. Procedure total-recolor(i, j) possibly recolors

the whole graph, i.e, it triggers O(n) recolorings.

Having procedure total-recolor(i, j) at hand, the algorithm distinguishes two cases.

1. Inew ∈ Ij for some Ij . In this case we try to recolor Ij ∪ {Inew} with k colors in a

way that is consistent with the current coloring on Sj−1 and Sj (see the parameterized

algorithm of Marx [22] for efficient implementation). There are two more cases now.

a. It is possible to recolor Ij ∪ {Inew} consistently with Sj−1 and Sj . In this case we

perform O(
√

n + k) recolorings.

b. It is impossible to recolor Ij ∪ {Inew} in this way. In this case we call

total-recolor(j, j).

2. Inew intersects some separation point. If xi, xi+1, . . . xj−1 are the x-coordinates of the

separation points intersected by Inew, we call total-recolor(i, j).

As for the analysis of the above algorithm, the recoloring budget claimed in Lemma 11

follows from Lemma 12 and Lemma 13 below. Observe, that the only expensive operation

we need to amortize for is total-recolor(·, ·), which performs O(n) recolorings. Due to

Lemma 12, the total number of recolorings triggerred by total-recolor(i, j) for i 6= j is O(k ·
n

√
n). Due to Lemma 13, the total number of recolorings triggered by total-recolor(i, i)

on a particular instance Ii is O(k · k! · n). Observe, that the number of instances that

SWAT 2020

17:10 Recoloring Interval Graphs with Limited Recourse Budget

ever exist is O(
√

n): the algorithm starts with n intervals, and for these initial intervals

it creates l ∈ O(
√

n) instances. Further on it creates at most O(
√

n) more instances by

splitting the existing ones. Summed over all instances that exist at some point of time this

gives O(k · k! · √
n · n) recolorings. The total number of recolorings caused by case 1 a) of

the algorithm is bounded by O(n(
√

n + k)). The number of all recolorings the algorithm

performs is hence bounded by O(k · k! · n
√

n), as claimed. ◭

◮ Lemma 12. The total number of calls to total-recolor(i, j) for any i 6= j is in O(k
√

n).

Proof. The call to total-recolor(i, j) for i 6= j is only made if Inew intersects some

separator line. There are O(
√

n) separator lines created by the algorithm, and at most k

intervals may be added to each separator. This gives the claim of the lemma. ◭

◮ Lemma 13. For every instance Ij the algorithm calls total-recolor(j, j) at most 2k · k!

times overall in step 1b).

Proof. Fix i ∈ [1, . . . , l] and consider the pair of separators Si−1 and Si. We say that Ii is

reset when procedure total-recolor(j1, j2) is called with j1 6= j2 for j1 ≤ i ≤ j2 +1. In what

follows we will prove that between two consecutive resets of Ii, procedure total-recolor(i, i)

can be called at most k! times. This will finish the proof, as any total-recolor(j1, j2) call

resetting Ii adds an interval to either Si−1 or Si or both, so there can be at most 2k such

calls. Note that non-resetting calls of total-recolor() do not alter Si−1 and do not alter

Si, so between two resets of Ii separators Si−1 and Si remain unchanged (although their

colors may change). It may happen that we split Ij , but then Ij ceases to exists and hence

is recolored no more (instead, the instances that Ij splits into are recolored). In what follows

we consider a time period between two consecutive resets of Ii. We refer to this time period

as a phase. The phase starts when an interval has been added to either Si−1 or Si or both

and lasts as long as no other interval is added to Si−1 or Si and as long as Ii is not split.

Let If
i be the instance Ii after the last insertion within the phase. In what follows

we always view Ii as a current instance, before inserting a new interval Inew. We let

Ji = Si−1 ∪ Ii ∪ Si and J f
i = Si−1 ∪ If

i ∪ Si.

For solution Sol maintained by the algorithm we define Soli−1 and Soli to be Sol

restricted to Si−1 and Si respectively. Similarly, for any optimum solution Opt for J f
i

we define its restriction to Si−1 and Si as Opti−1 and Opti. Let Greedy(J f
i) be the

optimal greedy solution to J f
i . Observe that if we permute colors of an optimal solution

for J f
i , the solution remains optimal. This leads us to define the optimal solution space

Σ = Sk ◦ Greedy(J f
i), where Sk denotes the permutation group on [k]. In other words,

Σ contains all color permutations of Greedy(J f
i). Observe that Σ is closed under taking

permutations.

Let now Sol be the solution produced by the algorithm at the beginning of the phase, i.e.,

after the reset insertion. Let Opt ∈ Σ be the optimal solution such that Opti−1 = Soli−1.

One must exist, since we can permute the colors of Greedy(J f
i) in order to match Sol on

Si−1. Let τS ∈ Sk be any permutation such that Soli = τS ◦ Opti. Observe, that if τS

can be chosen as identity permutation, total-recolor(i, i) is never called in this phase.

Hence, we may assume that τS is not the identity. So far we have Soli−1 = Opti−1 and

Soli = τS ◦ Opti.

Within the phase there are two types of events that affect the coloring maintained by the

algorithm on Si−1 and Si. Event of type A is a call to total-recolor(j, k) for k < i, which

permutes the colors on Si−1 and Si with the same permutation. Event of type B is a call

to total-recolor(i, i), which leaves the colors on Si−1 intact while permuting colors on Si.

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:11

Let us define Sol
(j) to be the solution maintained by the algorithm right after the j’th event.

For some σ, τ ∈ Sk we get Sol
(j)
i−1 = σ ◦ Sol

(j−1)
i−1 , Sol

(j)
i = σ ◦ Sol

(j−1)
i if the j’th event is

of type A and Sol
(j)
i−1 = Sol

(j−1)
i−1 , Sol

(j)
i = τ ◦ Sol

(j−1)
i if the j’th event is of type B.

Also, after the j’th event, we define σj , τj ∈ Sk to be such that Sol
(j)
i−1 = σj ◦ Soli−1

and Sol
(j)
i = τj ◦ Soli. Our goal is to obtain τj

−1 ◦ σj = τS for some j. If that holds then

total-recolor(i, i) is never called again in this phase, because then we have Sol
(j)
i−1 =

σj ◦ Soli−1 = σj ◦ Opti−1 and Sol
(j)
i = τj ◦ Soli = τj ◦ τS ◦ Opti = σj ◦ Opti. But then

there is optimal solution σj ◦ Opt that certifies that we can recolor Ji in compliance with

Sol
(j)
i−1 and Sol

(j)
i .

Now observe, that if we apply the same permutation α ∈ Sk to both Sol
j
i−1 and Sol

j
i ,

i.e., if Sol
(j+1)
i−1 = α ◦ Sol

(j)
i−1 = α ◦ σj ◦ Soli−1 and Sol

(j+1)
i = α ◦ Sol

(j)
i = α ◦ τj ◦ Soli,

then τ−1
j+1 ◦ σj+1 = (α ◦ τj)−1 ◦ α ◦ σj = τ−1

j ◦ σj , so permutation τ−1
j ◦ σj stays the same

when permuting colors on Si−1 and Si in the same way. Hence, the only way it can change

is due to total-recolor(i, i).

However, if total-recolor(i, i) is called, that means that the new interval causes that the

current coloring Sol
(j)
i−1 and Sol

(j)
i cannot be used on Si−1 and Si now, and hence it cannot

be used ever again in the future. This holds because we only add intervals, so any future

instance contains the current instance, and any coloring for the future instance is a coloring

for the current instance as well. This means that for k > j we have τ−1
k ◦ σk 6= τ−1

j ◦ σj .

For the proof of this fact assume otherwise: τ−1
j ◦ σj = τ−1

k ◦ σk = (α ◦ τj)−1 ◦ β ◦ σj . This

implies α = β and Sol
(k)
i−1 = α ◦ Sol

(j)
i−1 and Sol

(k)
i = α ◦ Sol

(j)
i . But this cannot happen

since we already know that the combined coloring Sol
(j)
i−1 and Sol

(j)
i cannot be used for

Si−1 and Si, and neither can any permutation of this coloring. But permutation σ−1
j ◦ τj

can only take k! different values until it reaches τS . This concludes the proof. ◭

4 Lower bounds for general interval graphs

In this section we provide lower bounds on the recourse budget needed in order to maintain

an optimum coloring of an interval graph. The following definition allows us to compare

different colorings locally and to formulate necessary conditions for optimum colorings.

◮ Definition 14. Let I be a set of intervals, let k ∈ N be the chromatic number of I, and

let R = [a, b) ⊂ R. The gap of a set C ⊆ I of disjoint intervals is given by gapR(C) :=

|R|−∑

I∈C |R ∩ I|. The total gap of a partition C of I into disjoint sets wrt. R is gapR(C) :=
∑

C∈C gapR(C). The total gap of I wrt. R is given by gapR(I) := k · |R| − ∑

I∈I |R ∩ I|.

The following fact provides a formal criterion for optimality of a coloring. Note that in

every proper coloring all intervals receiving the same color are disjoint.

◮ Fact 15. We have gapR(I) = gapR(C⋆), where C⋆ is a partition of I corresponding to any

optimum coloring of I.

We are now ready to construct an instance that requires many recolorings. The main

building block for the bad instance is a staircase gadget Sk that guarantees a linear number

of recolorings overall (cf. Fig. 3). We will later use multiple copies of this gadget to force

Ω(
√

n) amortized recolorings.

The gadget consists of three sets L, X, R of intervals. We start with an initial configuration

of intervals in these sets, which we assume can be colored optimally with k colors without

ever recoloring (if an algorithm needs recolorings, this only strengthens our bound). We

SWAT 2020

17:12 Recoloring Interval Graphs with Limited Recourse Budget

Figure 3 Illustration of the open (left) and closed (right) staircase gadget.

call the initial configuration open. Later, we introduce additional intervals in each of the

three sets in such a way that the chromatic number increases by exactly one, to k + 1, and

such that a significant portion of the previously colored intervals need to be recolored in

order not to exceed k + 1 colors. We refer to the final configuration of the staircase as closed.

Importantly, we ensure that both in the open and the closed configuration there is a unique

way to optimally color the intervals (apart from renaming colors). This ensures that “from

the outside” the gadget behaves like a clique of k intervals in the open configuration and a

clique of k + 1 intervals in the closed configuration.

We start by describing the open (initial) configuration (cf. Fig. 3 (left)). We set L =

{Li}k
i=1 := {[i−∆, i)}k

i=1, X = ∅, and R = {Ri}k
i=1 := {[i+ε, i+ ∆)}k

i=1, where 0 < ε < 1/k

is sufficiently small and ∆ ≥ k + 1 is sufficiently large. Observe that the open staircase

can be colored with k colors simply by coloring Li, Ri with color i, and k colors are needed

because L and R each are a clique of size k. The total gap in the interval [1, k + ε) is

gap[1,k+ε)(L ∪ R) = kε < 1. By Fact 15, no optimal solution with k colors can therefore

afford to leave a gap of size 1 or larger in any color. Since L and R each form a clique,

assigning the same color to L1 = [1 − ∆, 1) and Ri = [i + ε, i + ∆) with i ≥ 2 leads to a gap

of i + ε − 1 > 1, and it follows that L1, R1 must get the same color. Repeating this argument,

so must Li, Ri for every i ∈ {1, . . . , k}. This means that (up to permuting the colors) there

is a unique coloring of the open staircase with k colors, as intended.

To obtain the closed configuration (cf. Fig. 3 (right)), we add the interval L0 := (−∞, 1+ε)

to L, the interval Rk+1 := [k, ∞) to R, and the intervals X = {Xi}k−1
i=1 := {[i, i + 1 + ε)}k−1

i=1 .

Note that the sets of intervals of the closed staircase can be colored with k + 1 colors

and zero total gap in the interval [1, k + ε): we can simply color Li−1, Ri with color i for

i ∈ {1, . . . , k + 1} and Xi with color i + 1 for i ∈ {1, . . . , k − 1}. This means that every

coloring with k + 1 colors must have zero total gap in the interval [1, k + ε), by Fact 15.

Since every point is the endpoint of at most two intervals in L, X, R, there is a unique way

of coloring the closed staircase with k + 1 colors, as intended.

Finally, consider the bipartite graph that has the elements of L on one side and the

elements of R on the other, with an edge connecting an interval from L to an interval from

R if they do not intersect. The staircase matching induces a unique matching in this graph,

where each edge selected in the matching corresponds to a color. We call this matching the

stair matching of Sk and conclude the following lemma.

◮ Fact 16. The staircase gadget Sk has chromatic number k when open and k + 1 when

closed. In either configuration there is a unique optimum coloring (up to renaming colors),

and the stair matchings of these two colorings are perfect and disjoint.

Since the stair matchings are disjoint, when adding intervals to obtain the closed staircase

from the open one, many intervals need to be recolored.

◮ Fact 17. When transitioning from the open to the closed staircase gadget, at least k

intervals of the open staircase must be recolored to maintain an optimum coloring.

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:13

…
… …

Figure 4 Illustration of the construction in the proof of Theorem 19 after round 2. Green intervals
are (shifted) copies of Z and crossed-out intervals are passive.

We now describe a connector gadget Ck that generalizes the interface between consecutive

staircase gadgets as well as further gadgets. The connector gadget consists of an L-connector

and an R-connector, and is defined as follows. The L-connector of size k is a set of intervals

of the form {[ai, x + i)}k
i=1 with ai ≤ x, and the R-connector of size k is of the form

{[x + i, bi)}k
i=1 with bi > x + k. Here x ∈ R is an arbitrary offset. Together, the L-connector

and R-connector form the connector. Observe that for i ∈ {1, . . . , k} the intervals Li are an

R-connector, and the intervals Ri are an L-connector. The following property of connector

gadgets is obvious.

◮ Fact 18. There is a unique coloring of the connector gadget Ck with k colors (up to

renaming colors).

◮ Theorem 19. For every k ∈ N, there is an instance of online interval graph coloring with

chromatic number Θ(k) and Θ(k2) vertices that requires an amortized recourse budget of

Ω(k) to maintain an optimum solution.

Proof. We fix any number k ∈ N and any online coloring algorithm. We start by introducing

a large set of intervals offline that we allow the algorithm to color in a batch (i.e., not online

and without need to recolor), before introducing additional intervals online that each require

significant recoloring.

We first describe the offline intervals. We introduce multiple gadgets that each start with

an R-connector and end with an L-connector. In the following, each gadget (after the first)

is shifted to the right, such that it forms a connector gadget with the previous gadget. Let

Z := {[i, k + i)}k
i=1, i.e., Z is both an R- and an L-connector. We introduce k copies of Z,

each shifted as described (green intervals in Fig. 4).

Since the copies of Z form a chain of connector gadgets, by Fact 18, there is a unique way

to color these gadgets with k colors. We further introduce k shifted open staircase gadgets

and then another k shifted copies of Z. Overall, our construction so far uses nopen = 4k2

intervals, has chromatic number k, and, by Fact 16 and Fact 18, there is a unique way to

color all intervals with k colors.

We now present additional sets of intervals online in k rounds. In each round, we close

the leftmost open staircase gadget by introducing k + 1 new intervals. In each round the

new intervals of the form L0 and Rk+1 overlap all intervals outside the staircase being closed.

Thus, while the chromatic number increases by one, the effective number of available colors

in all gadgets to the right remains unchanged. We call an interval of a staircase passive if

it is part of an R-connector (resp. L-connector) and shares a color with any interval of the

form L0 (resp. Rk+1), and active otherwise. This means in particular that in each round a

single interval of every open staircase becomes passive. By Corollary 17, at least k intervals

of a staircase need to be recolored when it is being closed. Since each active interval is

part of a connector gadget outside the staircase, and since each such connector gadget and

every other staircase must be colored in a unique way (Fact 16 and Fact 18), recoloring

an active interval requires to recolor all other intervals of the same color to the left or to

the right of the staircase. Thus, in round i, at least k − i + 1 active intervals need to be

recolored, each affecting k copies of Z, such that the total number of intervals that need

SWAT 2020

17:14 Recoloring Interval Graphs with Limited Recourse Budget

to be recolored is at least (k − i + 1)k. After closing the staircase, by Fact 16, there is

again a unique way to color it. This means that we can repeat the process with the next

staircase, restricting everything to the colors that are occupied by the current gadget, and

so on. Overall, the number of intervals that need to be recolored in k rounds is at least
∑k

i=1(k − i + 1)k = k3 − k2(k + 1)/2 + k2 = Ω(k3).

Overall, we introduce k + 1 new intervals in each round, so the total number of intervals

is n = nopen + k(k + 1) = 5k2 + k. The chromatic number increases by one in every round,

hence the chromatic number of the final graph is k′ = 2k. The amortized recourse budget

the algorithm needs thus is Ω(k3/n) = Ω(k), as claimed. ◭

The next statements follow from Theorem 19 by setting k = Θ(
√

n), and by observing

that we can always add isolated vertices without affecting k.

◮ Corollary 20. Maintaining an optimum coloring of an interval graph online, requires an

amortized recourse budget of Ω(
√

n) in general (when k is not fixed).

◮ Corollary 21. Maintaining an optimum coloring of an interval graph with chromatic

number k ∈ O(
√

n) online, requires an amortized recourse budget of Ω(k) in general.

5 Trading off recourse budget with query times

Up to this point we worked in a model where we need to maintain the coloring explicitly, i.e.,

after each insertion of an interval we need to recolor every interval whose color changes. We

showed an algorithm, which achieves this by recoloring amortized O(k · k! · √
n) intervals,

and for this algorithm an efficient implementation is not obvious. In this section we give an

efficient algorithm maintaining the optimum coloring, but we relax the model. So far we

insisted on recoloring all intervals immediately. This requirement allows us to retrieve the

color of any interval in constant time, and is moreover crucial for some applications. In this

section we do not focus on maintaining an explicit coloring, but rather we design a coloring

oracle: a data structure that can be queried for the color of an interval. Our data structure

supports interval additions in O(k2 log3 n) amortized time, and it answers queries for a color

of a particular interval in O(log n) time. Between two consecutive updates it answers queries

consistently with some optimal proper coloring. We only sketch the data structure here, and

leave some details and the formal proof of the following theorem to Appendix A.

◮ Theorem 22. There is a dynamic datastructure that stores a k-colorable set of intervals I
and returns the color of any I ∈ I according to an optimum proper coloring of I in O(log n)

time. Furthermore, it needs O(k2 log3 n) amortized time to insert a new interval.

We store the intervals of the instance I in a modified interval tree [13]. That is, we

maintain a binary search tree T , for which each node v stores the x-coordinate lv ∈ R of a

vertical line and a subset Sv ⊆ I of intervals. For a node v of T , let Tv be the subtree of T

rooted at v, and let Iv contain all intervals stored in the sets Su for nodes u of Tv. We say

that an interval I is stored in Tv if Tv has a node u such that I ∈ Su, i.e., I ∈ Iv. The tree

T has the following properties.

1. If Iv = ∅ then v is a leaf of T with undefined value lv and empty set Sv.

2. Otherwise, Tv has a defined value lv ∈ R and two child nodes x and y in T , for which the

(defined) values lu of all nodes u of Tx are smaller than lv, while the (defined) values lu
of all nodes u of Ty are larger than lv. The trees Tx and Ty are called the left and right

subtree of Tv, respectively.

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:15

3. The set Sv = {I ∈ Iv | beg(I) ≤ lv ≤ end(I)} contains all intervals of Iv intersecting lv.

The left and right subtrees Tx and Ty of Tv recursively store all intervals in Ix = {I ∈
Iv | end(I) < lv} and Iy = {I ∈ Iv | beg(I) > lv}, respectively.

The sets Sv stored in all nodes v of T partition I, and an interval I ∈ I is stored in

the highest node v of T for which I contains lv. Therefore each set Sv is a separator of the

intervals Iv stored in Tv, i.e., no interval from the left subtree of Tv overlaps with an interval

from the right subtree of Tv. Furthermore, the intervals of any set Sv form a clique, as they

all intersect lv, and thus at most k intervals are stored in a node v if I is k-colorable.

For reasons that will become apparent later, at all times we will make sure that the root

r of T has x-coordinate lr = 0, and we assume w.l.o.g. that beg(I) > 0 for all I ∈ I. This

means that all intervals of I are stored in the right subtree of T . We will also make sure

that for any node v 6= r different from the root, if Sv = ∅ then v is a leaf of T . This ensures

that the number of nodes of T is linear in n = |I|.
Instead of storing the color of each interval explicitly, we associate a permutation τe ∈ Sk

with each edge e of the search tree T . Also, for each node v of T we store the intervals of the

set Sv in a fixed order, so that Sv = {I1, . . . , Ij} for j ≤ k. The color of an interval Ii ∈ Sv

is obtained by applying the permutations along the path Pv from the root r of T to v to

the index i. That is, let e1, e2, . . . , eh be the sequence of edges of Pv such that e1 is incident

to r (note that e1 connects r to the right subtree of T by our assumption that lr = 0). We

denote the composite permutation along the path Pv by σeh
= (τeh

◦ · · · ◦ τe2 ◦ τe1), and the

color of Ii ∈ Sv is σeh
(i). Thus the color of any interval can be retrieved in time linear in

the height of the tree, by first finding its index i in the node storing it and then following

the search path back to the root to compute the image of i in the composite permutation

defining its color. It is also clear that there exist permutations for the edges that imply a

proper k-coloring of the intervals if I is k-colorable. In fact, only the permutation τeh
of the

last edge eh on Pv for some particular node v needs to be picked in relation to all previous

permutations along Pv, so that the indices of Sv are permuted according to a fixed proper

k-coloring.

To obtain logarithmic query times, we make sure that the tree T is α-balanced [13] at

all times. That is, let nv = |Iv| be the number of intervals stored in subtree Tv rooted at v,

and let α be a fixed constant such that 1/2 < α < 1. For any subtree Tv 6= T (i.e., v 6= r)

we maintain the property that max{n−
v , n+

v } ≤ ⌈αnv⌉, where n−
v and n+

v are the number of

intervals stored in the left and right subtrees of Tv, respectively. As an easy consequence we

get that the height of T is log1/α(n) + O(1) = O(log n). To maintain this invariant, we store

nv in node v.

5.1 Updates

We now describe how to update the search tree T and the permutations on its edges, so that

the colors induced by the permutations form a proper k-coloring and the tree is α-balanced

at all times. When a new interval Inew arrives, it is stored in the interval tree T in the usual

way [13]. That is, we follow the search path for Inew starting from the root. As soon as we

encounter a node v in T such that Inew belongs to the set Sv (because lv ∈ Inew), we add

Inew to Sv. The index i of the new interval Inew in Sv is the highest available, i.e., i = |Sv|
when Inew ∈ Sv. Additionally, we increase the variables nu along the nodes u of the path Pv

from v to the root of T by one each, to count the new interval Inew in the subtrees Tu. If

no node v for which lv ∈ Inew is found, let w be the leaf of T at the end of the search path

Pw for Inew. We set lw = beg(Inew), and add Inew as the only interval in the set Sw. We

also create two new leaves and set them as the new left and right subtrees of w. Again, we

increase the variables nu along the nodes u of Pw.

SWAT 2020

17:16 Recoloring Interval Graphs with Limited Recourse Budget

Figure 5 The path Pu with nodes v0 to v7 from the root r of the search tree T to the node u.
The bars represent intervals, which are stored in the highest node w for which they contain lw (black
dashed lines). The subtree Tu is shaded in grey and stores Iu (green intervals). The leftmost and
rightmost points of these intervals are beg

u
and endu (blue and red dotted lines), which define the

sets Lu and Ru (including the light blue and light red intervals, respectively). Some intervals can
be in the intersection of Lu and Ru (purple intervals). The remaining intervals are either to the left
of beg

u
or to the right of endu (dark blue and dark red intervals, respectively). In this example,

L = {v2v3, v6v7} and R = {v1v2, v4v5}.

When adding Inew the tree T may become unbalanced, i.e., there may be a node u 6= r of

T for which max{n−
u , n+

u } > ⌈αnu⌉. Note that u must be on the path Pv from the root r to

the node v into which Inew was added. To make T α-balanced again, we identify the closest

such node u to the root. We then rebalance Tu by first retrieving all intervals Iu stored in

Tu, and then sorting all the endpoints beg(I) and end(I) of the intervals I ∈ Iu. Next a

new balanced tree is built to take the place of Tu, using the standard recursive procedure

to create interval trees. That is, it takes as input a set of intervals I ′ (initially set to Iu)

and their sorted endpoints. The procedure creates a new root vertex w of the current tree,

and sets lw to the median of all endpoints of I ′. It then identifies the set Sw containing all

intervals of I ′ that intersect lw. The left and right subtrees are then recursively built for

the subsets of I ′ of all intervals to the left of lw and to the right of lw, respectively. In case

I ′ = ∅, a leaf is created and the recursion terminates. Note that the number of endpoints of

value less than the median is at most |I ′|, as there are 2|I ′| endpoints. Since each interval

has two endpoints, the left subtree will contain at most |I ′|/2 intervals, and analogously

this is also true for the right subtree. Therefore this results in a new tree Tu for which

max{n−
w , n+

w} ≤ nw/2 for every node w of Tu, i.e., this tree is perfectly balanced.

To update the permutations we need some definitions (cf. Figure 5). For any node u

of T , let begu = min{beg(I) | I ∈ Iu} be the left-most point of any interval stored in Tu,

and accordingly let endu = max{end(I) | I ∈ Iu} be the right-most point. We then define

the two sets Lu = {I ∈ I | beg(I) ≤ begu < end(I)} \ Iu and Ru = {I ∈ I | beg(I) ≤
endu < end(I)} \ Iu of intervals not stored in Tu but containing begu or endu, respectively.

Note that each interval in Lu or Ru must be stored in some internal node w /∈ {r, u} of Pu

(meaning that it is contained in Sw), as Sw is non-empty and separates Iu from the intervals

stored in the (left or right) subtree of Tw not containing u. Let also L and R be the set of

edges of Pu that cross the boundary defined by endu in the sense that xy ∈ L if x is the

parent of y and lx ≥ endu > ly, and xy ∈ R if x is the parent of y and lx < endu ≤ ly.

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:17

The algorithm performs the following steps after Inew was added to the set Sv.

1. If there is a node w 6= r on Pv for which max{n−
w , n+

w} > ⌈αnw⌉, then let w be the closest

such node to the root r. Rebuild the subtree Tw to obtain a new perfectly balanced

subtree Tw. In this case set u = w in the following, while otherwise u = v.

2. First retrieve begu and endu, and then Lu and Ru together with all colors of intervals in

Lu and Ru using the permutations stored on the edges of Pu.

3. Starting with the current coloring of Lu, use the greedy algorithm to color Iu ∪ Ru with

at most k colors. As the intervals in Ru form a clique (they all contain endu), there is a

permutation µ ∈ Sk mapping the old colors of Ru to its new colors.

4. The permutations stored on edges e of Pu and Tu are updated to encode the new colors

for the intervals in Iu ∪ Ru as follows. Let σe and σ′
e be the composite permutations

along the path from the root to edge e before and after the update, respectively.

a. For any edge e of Pu that is neither in L nor in R, the permutation τe remains

unchanged.

b. For any e ∈ L the permutation τe is chosen such that σ′
e = σe.

c. For any e ∈ R the permutation τe is chosen such that σ′
e = σe ◦µ for the permutation µ

of step 3.

d. Permutations τe for edges e of Tu are simply chosen so that the σe induce the new

colors of Iu.

The proof of correctness and runtime analysis of this data structure can be found in

Appendix A.

References

1 Patrick Baier, Bartłomiej Bosek, and Piotr Micek. On-line chain partitioning of up-growing
interval orders. Order, 24(1):1–13, 2007. doi:10.1007/s11083-006-9050-0.

2 Luis Barba, Jean Cardinal, Matias Korman, Stefan Langerman, André van Renssen, Marcel
Roeloffzen, and Sander Verdonschot. Dynamic graph coloring. In Algorithms and data

structures, volume 10389 of Lecture Notes in Comput. Sci., pages 97–108. Springer, Cham,
2017. doi:10.1007/978-3-319-62127-2_9.

3 Aaron Bernstein, Jacob Holm, and Eva Rotenberg. Online bipartite matching with amortized
O(log2 n) replacements. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 947–959. SIAM, Philadelphia, PA, 2018. doi:10.1137/1.

9781611975031.61.

4 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Proceedings of the Twenty-Ninth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 1–20. SIAM, Philadelphia, PA, 2018. doi:

10.1137/1.9781611975031.1.

5 Bartłomiej Bosek, Stefan Felsner, Kamil Kloch, Tomasz Krawczyk, Grzegorz Matecki, and
Piotr Micek. On-line chain partitions of orders: a survey. Order, 29(1):49–73, 2012. doi:

10.1007/s11083-011-9197-1.

6 Bartłomiej Bosek, H. A. Kierstead, Tomasz Krawczyk, Grzegorz Matecki, and Matthew E.
Smith. An easy subexponential bound for online chain partitioning. Electron. J. Combin.,
25(2):Paper No. 2.28, 23, 2018. doi:10.37236/7231.

7 Bartłomiej Bosek and Tomasz Krawczyk. A subexponential upper bound for the on-line chain
partitioning problem. Combinatorica, 35(1):1–38, 2015. doi:10.1007/s00493-014-2908-7.

8 Bartłomiej Bosek and Tomasz Krawczyk. On-line partitioning of width w posets into
wO(log log w) chains. CoRR, arXiv:1810.00270, 2018. arXiv:1810.00270.

SWAT 2020

17:18 Recoloring Interval Graphs with Limited Recourse Budget

9 Bartłomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. Online bipartite
matching in offline time. In 55th Annual IEEE Symposium on Foundations of Computer

Science—FOCS 2014, pages 384–393. IEEE Computer Soc., Los Alamitos, CA, 2014. doi:

10.1109/FOCS.2014.48.

10 Bartłomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych-Pawlewicz. Shortest
augmenting paths for online matchings on trees. Theory Comput. Syst., 62(2):337–348, 2018.
doi:10.1007/s00224-017-9838-x.

11 Bartłomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych-Pawlewicz. A tight
bound for shortest augmenting paths on trees. In LATIN 2018: Theoretical informatics,
volume 10807 of Lecture Notes in Comput. Sci., pages 201–216. Springer, Cham, 2018. doi:

10.1007/978-3-319-77404-6_1.

12 Marek Chrobak and Maciej Ślusarek. On some packing problem related to dynamic storage
allocation. RAIRO Inform. Théor. Appl., 22(4):487–499, 1988.

13 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to algorithms. MIT Press, Cambridge, MA, third edition, 2009.

14 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to Adwords. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 982–991. ACM, New York, 2008.

15 Magnús M. Halldórsson and Christian Konrad. Improved distributed algorithms for coloring
interval graphs with application to multicoloring trees. In Structural information and commu-

nication complexity, volume 10641 of Lecture Notes in Comput. Sci., pages 247–262. Springer,
Cham, 2017. doi:10.1007/978-3-319-72050-0_15.

16 Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem. SIAM J. Discrete

Math., 4(3):369–384, 1991. doi:10.1137/0404033.

17 Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for MaxClique,
chromatic number and Min-3Lin-Deletion. In Automata, languages and programming. Part

I, volume 4051 of Lecture Notes in Comput. Sci., pages 226–237. Springer, Berlin, 2006.
doi:10.1007/11786986_21.

18 Henry A. Kierstead. An effective version of Dilworth’s theorem. Trans. Amer. Math. Soc.,
268(1):63–77, 1981. doi:10.2307/1998337.

19 Henry A. Kierstead. Recursive ordered sets. In Combinatorics and ordered sets (Arcata, Calif.,

1985), volume 57 of Contemp. Math., pages 75–102. Amer. Math. Soc., Providence, RI, 1986.
doi:10.1090/conm/057/856233.

20 Henry A. Kierstead and William T. Trotter, Jr. An extremal problem in recursive combinatorics.
Congr. Numer., 33:143–153, 1981.

21 Jakub Łącki, Jakub Oćwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych. The power
of dynamic distance oracles: efficient dynamic algorithms for the Steiner tree. In STOC’15—

Proceedings of the 2015 ACM Symposium on Theory of Computing, pages 11–20. ACM, New
York, 2015.

22 Dániel Marx. Parameterized coloring problems on chordal graphs. Theoret. Comput. Sci.,
351(3):407–424, 2006. doi:10.1016/j.tcs.2005.10.008.

23 Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse
for online MST and TSP. In Automata, languages, and programming. Part I, volume 7391
of Lecture Notes in Comput. Sci., pages 689–700. Springer, Heidelberg, 2012. doi:10.1007/

978-3-642-31594-7_58.

24 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. AdWords and generalized
online matching. J. ACM, 54(5):Art. 22, 19, 2007. doi:10.1145/1284320.1284321.

25 Cara Monical and Forrest Stonedahl. Static vs. dynamic populations in genetic algorithms
for coloring a dynamic graph. In Proceedings of the 2014 Annual Conference on Genetic and

Evolutionary Computation, GECCO ’14, pages 469–476, New York, NY, USA, 2014. ACM.
doi:10.1145/2576768.2598233.

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:19

26 Stephan Olariu. An optimal greedy heuristic to color interval graphs. Inform. Process. Lett.,
37(1):21–25, 1991. doi:10.1016/0020-0190(91)90245-D.

27 Carlos A. S. Oliveira and Panos M. Pardalos. A survey of combinatorial optimization problems
in multicast routing. Comput. Oper. Res., 32(8):1953–1981, 2005. doi:10.1016/j.cor.2003.

12.007.
28 Linda Ouerfelli and Hend Bouziri. Greedy algorithms for dynamic graph coloring. In 2011

International Conference on Communications, Computing and Control Applications, CCCA

2011, pages 1–5, 2011. doi:10.1109/CCCA.2011.6031437.
29 Jean-Jacques Pansiot and Dominique Grad. On routes and multicast trees in the internet.

SIGCOMM Comput. Commun. Rev., 28(1):41–50, 1998. doi:10.1145/280549.280555.
30 Davy Preuveneers and Yolande Berbers. ACODYGRA: An agent algorithm for coloring

dynamic graphs. In 6th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, pages 381–390, 2004. URL: https://lirias.kuleuven.be/1654548.
31 Fred S. Roberts. Indifference graphs. In Proof Techniques in Graph Theory (Proc. Second

Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968), pages 139–146. Academic Press,
New York, 1969.

32 Scott Sallinen, Keita Iwabuchi, Suraj Poudel, Maya Gokhale, Matei Ripeanu, and Roger
Pearce. Graph colouring as a challenge problem for dynamic graph processing on distributed
systems. In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’16, pages 30:1–30:12, Piscataway, NJ, USA, 2016. IEEE
Press. URL: http://dl.acm.org/citation.cfm?id=3014904.3014945.

33 Shay Solomon and Nicole Wein. Improved dynamic graph coloring. In 26th European

Symposium on Algorithms, volume 112 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No.
72, 16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.

34 Mario Valencia-Pabon. Revisiting Tucker’s algorithm to color circular arc graphs. SIAM J.

Comput., 32(4):1067–1072, 2003. doi:10.1137/S0097539700382157.
35 Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. Effective and efficient

dynamic graph coloring. Proc. VLDB Endow., 11(3):338–351, 2017. doi:10.14778/3157794.

3157802.
36 David Zuckerman. Linear degree extractors and the inapproximability of max clique and

chromatic number. In STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory

of Computing, pages 681–690. ACM, New York, 2006. doi:10.1145/1132516.1132612.

A Correctness and runtime of the balanced interval tree

Recall that the interval tree T has the following properties.

1. If Iv = ∅ then v is a leaf of T with undefined value lv and empty set Sv.

2. Otherwise, Tv has a defined value lv ∈ R and two child nodes x and y in T , for which the

(defined) values lu of all nodes u of Tx are smaller than lv, while the (defined) values lu
of all nodes u of Ty are larger than lv. The trees Tx and Ty are called the left and right

subtree of Tv, respectively.

3. The set Sv = {I ∈ Iv | beg(I) ≤ lv ≤ end(I)} contains all intervals of Iv intersecting lv.

The left and right subtrees Tx and Ty of Tv recursively store all intervals in Ix = {I ∈
Iv | end(I) < lv} and Iy = {I ∈ Iv | beg(I) > lv}, respectively.

To insert a new interval Inew, we follow the search path for Inew starting from the root. As

soon as we encounter a node v in T such that Inew belongs to the set Sv (because lv ∈ Inew),

we add Inew to Sv. The index i of the new interval Inew in Sv is the highest available, i.e.,

i = |Sv| when Inew ∈ Sv. Additionally, we increase the variables nu along the nodes u of the

path Pv from v to the root of T by one each, to count the new interval Inew in the subtrees

Tu. If no node v for which lv ∈ Inew is found, let w be the leaf of T at the end of the search

SWAT 2020

17:20 Recoloring Interval Graphs with Limited Recourse Budget

path Pw for Inew. We set lw = beg(Inew), and add Inew as the only interval in the set Sw.

We also create two new leaves and set them as the new left and right subtrees of w. Again,

we increase the variables nu along the nodes u of Pw.

In order to rebalance a subtree Tu rooted at a node u we use the following standard

procedure. It takes as input a set of intervals I ′ (initially set to Iu) and their sorted endpoints.

The procedure creates a new root vertex w of the current tree, and sets lw to the median of

all endpoints of I ′. It then identifies the set Sw containing all intervals of I ′ that intersect

lw. The left and right subtrees are then recursively built for the subsets of I ′ of all intervals

to the left of lw and to the right of lw, respectively. In case I ′ = ∅, a leaf is created and the

recursion terminates. Note that the number of endpoints of value less than the median is at

most |I ′|, as there are 2|I ′| endpoints. Since each interval has two endpoints, the left subtree

will contain at most |I ′|/2 intervals, and analogously this is also true for the right subtree.

Therefore this results in a new tree Tu for which max{n−
w , n+

w} ≤ nw/2 for every node w of

Tu, i.e., this tree is perfectly balanced.

We will now prove the correctness of the algorithm, and later turn to analyzing its

amortized runtime.

◮ Lemma 23. The algorithm maintains an α-balanced interval tree T for I for which the

permutations stored on the edges induce a proper k-coloring of I, if k is the chromatic number

of I.

Proof. That the algorithm maintains an α-balanced tree is clear from step 1 and the

procedure to rebalance subtrees. That it is an interval tree follows from the fact that adding

Inew to the first node along the search path for Inew of T will store it in the highest node v

of T for which Inew contains lv, as required. Furthermore, this property is also maintained

when rebalancing a subtree Tw. As no interval will ever be added to the set Sr of the root r

(assuming beg(I) > 0 for all I ∈ I) and since Tr = T will never be considered for rebalancing,

we maintain the invariant that lr = 0 and all of I is stored in the right subtree of T . Finally,

when adding a new interval to a node or rebalancing a subtree, any node v with Sv = ∅ will

be a leaf of T , except for the root.

To prove that the coloring induced by the permutations of T ’s edges is a proper k-coloring,

we proceed by induction. The base case is when the tree does not store any intervals,

which is trivial. Now consider one step of the algorithm in which some interval Inew is

added to T , and let u be the node operated on during the execution, i.e., u = w if w is

rebalanced and then recolored, or u = v if no subtree needs to be rebalanced and Inew is

added to Sv. The main observation is that Lu and Ru form separators. More concretely,

let L−
u = {I ∈ I | end(I) < begu} and R+

u = {I ∈ I | beg(I) > endu}, and note that I is

partitioned into L−
u , Iu, R+

u , and Lu ∪ Ru (Lu and Ru may share some intervals). For any

I ∈ Iu ∪ (Ru \ Lu) ∪ R+
u we have begu ≤ beg(I), while for any I ∈ Iu ∪ (Lu \ Ru) ∪ L−

u

we have endu ≥ end(I). This means that Lu separates L−
u from Iu ∪ (Ru \ Lu) ∪ R+

u , and

similarly Ru separates R+
u from Iu ∪ (Lu \ Ru) ∪ L−

u . Thus a k-coloring of L−
u ∪ Lu and a

k-colouring of Lu ∪ Iu ∪ Ru together form a k-coloring of L−
u ∪ Lu ∪ Iu ∪ Ru, if the two given

colorings agree on the colors of the separator Lu. Furthermore, a k-coloring of Ru ∪ R+
u

together with a k-coloring of L−
u ∪ Lu ∪ Iu ∪ Ru forms a k-coloring of I if the two given

colorings agree on the colors of Ru. Hence if we separately prove that the permutations

induce a proper k-coloring for each of the three sets L−
u ∪ Lu, Lu ∪ Iu ∪ Ru, and Ru ∪ R+

u ,

then I is properly k-colored.

Let I be any interval from L−
u ∪ Lu, w be the node of T storing I, and e be the last edge

of Pw, i.e., which is farthest from the root r of T . If I ∈ L−
u , then no edge of Pw can be

from Tu, by the above observation that Lu separates L−
u from Iu. The same is true for Pw if

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:21

I ∈ Lu, since Lu contains no interval from Iu by definition. In case no edge of Pw belongs to

L or R, according to step 4 every edge f of Pw stores the same permutation τf before and

after Inew was added. This implies σ′
e = σe for the respective composite permutations σ′

e

and σe along Pw before and after the update. Otherwise, let xy be the farthest edge of Pw

from the root r that belongs to L ∪ R, where x is the parent of y. If xy ∈ L then σ′
xy = σxy

by step 4, while τf is unchanged on any edge f of Pw that is farther than y from the root.

Thus if πyw is the composite permutation along Pw from y to w (with πyw being the identity

permutation in the trivial case when y = w) we obtain σ′
e = πyw ◦ σ′

xy = πyw ◦ σxy = σe. For

the last case xy ∈ R, note that since T is a search tree, it must be that lz ≥ endu for any

node z after y on the search path Pw: otherwise some edge after y on Pw would cross the

boundary endu, i.e., it would be in L, contradicting the fact that xy is the last edge of Pw

that is in L ∪ R. Hence for z = w we obtain end(I) ≥ lw ≥ endu. But as I ∈ Lu ∪ L−
u we

also get beg(I) ≤ begu ≤ endu and so I ∈ Lu ∩ Ru. Therefore the permutation µ of step 3

maps the color of I to itself, and if I is the ith interval of Sw, by our choice of τxy in step 4

we get σ′
e(i) = (πyw ◦ σ′

xy)(i) = (πyw ◦ σxy ◦ µ)(i) = (σe ◦ µ)(i) = σe(i). In conclusion, every

interval of Lu ∪ L−
u has the same color before and after inserting Inew, and thus Lu ∪ L−

u is

properly k-colored by induction.

Next consider an interval I from Lu ∪ Iu ∪ Ru. We already know that if I ∈ Lu then it

keeps its color from before the update, i.e., the permutations on T ’s edges induce the same

color of I that the greedy algorithm assigns to it. By step 4, any interval of Iu (including

Inew) also obtains the colors assigned to it by the greedy algorithm. If I ∈ Ru \ Lu then

beg(I) > begu and I /∈ Iu. Thus the node w of T storing I is not in Tu. Furthermore,

following the search path Pw from the root r must end in a node w for which lw > endu,

if w is not in Tu and lw ≥ beg(I) > begu. As a consequence, Pw has some edge of R,

since lr = 0 and thus following the search path Pw there must be some edge of Pw that

crosses endu in order to reach w. Furthermore, if xy is the edge of Pw that lies in R and

is farthest from the root, where x is the parent of y, then no edge of Pw between y and

w can belong to L, as such an edge would cross over to the left of endu but lw > endu.

Hence by step 4 all edges f of Pw between y and w maintain their permutations τf during

the update. Let e be the last edge of Pw and let πyw denote the composite permutation

along Pw from y to w, which is the identity permutation if y = w. By the choice of τxy in

step 4, we have σ′
e = πyw ◦ σ′

xy = πyw ◦ σxy ◦ µ = σe ◦ µ. Thus the colors of all intervals of

Ru \ Lu are permuted according to µ, which by definition of µ in step 3 then means that

all of Lu ∪ Iu ∪ Ru is colored according to the greedy algorithm. This implies a proper

k-coloring of this set, due to the correctness of the greedy algorithm.

For the last set Ru ∪ R+
u we already know that any interval I from Ru is colored

according to the permutation σe ◦ µ, if e is the last edge of the path Pw to the node w

storing I (we argued this separately for I ∈ Ru \ Lu and I ∈ Ru ∩ Lu above). This is also

true for any I ∈ R+
u , since the premise is the same as for intervals from Ru \ Lu: we have

beg(I) > endu ≥ begu and I /∈ Iu as Ru separates Iu from R+
u . Therefore the colors of

intervals in Ru ∪ R+
u are permuted by µ relative to the colors induced by the permutations

of the edges of T before the update. Hence Ru ∪ R+
u is properly k-colored by induction,

which concludes the proof. ◭

In order to bound the amortized runtime of one step when adding an interval Inew to the

search tree T , we first determine the actual runtime.

◮ Lemma 24. Let u be the node of T for which the update algorithm is run, let pu be the

number of nodes on the path Pu from the root of T to u, and let tu be the number of nodes

of the subtree Tu of T rooted at u. Then the update algorithm takes O(k(tu + pu) log n) time.

SWAT 2020

17:22 Recoloring Interval Graphs with Limited Recourse Budget

Proof. Finding the node v in which to store Inew and a node w on Pv for which Tw needs

to be rebalanced is linear in the height of T , and can thus be done in O(log n) time as T

is α-balanced. If nw = |Iw| denotes the number of intervals stored in Tw, it is known that

rebalancing Tw can be done in O(nw log nw) time [13] for step 1. Next we set u = w or u = v

depending on whether some tree was rebalanced. As |Sx| ≤ k for every node x of T , we have

nu ≤ ktu, and the time to rebalance can be bounded by O(ktu log n).

Retrieving begu and endu in step 2 needs linear time in the height of the tree Tu, i.e.,

it can be done in O(log n) time. If the number of nodes of Pu is denoted by pu then the

number of intervals stored in nodes of Pu is at most kpu, by the observation that each set

stored in a node forms a clique in a k-colorable graph. Thus retrieving Lu and Ru together

with their colors takes O(kpu) time if traversing Pu bottom up towards the root and in each

step computing the composite permutation σe for each edge e of Pu from the permutation

σe′ of the previous edge e′.
For step 3, also the set Iu needs to be retrieved, which can be done in O(nu) time

given u. The runtime of the greedy algorithm [26] to color Iu ∪ Ru given the colors of Lu is

O((nu + k) log(nu + k)) as both Lu and Ru form a clique in a k-colorable graph. Finding

the permutation µ takes O(k) time. As nu ≤ ktu, the time spent for step 3 can be bounded

by O(k(tu + pu) log n).

To update the permutations on edges e of Pu and Tu in step 4, the algorithm can

traverse Pu and Tu bottom up towards the root of T in order to first compute the composite

permutations σe. Then it can traverse Pu and Tu top down from the root in order to compute

σ′
e and τe given σ′

f of the parent edge f of e, as τe is uniquely defined by σ′
f in all four cases

(a) to (d). Thus this takes O(k(tu + pu)) time, which concludes the proof. ◭

To obtain the amortized runtime we give a proof using the potential function method [13].

Proof of Theorem 22. As for Lemma 24, let tu be the number of nodes in Tu and pu be the

number of nodes of Pu. Given a potential function Φ, the amortized runtime is given by the

sum of the actual runtime per update, which is O(k(tu + pu) log n) by Lemma 24, and ∆Φ,

which is the difference between the potential after and before adding an interval Inew to T .

To define the potential, let h = O(log n) be the maximum height of the α-balanced tree

T , and for any node u let mu = max{n−
u , n+

u }, su = |Su|, and au =
∑

w∈V (Pu) sw be the

number of intervals stored in nodes of Pu. Then define

Γ(u) = max

{

mu − nu/2

α − 1/2
, 0

}

, β = 4k2h + 2k,

Λ(u) = 2ksu · (kpu − au), Φ(u) = β · Γ(u) + Λ(u).

Note that each node of Pu stores at most k intervals so that au ≤ kpu and thus Λ(u) ≥ 0.

Hence Φ(u) ≥ 0 and we can define a potential function Φ = C log n · ∑

u∈V (T) Φ(u), where C

is the constant hidden in the O-notation of the actual runtime according to Lemma 24. Note

that the change ∆Φ is only influenced by the addition of the new interval Inew into node v,

and the rebuilding of a subtree Tw in step 1 of the algorithm. That is, none of the steps 2

to 4 change any of the terms of Φ.

To bound the amortized runtime, we distinguish the cases when some subtree Tw is

rebalanced and when not. For the former case, let us begin by determining ∆Γ, i.e., the

change in
∑

u∈V (T) Γ(u) during an update. After Inew is inserted into v we have mw > ⌈αnw⌉
at the node w before Tw is being rebuilt in step 1. This means that before inserting Inew we

had mw ≥ ⌈αnw⌉ ≥ αnw, and thus Γ(w) ≥ nw. After rebuilding Tw it is perfectly balanced

and we have mx ≤ nx/2 for every node x of Tw, so that now Γ(x) = 0. In particular,

B. Bosek, Y. Disser, A. E. Feldmann, J. Pawlewicz, and A. Zych-Pawlewicz 17:23

during the update, Γ(w) decreased from at least nw to 0. Note that compared to before the

update, Tw may contain a different set of nodes after it is rebuilt. Nevertheless, the sum
∑

x∈V (Tw) Γ(x) will decrease during the update, as afterwards Γ(x) = 0 for every node x of

Tw. In the remaining tree T the value Γ(u) can only increase by at most 1 for nodes u along

the path Pw. Hence we get that ∆Γ ≤ pw − nw.

We now determine ∆Λ, i.e., the change in
∑

u∈V (T) Λ(u) during an update, when a tree

Tw is rebuilt in step 1. Note that Λ(u) does not change for any node u of T that is not

contained in Tw. As observed above, compared to before, Tw may contain a different set of

nodes after it is rebuilt. However, the set of intervals Iw stored in Tw remains the same. We

therefore consider the contribution of each interval in Sx towards Λ(x) for any node x of

Tw, before and after the update. Let us define Λ′(u) = 2k(kpu − au) for every node u, so

that the contribution of every interval I ∈ Su to Λ(u) is Λ′(u). For any node x of Tw, by

definition of ax and px we obtain

Λ′(x) =
∑

y∈V (Px)

2k(k − sy) = Λ′(w′) +
∑

y∈V (Qx)

2k(k − sy),

where Qx ⊆ Pw is the path from x to w and w′ is the parent of w (which exists since w 6= r).

We may bound Λ′(x) from below by Λ′(w′), and from above by Λ′(w′) + 2k2px. As Λ′(w′) is

unchanged during the update, the contribution of each interval I ∈ Iw different from Inew

changes by at most 2k2px, where x is the node of Tw storing I after the update. As Inew

was not present in Tw before, its contribution adds Λ′(w′) + 2k2px for the node x storing

Inew after Tw is rebuilt. We may bound px by the height h of T after the update for any

node x, and Λ′(w′) is at most 2k2h. Thus we get ∆Λ ≤ nw · 2k2h + Λ′(w′) ≤ 2k2h(nw + 1),

where nw also counts Inew in Iw.

Since β = 4k2h + 2k and nw ≥ 1, as a consequence of the above we obtain

∆Φ = C(β∆Γ + ∆Λ) log n ≤ C
(

β(pw − nw) + 2k2h(nw + 1)
)

log n

≤ C
(

βpw − (4k2h + 2k)nw + 4k2hnw

)

log n ≤ C (βpw − 2knw) log n.

We have that tw ≤ 2nw, since we maintain the invariant that for every node u except the

root of T , if Su = ∅ then u is a leaf of the complete binary tree T . Hence the actual runtime

according to Lemma 24 can be upper bounded by Ck(2nw + pw) log n, which means that the

amortized runtime is C(β + k)pw log n = O(k2 log3 n) in case a subtree Tw is rebalanced in

step 1, since β = O(k2 log n) and pw ≤ h = O(log n).

We now turn to the case when no subtree is rebalanced in step 1 and the only change

of Φ is due to Inew being added to a node v of T . Note that Γ(u) only changes along the

nodes u of path Pv, where mu may increase by 1. Thus ∆Γ ≤ pv

α−1/2 . To bound ∆Λ we

consider two cases: either v was an existing internal node of T , or v was a leaf and is then

converted into an internal node. In the first case, au of every node u of Tv increases by 1

due to the new interval Inew stored in the ancestor v of u, and so Λ(u) decreases by 2ksu.

At the same time, Λ(u) is unchanged for any node u not in Tv, and we get ∆Λ ≤ −2knv.

Hence in this case ∆Φ ≤ C
(

βpv

α−1/2 − 2knv

)

log n. As we have seen the actual runtime

can be upper bounded by Ck(2nv + pv) log n, and thus the amortized runtime becomes

Cpv

(

β
α−1/2 + k

)

log n = O(k2 log3 n).

Finally, if Inew is added to a leaf v of T , then v is converted into an internal node by

adding two leaves to v. For any leaf x, Λ(x) = 0 as sx = 0, and thus these new nodes do

not contribute to ∆Λ. However v was formerly a leaf and now contains Inew, so that its

contribution to ∆Λ is 2k(kpv − av) ≤ 2k2pv. Hence we get ∆Φ ≤ C
(

βpv

α−1/2 + 2k2pv

)

log n =

O(k2 log3 n). The subtree Tv only stores Inew so that nv = 1 and the actual runtime is

Ck(2nv + pv) log n = O(k log2 n). Thus in this case we also obtain an amortized runtime of

O(k2 log3 n), which concludes the proof. ◭

SWAT 2020

	Introduction
	Related work

	Unit intervals
	Low recourse budget for general interval graphs
	Lower bounds for general interval graphs
	Trading off recourse budget with query times
	Updates

	Correctness and runtime of the balanced interval tree

