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Abstract

We develop an FPT algorithm and a compression for the Weighted Edge Clique Partition (WECP)

problem, where a graph with n vertices and integer edge weights is given together with an integer

k, and the aim is to find k cliques, such that every edge appears in exactly as many cliques as its

weight. The problem has been previously only studied in the unweighted version called Edge Clique

Partition (ECP), where the edges need to be partitioned into k cliques. It was shown that ECP

admits a kernel with k2 vertices [Mujuni and Rosamond, 2008], but this kernel does not extend to

WECP. The previously fastest algorithm known for ECP has a runtime of 2O(k2)nO(1) [Issac, 2019].

For WECP we develop a compression (to a slightly more general problem) with 4k vertices, and an

algorithm with runtime 2O(k3/2w1/2 log(k/w))nO(1), where w is the maximum edge weight. The latter

in particular improves the runtime for ECP to 2O(k3/2 log k)nO(1).
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1 Introduction

Problems that aim to cover a graph by a small number of cliques have a long history and

have been studied extensively in the past (see e.g. [2, 3, 5, 10, 16, 18, 7, 8]). For these

types of problems we are given a graph G and an integer k, and the tasks include to either

cover or partition the edges or the vertices of G using at most k cliques or bicliques (i.e.,

complete bipartite graphs). Plenty of applications exist in both theory [22] and practice,

e.g., in computational biology [1, 6], compiler optimization [21], language theory [11], and

database tiling [9]. In this paper, we study the variant called the Edge Clique Partition

(ECP) problem, defined as follows.

ECP (Edge Clique Partition)
Input: a graph G on n vertices, a positive integer k

Output: a partition of the edges of G into k cliques (if it exists, otherwise output NO)

ECP is known to be NP-hard even in K4-free graphs and chordal graphs [16], and

together with [14], the reductions of [16] imply APX-hardness. To circumvent these hardness

results, we focus on parameterized algorithms (see [4] for the basics). More specifically, we

focus on FPT algorithms for the natural parameter k, i.e., the number of cliques. Fleischer

et al. [7] show that on planar graphs, ECP can be solved in O∗(296
√

k) time1. They also

1 The O∗-notation hides polynomial factors in input size.
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17:2 Fixed-Parameter Tractability of the Weighted Edge Clique Partition Problem

generalized the result to d-degenerate graphs, giving an algorithm with O∗(2dk) runtime,

which has a linear exponent for bounded-degeneracy graphs. For K4-free graphs, Mujuni and

Rosamond [18] gave an algorithm with a runtime2 of O∗((k+3
2 )k) = O∗(2O(k log k)), which

was improved by Fleischer et al. [7] to O∗((
√

k/3)k) and even O∗((64c)k) for some large

(unspecified) constant c. Hence, also for these graphs an exponent linear in k is possible,

albeit with a very large base. On the other hand, the algorithm of Mujuni and Rosamond [18]

for K4-free graphs has been empirically shown [24] to be rather efficient, even though it

“only” comes with a near-linear exponent of O(k log k).

Mujuni and Rosamond [18] showed that ECP is FPT in k for general graphs, by giving a

kernel (see [4] for definition) of size k2. However, no algorithms with (near-)linear dependence

on k in the exponent are known for ECP. The fastest algorithm so far is given by Issac [12,

Theorem 3.10] and runs in O∗(22k2+k log2 k+k) time, i.e., the exponent is quadratic in k. This

algorithm is an adaptation of an algorithm by Chandran et al. [3] for the Biclique Partition

problem (where we want to partition the edges into k bicliques) in bipartite graphs. In

contrast, the best runtime lower bound known for ECP only excludes a sub-linear dependence

on k in the exponent: if n denotes the number of vertices of the input graph, there is no

2o(k)nO(1) time algorithm for ECP assuming the Exponential Time Hypothesis (ETH). This

follows due to a 2o(n) lower bound for 3-Dimensional Matching [13] under ETH, and a

reduction from Exact 3-Cover (which is a generalization of 3-Dimensional Matching) to ECP

by Ma et al. [16]. An obvious open problem arising here is to close the gap between the

upper and lower bounds on the runtime for ECP. Our main contribution is to show that for

general graphs the exponent of the runtime for ECP can be significantly lowered from O(k2)

to O(k3/2 log k).

◮ Theorem 1. ECP has an algorithm running in O
(

(2e
√

k)k3/2+k · k225k + n2 log n
)

time.

In fact, our algorithm solves a more general problem that we call the Weighted Edge

Clique Partition (WECP) problem defined as follows:

WECP (Weighted Edge Clique Partition)
Input: a graph G on n vertices, edge weights we : E(G)→ N, and a positive integer k

Output: a multiset of at most k cliques such that each edge appears in exactly as many

cliques as its weight (if it exists, otherwise output NO)

Note that WECP is equivalent to ECP on a multigraph, by taking the weights as the

edge multiplicities, which however increases the encoding length.

WECP can be thought of as a clustering of vertices where the clusters are allowed to

overlap and the weight of an edge denotes the number of clusters in which the endpoints appear

together. Such clustering problems appear naturally in computational biology, e.g., in the

inference of gene pathways from gene co-expression data [20], where the clusters correspond

to pathways and vertices correspond to genes. Thus developing efficient algorithms for WECP

is of practical relevance.

WECP has not been studied previously and the known FPT algorithms for ECP do not

extend to WECP. In particular, the techniques from the k2-kernel for ECP by Mujuni and

Rosamond [18] does not extend to WECP. Also, a 3k-kernel for the very similar Biclique

Partition problem by Fleischer et al. [8] just uses twin-reduction rule but this does not work

for WECP. We first show a compression (see preliminaries for definition) with 4k vertices

for WECP that can be computed in polynomial time. The compression is into an even

more general (auxiliary) problem that we call the Annotated Weighted Edge Clique Partition

(AWECP) problem, defined as follows.

2 In [18] the runtime was mistakenly reported as O∗(k(k+3)/2)), cf. [7].
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AWECP (Annotated Weighted Edge Clique Partition)
Input: a graph G on n vertices, edge-weights we : E(G)→ N, a special set of vertices

W ⊆ V (G), vertex weights wv : W → N, and a positive integer k

Output: a multiset of at most k cliques such that each edge e appears in exactly as

many cliques as its edge-weight, and each vertex in W appears in exactly as many cliques

as its vertex-weight (if such k cliques exist, otherwise output NO)

Note that WECP is exactly the special case of AWECP when W is empty. We give a

kernel for AWECP that implies the compression for WECP into AWECP.

◮ Theorem 2. AWECP has a kernelization algorithm that runs in O(n2 log n) time and

outputs a kernel having at most 4k vertices and encoding length O(16k log k) bits.

◮ Corollary 3. WECP has a compression into an AWECP instance having at most 4k vertices

and encoding length O(16k log k) bits. The compression can be found in O(n2 log n) time.

Then we proceed to give the first FPT algorithm for WECP, which also implies the

improved algorithm for ECP.

◮ Theorem 4. WECP with the edge weights upper bounded by some value w has an algorithm

running in O
(

(2e
√

k/w)k3/2w1/2+k · k225k + n2 log n
)

time.

Note that Theorem 4 implies an FPT algorithm for WECP when parameterized by k as

w ≤ k for any YES-instance. Also, Theorem 1 follows from Theorem 4 by setting w = 1.

1.1 Our techniques

Our approach is based on the work of Chandran et al. [3], who solve the Bipartite Biclique

Partition problem using linear algebraic techniques: we express AWECP as a low-rank matrix

decomposition problem. For this we allow matrices to have wildcard entries in the diagonal

that will be denoted by ⋆. We define Z
⋆ := (Z≥0 ∪ {⋆}). For x, y ∈ Z

⋆, we write x
⋆
= y if and

only if either x = y, or at least one of x and y is ⋆. For two matrices X and Y in (Z⋆)m×n,

we write X
⋆
= Y if and only if Xi,j

⋆
= Yi,j for all i, j. We say that a binary matrix B (not

containing wildcards) is a Binary Symmetric Decomposition (BSD) of a matrix A ∈ (Z⋆)n×n

if BBT ⋆
= A. The matrix B is called a width-k BSD of A if it is a BSD of A and has at

most k columns. We define the Binary Symmetric Decomposition with Diagonal Wildcards

(BSD-DW) problem as follows

BSD-DW (Binary Symmetric Decomposition with Diagonal Wildcards)
Input: an integer non-negative symmetric matrix A ∈ (Z⋆)n×n such that the wildcards

⋆ appear only in the diagonal, and an integer k

Output: a width-k BSD of A (if it exists, otherwise output NO)

We prove (in Lemma 6) that AWECP and BSD-DW are equivalent. Moreover, each

column of B (solution to BSD-DW) corresponds to a clique (in the solution to AWECP),

i.e. the rows that have a 1 in the j-th column correspond to the vertices that are in the

j-th clique. Due to this, we will index the rows and columns of A with vertices, the rows

of B with vertices and the columns of B with integers from [k], that correspond to the k

cliques. Moreover, we will be fluently switching between the contexts of edge partition of

graphs (AWECP), and matrix decomposition (BSD-DW).

In Section 2 we prove that there is a kernel for AWECP with 4k vertices. For this, we

define the notion of ⋆-twins where two vertices u and v are said to be ⋆-twins, if the rows

Au and Av are equal under
⋆
=. We group the vertices into equivalence classes (that we call

IPEC 2020
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blocks) of ⋆-twins. If a block has size more than 2k, we show that they can be reduced

and represented by one vertex. For this reduction rule, we need to specify how often the

representative vertex needs to be covered by cliques. Thus, even if the input is an instance

of WECP, the kernel we compute will be annotated, i.e., it will be an instance of AWECP.

The 4k bound on the kernel size follows then by giving a 2k upper bound on the number

of blocks for a YES instance. Since the edge weights and vertex weights for vertices in W

cannot exceed k if there is a solution with at most k cliques, a kernel with at most 4k vertices

can be encoded using O(
(

4k

2

)

log k) bits, and so Theorem 2 follows.

To obtain Theorem 4, we first compute a kernel using Theorem 2 as the first step of the

algorithm. Our algorithm will solve the more general AWECP problem. As in the algorithm

of Chandran et al. [3] (where a different low-rank matrix decomposition problem is solved),

the main idea of our algorithm is to guess a row basis for a width-k BSD B, and then

fill the remaining rows of B one by one independent of each other. However we need to

refine the techniques of Chandran et al. [3] in order to obtain our runtime improvement. In

particular, there are two reasons why the algorithm in [3] has a quadratic dependence on

k in the exponent: first, to guess a basis of rank k, they need to guess k binary vectors of

length k each, which takes O(2k2

) time. But also, they need to guess the k row basis indices

of B, for which there are
(

m
k

)

possibilities if the matrix has m rows. Since for Bipartite

Biclique Partition there is a kernel where m ≤ 2k [8], this adds another factor of O(2k2

) to

the runtime.

To circumvent these two runtime bottlenecks, in Section 3 we devise an algorithm that

gets around guessing the row indices of the basis of the solution matrix B. Instead of guessing

the whole basis, we add a row to the basis only when the current basis cannot take care of

that row. While this makes our algorithm more involved than the one by Chandran et al. [3],

it means that the only bottleneck left is guessing the basis entries. For BSD-DW we can

show that a basis with only k3/2w1/2 + k ones exists, which follows from the well-studied

Zarankiewicz problem [19]. This bound on the structure of the basis then implies Theorem 4.

Since the only bottleneck, which prevents our algorithm from having near-linear depend-

ence on k in the exponent of the runtime, is the step that guesses the entries of the basis for

the solution matrix B, a natural question is whether our upper bound of k3/2w1/2 + k of the

number of ones is (asymptotically) tight. In Section 4 we show that this is indeed tight (at

least for the unweighted case) by proving the following theorem:

◮ Theorem 5. For every prime power N and k = N2 + N , there is a matrix A ∈
{0, 1}(k+1)×(k+1) such that there is a width-k BSD for A and every row basis of every width-k

BSD of A has Θ(k3/2) ones.

While this does not give a runtime lower bound in general, it implies that in order to speed

up our algorithm for ECP using a better enumeration of the potential basis matrices, one

needs to use some property other than a bound on the number of ones. The tight instances

are obtained via the well-known Finite Projective Planes.

1.2 Related results

We now survey some results for ECP and related problems, apart from those mentioned

above. For ECP, it is also known that the problem is solvable in polynomial time on cubic

graphs [7]. The problem of partitioning the vertices instead of the edges into k cliques is

equivalent to k-coloring on the complement graph, which is well-known to be NP-hard even

for k = 3. Similarly, when the vertices need to be partitioned into bicliques or covered by

bicliques, Fleischer et al. [8] proved NP-hardness for any constant k ≥ 3.
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Covering the edges of a graph by cliques or bicliques turns out to be generally harder

than partitioning the edges. For the Edge Clique Cover problem, a kernel with 2k vertices

was shown by Gramm et al. [10], which results in a double-exponential time FPT algorithm

when solving the kernel by brute-force. Cygan et al. [5] showed that this is essentially best

possible, as under ETH no 22o(k)

nO(1) time algorithm exists for Edge Clique Cover and

no kernel of size 2o(k) exists unless P = NP. Similarly, for the Biclique Cover problem,

where edges of a general graph need to be covered by bicliques, Fleischner et al. [8] gave

a kernel with 3k vertices, and for the Bipartite Biclique Cover problem they gave a kernel

with 2k vertices in each bipartition. These kernels naturally imply double-exponential time

algorithms. Chandran et al. [3] proved that for Bipartite Biclique Cover, under ETH no

22o(k)

nO(1) time algorithm exists, and unless P = NP no kernel of size 2o(k) exists.

Chalermsook et al. [2] showed that for the Biclique Cover problem, it is NP-hard to

compute an n1−ε-approximation for any ε > 0 3. Edge Clique Cover is hard to approximate

within n0.5−ε due to a reduction by Kou et al. [15]. In contrast, a PTAS exists for Edge

Clique Cover on planar graphs [1].

1.3 Preliminaries

A problem P1 parameterized by k is said to admit a compression into problem P2 if there

is an algorithm that takes as input an instance I1 of P1, runs in time polynomial in the

encoding length of I1, and outputs an instance I2 of P2 that is equivalent to I1 such that the

encoding length of I2 is at most f(k) for some computable function f : N→ N. In particular,

the size of I2 depends only on the parameter k and not on the size of I1.

For an m× n matrix A, we use Ai,j to denote the entry of A at row i and column j. We

use Ai to denote the row-vector given by the i-th row of A. For some I ⊆ [m] and J ⊆ [n],

we use AI,J to denote the sub-matrix of A when restricted to rows with indices in I and

columns with indices in J . Also, we use AI to denote a sub-matrix of A when restricted

to rows with indices in I. We call such a sub-matrix where only rows are restricted as row

sub-matrix. A row-basis (or just basis for brevity) B of A is any row sub-matrix of A such

that every row of A can be expressed as a linear combination of rows of B, and the rows of

B are linearly independent with each other.

◮ Lemma 6. Given an instance (G, we, W, wv, k) of AWECP we can find an equivalent

instance (A, k) of BSD-DW in O(|V (G)|2) time. Similarly given an instance (A, k) of BSD-

DW, we can find an equivalent instance of AWECP in O(n2) time, where n is the number of

rows (or columns) in A.

Proof. Given an instance (G, we, W, wv, k) of AWECP, we can construct an instance of (A, k)

of BSD-DW as follows. Let V (G) = {1, . . . , n}; take the non-diagonal entries of A as the

corresponding entries of the weighted adjacency matrix of G, i.e., if there is an edge between

two vertices u and v, the entry Au,v is equal to we(uv) and if u and v do not have an edge

between them then Au,v = 0; for every vertex v ∈W , take Av,v as the vertex weight of v; for

every vertex v ∈ V (G) \W , take Av,v as the wildcard ⋆. Note that the mapping is invertible,

i.e., given a BSD-DW instance (A, k) we get an AWECP instance (G, we, W, wv, k) as follows.

Take V (G) := {1, 2, . . . , n} where n is the number of rows (and columns) of A. For distinct

u, v ∈ [n], if Au,v is non-zero, put an edge between u and v in G with weight Au,v. For each

3 The paper wrongly claims the same result also for Biclique Partition. The bug is acknowledged here:
https://sites.google.com/site/parinyachalermsook/research?authuser=0.
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v ∈ [n] such that Av,v is not a wildcard, put v in W and set its vertex weight to Av,v. It is

clear that this mapping is a bijective mapping between AWECP and BSD-DW instances and

can be calculated in both directions in O(n2) time. It remains to prove that the instances

are equivalent.

Now, we define a bijective mapping between candidate solutions of the two problems.

Naturally, a candidate solution of AWECP is a multiset of k cliques and a candidate solution

of BSD-DW is an n× k matrix. Consider a candidate solution C := {C1, C2, . . . Ck} of an

AWECP instance (G, we, W, wv, k). We map it to a candidate solution B ∈ {0, 1}n×k of a

BSD-DW instance (A, k) as follows. Take the row Bu as the characteristic vector of u in the

k cliques, i.e., Bu,j := 1 if u ∈ Cj , and Bu,j := 0 otherwise. The inverse mapping then turns

out to be as follows. Given a candidate solution B ∈ {0, 1}n×k of instance (A, k) construct

k cliques where the j-th clique is Cj := {u | Bu,j = 1}. To see that Cj is indeed a clique,

consider any two vertices u, v ∈ Cj : since Bu,j = Bv,j = 1, we know that Au,v = BuBT
v ≥ 1,

which implies that there is an edge between u and v in G.

First, we prove that if C is a solution of AWECP(G, we, W, wv, k), then B is a solution of

BSD-DW(A, k). It is clear that B has only k columns by construction. So, it only remains

to prove that for all pairs u, v ∈ [n], BuBT
v

⋆
= Au,v. First consider the case when u and v are

distinct. Let J denote the set of all j such that both u and v appear together in Cj . Since C
is a solution of AWECP(G, we, W, wv, k), we have that |J | = Au,v. By construction of B, we

have that J is exactly the set of indices j where Bu,j = Bv,j = 1. Thus BuBT
v = |J | = Au,v.

Now consider the case when u = v. If Au,u is a ⋆ then clearly BuBT
u

⋆
= ⋆ = Au,u. So, suppose

Au,u 6= ⋆. This means u ∈ W implying that u appears in exactly Au,u many cliques in C.
Thus BuBT

u = Au,u.

We now prove the reverse direction, i.e., we prove that if B is a solution of BSD-DW(A, k),

then C is a solution of AWECP(G, we, W, wv, k). By construction, C has at most k cliques.

Thus, it is sufficient to prove the following two statements: (1) every pair u, v ∈ V (G) appears

together in exactly Au,v many cliques in C (2) each vertex v ∈ W appears in Av,v many

cliques in C. First we prove (1). We know BuBT
v = Au,v. Since B is binary, this means that

there are exactly Au,v many indices j such that Bu,j and Bv,j are both 1. Let J be the set

of those indices. Observe that the set of cliques where both u and v appear together are

exactly {Cj : j ∈ J}. Thus, the edge uv is in |J | = Au,v many cliques. Now we prove (2).

Consider a vertex v ∈W . We know BvBT
v = Av,v. Since B is binary, this means that there

are exactly Av,v many ones in Bv. Thus, the vertex v is in Av,v many cliques. ◭

2 Kernel

We will now give a kernel for AWECP and BSD-DW, thereby proving Theorem 2. Let

(G, we, W, wv, k) be an instance of AWECP and (A, k) be the corresponding instance of

BSD-DW obtained by the transformation as in the proof of Lemma 6. We may move

seamlessly between the graph and matrix terminologies as both problems are equivalent.

Whenever we say a solution in this section, we mean the solution to the BSD-DW instance

i.e., a width-k BSD of A. We say two distinct vertices u and v in G are ⋆-twins if they are

adjacent and satisfy Au
⋆
= Av. We now prove the following easy property of ⋆-twins.

◮ Lemma 7. For distinct vertices u, v and w in G, suppose u and v are ⋆-twins and v and

w are ⋆-twins. Then:

1. u and w are ⋆-twins, and

2. all the entries of the submatrix A{u,v,w},{u,v,w} are the same except for wildcards.
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Proof. First, let us prove the second statement. Let Au,v = α. Then we know Au,w = α

as v and w are ⋆-twins. Then Av,w = α as u and v are ⋆-twins. Thus all the non-diagonal

elements of A{u,v,w}{u,v,w} are equal to α. If Au,u 6= ⋆ then Au,u = Av,u = α as u and v

are ⋆-twins. Similarly, if Av,v 6= ⋆ then Av,v = Av,u = α as u and v are ⋆-twins. And, if

Aw,w 6= ⋆ then Aw,w = Av,w = α as v and w are ⋆-twins.

Now, for the first statement to hold, we only need to show that Au,z = Aw,z for all

z /∈ {u, v, w}. Indeed, Au,z = Av,z = Aw,z where the first equality is because u and v are

⋆-twins and the second is because v and w are ⋆-twins. ◭

Thus we have that the relation ⋆-twins is transitive. It is also symmetric, as easily seen

from the definition. Note that ⋆-twins are required to be adjacent, and thus the relation

is not reflexive. But to make it reflexive, we simply define a vertex to be a ⋆-twin of itself.

Thus, we can group the vertices into equivalence classes of ⋆-twins. We call each equivalence

class a block. Note that there can be blocks containing only a single vertex. The following

lemma is a direct consequence of Lemma 7.

◮ Lemma 8. For a block D, the entries of the sub-matrix AD,D are all same except for

wildcards.

◮ Fact 9. For values a, b and c, if a
⋆
= b and b

⋆
= c, and b 6= ⋆ then a

⋆
= c.

◮ Lemma 10. Suppose we have a YES instance of AWECP without isolated vertices. Then

there can be at most 2k blocks.

Proof. Let B be a width-k BSD of A. Note that B exists as we have a YES instance. In

order to prove the lemma, it is sufficient to show that if u and v are in different blocks, then

Bu and Bv are distinct, because then there can only be 2k distinct rows of B, as there are

only k columns in B and B is binary. Assume for the sake of contradiction that Bu = Bv and

u and v are in different blocks, i.e., they are not ⋆-twins. Let b := BuBT = BvBT . We have

Au
⋆
= BuBT = b and Av

⋆
= BvBT = b. This implies Au

⋆
= Av using Fact 9, as the vector b

contains no wildcards. Then, for u and v to be not ⋆-twins, it should be the case that u

and v are not adjacent, i.e, Au,v = 0. But then, BuBT
v = 0. Since Bu = Bv by assumption,

we have that Bu = Bv = 0 and hence Au = Av = 0. This means that u and v are isolated

vertices, which is a contradiction. ◭

The above lemma shows the soundness of our first reduction rule that is as follows.

◮ Reduction rule 1. If the number of blocks is more than 2k, output that the instance is a

NO instance.

Next, we prove the following lemma about ⋆-twins that helps us to come up with a

reduction rule that bounds the size of each block.

◮ Lemma 11. Let D := {v1, v2, . . . , vt} be a block of ⋆-twins. For a YES instance, there

exists a solution B such that the rows Bv1
, Bv2

, . . . , Bvt
are either all pairwise distinct, or

all same.

Proof. It is sufficient to prove the following statement: if there is a solution B such that

Bv1
= Bv2

, then there is also a solution C such that Cv1
= Cv2

= · · · = Cvt
. So, assume that

Bv1
= Bv2

. Let C be the matrix defined as Cv := Bv for all v /∈ D, and Cv := Bv1
= Bv2

for all v ∈ D. We will prove that C is also a solution. For this, it is sufficient to prove

that CuCT
v = Au,v for all u, v ∈ V such that Au,v 6= ⋆. If both u and v are not in D, then

CuCT
v = BuBT

v = Au,v. So, without loss of generality assume that u ∈ D. We distinguish

the following cases.
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1. If v ∈ V \D, then CuCT
v = Bv1BT

v = Av1,v = Au,v, where the last equality follows as v1

and u are ⋆-twins.

2. If v ∈ D \ {u}, then CuCT
v = Bv1

BT
v2

= Av1,v2
= Au,v, where the last equality follows

from Lemma 8.

3. If v = u: if Au,u = ⋆ then there is nothing to prove, so assume Au,u 6= ⋆. Then

Au,u = Av1,v2 by Lemma 8. Hence we get CuCT
u = Bv1BT

v2
= Av1,v2 = Au,u. ◭

Since there are only 2k possible distinct rows for a solution B, Lemma 11 has the following

consequence.

◮ Lemma 12. Let D := {v1, v2, . . . , vt} be a block of ⋆-twins such that t > 2k. For a YES

instance, there exists a solution B such that the rows Bv1 , Bv2 , . . . Bvt are all same.

The above lemma suggests that for a block D of size more than 2k, we only need to keep

one representative vertex for all the vertices in D. This leads us to our second reduction rule.

◮ Reduction rule 2. Suppose there is a block D with more than 2k vertices. Pick any

two arbitrary vertices u, v ∈ D. We reduce our instance to an instance A′ of AWECP

(simultaneously to an instance G′ of BSD-DW) as follows: let G′ := G \ (D \ {v}); for every

pair (v1, v2) 6= (v, v) in V (G′)× V (G′), let A′
v1,v2

:= Av1,v2
; let A′

v,v := Au,v.

Once we have a solution B′ to the reduced instance A′ then we construct a solution B

to the original instance A as follows: for all x ∈ D, let Bx := B′
v; for all x ∈ V (G) \D, let

Bx := B′
x.

Now, we prove that the above reduction rule is safe.

◮ Lemma 13. Let A′, G′, B′, B be as defined in Reduction rule 2.

1. If B′ is a width-k BSD of A′, then B is a width-k BSD of A.

2. Conversely, if A has a width-k BSD then so does A′.

Proof. 1. It is clear that B has only k columns. So, it only remains to prove that B is a

BSD of A, for which it is sufficient to prove that Bv1BT
v2

⋆
= Av1,v2 for all v1, v2 ∈ V (G).

For v1, v2 ∈ V (G) \D, we have

Bv1
BT

v2
= B′

v1
B′T

v2

⋆
= A′

v1,v2
= Av1,v2

.

For v1 ∈ V (G) \D and v2 ∈ D, we have

Bv1BT
v2

= B′
v1

B′T
v = A′

v1,v = Av1,v = Av1v2 ,

where the last equality follows as v and v2 are ⋆-twins.

For v1, v2 ∈ D, we have

Bv1
BT

v2
= B′

vB′T
v = A′

v,v = Au,v = Av1,v2
,

where the last equality follows from Lemma 8.

2. By Lemma 12 we know that there exists a width-k BSD of A such that Bv1
= Bv2

for all

v1, v2 ∈ D. In particular Bu = Bv. Let B′ be defined as B′
x := Bx for all x ∈ V (G′). We

show that B′ is a width-k BSD of A′. Since B′ has only k columns, it only remains to prove

that B′ is a BSD of A′, which we do as follows. For (v1, v2) ∈ (V (G′)× V (G′)) \ (v, v),

we have

B′
v1

B′T
v2

= Bv1BT
v2

⋆
= Av1,v2 = A′

v1,v2
,

and

B′
vB′T

v = BvBT
v = BuBT

v = Au,v = A′
v,v. ◭
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After the above rules are exhaustively applied, each block has size at most 2k and the

number of blocks is at most 2k. Thus we have the required kernel of size 4k.

The time required for computing the kernel can be shown to be O(n2 log n). This is

because the blocks of ⋆-twins can be found by sorting the rows in lexicographic order. Since

each comparison takes O(n) time the sorting can be done in O(n2 log n) time. Also, we need

to compute the blocks only once as the reduction rules does not change the blocks.

Since the edge weights and vertex weights for vertices in W cannot exceed k if there is

a solution with at most k cliques, a kernel with at most 4k vertices can be encoded using

O(
(

4k

2

)

log k) bits, and so Theorem 2 follows.

3 Algorithm

Here we give an algorithm for the BSD-DW problem. The algorithm also solves AWECP due

to the equivalence from Lemma 6. In particular, it solves WECP thereby proving Theorem 4.

We now give a description of the algorithm. Pseudocode is given in Algorithm 1. Our

input is a symmetric matrix A ∈ (Z≥0 ∪ {⋆})n×n where wildcards ⋆ appear only on the

diagonal. First we guess a matrix P ∈ {0, 1}k×k such that for some r ≤ k, P[r],[k] is a row

basis of solution B. We show that for this, it is sufficient to enumerate k× k binary matrices

that satisfy a specific property defined as follows. Let w be the largest integer entry of A.

We call a matrix w-limited if the dot-product of each distinct pair of its rows is at most w.

The following fact shows that we only need to enumerate w-limited matrices in {0, 1}k×k to

guess P .

◮ Fact 14. If B is a BSD of matrix A and w is the largest integer entry of A, then any

submatrix of B (including B) is w-limited.

Proof. Since B only has non-negative entries, if B is w-limited, then so are all the sub-

matrices. Suppose the property does not hold for B. Then there exist two rows Bu and Bv

such that BuBT
v > w. But BuBT

v
⋆
= Auv and hence Auv > w (note that Auv is not ⋆ as it is

not a diagonal-entry). Thus we have a contradiction. ◭

Note that guessing P is done in Loop 1 of Algorithm 1. We will later give a bound on the

number of w-limited matrices in {0, 1}k×k during the runtime analysis in Section 3.2, thereby

bounding the number of iterations of Loop 1.

We maintain partially filled matrices during the algorithm, i.e., we allow matrices to have

null rows (this is different from wildcards). Think of the null rows as the rows that have not

been filled yet. If each row of a matrix is either a binary row or a null row, we call it a binary

matrix with possibly null rows. We denote by B
n×k, the set of all n× k binary matrices with

possibly null rows.

We maintain a matrix B̃ ∈ B
n×k as a potential basis for our solution B. In Line 8, we call

CompleteBasis that checks whether the current B̃ can be extended to a full solution B. Note

that CompleteBasis does not try all possibilities to fill the remaining rows. It fills a row with

the first binary vector that is compatible with the rows so far, where compatibility is defined

as follows. For a matrix B ∈ B
n×k, we say that a vector v ∈ {0, 1}k is i-compatible for B if

vT v
⋆
= Ai,i and for all j 6= i such that Bj is not a null row, vT BT

j = Ai,j . If CompleteBasis

is able to fill all the rows with i-compatible binary vectors, then we are done and we return

the resulting matrix (in Line 9). If not, we claim that the row for which we are not able to

fill can be added to the basis (in Claim 16). So we add one more row to the basis by copying

the next row from P (in Line 7). Thus we increase the number of non-null rows in the basis

B̃ by one and repeat. Since the basis can be at most of size k, we need to repeat this at most

k times.
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Algorithm 1 Algorithm for BSD-DW.

Input : An n× n symmetric integer diagonal-wildcard matrix A

Output : If A has a width-k BSD then output a width-k BSD B of A;

otherwise report that A has no width-k BSD

1 w ← largest integer weight in A

2 foreach w-limited P ∈ {0, 1}k×k do // Loop 1

3 Initialize B̃ to be an n× k matrix with all null rows

4 b← 1

5 i← 1

6 while b ≤ k and Pb is i-compatible with B̃ do // Loop 2

7 B̃i ← Pb

8 (B, i)← CompleteBasis(A, B̃)

9 if i = n + 1 then output B and terminate the algorithm

10 b← b + 1

11 output that A has no width-k BSD and terminate the algorithm

Function CompleteBasis(A,B̃):

12 B ← B̃

13 for each null row i in B in increasing order do // Loop 3

14 if there is a v ∈ {0, 1}k such that v is i-compatible with B then

15 Bi ← v

16 else return (B, i)

17 return (B, n + 1)

3.1 Correctness of the algorithm

The algorithm outputs either through Line 9 or through Line 11. In the former case, we

prove the following claim.

⊲ Claim 15. If output occurs through Line 9, then the matrix B that is output, is a width-k

BSD of A.

Proof. If Line 9 is executed, then this means that the preceding CompleteBasis call on Line 8

returned i = n + 1. This implies that the return from CompleteBasis happened on Line 17.

This in turn means that Loop 3 was exited after completing all iterations, implying that the

matrix B did not have any null rows at the time of return. Thus B ∈ {0, 1}n×k. The rows of

B were each filled either in Line 7 (when it was B̃ before being passed to CompleteBasis)

or in Line 15. In both places, we filled each row i with a vector that was i-compatible at the

time of filling. From the definition of i-compatibility, it follows that BBT ⋆
= A, and hence B

is a width-k BSD of A. ⊳

Consider a NO instance first. From Claim 15 it follows that the output does not occur

through Line 9. Thus the output has to occur through Line 11 and hence we correctly output

that A does not have a width-k BSD. So it only remains to prove the correctness when A

is a YES instance, i.e., when A has a width-k BSD, which is the case we consider for the

remainder of the proof. Let B∗ be any fixed width-k BSD of A.



A. E. Feldmann, D. Issac, and A. Rai 17:11

Observe that B̃ changes as follows during each iteration of Loop 1: it is initialized to all

null rows and each time the algorithm encounters Line 7 a null row is replaced with a binary

row vector. We say that a matrix B is consistent with B∗ if Bj = B∗
j for each j such that

Bj is a non-null row.

⊲ Claim 16. Consider a matrix B̃ ∈ B
n×k that is consistent with B∗. If CompleteBasis(A, B̃)

returns i ∈ [n] then B∗
i is linearly independent from the non-null rows of B̃.

Proof. For a matrix M ∈ B
n×k, we denote by R(M) the set of indices of the non-null rows

of M . Suppose for the sake of contradiction that CompleteBasis(A, B̃) returns i ∈ [n] and

B∗
i is linearly dependent on the non-null rows of B̃. Then, we have B∗

i = Σℓ∈R(B̃)λℓB̃ℓ for

some λ1, λ2, · · · , λℓ ∈ R. Since B̃ is consistent with B∗, we can write B∗
i = Σℓ∈R(B̃)λℓB

∗
ℓ .

As CompleteBasis returned i, we know that during that iteration of Loop 3 in which

row i was considered, no vector v ∈ {0, 1}k was i-compatible with B (here B is the matrix

maintained by CompleteBasis that was initialized to B̃ on Line 12). In particular, B∗
i ∈

{0, 1}k was not i-compatible with B. Therefore either there was some j ∈ R(B) such that

B∗
i BT

j 6= Ai,j , or B∗
i (B∗

i )T 6 ⋆= Ai,i. The latter cannot be true as B∗ is a width-k BSD of A.

So there was a j ∈ R(B) such that B∗
i BT

j 6= Ai,j .

We branch into two cases: case 1 when j ∈ R(B̃) and case 2 when j ∈ R(B) \R(B̃). In

case 1, we have Bj = B̃j = B∗
j where the second equality is because B̃ and B∗ are consistent.

Thus B∗
i BT

j = B∗
i (B∗

j )T = Ai,j , giving a contradiction.

In case 2, Bj was added in Line 15 and hence Bj was j-compatible with B at this time,

implying that BℓB
T
j = Aℓ,j for all ℓ ∈ R(B̃). Since Bℓ = B̃ℓ = B∗

ℓ for ℓ ∈ R(B̃), we have

that B∗
ℓ BT

j = Aℓ,j for all ℓ ∈ R(B̃). Then, we have a contradiction as follows:

B∗
i BT

j = Σℓ∈R(B̃)λℓB
∗
ℓ BT

j

= Σℓ∈R(B̃)λℓAℓ,j

= Σℓ∈R(B̃)λℓB
∗
ℓ (B∗

j )T

= B∗
i (B∗

j )T

= Ai,j ⊳

For a matrix X ∈ {0, 1}k×k, we say we are in iteration (X, t) of the algorithm if we are in

the iteration of Loop 1 with P = X and the iteration of Loop 2 with b = t. We use B̃(X, t)

to denote the value of B̃ after the execution of Line 7 during iteration (X, t).

⊲ Claim 17. At any step of the algorithm, if B̃ is consistent with B∗ then the non-null rows

of B̃ are linearly independent.

Proof. Consider the first time this is violated during the algorithm. This has to be during the

addition of a new non-null row at Line 7. Let (X, t) be the iteration in which this happens.

Let p be the index of the row that was added. Observe that B̃(X, t) has only one additional

non-null row compared to B̃(X, t− 1). Also, this additional non-null row is equal to B∗
p as

B̃(X, t) is consistent with B∗. We know the rows of B̃(X, t − 1) are linearly independent

as we assumed that the first violation of lemma happens in iteration (X, t). Also, during

iteration (X, t−1), i was returned with value p (as the insertion happens in Line 7 in iteration

(X, t)). This implies that B∗
p is linearly independent from the non-null rows of B̃(X, t− 1)

due to Claim 16. Hence the rows of B̃(X, t) are linearly independent. ⊳

⊲ Claim 18. If the iteration (X, k) occurs during the algorithm for some X ∈ {0, 1}k×k

such that B̃(X, k) is consistent with B∗ then the algorithm outputs through Line 9 in

iteration (X, k).
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Proof. Consider the i returned by CompleteBasis(A, B̃(X, k)). It is sufficient to prove that

the condition i = n + 1 in Line 9 is satisfied. Suppose otherwise. Then i ∈ [n] and by

Claim 16, B∗
i is linearly independent from the non-null rows of B̃(X, k). But by Claim 17,

we have that the non-null rows of B̃(X, k) are linearly independent and hence span the whole

space, thus giving a contradiction. ⊳

⊲ Claim 19. Assume that the output of the algorithm does not occur through Line 9. If for

some Y ∈ {0, 1}k×k and t ≤ k − 1, iteration (Y, t) occurs and B̃(Y, t) is consistent with B∗,

then there exists some Z ∈ {0, 1}k×k such that iteration (Z, t + 1) occurs and B̃(Z, t + 1) is

consistent with B∗.

Proof. Since B̃(Y, t) is consistent with B∗, we know that Y[t] is a sub-matrix of B∗. As the

condition in Line 9 is false, we know that an i ∈ [n] was returned in Line 8 in iteration (Y, t).

It is clear from the algorithm that i is a null-row in B̃(Y, t). Let Z ∈ {0, 1}k×k be such

that Z[t] := Y[t], Zt+1 := B∗
i , and Zq := 0 for all q ≥ t + 1. Observe that Z[t+1] is a

submatrix of B∗ and hence is w-limited by Fact 14. Since adding zeroes does not destroy

w-limitedness, we have that Z is a w-limited n × k matrix. Thus there is some iteration

of Loop 1 with P = Z. In this iteration the algorithm behaves similarly to the iteration

with P = Y for the first t iterations of Loop 2 as the algorithm has seen only the first t

rows of P up to then. Thus B̃(Z, t) = B̃(Y, t) and i is returned by Line 8 in iteration (Z, t).

Now in Line 7 of iteration (Z, t + 1), B̃i is assigned Zt+1. Note that Zt+1 = B∗
i is indeed

i-compatible with B̃(Z, t) (as B̃(Z, t) = B̃(Y, t) and B̃(Y, t) is consistent with B∗) and that

t + 1 ≤ k. Hence the loop condition of Loop 2 is true in iteration (Z, t + 1). Thus, we have

(B̃(Z, t + 1))i = Zt+1 = B∗
i and for all j 6= i, we have (B̃(Z, t + 1))j = (B̃(Y, t))j . Since

B̃(Y, t) is consistent with B∗, it follows that B̃(Z, t + 1) is consistent with B∗. ⊳

Let t be the largest number for which there exists a P ∈ {0, 1}k×k such that iteration (P, t)

happens and B̃(P, t) is consistent with B∗. Due to Claim 19, we know that t = k. Then

the algorithm outputs through Line 9 according to Claim 18. Thus the algorithm outputs a

correct solution B due to Claim 15.

3.2 Runtime analysis

First, let us bound the number of iterations of Loop 1. For this it is sufficient to bound the

number of w-limited matrices in {0, 1}k×k.

◮ Lemma 20. The number of binary w-limited k×k matrices is at most (2e
√

k/w)k3/2w1/2+k.

Proof. Note that no w-limited matrix can have a 2× (w +1)-sub-matrix having all ones. The

number of ones in such a matrix is a special case of the well-studied Zarankiewicz problem

and is known [19] to be at most k3/2w1/2 + k. Hence it follows that the number of binary

w-limited k × k matrices is at most 2k3/2w1/2+k ·
(

k2

k3/2w1/2+k

)

by choosing the positions of

the at most k3/2w1/2 + k potential ones in the matrix and then choosing which of them are

actually ones. The bound follows easily by using that
(

n
k

)

≤
(

ne
k

)k
. ◭

Next, let us analyze the runtime of the function CompleteBasis. Loop 3 has at most n

iterations. In Line 14, we need to check at most 2k vectors v ∈ {0, 1}k. The checking for

i-compatibility of each vector takes O(nk) time. Hence CompleteBasis takes O(k2kn2) time.

Now, we are ready to calculate the total run time. Due to Lemma 20, Loop 1 has

at most (2e
√

k/w)k3/2w1/2+k iterations. Line 3 takes O(nk) time. Loop 2 has at most k

iterations. Line 7 takes at most O(k) time. The call to CompleteBasis in Line 8 takes at
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most O(k2kn2) time as we already calculated. Any other step takes only constant time. Thus

the total running time is bounded by O
((

(2e
√

k/w)k3/2w1/2+k
)

(

nk + k(k + k2kn2)
)

)

=

O
(

(2e
√

k/w)k3/2w1/2+k · k22kn2
)

. We may run our algorithm on the kernel provided by

Theorem 2, which means we may set n = 4k in the above expression. Thus the total running

time is O
(

(2e
√

k/w)k3/2w1/2+k · k225k + n2 log n
)

. This proves Theorem 4.

4 Lower bound for number of ones in the basis matrix

In this section we construct binary matrices for which there is a width-k BSD and every

basis of every width-k BSD has Ω(k3/2) ones, thereby proving Theorem 5. We obtain such

instances via Finite Projective Planes (FPPs), which are defined as a set system S over a

universe U of elements such that:

1. for each e, e′ ∈ U there is exactly one S ∈ S containing both of them,

2. for each S, S′ ∈ S there is exactly one e ∈ U such that e ∈ S ∩ S′, and

3. there is a set of 4 elements in U such that no three of them are in any S ∈ S.

It is known [17] that for any FPP, both the number of elements and the number of sets

are equal to N2 + N + 1 for some N ≥ 2. Here N is called the order of the FPP. It also

follows that for an FPP of order N , each set has exactly N + 1 elements and each element is

contained in exactly N + 1 sets. It is also known that FPPs of order N exist for every prime

power N [17]. Given an FPP of order N , in the following we will denote the characteristic

incidence matrix of elements and sets by F ∈ {0, 1}(N2+N+1)×(N2+N+1), where rows are

elements and columns are sets.

We now give a reduction from FPPs to ECP. For this, consider a vertex set V with

N2 + N + 1 vertices. Let I be a subset of N + 1 vertices in V . Let GN be the graph defined

as the clique over V minus the clique over I, i.e., every pair of vertices in V is adjacent

except when both are from I. In other words, if X := V \ I, then GN is a split graph with

X as the clique and I as the independent set, where all the adjacencies are present between

X and I. In Lemmas 21 and 23, we show that GN has a small ECP if and only if an FPP of

order N exists.

◮ Lemma 21. If a finite projective plane S of order N exists, then GN has a clique partition C
into |C| ≤ N2 + N cliques.

Proof. Let S be an FPP of order N over a universe U , and fix one of its sets S ∈ S. We

identify this set with the independent set of GN , i.e., S = I. After fixing the elements of S, all

other elements in U \ S are arbitrarily identified with the other vertices in X. We claim that

the remaining sets in S \ {S} form a clique partition, i.e., if CS′ = {uv ∈ E(GN ) | u, v ∈ S′}
then the set C = {CS′ | S′ ∈ S \ {S}} partitions the edge set of GN into cliques. From

Property 1 of an FPP, for any edge uv (i.e., at least one of u and v is in X) there is exactly

one set S′ ∈ S \ {S} such that u, v ∈ S′. This means that the subgraphs in C partition the

edge set. Furthermore, by Property 2 no S′ ∈ S \ {S} intersects in more than one vertex

with the independent set I. Thus every subgraph of C is a clique. Moreover, any FPP of

order N has exactly N2 + N + 1 sets, and so there are N2 + N cliques in C. ◭

◮ Lemma 22. If C is a set of cliques that partition the edges of GN and |C| ≤ N2 + N , then

for each C ∈ C, |V (C)| = N + 1.
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Proof. First let us prove that |V (C)| ≤ N + 1. Suppose for the sake of contradiction that

|V (C)| ≥ N +2. Note that C contains at most one vertex from I, as a clique and independent

set can intersect on at most one vertex. Let C ′ := V (C) \ I and I ′ := I \ V (C). Clearly

|C ′| ≥ N + 1 and |I ′| ≥ N (recall that |I| = N + 1). Note that every edge in C ′ × I ′ has

to be covered by a distinct clique in C \ {C}: any two edges that have different endpoints

in I cannot be in the same clique, since there is no edge between these endpoints, while

any two edges with different endpoints in C cannot be in the same clique, since the only

edge between these endpoints is already covered by C. But there are |C ′||I ′| ≥ N2 + N such

edges whereas there are only N2 + N − 1 cliques in C \ {C}. Thus we have a contradiction.

Hence we established |V (C)| ≤ N + 1. Now suppose for the sake of contradiction

|V (C)| < N + 1. Using the fact that every clique of C has size at most N + 1, the total

number of edges covered by C is strictly less than |C|
(

N+1
2

)

≤ (N2 +N)
(

N+1
2

)

= N2(N +1)2/2.

However, since |I| = N + 1 and consequently |X| = N2, the total number of edges of GN is
(

N2

2

)

+ N2 · (N + 1) = N2(N + 1)2/2. Thus, we have a contradiction. ◭

◮ Lemma 23. Let N ≥ 2. If C is a set of cliques that partition the edges of GN such that

|C| ≤ N2 + N , then S = {V (C) | C ∈ C} ∪ {I} is an FPP of order N over V . Moreover, the

incidence matrix F of S with the column for I removed from it, is the BSD of the adjacency

matrix of GN that corresponds to C.

Proof. We will prove that S = {V (C) | C ∈ C} ∪ {I} satisfies the three properties in the

definition of an FPP, which then has order N by Lemma 22 above. Property 1 follows easily

from the definition of an edge clique partition: for each pair of adjacent vertices there is

exactly one clique covering their edge, while any pair of non-adjacent vertices only appear

in I.

Let us now prove Property 2. For any S, S′ ∈ S, it follows easily from the definition of an

edge clique partition that |S∩S′| ≤ 1 (otherwise some edge is contained in two cliques). Also,

for any S ∈ S, it is true that |S ∩ I| ≤ 1 (otherwise some clique would contain a non-edge).

Assume there are S, S′ ∈ S with S ∩ S′ = ∅. By Lemma 22, we have |S| = |S′| = N + 1,

and so all the (N + 1)2 edges of S × S′ have to be covered by distinct cliques (otherwise

some clique would contain an edge already covered by one of the cliques induced by S or S′).
But we do not have so many cliques as |C| ≤ N2 + N . Thus we have |S ∩ S′| = 1 for any

S, S′ ∈ S, and so Property 2 is satisfied.

Let us now prove Property 3. Consider any arbitrary clique C ∈ C. Pick two vertices from

V (C)\I and two vertices from I\V (C). Note that |V (C)\I| = |I\V (C)| ≥ N +1−1 = N ≥ 2,

and hence two vertices can be picked from the sets. It is easy to see that out of these four

vertices at most two are in any set in S.

It is easy to see that the incidence matrix F of S minus the column for I is the BSD of

the adjacency matrix of GN that corresponds to the clique partition C. ◭

By using Lemmas 21 and 23 and the fact that the element-set incidence matrix of an

FPP has full rank [23], we prove Theorem 5, thereby giving the required lower bound on the

number of ones in the basis matrix.

◮ Fact 24. The element-set incidence matrix of any FPP has full rank [23].

Proof of Theorem 5. Let N be a prime power and k := N2 + N . We will show that the

adjacency matrix A of GN has a width-k BSD and every basis of every width-k BSD of A

has Θ(k3/2) ones. Note that A is a (k + 1)× (k + 1) binary matrix as stated in the theorem.
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Since N is prime, there is an FPP of order N [17]. Then by Lemma 21, there is an edge

clique partition of GN with at most k = N2 + N cliques. Thus, the adjacency matrix A of

GN has a width-k BSD, by using the equivalence in Lemma 6.

Now, consider any width-k BSD B of A and B̃ be any basis of B. Then, by Lemma 6,

there is an edge clique partition of GN with at most k cliques. By Lemma 23, S = {V (C) |
C ∈ C} ∪ {I} is an FPP of order N . Let F be the element-set incidence matrix of S. By

Lemma 23, B is equal to F minus the column in F corresponding to I. By Fact 24, F has

full rank, i.e. it has rank N2 + N + 1 = k + 1. This implies B has rank k, and hence has at

least k columns. Since B is a width-k BSD, this means it has exactly k columns, and hence

is a (k + 1)× k matrix. Since B has rank k, we have that B̃ has k rows and k columns. Thus,

B̃ is B minus some row of B. Since each column of B corresponds to a clique of C containing

N + 1 vertices by Lemma 22, we have that B has k(N + 1) ones. Hence the number of ones

in B̃ is at least k(N + 1)− k = Θ(k
√

k). ◭

5 Conclusion and Open Problems

We showed that AWECP admits a kernel with 4k vertices, and an algorithm with a runtime

of 2O(k3/2w1/2 log(k/w))nO(1), which implies that ECP can be solved in 2O(k3/2 log k)nO(1) time.

We think the following are the most interesting related open questions.

Close the gap further between the upper and lower bounds on the running time for ECP

that are currently 2O(k3/2 log k)nO(1) and 2Ω(k)nO(1) respectively.

Does WECP admit a polynomial-sized kernel like ECP?

Can we show a tightness of analysis of our algorithm for WECP as we showed for ECP

in Section 4, i.e., can we construct positive integer matrices with largest weight w that

has a width-k BSD and every basis of every width-k BSD have Ω(k3/2w1/2) ones?

The algorithm of Chandran et al. [3] for Bipartite Biclique Partition with runtime

2O(k2)nO(1) is also based on guessing the basis of a binary decomposition A = BC, and is

currently the fastest FPT algorithm for the problem. If we can show that in any solution

at least one of B and C has a row basis (column basis in case of C) with at most g(k)

ones, then we get a running time 2O(g(k) log k)nO(1) using a similar algorithm as we gave

for ECP. What is the minimum value of g(k) possible?
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