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Abstract 12 

Structures that facilitate fluid migration are common in sedimentary basins. We document several 13 

possible hydrothermal and/or volcanic vents located above a >157 km2, late Cretaceous volcanic 14 

field in the Great South Basin, offshore New Zealand. Three of the four vents are vertically 15 

stacked, suggesting episodic re-use of the same fluid pathway between ~75 and ~56 Ma. A paleo-16 

pockmark dated to ~49 Ma and free gas occurring within strata ~21 Myr old are located directly 17 

above these stacked vents. The spatial association of the vents, pockmark, and free gas further 18 

suggests re-use of the fluid migration pathway(s) extended for over 54 Myr. Our results imply that 19 

reutilization of fluid flow pathways can affect the distribution of fluids within basins over 20 

prolonged periods, potentially impacting hydrocarbon/geothermal exploration and geohazard 21 

assessment. 22 
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1 Introduction 25 

Focused fluid flow and associated fluid escape structures (e.g. hydrothermal vents, gas 26 

chimneys, mud diapirs, and pockmarks) commonly occur in sedimentary basins (e.g. Bischoff et 27 

al., 2019; Cartwright et al., 2007; Cartwright & Santamarina, 2015; Jackson et al., 2019; Jamtveit 28 

et al., 2004; Siregar et al., 2019; Svensen et al., 2004). Many sedimentary basins also host a variety 29 

of magmatic complexes (e.g. Jackson et al., 2013; Magee et al., 2014; Schofield et al., 2017; Song 30 

et al., 2017). In addition to feeding and creating volcanoes, this magmatism can also produce 31 

pockmarks and/or hydrothermal vents driven by magmatic volatile escape and intrusion-induced 32 

heating of pore fluids (e.g. Iyer et al., 2017; Mourgues et al., 2012; Svensen et al., 2006). Although 33 

these intrusion-related fluid escape structures form near-instantaneously (Planke et al., 2005), 34 

identification of vertically stacked hydrothermal vent systems suggests intrusions can direct fluid 35 

flow over millions of years (typically <10 Myr) (e.g. Roelofse et al., 2021). Similarly, the presence 36 

of fluid and gas indicators above some hydrothermal vents and volcanic edifices implies that their 37 

plumbing systems may be reactivated by and focus later fluid flow (e.g. hydrocarbon or carbon 38 

dioxide)  long after magmatism has ceased (e.g. Holford et al., 2017; Manton et al., 2022; Roelofse 39 

et al., 2021; Sun et al., 2020a). Understanding the timeframes over which fluid escape structures 40 

can be re-used may help improve the exploration efficiency of associated fluid-related resources 41 

and aid de-risking of subsurface storage sites. 42 

Here, we use 3D seismic reflection data from the Great South Basin, offshore New Zealand, to 43 

image and date a large central volcanic edifice, overlying volcanic and/or hydrothermal vents, and 44 



 

 

other fluid escape structures. The main volcanic edifice formed in the Late Cretaceous, above 45 

which three, vertically stacked volcanic and/or hydrothermal vents formed between ~75 Ma and 46 

~56 Ma, seemingly sharing the same fluid migration pathway. In strata above these stacked vents 47 

are: (1) an erosional depression (a pockmark), which probably formed due to surficial fluid escape 48 

at ~49 Ma; and (2) a series of high-amplitude, negative-polarity reflections in shallower strata (~21 49 

Myr old) that we suggest represent younger gas accumulations. Our analysis suggests that fluid 50 

escape structures and migration pathways were reutilized on multiple occasions over a prolonged 51 

time (~54 Myr), thereby influencing the distribution of fluids. 52 

2 Geological Setting 53 

Our study area is located within the Great South Basin (GSB), which is a rift basin located 54 

offshore the southern tip of the South Island of New Zealand (Fig. 1). The GSB covers an area of 55 

~100,000 km2 with present water depths of ~300 m to ~1000 m, and a maximum sedimentary 56 

sequence thickness of ~8.5 km (Evans, 1982; Killops et al., 1997). This rift basin formed during 57 

the Cretaceous breakup of Gondwana and comprises a series of graben and half-graben (Figs. 1a) 58 

(Cook et al., 1999).  59 

The syn-rift Hoiho Group (Late Cretaceous) deposited along the axis of graben is mainly 60 

composed of terrestrial conglomerates, sandstones, shales, and coals (e.g., Killops et al., 1998; 61 

Mitchell et al., 2009) (Fig. 2). The Hoiho Group has been penetrated by several wells (e.g. the 62 

Tara-1 and Hoiho-1C) and is considered to be the principal hydrocarbon source rock in the GSB 63 

(Beggs et al., 1990). Post-rift strata marking a transition from a continental to marine environment 64 

were deposited between Late Cretaceous and Late Eocene, and can be sub-divided into the Pakaha 65 

Group (Late Cretaceous - Late Paleocene) and the Rakiura Group (Eocene) (Figs. 2-3) (Cook et 66 

al., 1999). The Pakaha Group is composed of the Kawau Formation (Late Cretaceous), Wickliffe 67 

Formation (Late Cretaceous - Late Paleocene), Taratu Formation (Late Cretaceous), and Tartan 68 

Formation (Late Paleocene - Paleocene) (Fig. 2). The Kawau Formation is mainly composed of 69 

transgressive sandstones and directly overlies the Hoiho Group and basement (Osli et al., 2018; 70 

Sahoo et al., 2022; Schiøler et al., 2010); the Kawau Formation is widely developed across the 71 

GSB and serves as the main reservoir and lateral migration pathway for fluids (Killops et al., 1997) 72 

(Fig. 2). The Wickliffe Formation is mainly composed of shale and clays (Chenrai, 2016; 73 

Meadows, 2009), whereas the Taratu Formation is mainly composed of organic-rich clays and thus 74 

forms one of the oil-prone formations in the basin (Osli et al., 2018; Shalaby et al., 2019). The 75 

Rakiura Group can be divided into the Laing Formation (clays) (Eocene) and the Tucker Cove 76 

Formation (marls) (Eocene) (Morley et al., 2017; Viskovic, 2010) (Fig. 2).  77 



 

 

Intraplate igneous activity has occurred periodically across New Zealand, both onshore and 78 

offshore (e.g. Barrier et al., 2021; Field et al., 1989; Hoernle et al., 2006, 2020; Omosanya et al., 79 

2021; Timm et al., 2009). Previous studies have divided the igneous activity across New Zealand 80 

into four stages that corresponded to different tectonic periods (e.g., Barrier et al., 2021; Bischoff 81 

et al., 2020). For example, syn-rift volcanism (105-83 Ma) associated with lithospheric thinning 82 

and rifting caused by the break-up of Gondwana is observed across the Canterbury Basin (e.g. the 83 

XXX) (Bischoff et al., 2020; Field et al., 1989; van der Meer et al., 2017). After rifting, the South 84 

Island of New Zealand entered a period of intense magmatic activity (83-66 Ma), caused by the 85 

separation of Zealandia from Australia and Antarctica (Barrier et al., 2021; Bischoff et al., 2020). 86 

Large volcanoes and volcanic fields formed during this period, such as the main edifice of Tuatara 87 

Volcanic Field (TVF) and associated sills and vents in the GSB (Phillips & Magee, 2020) and the 88 

Galleon Volcanics (GV) in the offshore Canterbury Basin (Fig. 1a) (Tulloch et al., 2009). Igneous 89 

activity at the Tuatara Volcanic Field continued periodically into the Early Eocene (to ~45 Ma), 90 

during post-rift tectonic quiescence (Omosanya et al., 2021; Phillips & Magee, 2020). Other 91 

monogenetic volcanic fields formed in the southwestern Pacific Plate (e.g. the Waiareka-Deborah 92 

in New Zealand) during the Cenozoic (60-30 Ma), which was defined as diffuse intraplate 93 

volcanism (Bischoff et al., 2020; Finn et al., 2005; Németh & Kereszturi, 2015; Scott et al., 2020). 94 

The Papatowai Volcanic Field (PVF) in the GSB was formed during this period and covered an 95 

area of >1600 km2 (Bischoff et al., 2020) (Fig. 1). After the Miocene, intense magmatic activity 96 

occurred onshore and offshore New Zealand associated with the Hikurangi subduction zone and 97 

dextral strike-slip transgression along the Alpine Fault (Barrier et al., 2021; Bischoff et al., 2020; 98 

Omosanya et al., 2021; Nicol et al., 2007). 99 

3 Data and Method 100 

We use high-resolution, time-migrated 3D seismic reflection data (the Twahaki-Rigel 3D) from 101 

offshore the southern tip of the South Island of New Zealand (Fig. 1). The seismic survey covers 102 

an area of ~4880 km2 and was acquired between late 2011 and early 2012, using eight 6 km long 103 

streamers. The data has a bin spacing of 6.25 × 37.5 m, a record length of 9.2 s, and a sampling 104 

interval of 2 ms (resampled to 4 ms in the final processed data). The seismic data is zero-phase 105 

processed and is displayed with the Society of Exploration Geophysicists (SEG) standard polarity, 106 

whereby a downward increase in acoustic impedance (a function of rock velocity and density) 107 

corresponds to a positive reflection event (red on seismic profiles) (Brown, 2011). Bertoni et al. 108 

(2019) report that the vertical resolution of the seismic data is ~10 m in the shallow subseafloor 109 

between ~1-2 s TWT, and is ~15-20 m between 2-3 s TWT. 110 

We mapped nine regional stratigraphic boundaries/horizons: H2 (~21 Ma), T70 (~35 Ma), T60 111 

(~42 Ma), T50 (~49 Ma), T10 (~56 Ma), H1 (~60 Ma), K100 (~66 Ma), K80 (~75 Ma), and K50 112 



 

 

(~83 Ma) (Figs. 2-3). Horizon K50 represents the end of rifting, with horizons K100, T10, and 113 

T70 marking the tops of the Cretaceous, Paleocene, and Eocene successions, respectively. Mapped 114 

horizons, except for H1 and H2, were assigned an age based on previously reported 115 

biostratigraphic data from 14 offshore wells (Bertoni et al., 2018, 2019; Blanke, 2015; Hunt 116 

International Petroleum Co. NZ, 1977a, 1977b, 1977c, 1978a, 1978b, 1978c; Placid Oil Company, 117 

1984a, 1984b; Sahoo et al., 2020, 2022; Schiøler & Raine, 2009; Schiøler et al., 2011, 2012, 2017) 118 

(Fig. 2). The ages of Horizon H1 and H2 were estimated from the strata thickness to the upper and 119 

lower adjacent horizons (e.g., T10, K100 and T70), with the assumption that the sedimentation 120 

rates were consistent.  121 

To help characterize possible fluid escape structures (e.g. mounded structures), we extracted 122 

envelope and root mean square (RMS) attributes and variance slices from the 3D seismic volume. 123 

The envelope is the total instantaneous energy of the analytic signal (the complex trace), which is 124 

proportional to the reflection coefficient, and it is useful to identify discontinuities, lithologic 125 

variations, and faults (Alves et al., 2015; Subrahmanyam and Rao, 2008). The RMS is a seismic 126 

attribute that is commonly used to identify amplitude anomalies, whereas variance characterizes 127 

differences in adjacent traces so highlights amplitude anomalies and discontinuities (e.g. faults, 128 

igneous bodies, and channels) (Brown, 2011; Marfurt & Alves, 2014). 129 

4 Results 130 

4.1 Seismic characteristics of mounded structures 131 

We observe a central edifice that comprises a series of stacked (up to 660 ms TWT thick), 132 

discontinuous, often strata-concordant, low-to-high amplitude reflections developed at K50 (Fig. 133 

3). Beneath this central edifice, seismic reflections are poorly imaged and appear blanked, likely 134 

because overlying higher amplitude reflections have absorbed and/or scatted the seismic energy 135 

(Fig. 3); the basal surface of the central edifice thus cannot be confidently identified. The central 136 

edifice has a diameter of ~20 km and covers ~157 km2 in the study area, although only part of the 137 

central edifice is imaged by our seismic data (Fig. 3). The top of the central edifice is marked by 138 

positive-polarity reflections and is onlapped by strata between horizons K50 and K80 (Fig. 3). 139 

Within the central edifice, conical-like structures are apparent that internally comprise have weak-140 

to-chaotic seismic reflections (Fig. 3).  141 

Four mounded structures are observed above the central edifice, within a vertical zone of chaotic 142 

and dim seismic imaging, and we name them M1 to M4 from the oldest to the youngest (Figs. 4-143 

5, S1-S4). M1 appears to sit on top of the central edifice and Horizon K80 (~75 Ma), and has a 144 

diameter of ~1.6 km and area of ~2.01 km2 (Figs. 3, 4, and 5a). It has a height of ~810 ms TWT. 145 

M2 is located ~2 km to the west of M1 (Figs. 3-4), and directly sits on top of Horizon K100 (~66 146 



 

 

Ma; Fig. 5b). Among the four mounded structures, M2 has the largest diameter of ~3.8 km and 147 

covers an area of ~11.34 km2. M2 has a maximum height of ~900 ms TWT. M3 is located directly 148 

on Horizon H1 (~60 Ma), and has a diameter of ~2.0 km, and an area of ~ 3.14 km2 (Fig. 5c). M3 149 

is ~250 ms TWT high. M4 sits on Horizon T10 (~56 Ma), 90 ms TWT above the summit of M1, 150 

and is the smallest and youngest mounded structure; it covers an area of ~1.77 km2, and has a 151 

height of 140 ms TWT (Fig. 5d). M1, M3, and M4 are vertically stacked and although they occur 152 

within a vertical seismically chaotic zone (see details in the next section), they can be confidently 153 

identified from their conical shapes, sub-horizontal bases, and onlapping seismic reflections (Figs. 154 

5-6, S1-S4). The tops of the mounded structures are usually characterized by weak, continuous, 155 

positive-polarity seismic reflections (M1, M3, and M4; Figs. 5a, 5c-5d). However, a strong, 156 

continuous, negative top is observed at M2 (Fig. 5b). The bases of mounded structures are flat or 157 

rugose, with positive-polarity seismic reflections. Interiors of mounded structures are 158 

characterized by chaotic seismic reflections (Fig. 5). 159 

4.2 Depression and amplitude anomalies 160 

A vertical chaotic zone, a sub-circular depression, and several high amplitude anomalies are 161 

observed in the study area above the mounded structures (Figs. 3, 4, and 6-7). The vertical chaotic 162 

zone is ~1.5 km wide and extends downward to Horizon T70, across the mounded structures, and 163 

to the central edifice (Fig. 6).  A sub-circular depression with a diameter of 2.5 km and a depth of 164 

200 ms TWT occurs at T50. This depression is situated ~300 ms TWT above M4 and it truncates 165 

underlying reflections (Figs. 6a-6c and 7). Strata within the depression onlap onto its side, and are 166 

characterized by high-amplitude seismic reflections (Figs. 6a-6b). Stacked high-amplitude, 167 

negative-polarity seismic anomalies occur at and around the top of the vertical chaotic zone 168 

between horizons T50 and T70 (Figs. 7-8). Some isolated high amplitude anomalies with diameters 169 

of 0.6-1.0 km also occur above Horizon T70 and can reach up to Horizon H2 (~21 Ma; Fig. 8). 170 

These amplitude anomalies are sub-circular in plan-view and, on average, have areas of ~0.4 km2. 171 

5 Discussion 172 

5.1 Mounded structure origins 173 

The stacked, discontinuous, positive polarity, often strata-concordant, low-to-high amplitude 174 

internal seismic reflections of the up to 660 ms TWT thick, >157 km2 central edifice are similar to 175 

those of nearby volcanic complexes, such as the Tuatara Volcanic Field (Phillips & Magee, 2020) 176 

and the Papatowai Volcanic Field (Bischoff et al., 2020). Therefore, we interpret the central edifice 177 

as a volcanic field; the conical structures within the edifice are likely volcanic vents and the strata-178 

concordant, high-amplitude reflections are probably eruptive products like lava flows (Fig. 3). 179 



 

 

Based on seismic-stratigraphic onlap relationships, this volcanic field seemingly formed at K50 180 

(83 Ma) and may have been active up to Horizon K80 (~75 Ma) (Fig. 3).  181 

Seismic reflections onlapping onto the flanks of the mounded structures above the central edifice 182 

indicate that they formed at the free surface and were subsequently buried by sediment (Figs. 6c 183 

and 6f) (e.g. Hansen, 2006; Magee et al., 2021; Rateau et al., 2013; Smallwood & Maresh, 2002; 184 

Trude et al., 2003). No boreholes have penetrated M1-M4, and thus their ages cannot be directly 185 

dated. Yet by dating the age of onlapping and underlying reflections we can constrain the relative 186 

ages of the mounded structures, and thus suggest M1-M4 formed at ~75 Ma, ~66 Ma, ~60 Ma, 187 

and ~56 Ma, respectively (Fig. 5). 188 

Mounded structures like M1-M4 are common in sedimentary basins and they have several 189 

possible origins, including carbonate buildup, mud volcanism, igneous volcanism, and 190 

hydrothermal venting (e.g., Burgess et al., 2013; Kirkham et al., 2018; Magee et al., 2013; 191 

Reynolds et al., 2017; Schofield & Totterdell, 2008). Carbonate buildups usually reflect the 192 

accumulation of organisms, such as reefs and algae, and in shallow-marine settings can have a 193 

mounded appearance (Heckel, 1974). However, although deep-water carbonate buildups have 194 

occasionally been reported, they do not form mounded structures with km-scale diameters and 195 

hundred m-scale heights (e.g., Vlahović et al., 2005). Given our study area was situated in a deep-196 

water regime since ~75 Ma (Higgs et al., 2021; Killops et al, 1997; Osli et al., 2018; Shalaby et 197 

al., 2019), and the scale of the mounded structures mapped, we consider it unlikely that the 198 

mounded structures represent carbonate buildups.  199 

Mud volcanoes usually occur above massive muddy deposits (Dimitrov, 2002; Mazzini & 200 

Etiope, 2017). Based on our interpretation, M1 likely sits on a volcanic field comprising stacked 201 

lavas and volcaniclastics, perhaps with some interbedded sedimentary strata (Phillips and Magee, 202 

2020). The presence of predominantly igneous material beneath M1 and the thin stratal layers 203 

between the volcanic field and other mounded structures (especially M1 and M2), would likely 204 

limit the availability of mud, implying the mounded structures are probably not mud volcanoes 205 

(Figs. 3 and 6).  206 

Igneous volcanoes mainly comprise crystalline lavas or volcaniclastic rocks that are typically 207 

denser and have higher seismic velocities than those of surrounding sedimentary rocks (e.g., 208 

Calvès et al., 2011). We thus expect buried igneous volcanoes to show high-amplitude, positive 209 

seismic reflections at their tops (cf., Magee et al., 2013; Reynolds et al., 2018; Sun et al., 2019; 210 

Zhao et al., 2016). Yet we observe moderate-to-weak seismic reflections across the tops of M1-211 

M4, as well as the negative top of M2 (Figs. 5b and 6d), which seem inconsistent with an igneous 212 

volcano origin. However, we note that M1, M3, and M4 occur in a vertical chaotic zone where the 213 

seismic reflection data is dimmer than elsewhere, which may have muted the amplitude response 214 



 

 

of these mounded structures; i.e. we cannot rule out that they are volcanic vents. We also recognize 215 

that the negative polarity top of M2 could reflect the presence of an altered hyaloclastite layer 216 

blanketing the mound, whereby the alteration has reduced its density and seismic velocity to below 217 

that of the overlying Paleocene strata (Ellefsen et al., 2010). Alternatively, our mounded structures 218 

also appear similar to hydrothermal vents, which usually contain chaotic internal seismic 219 

reflections, have conical/crater/eye-like shapes, and weak-moderate tops (usually positive 220 

polarity), such as those documented in the offshore southern Australia (Jackson, 2012), the Møre 221 

Basin (Kjoberg et al., 2017; Planke et al., 2005) and the Qiongdongnan Basin (Wang et al., 2019). 222 

If M1, M3, and/or M4 are hydrothermal vents, their flat bases (Figs. 5b-5d) would suggest the 223 

fluids were probably released slowly from the subsurface into the overlying water column,  and 224 

thus they did not eject shallow sediments to form a crater (Planke et al., 2005). Hydrothermal vents 225 

are often related to underlying magma intrusions (cf., Jackson, 2012; Planke et al., 2005). Although 226 

we observe no sills that directly connect to M1-M4, the presence of these vents above the volcanic 227 

field may suggest that magmatism, or at least the generation and migration of hydrothermal fluids 228 

within this area, occurred after the formation of main edifice in the volcanic field.   229 

5.2 Reutilization of fluid escape structures  230 

Because M1, M3, and M4 are vertically stacked and appear within the same vertical chaotic 231 

zone (Figs. 4, 6, and 9a), it seems reasonable to suggest that the younger vents may have reutilized 232 

the fluid feeder conduits of older vents; i.e. fluid flow was focused by pre-existing structures for 233 

~17 Myrs. Roelofse et al (2021) similarly showed two stacked hydrothermal vents in the Modgunn 234 

Arch of the Norwegian Sea, formed at Late Cretaceous and Late Paleocenes, supporting our 235 

interpretation that hydrothermal fluid pathways can remain open for prolonged periods.  236 

We observe that the vertical chaotic zone continues above M4 and is associated with stacked 237 

high-amplitude, negative polarity anomalies up to Horizon T70 (Fig. 6); together, these features 238 

resemble the typical seismic characteristics of gas chimneys and free gas (Cartwright & 239 

Santamarina, 2015; Gross et al., 2018; Løseth et al., 2011). In such systems, vertical chaotic zones 240 

like we observe are caused by the absorption of acoustic energy in overlying high-amplitude strata, 241 

which hinders the downward transmission of energy to the underlying fluid feeder system (Roy et 242 

al., 2016). Considering the gas accumulates within strata as young as Horizon H2 (~21 Ma), at 243 

least some gas-charging events were younger than ~21 Ma.  244 

The depression observed within the gas chimney at Horizon T50 shows evidence of erosion as 245 

it truncates underlying reflections and contains reflections that onlap onto its sides (Figs. 7a-7b); 246 

these features suggest the depression formed at the contemporaneous seafloor at ~49 Ma, perhaps 247 

in response to fluid escape (c.f., Cartwright, 2007). We specifically interpret the depression as a 248 



 

 

pockmark because its bowl-like geometry, size, and seismic-stratigraphic relationship are similar 249 

to pockmarks observed elsewhere (Ho et al., 2018; Velayatham et al., 2018).  250 

Because there are no borehole samples available from the interpreted ~49-21 Myr old gas 251 

chimney, pockmark, or free gas anomalies, we cannot ascertain the composition of the fluids 252 

involved in their formation, but we consider three possible origins: 1) hydrothermal fluids (e.g., 253 

CO2) related to magmatic activity, perhaps similar to those that may have generated M1-M4 if 254 

they are hydrothermal vents (Niyazi et al., 2021; Sharma & Srivastava, 2014); 2) hydrocarbons 255 

generated from source rocks of the Hoiho Group (Killops et al., 1997; Omosanya & Harishidayat, 256 

2019; Shalaby et al., 2019); or 3) a mixture of the above-mentioned two sources. With regards to 257 

hydrothermal activity, we note that there was a regional reduction in magmatic activity during 258 

tectonic quiescence between 66 Ma and 30 Ma (Bischoff et al., 2020). Such waning hydrothermal 259 

and magmatic activity may suggest the gas chimney and free gas anomalies, as well as the 260 

pockmark, did not form in response to hydrothermal fluid escape. Instead, it seems plausible that 261 

the fluid escape structures and free gas were produced by the release of hydrocarbons. We suggest 262 

that the porous sandstone of the Kawau Formation, which surrounded the volcanic field in the 263 

study area, and/or the fluid plumbing system of the hydrothermal vents M1, M3, and M4 may have 264 

provided a pathway for hydrocarbon migration from the deep-seated source rocks in the Hoiho 265 

Group (Figs. 7b and 9b). The migrating hydrocarbons may have temporarily accumulated around 266 

the peak of M4, because of its mounded morphology. When the overpressure exceeded the yield 267 

strength of overlying strata, the gas chimney (hydraulic fracturing) would have developed above 268 

M4. The explosive release of overpressured fluids through the gas chimney may have led to the 269 

disaggregation and expulsion of unconsolidated, shallow seabed sediments to form the observed 270 

pockmark (Figs. 7 and 9b). The widespread free gas anomalies, which extend upwards to Horizon 271 

H2 suggest that the gas chimney was active, either continuously or episodically, until at least to 272 

~21 Ma (Horizon H2) (Fig. 9c). 273 

Overall, our interpretation suggests that the M1, M3, and M4 vents and their plumbing system 274 

were utilized for fluid flow over 54 Myrs. The longevity of fluid flow pathways probably played 275 

important roles (providing hydrocarbon migration pathways) in linking the source rocks to the 276 

overlying reservoirs when the source rocks were deeply buried (mature), such as those in the Faroe-277 

Shetland basins (Schofield et al., 2017) and the South China Sea (Sun et al., 2020a). Therefore, 278 

the longevity of fluid flow pathways may promote the accumulation of fluids (e.g. hydrocarbon). 279 

However, the longevity of fluid flow may also trigger seabed instability, when the transported 280 

fluids accumulate within the shallow strata or erupt onto the seabed. In general, reassessment of 281 

the hydrocarbon/geothermal exploration and geohazard assessment may be needed, where the 282 

longevity and reutilization of fluid flow pathways occur. 283 



 

 

6 Conclusions 284 

We examine a series of vertically stacked and connected fluid escape structures using high-285 

resolution 3D seismic reflection data from the Great South Basin, offshore the South Island of 286 

New Zealand. Specifically, we recognize four hydrothermal and/or volcanic vents located above 287 

a huge ancient volcanic field formed in the Late Cretaceous. The hydrothermal and/orvolcanic 288 

vents formed periodically at ~75 Ma, ~66 Ma, ~60 Ma, and ~56 Ma, respectively. Fluid flow 289 

features including a gas chimney, a pockmark, and gas-charged strata are observed above these 290 

stacked vents and at least formed between ~49 Ma and ~21 Ma. The observed stacking of vents, a 291 

pockmark, and gas accumulations suggests that the fluid escape pathway was probably re-used 292 

multiple times over 54 Myr. This study indicates that reutilization of fluid flow pathways can 293 

control the distribution of fluids within basins over prolonged periods. 294 

 295 
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Figure Captions 601 

Figure 1. (a) Locations of the Great South Basin (GSB) and the study area (modified from the 602 

New Zealand Petroleum and Minerals, 2014). The central edifice (CE; red dashed line), the 603 

Tuatara volcanic field (TVF; Phillips & Magee, 2020) and the Papatowai volcanic field (PVF; 604 

Bischoff et al., 2020) are marked with; (b) Time-structure map of Horizon T50 (~49 Ma). 605 

Locations of mounded structures (M1 - M4) and figures used in this study are labelled. 606 

Figure 2. Schematic diagram of the Great South Basin (modified from Killops et al., 1997; Cook 607 

et al., 1999; Meadows, 2009). The horizons and locations of wells with radiometric ages are 608 

from Bertoni et al. (2019), Sahoo et al. (2022) and Schiøler et al. (2010), respectively. MA: 609 

magmatic activities; SDMA: Subduction-related magmatic activities; DIMA: Diffuse intraplate 610 

magmatic activities; PRMA: Post-rift magmatic activities; SRMA: Syn-rift magmatic activities. 611 

Figure 3. Seismic profile (a) and its interpretation (b). Seismic horizons and main features 612 

including the central edifice (CE), mounded structures (M1, M2, M3 and M4), a vertical chaotic 613 

zone (VCZ), a depression (D1) and high-amplitude seismic anomalies (AAs) in the study area 614 

are labelled. See location in Figure 1. 615 

Figure 4. 3D map showing the central edifice (CE), mounded structures (M1-M4), vertical 616 

chaotic zone (VCZ) and depression (D1) to display their spatial relationship. Mounded structures 617 

M1, 3 and 4 are vertically stacked. 618 

Figure 5. (a), (b), (c) and (d) Seismic profiles showing the characteristics of mounded structures 619 

(M1, M2, M3 and M4). Onlapping seismic reflections could be identified on the flanks of these 620 

mounded structures; (e), (f), (g) and (h) amplitudes envelope of mounded structures; (i), (j), (k) 621 

and (l) showing the 3-D shapes of mounded structures. The white dashed lines are the locations 622 

of seismic profiles shown in (a)-(h). 623 

Figure 6. Seismic profiles (a and d), amplitude envelopes (b and e) and their associated 624 

interpretation (c and f) showing the characteristics of mounded structures (M1, M2, M3 and M4), 625 

a vertical chaotic zone (VCZ), a depression (D1) and high-amplitude anomalies (AAs). The 626 

mounded structures present as conical bodies in the amplitude envelops, and onlapping seismic 627 

reflections are observed at their flanks. 628 

Figure 7. Seismic characteristic of the depression (D1) in the study area. (a) and (b) Seismic 629 

profiles crossing through the depression. Sediments within the depression onlap onto its flanks; 630 

(c) 3-D morphology of the depression; (d) Coherence slice of 2040 ms (TWT: two-way travel 631 

time). 632 



 

 

Figure 8. (a) Seismic profile shown the characteristics of depression (D1) and high-amplitude 633 

anomalies (AAs); (b-d) RMS amplitude attributes extracted along the blue dashed line (T70), 634 

black dashed line and cyan dashed line (H2) in (a). Seismic amplitude anomalies (AAs) show as 635 

high values (warm color). 636 

Figure 9. Evolution model of the hydrothermal vents and focused fluid flow system in the study 637 

area. (a)-(c) Formation of hydrothermal vents M1 (~75 Ma), M2 (~66 Ma) and M3 (~60 Ma) 638 

above the volcanic field; (d) Formation of hydrothermal vent M4 (~56 Ma). M1, M3 and M4 639 

shared the same hydrothermal fluid pathway; (e) Fluids firstly accumulated at the peak of 640 

hydrothermal vent (M4) and then escaped onto the paleo-seabed to form the pockmark (D1) 641 

through the vertical fluid migration pathway (VCZ) in the Early Eocene (~49 Ma); (f) Fluids 642 

continued to migrate upward and charged into the strata as young as ~21 Ma (Horizon H2). 643 
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Figure 1. (a) Map showing the region bathymetry of New Zealand and location of offshore 

volcanoes; (b) Locations of the Great South Basin (GSB) and the study area (modified from the 

New Zealand Petroleum and Minerals, 2014); (c) Time-structure map of Horizon T50 (~49 Ma). 

Locations of the central edifice (CE; red dashed line), mounded structures (M1 - M4) and figures 

used in this study are labelled. RNB: Reinga Northland Basin (XX Ma); DWTB: Deep-water 

Taranaki Basin; TB: Taranaki Basin; GSB: Great South Basin; CB: Canterbury Basin; BT: 

Bounty Trough; NWVB: Northland-Mohakatino volcanic belts; AVC: Aotea volcanic complex; 

WNVF: West Ngatutura volcanic filed; VRVZ: Vulcan-Rommey volcanic belts; KVF: Kaiwero 

volcanic field; MVF: Maahunui volcanic field; GV: Galleon Volcanics; SVC: Sloop volcanic 

field; EVF: East Waiareka-Deborah volcanic field; DV: Dunedin volcano;  TVF: the Tuatara 

volcanic field; TEVF: Tapuku East volcanic complex; PVF: the Papatowai volcanic field; ToVF: 

Toroa volcanic field. (Bischoff et al., 2020; Phillips&Magee, 2020; Tulloch et al., 2009). 

  



 

 

 

Figure 2. Schematic diagram of the Great South Basin (modified from Killops et al., 1997; Cook 

et al., 1999; Meadows, 2009). The horizons and locations of wells with radiometric ages are 

from Bertoni et al. (2019), Sahoo et al. (2022), Schiøler et al. (2010), respectively. MA: 

magmatic activities; SDMA: Subduction-related magmatic activities; DIMA: Diffuse intraplate 

magmatic activities; PRMA: Post-rift magmatic activities; SRMA: Syn-rift magmatic activities. 

  



 

 

 

Figure 3. Seismic profile (a) and its interpretation (b). Seismic horizons and main features 

including the central edifice (CE), volcanic cone (VC), mounded structures (M1, M2, M3 and 

M4), a vertical chaotic zone (VCZ), a depression (D1) and high amplitude anomalies (AAs) in 

the study area are labelled. See location in Figure 1. 

 

  



 

 

 

Figure 4. 3D map showing the central edifice (CE) in the study area, mounded structures (M1-

M4), vertical chaotic zone (VCZ) and depression (D1) to display their spatial relationship. 

Mounded structures M1, 3and 4 are vertically stacked. 

  



 

 

  

 

Figure 5. (a), (b), (c) and (d) Seismic sections showing the characteristics of mounded structures 

(M1, 2, 3 and 4). Onlapping seismic reflections could be identified on the flanks of these 

mounded structures. (e), (f), (g) and (h) Amplitudes envelope of mounded structures; (i), (j), (k) 

and (l) Showing the 3-D shapes of mounded structures. The white dashed lines are the locations 

of seismic sections shown on (a)-(h). 

  



 

 

 

Figure 6. Seismic profiles (a and d), amplitude envelopes (b and e) and their associated 

interpretation (c and f) showing the characteristics of mounded structures (M1, M2, M3 and M4), 

a vertical chaotic zone (VCZ), a depression (D1) and high amplitude anomalies (AAs). The 

mounded structures present as conical bodies in the amplitude envelops, and onlapping seismic 

reflections are observed at their flanks. 

  



 

 

 

Figure 7. Seismic characteristic of the depression (D1) in the study area. (a) and (b) Seismic 
profiles crossing through the depression. Sediments within the depression onlapped onto its 
boundaries; (c) 3-D morphology of the depression; (d) Coherence slices of 2040 ms (twt). 

  



 

 

 

Figure 8. (a) Seismic profile shown the characteristics of depression (D1) and high amplitude 

anomalies (AAs). (b-d) RMS amplitude attribute extracted along the blue dashed line (T70), 

black dashed line and cyan dashed line (H2). Seismic amplitude anomalies (AAs) show as high 

values (warm color) 

  



 

 

 

Figure 9. Evolution model of the hydrothermal vents and focused fluid flow system in the study 

area. (a)-(c) Formation of hydrothermal vents M1  (~75 Ma), M2 (~66 Ma) and M3 (~60 Ma) 

above the volcanic field; (d) Formation of hydrothermal vent M4 (~56 Ma). M1, M3 and M4 

shared the same hydrothermal fluid pathways; (e) Fluids firstly accumulated at the peak of 

hydrothermal vent (M4) and then escaped onto the paleo-seabed to form the pockmark (D1) 

through the vertical fluid migration pathway (VCZ) in the Early Eocene (~49 Ma); (f) Fluids 

continued to migrate upward and charge strata as young as those of Horizon H2 (~21 Ma) 


