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A B S T R A C T

Real-world facility planning problems often require to tackle simultaneously network connectivity and zonal
requirements, in order to guarantee an equitable provision of services and an efficient flow of goods, people
and information among the facilities. Nonetheless, such challenges have not been addressed jointly so far.
In this paper we explore the introduction of advanced network connectivity features and spatial-related
requirements within Covering Location Problems. We adopt a broad modelling perspective, accounting for
structural and economic aspects of connectivity features, while allowing the choice for one or more facilities
to serve the facility networks as depots, and containing the maximal distance between any active facility and
such depot(s). A novel class of Multi-objective Covering Location problems are proposed, utilising Mixed Integer
Linear Programming as a modelling tool. Aiming at obtaining efficiently the arising Pareto Sets and providing
actionable decision-making support throughout real planning processes, we adapt to our problem the robust
variant of the AUGMEnted 𝜀-CONstraint method (AUGMECON-R). Furthermore, we exploit the mathematical
properties of the proposed problems to design tailored Matheuristic algorithms which boost the scalability of
the solution method, with particular reference to the case of multiple depots. By conducting a comprehensive
computational study on benchmark instances, we provide a thorough proof of concept for the novel problems,
highlighting the challenging nature of the advanced connectivity features and the scalability of the proposed
Matheuristics. From a managerial standpoint, the suitability of the proposed work in responding effectively to
the motivating needs is showcased.

1. Introduction

The integration of spatial and connectivity modelling features within
classic Location Analysis problems allows for extending their practi-
cal impact and tackling in a more accurate manner many classes of
decision-making problems occurring in both the private and public
sectors (Ko et al., 2015). The aim of the present research is to enable
the use of optimisation-based decision support methods for those real-
world situations that require to optimally locate a set of facilities
whilst coping with advanced network connectivity features and zonal
requirements arising from specific administrative, managerial, and
operational needs. Some natural examples of such situations take place
for instance in the field of Healthcare Management: e.g. the adoption
of location models is meant to support an optimal design of large scale
vaccination campaigns or to efficiently organise a massive collection
of medical samples from a large population for analyses. In the former
case, in order to meet the immunisation demand of a given community,
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it is necessary to install one or more vaccination centres for each

administrative district; additionally, each active centre needs to be

provided with an efficient and prompt supply of vaccines (Shukla et al.,

2022). As witnessed during the recent Covid-19 pandemic, such a

provision poses a number of daunting challenges in terms of cold supply

chain management: indeed, most of the adopted vaccines require very

low conservation temperatures, making it paramount to contain the trip

length – and hence the travel time – from the logistics depots to the

vaccination centres. In the latter case instead, due to the specimens per-

ishable nature, to ensure valid mass screening it is not only necessary to

install one or more sample collection units within each administrative

district, but also to guarantee a timely and quick delivery of samples

to one or more facilities equipped as analyses laboratory. Even in

Waste Management, the location of facilities providing fundamental

public services has to be designed addressing zonal requirements and

guaranteeing suitable connectivity of the resulting network of facilities.
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For instance, this is the case for the location of Household Waste
Recycling Centres, which provide a reuse and recycling service to the
residents of municipal districts (WRAP, 2018a,b). These centres receive
large quantities of selected materials that cannot be collected by the
door-to-door system, and, once sorted, the collected waste is shipped
to end points (e.g. landfills and incinerators) via trucks. When it comes
to transport hazardous waste, it is of paramount importance to limit
the trip length to the final destinations, given the dangerous nature
of the materials and the fact that transport generally takes place on
public roads, highways and railways (EPA, United States Environmental
Protection Agency, 2022).

Indeed, in all these examples the zones are intended as administra-
tive districts or municipalities; this choice is instrumental at addressing
all those real-world problems arising, for instance, when public author-
ities, such as local or regional councils and territorial authorities, need
to cope with the optimal design of public facilities networks, securing
as much as possible equity and quality in the service provision across
different municipalities, counties or district councils.

These examples showcase the potential benefits deriving from in-
tegrating classic Covering Location problems with joint zonal require-
ments and advanced connectivity features while locating a set of fa-
cilities and selecting among them special nodes serving as depots.
More in general, spatial equity and zonal distribution represent major
concerns to address when locating either desirable or obnoxious facilities
in widespread areas characterised by local and regional divisions,
including health districts, counties, and neighbourhoods. Disregarding
these types of constraints might result for instance in solutions that
favour urban areas and those with a high demographic density to the
disadvantage of rural areas (Chukwusa et al., 2019).

Before proceeding with an overview of related literature, we would
like to clarify that in the rest of the paper, the terms located and
active will be used as synonyms when referring to installed facilities. In
the extant literature, spatial-related requirements have been addressed
only for a restricted subclass of Location problems: in their seminal
paper Revelle and Elzinga (1989) formulated the 𝑝-median problem in
which the reference area is divided in non-overlapping zones and, for
each zone, at least one facility has to be located. Also, in their model,
each active facility is enabled to cover only the demand points lying
in the corresponding zone. By contrast, demand can be covered by the
nearest active facility – independently on the zone – in the 𝑚-median
and 𝑚-centre problems defined in Berman et al. (1991). In addition,
they addressed the case of overlapping and not contiguous zones.
Instead, Church (1990) modelled a variant of the 𝑝-median problem
in which regional requirements are employed to limit the number of
facilities in each zone. Later on, Gerrard and Church (1994) addressed
this same problem with a Multi-objective formulation, so as to detect
a trade-off between efficiency and equity. Additionally, Gerrard and
Church (1995) generalised the problem in Church (1990) by consider-
ing overlapping zones, while Murray and Gerrard (1997) also included
capacities for facilities in order to encompass workload balance.

On the other hand, connectivity features in Facility Location are
utilised to enable efficient flows of goods, people or information across
the set of located facilities. Typically, this is obtained through con-
straints that refer to distance-based properties within located facilities:
e.g. a threshold on the Euclidean distance between two facilities is
adopted as a tool to improve the quality of the overall connections
in Cherkesly et al. (2019). Additionally, the description of Covering and
Median Location problems with interconnected facilities is formalised
in that paper. Indeed, connectivity features in Location typically resort
to utilising specific graph topologies; in this regard, a reference paper
is the work of Demaine et al. (2009) on the design of a tree-structure
linking forest fire-fighters. Later on, the same environment was em-
ployed in Romich et al. (2015) to define a connected placement of
sensors. More recently, Blanco and Gázquez (2021) analysed different
topological structures for the continuous Maximal Covering Location
Problem with interconnected facilities.

However, in the scientific literature, connectivity features in Facility
Location have been addressed primarily either by considering the dis-
tances between allocated demand and located facility or from routing-
related and structural standpoints, whilst seeking to minimise service
and/or installation costs. Nonetheless, the exploration of spatial-related
requirements and connectivity constraints occurred so far only for a
limited range of Location problems and no contributions have yet
considered them jointly. Additionally, our analysis of the literature
revealed the following gaps.

G1. There exists an evident lack of a joint perspective accounting for
the structural, economic and operational aspects of connectivity
features in Facility Location.

G2. In connectivity features, no measure has yet been introduced to
contain the maximal distance, in the network connecting located
facilities, between each located facility and the one acting as root
of the network.

G3. The typical assumptions made on the network connecting active
facilities seem too restrictive as these rely on one single prede-
termined facility acting as root node and feeding all the located
facilities.

With these considerations in mind and aiming at representing and
addressing realistic and prominent challenges, in this paper we incor-
porate zonal requirements and advanced connectivity features into a
multiple objective framework for a key class of Location problems.
In particular, with reference to the highlighted gaps, mathematical
modelling features are introduced to:

1. embed interconnection costs among the objective functions;
2. extend the range of criteria considered to assess the quality of
facility interconnection;

3. allow for the selection of single or multiple nodes (i.e. facilities)
acting as root(s) (i.e. depots or distribution centres) for the
underlying network of active facilities.

Two original problems are introduced and mathematically charac-
terised: the Multi-objective Covering Location Problem with Zonal Require-
ments and Shortest Path Tree of Active Facilities (MoCLP-ZSPT), and the
Multi-objective Covering Location Problem with Zonal Requirements and
Shortest Path Forest of Active Facilities (MoCLP-ZSPF). In both cases, the
aim is to determine an optimal location of facilities with one facility
being active within each zone, while guaranteeing the minimisation of
the overall costs and the limitation of the maximum length of any path
from root to destination in the underlying network of active facilities.
Additionally, the MoCLP-ZSPT entails the choice of one root, while
multiple roots can be installed in the MoCLP-ZSPF. Fig. 1 shows a
feasible solution for an instance of the MoCLP-ZSPT.

Specific contributions of the present work are:

• the definition of two novel Multi-objective problems, to introduce
and concurrently represent advanced network connectivity fea-
tures and zonal requirements for the set of located facilities within
Covering Location problems;
• a complexity characterisation of the proposed problems along
with mathematical formulations based on Multi-objective Mixed
Integer Linear Programming (MILP) models;
• the adoption and tailored implementation of the robust version
of the Augmented 𝜀-constraint framework (AUGMECON-R) (Nikas
et al., 2020), as a tool for an exact yet efficient exploration of the
Pareto Set for medium sized instances;
• an original Heuristics exploiting the mathematical properties of
the considered problems to obtain good quality approximations
of the nadir points;
• original tailored Matheuristic algorithms exploiting the mathe-
matical properties of the considered problems to boost the scala-
bility of the solution approach, thus allowing to tackle large size
instances and particular configurations;
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Fig. 1. Region partitioned in zone; the figure shows the shortest path tree connecting a set of active facilities (blue triangles) and depicts in green the demand nodes covered by
these facilities.

• a thorough computational experimentation conducted on bench-
mark instances aimed at: providing a proof of concept of the pro-
posed models, detecting which problem features result most chal-
lenging and exploring the scalability of the solution approaches;
• the optimal design of connected networks of located facilities
providing maximal coverage for demand of services while ac-
counting for economic, strategic and operational aspects of the
interconnections.

In order to foster a smooth and progressive understanding of the novel
problem setting, along with its modelling features, we first introduce
the MoCLP-ZSPT, namely the version of the problem where only one
root (depot or distribution centre) is encompassed. In Section 2 we
detail the problem and propose a MILP formulation, whilst Section 3
outlines the proposed solution frameworks and Section 4 presents the
computational experiments, along with a thorough analysis of the
obtained results. The more general and convoluted MoCLP-ZSPF is
then presented in Section 5 providing a mathematical formulation,
detailing the ad-hoc designed Matheuristic procedure for this problem
and reporting the related computational experiments. Conclusions and
future lines of research are given in Section 6.

2. The Multi-objective Covering Location Problem with Zonal Re-
quirements and Shortest Path Tree of Active Facilities

The aim of this Section is to introduce the Multi-objective Covering
Location Problem with Zonal Requirements and Shortest Path Tree of
Active Facilities (MoCLP-ZSPT). Specifically, in Section 2.1 we provide
a description as well as a complexity characterisation of the problem,
while in Section 2.2 a Multi-objective MILP formulation is presented.

2.1. Problem description

Given a region divided into 𝐾 non-overlapping zones, a set of
facilities has to be located in order to satisfy demand of service for
that region. Formally, let 𝐺 = (𝑁,𝐸) be an undirected graph, with
𝑁 = 𝐼 ∪ 𝐽 , and 𝐼 ∩ 𝐽 = ∅, where 𝐼 denotes the set of demand nodes
and 𝐽 denotes the set of facility sites or candidates. Differently from the
related literature where the root is a fixed candidate (see e.g. Cherkesly
et al., 2019), we assume that each facility site can potentially play the
role of root within the network of active facilities, with the roots being
defined as follows.

Definition 1. A root facility is a special (active) facility which is
tasked to serve as a depot for active facilities or to feed them as a
distribution centre. Accordingly, in the following the terms root and
depot are used as synonyms. Note that with this definition the root
facility only provides an additional service to the network of facilities.
This means that, from a demand perspective, all facilities are of the
same type.

Additionally, let {𝐶𝑘}𝑘=1…𝐾 denote the partition of the set of nodes
induced by the non-overlapping zones, and suppose that each subset
contains at least one demand node and one candidate, as stated in
(1):

∪̇𝑘≤𝐾𝐶𝑘 = 𝑁, and 𝐶𝑘 ∩ 𝐼 ≠ ∅, 𝐶𝑘 ∩ 𝐽 ≠ ∅ ∀𝑘 ≤ 𝐾. (1)

Besides, 𝐸 = 𝐸𝐼𝐽 ∪ 𝐸𝐽 where 𝐸𝐼𝐽 = 𝐼 × 𝐽 contains all the edges
defining potential assignment of demands to facilities, while 𝐸𝐽 ⊂

𝐽 × 𝐽 contains all the edges connecting two distinct candidates. It is
worth emphasising how this leads to the subgraph 𝐺𝐽 = (𝐽 , 𝐸𝐽 ) being
complete.

We assume that each edge [𝑗, 𝑣] ∈ 𝐸𝐽 is labelled with a non-
negative cost 𝑐𝑗𝑣 and that these labels verify the triangular inequality
which is a quite common hypothesis in the literature on Location
Problems (Laporte et al., 2019).

Let 𝑑 ∶ 𝐸𝐼𝐽 ↦ R
+ denote the (e.g. Euclidean) distance function;

namely 𝑑([𝑖, 𝑗]) = 𝑑𝑖𝑗 denotes the distance from demand node 𝑖 ∈ 𝐼

to candidate 𝑗 ∈ 𝐽 ; then the set of candidates which can cover the
demand in 𝑖 is 𝑁𝑖 = {𝑗 ∈ 𝐽 ∣ 𝑑𝑖𝑗 ≤ 𝑆}, where 𝑆 is the coverage
radius, i.e. the distance beyond which a demand node is considered
uncovered. Additionally, let ℎ∶ 𝐼 ↦ R

+ be the demand function, e.g. ℎ𝑖
is the number of users to serve at node 𝑖, and let 𝑠∶ 𝐽 ↦ R

+ be the
non-negative facility activation cost function. Table 1 summarises the
introduced notations.

The MoCLP-ZSPT is based on the following set of decisions:

• selecting exactly one facility to be located for each zone;
• choosing the root among the located facilities (cf. Definition 1);
• selecting a tree stemming from the above root and connecting all
the located facilities.

The decision-making process is driven by the pursuit of the following
multiple objectives:

1. maximisation of the covered demand;
2. minimisation of the overall service costs, including the costs
of installing the facilities and those for connecting each active
facility to the root;

3. minimisation of the maximum length of any path, in terms of
connection costs, from the selected root to any leaf (i.e. active
facility) in the tree.

It is worthwhile highlighting the novelty and relevance of entailing the
choice of the root node in the decision-making process, given its impact
on the structural aspects of the interconnection of facilities and the
related economic costs. Furthermore, in the extant literature no con-
tributions cope with the length of paths from the prescribed root to the
active facilities, although this clearly affects the performance in sending
flows of goods or information along the network of active facilities.
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Table 1
Summary of notations for the description of the MoCLP-ZSPT.

𝐼 Set of demand nodes 𝑑𝑖𝑗 Distance between nodes 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽

𝐽 Set of facility sites 𝑁𝑖 Set of candidates able to cover demand in 𝑖 ∈ 𝐼

𝐸𝐼𝐽 Set of edges connecting nodes of 𝐼 and 𝐽 ℎ𝑖 Value of demand at node 𝑖 ∈ 𝐼

𝐸𝐽 Set of edges connecting distinct nodes of 𝐽 𝑠𝑗 Activation cost for facility 𝑗 ∈ 𝐽

𝑐𝑗𝑣 Non-negative cost label for [𝑗, 𝑣] ∈ 𝐸𝐽 𝐶𝑘 Subset of nodes corresponding to 𝑘th zone
𝑆 Coverage radius 𝐾 Number of zones

By contrast, in the MoCLP-ZSPT we bridge this gap by containing the
maximum length of paths from the root to the active facilities. In partic-
ular, since the optimisation of service costs and maximum path length
is aimed at enhancing the above mentioned network performance, we
assume that there is no extra cost to pay when a facility also serves as
a depot/distribution centre for the network of active facilities. Indeed,
this assumption leads to the root choice having an economic impact in
terms of connection costs.

Lemma 1. The MoCLP-ZSPT is NP-hard.

Proof. Suppose that 𝐾 = 1, namely the region is not partitioned;
then, since the root needs not be an active facility, only the advanced
connectivity features need to be addressed.

Let us assume that the edge labels 𝑐 and the facility activation cost
function are both null. With these hypotheses, the choice of the single
facility to activate (because 𝐾 = 1) and the one of the root do not affect
the objectives 2. and 3. listed above. Namely, the decision-making
process reduces to selecting the facility which maximises the covered
demand. Therefore, the MoCLP-ZSPT reduces to a Maximal Covering
Location Problem (MCLP) with 𝑝 = 1. Then, MoCLP-ZSPT is NP-hard
since otherwise the MCLP would be tractable, while it is well-known
that this problem is NP-hard (Megiddo et al., 1983). □

2.2. Arc-flow multi-objective MILP formulation

In this Section, we detail a mathematical formulation for the MoCLP-
ZSPT; in particular, the proposed MILP model relies on the use of flow
variables (Landete and Marín, 2014) since, as reported in Cherkesly
et al. (2019) they allow to obtain a more compact formulation of the
tree-structure requirements. At this purpose, we consider the natural
orientation of the edges in 𝐸𝐽 , obtained by splitting each [𝑖, 𝑗] ∈ 𝐸𝑗

in two anti-parallel arcs (𝑖, 𝑗) and (𝑗, 𝑖). Then, denoting with 𝐴𝐽 the
corresponding set of arcs, the cost function 𝑐 is easily extended on 𝐴𝐽

by symmetry, letting 𝑐((𝑣, 𝑗)) = 𝑐((𝑗, 𝑣)) = 𝑐([𝑣, 𝑗]). Additionally, ∀𝑗 ∈ 𝐽

let 𝐹𝑆(𝑗) = {𝑣 ∈ 𝐽 ∶ ∃(𝑗, 𝑣) ∈ 𝐴𝐽 } denote the forward star of node 𝑗,
and 𝐵𝑆(𝑗) = {𝑣 ∈ 𝐽 ∶ ∃(𝑣, 𝑗) ∈ 𝐴𝐽 } denote its backward star.

The following variables are adopted to formulate the MoCLP-ZSPT:

1. binary facility location variables 𝑥𝑗 such that 𝑥𝑗 = 1 if a facility
is located in 𝑗, ∀𝑗 ∈ 𝐽 , ;

2. binary demand coverage variables 𝑦𝑖, such that 𝑦𝑖 = 1 if demand
node 𝑖 is covered, ∀𝑖 ∈ 𝐼 ;

3. binary root selection variables 𝑧𝑗 , such that 𝑧𝑗 = 1 if facility in 𝑗

serves as root, ∀𝑗 ∈ 𝐽 ;
4. binary edge activation variables 𝑒𝑖𝑗 , with 𝑒𝑖𝑗 = 1 if edge [𝑖, 𝑗]

connects active facilities 𝑖 and 𝑗, ∀[𝑖, 𝑗] ∈ 𝐸𝐽 ;
5. non-negative flow variables 𝑓 𝑣

𝑖𝑗
defined ∀(𝑖, 𝑗) ∈ 𝐴𝐽 and ∀𝑣 ∈

𝐽 , denoting the amount of flow sent from root to facility in 𝑣

through arc (𝑖, 𝑗) ∈ 𝐴𝐽 .

It is worth emphasising that the MoCLP-ZSPT is intrinsically a Multi-
objective problem, given the inherently conflicting nature of the goals
to be pursued in it, namely: maximisation of demand coverage, min-
imisation of service costs, and minimisation of maximum path length.
Thus, the model encompasses three objective functions:

1. 𝐹𝐷𝐶 =
∑

𝑖∈𝐼 ℎ𝑖𝑦𝑖, representing the demand coverage;

2. 𝐹𝑆𝐶 =
∑

𝑣∈𝐽

∑
(𝑖,𝑗)∈𝐴𝐽

𝑐𝑖𝑗𝑓
𝑣
𝑖𝑗

+
∑

𝑗∈𝐽 𝑠𝑗𝑥𝑗 , denoting the overall
service costs, obtained by summing up the interconnection costs,
namely the cost of the shortest path tree of active facilities w.r.t.
the cost function 𝑐, and the facility activation costs;

3. 𝐹𝑃𝐿 = max𝑣∈𝐽

[∑
(𝑖,𝑗)∈𝐴𝐽

𝑐𝑖𝑗𝑓
𝑣
𝑖𝑗

]
, constituting the maximum length

of any feasible path.

Indeed, the minimisation of 𝐹𝑃𝐿 would yield a min–max objective func-
tion, which we linearised by introducing: one additional non-negative
real variable  to minimise, and additional constraints

∑
(𝑖,𝑗)∈𝐴𝐽

𝑐𝑖𝑗𝑓
𝑣
𝑖𝑗
≤

 , defined ∀𝑣 ∈ 𝐽 .

The resulting Multi-objective MIP is given by (2) where (2a) max-
imises the covered demand, (2b) minimises the overall costs, and
(2c) minimises the maximum length of any solution path (see Box I).
Constraints (2d)–(2e) state that exactly one active facility is located
as root of the shortest path tree. Constraints (2f) ensure that a node
𝑖 ∈ 𝐼 is covered only if at least one facility is located in a candidate
in 𝑁𝑖, while (2g) state that exactly one facility is located within each
zone. (2h)–(2n) are the activation constraints; namely, (2h)–(2i) state
that both ends of any active edge of 𝐸𝐽 are active facilities; (2j) couple
the 𝑓 variables with the corresponding 𝑒 ones stating that: flow can be
sent only along activated edges, and each edge can be traversed only
in one direction. Finally, (2k)–(2l) couple the 𝑓 variables with the 𝑧

ones, stating that no flow can be sent to the facility designated to be
the root of the shortest path tree, and that no flow can enter the root
facility. Similarly, Constraints (2m)–(2n) couple the 𝑓 variables with
the 𝑥 ones and state that flow can be sent only to a located facility,
and that no flow can leave the destination node. Then, (2o) are the
typical flow-balancing constraints, stating that in each solution path the
unit flow can be sent only from the root node to the destination node.
Additionally, (2p)–(2q) ensure that in each solution path, flow cannot
make sub-tour on active edges (which are actually the only possible
sub-tour due to constraints (2r), which define the dimension of the tree.
(2s)–(2u) are binary constraints for the 𝑥, 𝑦, 𝑧 and 𝑒 variables, and (2v)
are the non-negativity constraints for the flow variables.

Remark 1. Though in principle the root needs not be an active facility,
for the purpose of this paper, we always assume that this is the case.
Anyway, when the root represents a distribution centre rather than a
depot, it might be functional to let it coincide with a candidate rather
than an active facility, by replacing (2e) with 𝑧𝑗 ≤ 1 − 𝑥𝑗 , ∀𝑗 ∈ 𝐽 , and
(2r) with

∑
[𝑖,𝑗]∈𝐸𝐽

𝑒𝑖𝑗 =
∑

𝑗∈𝐽 𝑥𝑗 . □

Remark 2. Zonal requirements refer to a partition of the area for
administrative, managerial and operational aspects of service provision,
thus only affecting location and connection of facilities. Constraints
(2g) do not pose any condition on the coverage of demand for a given
zone: demand node 𝑖 ∈ 𝐶𝑙 ∩ 𝐼 might be covered by a facility located
in zone 𝐶𝑝 with 𝑙 ≠ 𝑝, 𝑙, 𝑝 ≤ 𝐾. As such, we are assuming that a
demand node can be covered by a facility located within the coverage
radius in any zone. Different assumptions can be introduced for specific
applications where a more restrictive setting is needed. □

Notably, non linear Constraints (2o) can be linearised by mod-
elling each product 𝑧𝑖𝑥𝑣 with a non-negative variable 𝑘𝑖𝑣, ∀𝑖, 𝑣 ∈
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(𝑀𝑜𝐶𝐿𝑃 −𝑍𝑆𝑃𝑇 ) max𝐹𝐷𝐶 (2a)

min𝐹𝑆𝐶 (2b)

min𝐹𝑃𝐿 (2c)

subject to
∑
𝑗∈𝐽

𝑧𝑗 = 1 (2d)

𝑧𝑗 ≤ 𝑥𝑗 , ∀𝑗 ∈ 𝐽 (2e)
∑
𝑗∈𝑁𝑖

𝑥𝑗 ≥ 𝑦𝑖, ∀𝑖 ∈ 𝐼 (2f)

∑
𝑗∈𝐽∩𝐶𝑘

𝑥𝑗 = 1, ∀𝑘 = 1…𝐾 (2g)

𝑒𝑖𝑗 ≤ 𝑥𝑖, ∀[𝑖, 𝑗] ∈ 𝐸𝐽 (2h)

𝑒𝑖𝑗 ≤ 𝑥𝑗 , ∀[𝑖, 𝑗] ∈ 𝐸𝐽 (2i)

𝑓 𝑣
𝑖𝑗
+ 𝑓 𝑣

𝑗𝑖
≤ 𝑒𝑖𝑗 , ∀[𝑖, 𝑗] ∈ 𝐸𝐽 ,∀𝑣 ∈ 𝐽 (2j)

𝑓 𝑣
𝑖𝑗
≤ 1 − 𝑧𝑣, ∀(𝑖, 𝑗) ∈ 𝐴𝐽 ,∀𝑣 ∈ 𝐽 (2k)

𝑓 𝑣
𝑗𝑖
≤ 1 − 𝑧𝑖, ∀𝑖, 𝑗, 𝑣 ∈ 𝐽 , 𝑗 ≠ 𝑖 (2l)

𝑓 𝑣
𝑖𝑗
≤ 𝑥𝑣, ∀(𝑖, 𝑗) ∈ 𝐴𝐽 ,∀𝑣 ∈ 𝐽 (2m)

𝑓 𝑣
𝑣𝑖
≤ 1 − 𝑥𝑣, ∀𝑖, 𝑣 ∈ 𝐽 , 𝑖 ≠ 𝑣 (2n)

∑
𝑗∈𝐹𝑆(𝑖)

𝑓 𝑣
𝑖𝑗
−

∑
𝑗∈𝐵𝑆(𝑖)

𝑓 𝑣
𝑗𝑖
=

{
(𝑧𝑖 − 1)𝑥𝑣 if 𝑖 = 𝑣,

𝑧𝑖𝑥𝑣 otherwise.
∀𝑖, 𝑣 ∈ 𝐽 (2o)

∑
𝑗∈𝐹𝑆(𝑖)

𝑓 𝑣
𝑖𝑗
≤ 𝑥𝑣, ∀𝑖, 𝑣 ∈ 𝐽 (2p)

∑
𝑗∈𝐵𝑆(𝑖)

𝑓 𝑣
𝑗𝑖
≤ 𝑥𝑣, ∀𝑖, 𝑣 ∈ 𝐽 (2q)

∑
[𝑖,𝑗]∈𝐸𝐽

𝑒𝑖𝑗 =
∑
𝑗∈𝐽

𝑥𝑗 − 1, (2r)

𝑥𝑗 , 𝑧𝑗 ∈ {0, 1}, ∀𝑗 ∈ 𝐽 (2s)

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐼 (2t)

𝑒𝑖𝑗 ∈ {0, 1}, ∀[𝑖, 𝑗] ∈ 𝐸𝐽 (2u)

𝑓 𝑣
𝑖𝑗
≥ 0. ∀(𝑖, 𝑗) ∈ 𝐴𝐽 ,∀𝑣 ∈ 𝐽 (2v)

Box I.

𝐽 (Fortet, 1959) and including Constraints (3) in the model (Glover and
Woolsey, 1974), thus adopting the so-called standard linearisation (Mal-
lach, 2020).

𝑘𝑖𝑣 ≤ 𝑧𝑖, 𝑘𝑖𝑣 ≤ 𝑥𝑣, 𝑘𝑖𝑣 ≥ 𝑧𝑖 + 𝑥𝑣 − 1. (3)

With this linearisation, a Multi-objective MILP formulation is effec-
tively obtained for the MoCLP-ZSPT. In particular, the resulting model
encompasses: |𝐼|+ (|𝐽 |2 + 3|𝐽 |)∕2 binary variables, |𝐽 |3 + 1 continuous
variables, and 3 + |𝐼| +𝐾 + 9(|𝐽 |2 + |𝐽 |3)∕2 linear constraints.
3. Computing Pareto optimal solutions

In Section 2.2 we highlighted that the nature of the MoCLP-ZSPT
is inherently Multi-objective as it contemplates different and possibly
conflicting managerial perspectives of the organisation or department
installing the facilities and the one operating the service. Therefore, to
enable optimal decision-making, an accurate representation (or even a
complete identification) and analysis of the Pareto optimal solutions is
needed. Namely, Pareto optimal (or efficient/non-dominated) solutions

are those solutions of the problem for which it is not possible to
improve strictly in one objective function without worsening at least
one of the others. In the following we will refer to the set of all these
solutions as the Pareto Set (Mavrotas, 2009).

At this purpose, we propose a twofold contribution to the solution
process: firstly, we adapt the robust version of the Augmented 𝜀-
constraint generation method, i.e. AUGMECON-R (Nikas et al., 2020)
as an efficient framework to explore the corresponding Pareto Sets. As
a second contribution we exploit the mathematical properties of the
introduced problems to design a tailored Matheuristic algorithm which
is integrated within the AUGMECON-R scheme to boost scalability of
such solution method. Section 3.1 briefly outlines the framework of
AUGMECON-R, while Section 3.2 gives a thorough description of the
proposed Matheuristics.

3.1. AUGMECON-R framework for the MoCLP-ZSPT

The Augmented 𝜀-constraint method has proven to be effective
when the target problem includes discrete variables in which case the
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size of the Pareto Set is finite (Mavrotas, 2009), as for the MoCLP-
ZSPT. It produces (an approximation of) Pareto Sets for a given Multi-
objective Problem (MOP) by iteratively solving – exactly or heuristi-
cally – a single-objective optimisation problem (SOP), obtained from
the MOP.

In particular, the improved version, namely AUGMECON2 (Mavro-
tas and Florios, 2013), avoids the resolution of redundant SOPs by
leveraging the information on the slack/surplus variables featured in
the formulation of the SOP. Recently, Nikas et al. (2020) designed
a robust variant called AUGMECON-R, effectively addressing some
of AUGMECON2 weaknesses. Its paradigm is implemented through
an integer (𝑝 − 1)-dimensional array flag, with 𝑝 being the number
of objective functions, which is initialised with zero values. At each
iteration: if the corresponding flag value is zero the SOP is solved;
otherwise a number of jumps equal to the value of the flag within the
loop used to vary the 𝜀 values of the second objective function – in
terms of priority – is performed (Nikas et al., 2020).

To adapt the framework of AUGMECON-R for the MoCLP-ZSPT, we
devised a formulation of the SOP by assuming that the maximisation
of the covered demand 𝐹𝐷𝐶 has the highest priority among the three
objective functions, while the minimisation of the overall service costs
𝐹𝑆𝐶 is prioritised to that of 𝐹𝑃𝐿. This choice depicts a real-world
scenario occurring, for instance, in the public sector with government
agencies funding the installation of the service, and being particularly
concerned with minimising general dissatisfaction. Furthermore, as to
have that all the objective functions must be minimised, thus simpli-
fying the interpretation of the output solutions, we replaced function
𝐹𝐷𝐶 with −𝐹𝐷𝐶 .

3.2. Matheuristics for the MoCLP-ZSPT

The SOPs featured in the AUGMECON-R framework are generally
solved through an exact solver. However, this approach might become
impractical as the size of the instances increases, given the inher-
ent complexity of the MoCLP-ZSPT. Consequently, we exploited the
mathematical properties of the problem and designed a Matheuristic
approach called AugStarExplore. Specifically, the SOPs are solved with
the StarExploreMatheuristic procedure, based on a straightforward
property of the metric graphs. At this purpose, recall that a weighted
undirected complete graph is said to be metric when its cost function
verifies the triangular inequality. As observed in Khuller et al. (1995),
in such graphs, a shortest path tree w.r.t. a given cost function and
rooted in a fixed node 𝑟 can be computed in linear time; indeed, the star
graph centred in 𝑟 is a shortest path tree. Exploiting the fact that the
subgraph 𝐺𝐽 in MoCLP-ZSPT is metric, we designed the AugStarExplore
Matheuristics, whose pseudo-code is given in Algorithm 1.

Among the input parameters of this procedure, 𝛼, 𝜔, 𝛽, 𝛾 and 𝜏,
regulate the functioning of the StarExplore procedure. In particular:
the parameter 𝛾 denotes the (minimum) number of iterations performed
during each call to the StarExplore procedure; 𝛼 and 𝜔 are used in
a pseudo-randomised procedure; 𝛽 is used to compute the slack variables
and 𝜏 is a threshold value on the number of solutions inserted in the
pool. Further details on the usage of these parameters are given in the
following.

Once that upper and lower bounds for the cost and the path length
objective functions have been computed (Line 2), the corresponding
ranges are obtained as their difference (Line 3). In particular, these
bounds can be computed from the payoff table obtained with the
lexicographic approach (Mavrotas and Florios, 2013) or by approxima-
tion (Tautenhain et al., 2019). In particular, while there is no guarantee
on the quality of the bounds obtained with a generic approximation
approach, using the lexicographic method results in overestimating the
nadir points (Ehrgott and Tenfelde-Podehl, 2003); therefore a larger
grid is obtained, without affecting the quality of the (approximations
of) Pareto Sets produced (Mavrotas and Florios, 2013).

Given the ranges, a set of fractional values for the facility variables
𝑥𝑗 is obtained (Line 10) by solving the continuous relaxation of the
Maximal Covering Location problem featuring Zonal constraints (2g).
Then, at each iteration of the AUGMECON-R scheme, the StarEx-

plore heuristics is invoked (Line 15); its pseudo-code is given in
Algorithm 2.

This procedure receives as inputs: the problem instance, the set of
fractional values for the facilities variables �̂�, the 𝜀 values, and the
parameters 𝛼, 𝜔, 𝛽, 𝛾 and 𝜏. Then, at each iteration, �̂� is used to fix
a set of active facilities (one per zone) according to the Pseudo-

RandomisedRounding procedure detailed in Algorithm 3. In partic-
ular, unlike standard randomised rounding (Raghavan and Tompson,
1987), the threshold value adopted to check whether a facility has
to be located is a convex combination of 𝜔 and �̂� through 𝛼. This
choice is intended to ensure that the exploration is guided by the
covered demand objective function and at the same time that it features
sufficient diversification.

Then, each active facility is set as root in turn, and a star-graph
centred in it (i.e. a shortest path tree) is computed. It is noteworthy
that there are as many star-graphs as there are zones. For each star-
graph, if the corresponding solution verifies the current 𝜀 constraints
(Line 11, Algorithm 2), the procedure checks whether it is repeated or
dominated by any previously computed solution (Line 12); if not, it is
inserted in the pool. Indeed the algorithm counts the solutions inserted
in the pool (Line 15) to determine if the exploration of a region of the
grid is promising.

Additionally, for each feasible solution, the max and min slack
variables found so far are updated (Lines 17-18). Then, at the end of
the 𝛾 iterations, if the SOP is not infeasible and at least 𝜏 solutions
have been added to the pool, with 𝜏 given as input (Line 24), then
𝛾 additional iterations are performed (Line 25). Finally, the slack
variables are obtained as a convex combination of the max and min
values detected during the iterations, using the input parameter 𝛽 (Line
27).

Remark 3. The estimated running time of the AugStarExplore proce-
dure is the sum of that for the resolution of the continuous relaxation
of the MCLP with zonal constraints on Line 10 (Algorithm 1), which is
linear in |𝑁|, and 𝑞𝑆𝐶 ∗ 𝑞𝑃𝐿 times that of the StarExplore heuristics
(Algorithm 2) used to solve the SOP at each iteration.

As for the latter, the running time of the pseudo-randomised round-
ing procedure is 𝑂(|𝐽 |). Then, the one for computing 𝐾 star-graphs
(one for each zone) on Line 9 amounts to 𝐾 ∗ 𝑂(𝐾), since according
to Khuller et al. (1995) the single computation has linear time. Finally
the pool checking on Line 12 performs 𝑂(𝐾2) comparisons. To sum
up, the expected running time of a single call to the StarExplore
heuristics is 2𝛾 ∗ 𝑂(|𝐽 | + 𝐾2). The worst case occurs when the grid of
𝜀 values is defined with unitary step and no jump is performed, since
AugStarExplore invokes the StarExplore heuristics 𝑟𝑆𝐶 ∗ 𝑟𝑃𝐿 times.
In this case, it is straightforward to observe that the expected running

time is 𝑂
(
𝛾 ∗ 𝑟𝑆𝐶 ∗ 𝑟𝑃𝐿 ∗ (|𝐽 | +𝐾2)

)
. □

4. Computational experiments for the MoCLP-ZSPT

The scope of the numerical experiments presented in this Section
is threefold: checking the validity of the proposed model, detecting
which instance features pose challenges to its solution and exploring
performance and scalability of the AugStarExplore Matheuristics.

All the algorithms were implemented with Python 3.8.10 as pro-
gramming language, while for the lexicographic method (adopted to
obtain the payoff tables) we used the built-in function of the library
IBM® Decision Optimisation CPLEX® Modelling for Python. The SOPs
were solved with ILOG CPLEX® (version 20.1) solver. The experiments
were run on a server equipped with two Intel Xeon Gold 6246R 3.4ghz
CPUs, 512 GB Ram and Ubuntu Server 20.04. LTS.
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Algorithm 1 AugStarExplore Procedure

1: procedure AugStarExplore((𝐺, {𝐶𝑘}𝑘≤𝐾 , 𝑐, 𝑑, {𝑁𝑖}𝑖∈𝐼 , ℎ, 𝑠), 𝑞𝑆𝐶 , 𝑞𝑃𝐿, 𝛼, 𝜔, 𝛽, 𝛾, 𝜏)
2: Compute upper bounds (UB) and lower bounds (LB) for 𝐹𝑆𝐶 and 𝐹𝑃𝐿.
3: Set 𝑟𝑆𝐶 = 𝑈𝐵𝐹𝑆𝐶

− 𝐿𝐵𝐹𝑆𝐶
and 𝑟𝑃𝐿 = 𝑈𝐵𝐹𝑃𝐿

− 𝐿𝐵𝐹𝑃𝐿
. ⊳ Ranges (Mavrotas, 2009)

4: Set 𝑠𝑡𝑒𝑝𝑃𝐿 = 𝑟𝑃𝐿∕(𝑞𝑃𝐿 − 1) and 𝑠𝑡𝑒𝑝𝑆𝐶 = 𝑟𝑆𝐶∕(𝑞𝑆𝐶 − 1).
5: Set 𝑞 = 0, 𝑔 = 0 and 𝑃𝑎𝑟𝑒𝑡𝑜_𝑆𝑒𝑡 = ∅.
6: State 𝑏𝑆𝐶 = 0, 𝑏𝑃𝐿 = 0, 𝑆𝑆𝐶 = 0 and 𝑆𝑃𝐿 = 0. ⊳ Bypass coefficients and slack variables
7: for 𝑞 < 𝑞𝑃𝐿 and 𝑔 < 𝑞𝑆𝐶 do
8: 𝑓𝑙𝑎𝑔[𝑞, 𝑔] = 0.
9: endfor
10: �̂� = sol. of the continuous relaxation of MCLP featuring constraints (2g).
11: while 𝑞 < 𝑞𝑃𝐿 do
12: while 𝑔 < 𝑞𝑆𝐶 do
13: if 𝑓𝑙𝑎𝑔[𝑞, 𝑔] == 0 then
14: 𝜀𝑃𝐿 = 𝑈𝐵𝐹𝑃𝐿

− 𝑞 ∗ 𝑠𝑡𝑒𝑝𝑃𝐿 and 𝜀𝑆𝐶 = 𝑈𝐵𝐹𝑆𝐶
− 𝑔 ∗ 𝑠𝑡𝑒𝑝𝑆𝐶

15: 𝑃𝑎𝑟𝑒𝑡𝑜_𝑆𝑒𝑡, 𝑆𝑆𝐶 , 𝑆𝑃𝐿 = StarExplore((𝐺, {𝐶𝑘}𝑘≤𝐾 , 𝑐, 𝑑, {𝑁𝑖}𝑖∈𝐼 , ℎ, 𝑠), �̂�, 𝜀𝑃𝐿, 𝜀𝑆𝐶 , 𝛼, 𝜔, 𝛽, 𝛾, 𝜏)
16: 𝑏𝑆𝐶 = ⌊𝑆𝑆𝐶∕𝑠𝑡𝑒𝑝𝑆𝐶⌋ and 𝑏𝑃𝐿 = ⌊𝑆𝑃𝐿∕𝑠𝑡𝑒𝑝𝑃𝐿⌋
17: Update the flag matrix using bypass coefficients. ⊳ See Nikas et al. (2020)
18: 𝑔 = 𝑔 + 1

19: else
20: 𝑔 = 𝑔 + 𝑓𝑙𝑎𝑔[𝑞, 𝑔]

21: endif
22: end while
23: 𝑞 = 𝑞 + 1

24: end while
25: return 𝑃𝑎𝑟𝑒𝑡𝑜_𝑆𝑒𝑡 ⊳ Pareto Set (approximation)
26: end procedure

Algorithm 2 StarExplore Procedure

1: procedure StarExplore((𝐺, {𝐶𝑘}𝑘≤𝐾 , 𝑐, 𝑑, {𝑁𝑖}𝑖∈𝐼 , ℎ, 𝑠), �̂�, 𝜀𝑃𝐿, 𝜀𝑆𝐶 , 𝛼, 𝜔, 𝛽, 𝛾,

𝜏)
2: Set 𝑆𝑆𝐶 = 0 and 𝑆𝑃𝐿 = 0. ⊳ Slack variables
3: Set 𝑆𝑚𝑎𝑥

𝑆𝐶
= 0 and 𝑆𝑚𝑎𝑥

𝑃𝐿
= 0. ⊳ Minimum slack variables

4: Set 𝑆𝑚𝑖𝑛
𝑆𝐶

= INT_MAX and 𝑆𝑚𝑖𝑛
𝑃𝐿

= INT_MAX.⊳ Maximum slack variables
5: Set 𝑔𝑜𝑜𝑑_𝑠𝑜𝑙 = 0, 𝑖𝑛𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 = 0 and 𝑖𝑛𝑠𝑒𝑟𝑡 = FALSE.
6: Set 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = ∅ and 𝑃𝑎𝑟𝑒𝑡𝑜_𝑆𝑒𝑡 = ∅.
7: for 𝑖𝑡𝑒𝑟 = 1 to 𝛾 do
8: 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = Pseudo-RandomisedRounding({𝐶𝑘}𝑘≤𝐾 , �̂�, 𝛼, 𝜔) ⊳

Activation of facilities
9: Compute all the possible star-graphs centred in 𝑗 ∈ 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠.
10: for each star-graph �̂� do
11: if 𝐹 �̂�

𝑆𝐶
≤ 𝜀𝑆𝐶 and 𝐹 �̂�

𝑃𝐿
≤ 𝜀𝑃𝐿 then ⊳ The solution is feasible

12: insert = CheckPool(�̂�, 𝑃 𝑎𝑟𝑒𝑡𝑜_𝑆𝑒𝑡) ⊳ Check for
dominated/repeated solution

13: if insert == TRUE then
14: 𝑃𝑎𝑟𝑒𝑡𝑜_𝑆𝑒𝑡 = 𝑃𝑎𝑟𝑒𝑡𝑜_𝑆𝑒𝑡 ∪ {�̂�}

15: 𝑔𝑜𝑜𝑑_𝑠𝑜𝑙 = 𝑔𝑜𝑜𝑑_𝑠𝑜𝑙 + 1.
16: endif
17: 𝑆𝑚𝑖𝑛

𝑆𝐶
= min(𝑆𝑚𝑖𝑛

𝑆𝐶
, 𝜀𝑆𝐶 −𝐹𝑆𝐶 ) and 𝑆𝑚𝑎𝑥

𝑆𝐶
= max(𝑆𝑚𝑎𝑥

𝑆𝐶
, 𝜀𝑆𝐶 −𝐹𝑆𝐶 )

18: 𝑆𝑚𝑖𝑛
𝑃𝐿

= min(𝑆𝑚𝑖𝑛
𝑃𝐿

, 𝜀𝑃𝐿 −𝐹𝑃𝐿) and 𝑆𝑚𝑎𝑥
𝑃𝐿

= max(𝑆𝑚𝑎𝑥
𝑃𝐿

, 𝜀𝑃𝐿 −𝐹𝑃𝐿)

19: else
20: 𝑖𝑛𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 = 𝑖𝑛𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 + 1

21: endif
22: endfor
23: endfor
24: if 𝑖𝑛𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 < 𝐾 ∗ 𝛾 and 𝑔𝑜𝑜𝑑_𝑠𝑜𝑙 ≥ 𝜏 then ⊳ SOP feasible and

exploration promising.
25: Repeat Lines 7-18. ⊳ 𝛾 extra iterations are performed
26: endif
27: 𝑆𝑆𝐶 = 𝛽 ∗ 𝑆𝑚𝑎𝑥

𝑆𝐶
+ (1 − 𝛽) ∗ 𝑆𝑚𝑖𝑛

𝑆𝐶
and 𝑆𝑃𝐿 = 𝛽 ∗ 𝑆𝑚𝑎𝑥

𝑃𝐿
+ (1 − 𝛽) ∗ 𝑆𝑚𝑖𝑛

𝑃𝐿

28: return 𝑃𝑎𝑟𝑒𝑡𝑜_𝑆𝑒𝑡, 𝑆𝑆𝐶 , 𝑆𝑃𝐿

29: end procedure

Section 4.1 proposes a proof of concept for the MoCLP-ZSPT;

then, Section 4.2 details the data-sets used in the experiments, while

Section 4.3 describes the tuning of the parameters featured in both the

solution approaches. Finally, Section 4.4 details the evaluation metrics

Algorithm 3 Pseudo-RandomisedRounding Procedure

1: procedure Pseudo-RandomisedRounding({𝐶𝑘}𝑘≤𝐾 , �̂�, 𝛼, 𝜔)
2: Set 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = ∅.
3: for each zone 𝐶𝑘 do
4: 𝑎𝑐𝑡𝑖𝑣𝑒 = FALSE.
5: while 𝑎𝑐𝑡𝑖𝑣𝑒 == FALSE do
6: for each candidate 𝑗 in the zone 𝐶𝑘 do
7: 𝑝 = 𝑟𝑎𝑛𝑑(0, 1). ⊳ Random number in [0, 1]

8: if 𝑝 ≥ 𝛼 ∗ 𝜔 + (1 − 𝛼) ∗ �̂�[𝑗] then
9: 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ∪ {𝑗} ⊳ Locate facility in 𝑗

10: 𝑎𝑐𝑡𝑖𝑣𝑒 = TRUE.
11: endif
12: endfor
13: endwhile
14: endfor
15: return facilities
16: end procedure

adopted in the analysis of the results, which are in Sections 4.5 and
4.6. In particular, in these last two Sections we will refer to the Pareto
Set approximations obtained with a heuristic use of AUGMECON-R as
Exact Pareto Set approximations.

4.1. Numerical example for the MoCLP-ZSPT

The example problem consists of 10 facility sites and 18 demand
nodes, partitioned in 5 subsets: 𝐽 = {1, 2,…10}, 𝐼 = {11, 12,…28} and
𝐾 = 5. The resulting MILP model comprises: 83 binary variables, 1001
continuous variables, and 4976 linear constraints.

Euclidean distances between demand nodes and facility sites are
reported in Table 2, while edge labels are shown in Table 3; finally the
distance 𝑆 defining the coverage radius is equal to 3. Thus, for instance,
𝑁11 = {1, 2, 3} and 𝑁23 = {7}. To generate the Pareto Set for a MOP, the
AUGMECON-R method requires all the objective functions coefficients
to be integer; thus, the 𝑠 (facility activation cost) and the 𝑐 coefficients
are multiplied by 10.

The payoff table is given in Table 4: ranges values are 𝑟𝑆𝐶 = 125 and
𝑟𝑃𝐿 = 20, while we chose 𝑞𝑆𝐶 = 𝑞𝑃𝐿 = 20, yielding to discretisation
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Table 2
Euclidean distances between demand nodes (𝑖) and facility sites (𝑗).

j
i

1 2 3 4 5 6 7 8 9 10
j

i
1 2 3 4 5 6 7 8 9 10

11 1.4 1.7 2.7 5 6.8 10.7 8.8 6.2 4.5 6.2 20 8.5 9 6.7 4.3 3.2 1.7 1.3 5.4 7.4 9.3
12 3.2 1.3 1.4 4.2 5.2 9.2 8 6.6 5.7 8 21 9.3 9.3 7.2 5.3 3 1.2 3.3 7 8.8 10.9
13 1.9 3 1.3 2.4 4.7 8.4 6.1 4.1 3.2 5.5 22 10.1 10.7 8.7 6.1 5 1.7 2.5 6.6 8.7 10.5
14 1.9 4.1 3 2.9 5.5 8.7 6.2 3.2 1.7 3.9 23 8.9 10.1 8 5.2 5.3 3.7 1.6 4.5 7 8.4
15 3.7 3.9 1.6 1.4 2.8 6.6 5 4.4 4.6 6.9 24 7 8.4 6.4 3.6 4.7 4.9 1.8 2.5 4.8 6.5
16 7.9 7.7 5.7 3.9 1.5 2.8 3.5 6.2 7.8 10 25 3.9 5.8 4.2 2.3 5 7.3 4.5 1.2 2 4.1
17 6 6.6 4.3 1.9 1.3 4 2.5 4.3 5.8 7.7 26 4.5 6.8 5.7 4.5 7.2 9.2 6.1 1.9 1.3 2
18 5.7 7 4.7 1.9 3 4.7 2.2 2.6 4.4 6.6 27 3.8 6.5 6 5.8 8.5 11.1 8.3 4 2 1
19 6.7 7.5 5.2 2.5 2.4 3.5 1.5 3.9 5.7 7.8 28 2 5 4.5 4.8 7.4 10.5 7.9 4 1.7 2.8

Table 3
Cost labels for edges between distinct facilities.

Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost

[1, 2] 3 [1, 7] 0 [2, 4] 4 [2, 9] 1.5 [3, 7] 0 [4, 6] 5 [5, 6] 3.5 [6, 7] 3.5 [7, 9] 4
[1, 3] 0 [1, 8] 2.1 [2, 5] 2.5 [2, 10] 0 [3, 8] 2.1 [4, 7] 7 [5, 7] 5 [6, 8] 2 [7, 10] 3
[1, 4] 7 [1, 9] 4 [2, 6] 1 [3, 4] 7 [3, 9] 4 [4, 8] 5 [5, 8] 5.5 [6, 9] 2.5 [8, 9] 4.5
[1, 5] 5 [1, 10] 3 [2, 7] 3 [3, 5] 5 [3, 10] 3 [4, 9] 4 [5, 9] 2 [6, 10] 1 [8, 10] 3
[1, 6] 3.5 [2, 3] 3 [2, 8] 3 [3, 6] 3.5 [4, 5] 2 [4, 10] 4 [5, 10] 2.5 [7, 8] 2.1 [9, 10] 1.5

Fig. 2. Solution 2. Active facilities shown in blue, the root facility in red, and covered demand nodes in green. Demand values and facility activation costs in square brackets;
𝐹𝑆𝐶 = 43.1 and 𝐹𝑃𝐿 = 5.

Table 4
Payoff table obtained with lexicographic optimisation.

−𝐹𝐷𝐶 𝐹𝑆𝐶 𝐹𝑃𝐿

min−𝐹𝐷𝐶 −113 431 50
min𝐹𝑆𝐶 −109 320 40
min𝐹𝑃𝐿 −113 445 30

steps equal to 6 and 1, respectively. Therefore, the 𝜀 values vary as
𝜀𝑆𝐶 = 445 − 𝑛 ∗ 6 and 𝜀𝑃𝐿 = 50 − 𝑚 for 𝑛, 𝑚 = 0, 1,…20.

AUGMECON-R approximates the Pareto Set with five efficient solu-
tions, whose details are reported in Table 5: for instance, in the first
solution 𝑓 10

(10,3)
= 𝑓 10

(3,7)
= 𝑓 10

(10,5)
= 𝑓 10

(10,8)
= 1 while the remaining flow

variables are null. Fig. 2 depicts the second solution.

4.2. Instances

The experiments were conducted on two sets of benchmark in-
stances adapted from the literature on Location Problems with inter-
connected facilities and Clustered Shortest Path Problems, as detailed

in the following. Specifically, in the first case, the instances were
obtained by fixing the cardinality of the zones and partitioning the
set of nodes accordingly, in order to investigate the scenario in which
the zones have regular density. For the second set, on the other hand,
the original partition of the instances was used in order to explore the
characteristics of the problem in relation to different topologies and
types of partitioning.

1. The first data-set consists of Uncapacitated 𝑝-median problem
instances from OR-Library (Beasley, 1990) sized 100 to 600

nodes, used by Cherkesly et al. (2019) in their computational
experiments. In order to define the zones, we partitioned the
set of nodes by fixing the cardinality of each zone to 25 and
50 respectively, thus obtaining two classes of instances. Next,
we generated three families of problems for each class, selecting
the candidates as a percentage 𝑞 of the nodes in each zone, with
𝑞 = 0.10, 0.15, 0.20 for the instances of size 100 and 𝑞 = 0.10, 0.15

for the remaining ones. In this way, we obtained 82 instances
whose characteristics are summarised in Table 6.
Since, in Cherkesly et al. (2019) no activation costs for facilities
nor demand values were assigned, we defined these coefficients
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Table 5
Efficient solutions found by AUGMECON-R. Those marked with asterisk cover all demand nodes except 23.

Active facilities Root Edges min−𝐹𝐷𝐶 min𝐹𝑆𝐶 min𝐹𝑃𝐿

3, 5, 7, 8, 10 10 [10, 3], [3, 7], [10, 5], [10, 8] −113 44.5 3.0
3, 5, 7, 8, 10 3 [3, 5], [3, 7], [3, 8], [3, 10] −113 43.1 5.0
3, 4, 6, 8, 10 10 [10, 3], [10, 4], [10, 6], [10, 8] −109(∗) 32.0 4.0
3, 5, 7, 8, 10 10 [10, 3], [10, 7], [10, 5], [10, 8] −113 44.5 3.0
3, 5, 6, 8, 10 10 [10, 3], [10, 5], [10, 6], [10, 8] −109(∗) 34.5 3.0

Table 6
Characteristics of the pmed data-set.

Size Nodes Demands Candidates Zones Tot. problems

Small 100 80–92 20–8 2, 4 30
Medium 200 172–184 28–16 4, 8 20
Medium 300 258–276 42–24 6, 12 20
Large 400 344–368 56–32 8, 16 4
Large 500 430–460 70–40 10, 20 4
Large 600 516–552 84–48 12, 24 4

Table 7
Characteristics of the RC-CluSPT data-set.

Type Demands Candidates Zones Tot. problems

1 38–81 11–28 5, 10 14
5 44–99 11–29 5, 10 16
6 39–88 9–26 2, 4, 6, 9 22

as random integers in the set {1, 2,… , 100} for each demand
node, and in the set {100, 101,… , 200} for each candidate.
To obtain labels verifying the triangular inequality, we defined
an appropriate scaling of the costs for the edges in 𝐺𝐽 , and
added missing edges with random integer cost between 1 and
the maximum edge cost. Then, we solved an All-pairs Shortest
Path Problem on 𝐺𝐽 and set 𝑐𝑗𝑣 as the cost of the shortest path
from 𝑗 to 𝑣, for all 𝑗, 𝑣 ∈ 𝐽 . Costs of the original instances were
set as distance values, with missing 𝑑𝑖𝑗 values chosen as random
integers in {1, 2,… , 100}, and 𝑆 chosen as the maximum distance
divided by 5.

2. The second data-set consists of a subset of the High-R instances
of Type 1, 5 and 6 used by Ferone et al. (2022) for the Resource
Constrained Clustered Shortest Path Tree Problem. They are com-
plete graphs whose costs verify the triangular inequality, and for
which the set of nodes is partitioned in subsets called clusters. As
reported in Mestria (2016) these clusters are defined through: k-
means (Type 1 networks), geometric centres (Type 5 networks),
and grouping in quadrilaterals (Type 6 networks).
We defined two families of problems for each Type as for the
pmed data-set, with 𝑞 = 0.15, 0.20: we obtained 52 instances
whose characteristics are summarised in Table 7.
Node resource values of the original instance were used as de-
mand values and facility activation costs, while resource values
of arcs were used as distance values. The value of 𝑆 was chosen
as the maximum distance divided by 5.

4.3. Tuning of parameters

This Section presents the calibration of the parameters featured in
the solution frameworks adopted to approximate the Pareto Sets of
the MoCLP-ZSPT. Namely, for AUGMECON-R method we needed to
tune the number of grid-points (𝑞𝑆𝐶 and 𝑞𝑃𝐿) and the coefficient 𝛿

featured in the SOP objective function, as reported in Section 4.3.1.
Instead, details on the calibration of the parameters featured in the
AugStarExplore Matheuristics are given Section 4.3.2. They are: 𝛼 and
𝜔 used in the Pseudo-RandomisedRounding procedure; 𝛽 used
to combine the slack variables; the number 𝛾 of repetitions of the
exploration phase; the threshold value 𝜏 on the number of solutions
inserted in the pool.

Table 8
Configuration parameters for AUGMECON-R obtained in the tuning phase.

Parameter Set of values Selected

𝛿 {10−6 , 10−5 , 10−4 , 10−3} 10−3

grid-pts {100, 196, 289, 400, 484, 576, 676, 784, 900, 1024} 484

4.3.1. Calibration of parameters for AUGMECON-R method
We considered a sample set consisting of ≈20% of the pmed in-

stances of small and medium sizes. Indeed such a choice relies on the
fact that, comprising a greater number of candidates if compared to the
RC-CluSPT ones, the pmed instances feature potentially wider ranges,
thus making the exact computation of the Pareto Sets significantly time
consuming. Moreover, a preliminary experimentation revealed that the
computational times on the large instances were extremely prohibitive,
therefore only those sized up to 300 nodes were considered. The
instances were chosen at random but with one representative for each
possible configuration of size, cardinality of zones and percentage of
candidates per zone.

A preliminary experimentation revealed that by adopting a uni-
tary step to define the grid of 𝜀 values, at most 1100 single-objective
problems were solved on the considered sample set; thus, we set the
number of grid-points on each side of the grid as ⌊√𝑝⌋, with 𝑝 ∈

{100, 200,… , 1024}. Mavrotas and Florios (2013) suggested to select
𝛿 from {10−6, 10−5, 10−4, 10−3}. The calibrated parameters and their
respective set of values are reported in Table 8.

Interestingly enough, the experimentation revealed that the lowest
average times are relative to 𝛿 = 10−3, as depicted in Fig. 3(a).
Additionally, the average times grow almost linearly with the number
of grid-points until it equals 576 and then from 676 grid-points, for
any value of the parameter 𝛿. In fact, as the number of grid-points in-
creases, potentially a greater number of SOPs have to be solved. Indeed,
AUGMECON-R has a critical behaviour on two 300 sized instances,
which affects the trend of the average values. Namely, the times for
the configurations with 576 grid-points doubles and quadruples those
relative to 676 grid-points, respectively since on the latter the method
performs a higher number of jumps.

However, we conducted a further analysis with a twofold objec-
tive: to detect the values of the parameters which would provide the
fairest compromise between number of Pareto optimal solutions and
computation time; to assess more in depth the impact of increasing the
number of grid-points both on times and in terms of efficient solutions
determined. At this purpose, we computed the average 𝑎𝑣𝑔(𝛥𝑆𝑜𝑙) (re-
spect. 𝑎𝑣𝑔(𝛥𝑡𝑖𝑚𝑒)) of the differences between the number of efficient
solutions (respect. times) obtained with 𝑔 and 100 grid-points, with
𝑔 > 100. Clearly, the ratio 𝑎𝑣𝑔(𝛥(𝑆𝑜𝑙))∕𝑎𝑣𝑔(𝛥𝑡𝑖𝑚𝑒) grows when either
𝑎𝑣𝑔(𝛥𝑆𝑜𝑙) increases or 𝑎𝑣𝑔(𝛥𝑡𝑖𝑚𝑒) decreases, with the value of the
other average remaining almost the same. Consequently, the greater
this ratio, the better the performance of AUGMECON-R in terms of
cardinality of the Pareto Set approximation and relative computational
effort. The analysis of these values confirmed that the best choice for
the parameter 𝛿 is 10−3, as depicted in Fig. 3(b); additionally, the best
ratios are obtained when the number of grid-points is either 196 or
484. Actually, comparing this information with the trend of the average
times in Fig. 3(a), it comes with no surprise that the highest values
corresponds to 196 grid-points, since the average times are lower.
Nevertheless, the choice of this value for the parameter could result
in a rather dense representation of the Pareto Set for larger instances.
Therefore we chose grid-pts = 484 and 𝛿 = 10−3.
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Fig. 3. Representation of data relative to the tuning of AUGMECON-R parameters.

Table 9
Configuration parameters for AugStarExplore obtained in the tuning phase.

Parameter Set of values Selected

pmed RC-CluSPT

𝛼 {0.25, 0.50, 0.75} 0.75 0.75
𝜔 {0.20, 0.40, 0.60} 0.60 0.60
𝛽 {0.25, 0.50, 0.75} 0.25 0.25
𝛾 {10, 30, 50, 100} 50 100
𝜏 {1, 3, 5} 1 5

4.3.2. Calibration of parameters for the AugStarExplore Matheuristic
In order to determine the optimal method configuration based on

the specific characteristics of the data-set, we conducted the calibra-
tion of the Matheuristic’s five parameters by differentiation. That is,
in addition to the sample set considered in Section 4.3.1, we chose
≈20% of the RC-CluSPT instances, at random but with at least one
representative for each possible configuration of Type and number of
zones. The experiments were conducted with unitary step and a time
limit of 900 seconds for each test problem of the pmed sample set and
of 500 seconds for each test problem of the RC-CluSPT sample set.
The calibrated parameters and their respective set of values, for each
data-set, are reported in Table 9.

To select the optimal combination of parameters for each data-
set, we compared the approximation of the Pareto Set obtained with
AugStarExplore with the one produced with the AUGMECON-R ap-
proach. In more details, we chose the combination corresponding to
the minimum value average percentage of heuristic solutions that are
dominated by at least one solution obtained with the exact approach
used heuristically.

It is worth emphasising that for both parameters used in the convex
combinations, i.e. 𝛼 and 𝛽, the set of possible values was chosen
as {0.25, 0.5, 0.75} thus excluding extreme cases 0 and 1. This choice
relies on the fact that 𝛼 = 0 would yield a fixing only guided by
the covered demand objective function, which does not guarantee an
exhaustive diversification; by contrast 𝛼 = 1 would yield a total random
fixing, thus ignoring the priority given to the covered demand objective
function. Analogously, 𝛽 = 0 would render the bypass coefficients
in the AUGMECON-R framework ineffective because as few jumps as
possible would be performed. Instead, with 𝛽 = 1 a potentially poorer
approximation of the Pareto Set would be obtained.

4.4. Evaluation metrics

To assess the efficiency of the Pareto Set representations obtained
with the Matheuristics and the (heuristic use of) AUGMECON-R method,
we considered the following evaluation metrics.

1. The Overall Non-dominated Vector Generation, that is the num-
ber of non-dominated solutions obtained with the considered
approach.

2. The number 𝜇 of non-dominated solutions of one of the two
approaches that are actually dominated by the other.

3. The Overall Pareto Spread of the Pareto Set approximation ,
computed as follows:

𝑂𝑃𝑆() =
|max(−𝐹𝐷𝐶 (𝑠)) − min(−𝐹𝐷𝐶 (𝑠))|

|𝐹𝐷𝐶 (𝑠
𝐼 ) − 𝐹𝐷𝐶 (𝑠

𝑁 )| ×
|max𝐹𝑆𝐶 (𝑠) − min𝐹𝑆𝐶 (𝑠)|

|𝐹𝑆𝐶 (𝑠
𝑁 ) − 𝐹𝑆𝐶 (𝑠

𝐼 )|
×

|max𝐹𝑃𝐿(𝑠) − min𝐹𝑃𝐿(𝑠)|
|𝐹𝑃𝐿(𝑠

𝑁 ) − 𝐹𝑃𝐿(𝑠
𝐼 )|

Max and min values of the objective functions are obtained with
reference to the Pareto Set approximation; instead, 𝑠𝐼 and 𝑠𝑁

denote (approximations of) the ideal and nadir points which are
obtained from the payoff table. The larger OPS value, the better
it is.

4. The Spacing of the Pareto Set  approximation, computed as
follows:

𝑆𝑃 () =

√√√√ 1

|| − 1

||∑
𝑖=1

(𝑑 − 𝑑𝑖)
2

where 𝑑𝑖 = min(𝑠𝑖 ,𝑠𝑗 )∈ ,𝑠𝑖≠𝑠𝑗 ‖(−𝐹𝐷𝐶 (𝑠𝑖), 𝐹𝑆𝐶 (𝑠𝑖), 𝐹𝑃𝐿(𝑠𝑖)) −

(−𝐹𝐷𝐶 (𝑠𝑗 ), 𝐹𝑆𝐶 (𝑠𝑗 ), 𝐹𝑃𝐿(𝑠𝑗 ))‖1 and 𝑑 is the mean of the 𝑑𝑖. The
smaller 𝑆𝑃 (), the higher is the diversification of .

In particular, 1. and 2. are cardinality indicators, 3. is a spread indicator
measuring the portion of the Pareto Set covered by an approximation;
finally, 4. is a distribution indicator that measures the quality of the
distribution of points on the Pareto Set approximation (Audet et al.,
2021).

4.5. Numerical results for the pmed data-set

In this Section we report and analyse the aggregated results relative
to the experimentation conducted on the pmed instances. In particular,
the payoff tables relative to instances sized 100 and 200 nodes were
obtained with the lexicographic optimisation. Instead, the computa-
tional times of this approach on the instances sized 300 nodes or
more appeared too prohibitive; therefore, to obtain upper and lower
bounds for cost and path length functions, we used two heuristic
approaches, one adapted from the literature (Tautenhain et al., 2019)
and the other based on the StarExplore framework. Section 4.5.1
details these methods, while Section 4.5.2 presents AUGMECON-R
results on small and medium instances; then Section 4.5.3 compares
them with those obtained by the AugStarExplore Matheuristics. Finally,
Section 4.5.4 details the results relative to AugStarExplore on the large
pmed instances.
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4.5.1. Heuristic methods to compute the payoff table
The first approach we adopted to approximate the payoff tables

consists in optimising each objective function in turn by solving the
mathematical model of the MoCLP-ZSPT featuring only one objective
function (Tautenhain et al., 2019). However, the resulting bounds
might be of poor quality (Isermann and Steuer, 1988). Therefore, we
devised a heuristic procedure which produces payoff tables featuring
only non-dominated solutions, thus providing overestimates for the
nadir points (cf. Ehrgott and Tenfelde-Podehl, 2003).

Specifically, our original method exploits the mathematical prop-
erties of the MoCLP-ZSPT, being based on the adaptation of the 𝛾

iterations of the StarExplore procedure (cf. Algorithm 2, Lines 7-
15): these operations are performed thrice, each time starting from a
vector �̂� obtained by using a criterion based on the optimisation of
one of the objective functions in turn. In this way, a more diversified
exploration of the efficient set is obtained. The pseudo-code is given in
Algorithm 4, while the three criteria are detailed in the following.

MaxCovering_Criterion: �̂� is obtained by solving the continuous
relaxation of MCLP featuring constraints (2g).

ServiceCost_Criterion: each node 𝑗 ∈ 𝐽 is used as root and
the star-graph centred in it is computed by connecting 𝑗 with
𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖∈𝐶𝑘∩𝐽

(𝑐𝑗𝑖 + 𝑠𝑖) for all the zones 𝐶𝑘 except the one
containing 𝑗. Denoted with 𝑆𝐶𝑗 the service cost of the star-graph
centred in 𝑗 and computed 𝑚𝑖𝑛𝑆𝐶 = min𝑗∈𝐽 𝑆𝐶𝑗 , the vector �̂� is
obtained by assigning to each candidate 𝑗 the value 𝑚𝑖𝑛𝑆𝐶

𝑆𝐶𝑗
.

PathLength_Criterion: each node 𝑗 ∈ 𝐽 is used as root and the
star-graph centred in it is computed by connecting 𝑗 with 𝑖 =

𝑎𝑟𝑔𝑚𝑖𝑛𝑖∈𝐶𝑘∩𝐽
(𝑐𝑗𝑖) for all the zones 𝐶𝑘 except the one containing

𝑗. Denoted with 𝑃𝐿𝑗 the maximum cost in the star-graph centred
in 𝑗 (i.e. the path length) and computed 𝑚𝑖𝑛𝑃𝐿 = min𝑗∈𝐽 𝑃𝐿𝑗 ,
the vector �̂� is obtained by assigning to each candidate 𝑗 the
value 𝑚𝑖𝑛𝑃𝐿

𝑃𝐿𝑗
.

Algorithm 4 Heuristic Payoff Procedure

1: procedure Heuristic_Payoff((𝐺, {𝐶𝑘}𝑘≤𝐾 , 𝑐, 𝑑, {𝑁𝑖}𝑖∈𝐼 , ℎ, 𝑠), 𝛼, 𝜔, 𝛾)
2: Set 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = ∅, 𝑃𝑜𝑜𝑙 = ∅, 𝑖, 𝑗 = 0.
3: for 𝑖 < 3 and 𝑗 < 3 do
4: 𝑝𝑎𝑦𝑜𝑓𝑓 [𝑖, 𝑗] = 0

5: endfor
6: �̂� = MaxCovering_Criterion

7: for 𝑖𝑡𝑒𝑟 = 1 to 𝛾 do
8: 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = Pseudo-RandomisedRounding({𝐶𝑘}𝑘≤𝐾 , �̂�, 𝛼, 𝜔) ⊳

Activation of facilities
9: Compute all the possible star-graphs centred in 𝑗 ∈ 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠.
10: for each star-graph �̂� do
11: insert = CheckPool(�̂�, 𝑃 𝑜𝑜𝑙) ⊳ Check for dominated/repeated

solution
12: if insert == TRUE then
13: 𝑃𝑜𝑜𝑙 = 𝑃𝑜𝑜𝑙 ∪ {�̂�}

14: endif
15: endfor
16: endfor
17: �̂� = ServiceCost_Criterion

18: Repeat Lines 7-13.
19: �̂� = PathLength_Criterion

20: Repeat Lines 7-13.
21: Compute 𝑧𝐷𝐶 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑜𝑜𝑙(𝐹𝐷𝐶 ), 𝑧𝑆𝐶 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑜𝑜𝑙(𝐹𝑆𝐶 ), and 𝑧𝑃𝐿 ∈

𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑜𝑜𝑙(𝐹𝑃𝐿).
22: Fill the columns of 𝑝𝑎𝑦𝑜𝑓𝑓 with objective function values relative to

𝑧𝐷𝐶 , 𝑧𝑆𝐶 , 𝑧𝑃𝐿.
23: return 𝑝𝑎𝑦𝑜𝑓𝑓 .
24: end procedure

In the experiments we implemented this procedure by using a time
limit which depends on the number 𝑐𝑏 of possible combinations of

active facilities over the set 𝐽 , i.e. 𝑐𝑏 =
∏𝐾

𝑘=1 |𝐶𝑘 ∩ 𝐽 |. Specifically, the
time limit is set as max

{
300,min{7200, 0.6 ∗ 0.01 ∗ 𝑐𝑏}

}
seconds, in

order to ensure that the procedure runs at least 5 min and at most 2 h,
and that at least 1% of 𝑐𝑏 is explored.

Remark 4. In the following, we will refer to the payoff tables obtained
with the method adapted from the literature as ‘‘approximated’’, and to
the ones obtained with our heuristics as ‘‘heuristic’’. □

4.5.2. Exact Pareto Set Approximations for small and medium sized in-
stances

Results are given in Tables 10 and 11 which report the number
of: nodes, tested instances (Nr.), demand nodes (Dem.), facility sites
(Cand.), and zones (Zones), and the percentage of candidates in each
zone (𝑞). Additionally, column ‘‘avg(Pay-L)’’ contains the average time
in seconds to obtain the payoff table with the lexicographic approach,
while column ‘‘avg(AUG-R)’’ reports the average computational time
of the AUGMECON-R method. Finally, the average number of: non-
dominated solutions (avg(Sol.)), grid-points explored (avg(gp)), jumps
for bypass (avg(J-byp)) and for infeasibility (avg(J-inf)) are given.

On the small instances, as the number of candidates increases, the
average times for both the lexicographic optimisation and AUGMECON-
R increase; such an outcome is in accordance with the fact that for the
MoCLP-ZSPT the number of variables and linear constraints are 𝑂(|𝐽 |3).
In particular, the trend of AUGMECON-R average times depends on
the greater number of grid-points explored on average. However, the
performance of the methods is also affected by the number of zones
growing: at this purpose, it is sufficient to note that the ratio between
the average times for instances with 20 candidates and 4 zones and
those with 20 candidates and 2 zones is 4.5 and 4.7 respectively.
This is because a higher number of zones implies a higher number of
candidates to connect, therefore a significant effort is needed to address
the advanced connectivity features. Additionally, the statistics on the
objective function values revealed that, as expected, the best average
values of −𝐹𝐷𝐶 are relative to instances with more zones, which allows
the activation of more facilities. However, this is at the expense of the
overall costs, and consequently of the maximum length of any path
from the selected root, which increase.

The results relative to medium instances are reported in Table 12,
where column ‘‘avg(Pay-A)’’ refers to average computational times of
the approximation approach adapted from the literature (Tautenhain
et al., 2019), while column ‘‘avg(Pay-H)’’ reports those relative to our
heuristics. As observed for the small instances, also on the medium
problems the increase in the number of candidates and zones re-
sults in higher average computational times. Notably, as the size of
the instances grows, the MoCLP-ZSPT becomes more challenging, as
highlighted by the average computational times of the approximated
computation of the payoff table (cf. Table 12).

In particular, the Pareto Set approximations relative to the heuristic
payoff tables feature more solutions; such an outcome relies on the
characteristics of the grids explored by AUGMECON-R. In fact, these
results suggest that the approximated payoff tables provide poorer
bounds than those obtained with the heuristic ones, thus resulting in
wider ranges. Consequently, with the same number of grid-points, the
discretisation step is greater with the former ranges, thus providing
less dense grids. It is worthwhile mentioning that the average compu-
tational times of AUGMECON-R are greater when using the heuristic
payoff tables since an increased number of grid-points is explored.

Table 13 reports the values of the adopted evaluation metrics (cf.
Section 4.4): column ‘‘avg(𝜇)’’ is the average number of solutions
that are dominated by at least one solution belonging to the other
approximation; ‘‘avg(OPS)’’ is the average Overall Pareto Spread, and
‘‘avg(SP)’’ denotes the average Spacing of the corresponding Pareto Set
approximation. Finally, the average number of solutions shared by the
two methods is reported in the column ‘‘avg(sh.)’’.



Computers and Operations Research 159 (2023) 106307

12

S. Fugaro and A. Sgalambro

Table 10
Aggregated numerical results of the AUGMECON-R method on the small pmed instances.

Nodes Nr. 𝑞 Dem. Cand. Zones avg(Pay-L) avg(AUG-R) avg(Sol.) avg(gp) avg(J-byp) avg(J-inf)

100 5 0.10 90 10 2 0.64 s 6.29 s 4.80 95.80 386.60 1.60
100 5 0.15 86 14 2 1.53 s 10.55 s 4.00 74.00 253.80 55.00
100 5 0.20 80 20 2 4.42 s 46.71 s 9.20 110.20 347.80 26.00
100 5 0.10 92 8 4 0.66 s 6.90 s 4.00 69.40 246.00 10.20
100 5 0.15 88 12 4 2.28 s 37.68 s 8.60 123.20 300.00 34.40
100 5 0.20 80 20 4 19.77 s 219.77 s 14.60 155.20 307.40 21.40

Table 11
Aggregated numerical results of the AUGMECON-R method on the pmed instances of size 200.

Nodes Nr. 𝑞 Dem. Cand. Zones avg(Pay-L) avg(AUG-R) avg(Sol.) avg(gp) avg(J-byp) avg(J-inf)

200 5 0.10 180 20 4 30.72 s 309.18 s 16.00 159.40 222.20 80.40
200 5 0.15 172 28 4 284.14 s 2287.91 s 19.80 189.80 231.20 58.60
200 5 0.10 184 16 8 17.28 s 162.32 s 23.00 172.40 201.40 39.80
200 5 0.15 176 24 8 389.86 s 1862.99 s 26.40 208.60 203.80 10.00

Table 12
Aggregated numerical results of the AUGMECON-R method on the pmed instances of size 300.

Nr. 𝑞 Dem. Cand. Zones Approximated payoff tables Heuristic payoff tables

avg(Pay-A) avg(AUG-R) avg(Sol.) avg(gp) avg(Pay-H) avg(AUG-R) avg(Sol.) avg(gp)

5 0.10 270 30 6 1065.08 s 4019.46 s 18.80 194.80 300.06 s 7432.66 s 30.40 237.00
5 0.15 258 42 6 11471.07 s 29320.71 s 27.20 225.80 300.02 s 48647.14 s 41.20 256.00
5 0.10 276 24 12 298.96 s 542.91 s 7.00 124.40 300.19 s 1239.26 s 19.25 138.75
5 0.15 264 36 12 8503.98 s 14131.53 s 17.20 213.60 318.88 s 30937.31 s 48.00 262.60

Table 13
Comparison of the aggregated evaluation metrics relative to AUGMECON-R and the medium pmed instances with 300 nodes.

Nodes 𝑞 Zones Approximated payoff tables Heuristic payoff tables

avg(Sol.) avg(𝜇) avg(OPS) avg(SP) avg(sh.) avg(Sol.) avg(𝜇) avg(OPS) avg(SP)

300 0.10 6 18.80 1.00 0.05 54.78 13.40 30.40 0.20 0.66 55.22
300 0.15 6 27.00 1.80 0.10 75.06 14.00 41.20 0.60 1.38 63.52
300 0.10 12 7.00 0.60 0.02 87.92 2.60 17.00 0.20 0.96 35.25
300 0.15 12 17.00 0.20 0.05 54.48 10.00 48.00 0.40 0.91 28.45

Table 14
Comparison of the aggregated evaluation metrics relative to the small pmed instances.

Nodes 𝑞 Zones AUGMECON-R AugStarExplore

avg(Sol.) avg(𝜇) avg(OPS) avg(SP) avg(sh.) avg(Sol.) avg(𝜇) avg(OPS) avg(SP)

100 0.10 2 4.80 0.40 0.88 54.03 4.40 5.20 0.00 1.00 52.03
100 0.15 2 4.00 0.20 0.95 132.03 3.60 4.60 0.20 1.02 123.73
100 0.20 2 8.80 0.00 1.03 62.46 8.80 9.60 0.00 1.05 58.82
100 0.10 4 4.00 0.00 0.89 53.47 3.80 4.20 0.20 1.02 55.83
100 0.15 4 8.40 0.00 0.82 69.82 7.00 11.00 1.40 1.29 76.22
100 0.20 4 14.60 0.00 1.06 66.26 13.80 21.00 0.80 1.31 49.44

These data reveal that the heuristic payoff tables led to better Pareto
Sets approximations also in terms of spread and distribution indicators.
Indeed, on instances with 6 zones the two approximations share on
average 41% of solutions; the average percentage decreases to 17% on
the remaining problems.

Finally, the statistics for the objective function values, confirm the
trend already observed on the small pmed instances. It is noteworthy
that considering the instances with the same number of zones, as
the number of candidates increases, the average values of both 𝐹𝑆𝐶 ,
and 𝐹𝑃𝐿 objective functions decrease, as there are generally more
possibilities to efficiently address the advanced connectivity features.

4.5.3. Exact vs Heuristic Pareto Set Approximations for small and medium
sized instances

The experiments with the AugStarExplore Matheuristics were con-
ducted with a unitary step and defining a time limit of 600 s for
every 100 nodes (e.g. time limit is 1200s and 1800s on medium
instances). Results are given in Tables 14 and 15 which report, for each
solution approach, the values of the considered evaluation metrics as
in Table 13.

These results show that as the numbers of candidates and zones in-
creases, both the approaches detect a larger number of non-dominated
solutions. As already observed, this outcome relies on the greater
number of choices to efficiently tackle the connectivity features. Ad-
ditionally, the heuristic approximation of the Pareto Set contains on
average more solutions than the exact one. A closer look at the average
number of common solutions shows that, on average, 92% of the exact
solutions are also found by the heuristics. Indeed, on the small pmed
instances, the average percentage of heuristic solutions dominated by
the exact ones is at most 12.92%. As concerns the remaining indicators,
the results show that the Matheuristic approximation is able cover a
greater portion of the Pareto Set, being its average OPS values bigger.
Instead, the diversification of the exact approximation appears better
on the instances with 4 zones and 𝑞 = 0.10, 0.15. Overall, these results
prove that the quality of the heuristic approximations of the Pareto Set
obtained are remarkable.

On the pmed instances sized 200 nodes we can draw conclusions
similar to those relative to the small ones as concerns the average num-
ber of solutions and 𝜇 values, with the percentage of common solutions
being ≈91%. In particular, as the number of zones doubles, the average



Computers and Operations Research 159 (2023) 106307

13

S. Fugaro and A. Sgalambro

Table 15
Comparison of the aggregated evaluation metrics relative to the medium pmed instances sized 200 nodes.

Nodes 𝑞 Zones AUGMECON-R AugStarExplore

avg(Sol.) avg(𝜇) avg(OPS) avg(SP) avg(sh.) avg(Sol.) avg(𝜇) avg(OPS) avg(SP)

200 0.10 4 16.00 0.20 1.24 80.03 14.60 17.60 1.40 1.30 75.45
200 0.15 4 19.40 0.20 1.09 75.77 16.20 24.00 2.20 1.24 80.70
200 0.10 8 22.80 0.00 1.15 36.14 21.60 25.20 1.20 1.24 36.60
200 0.15 8 25.60 0.40 0.85 50.57 23.60 38.00 1.20 1.11 40.29

Table 16
Comparison of the aggregated evaluation metrics for medium pmed instances with 300 nodes.

Nodes 𝑞 Zones AUGMECON-R AugStarExplore

avg(Sol.) avg(𝜇) avg(OPS) avg(SP) avg(sh.) avg(Sol.) avg(𝜇) avg(OPS) avg(SP)

Approximated payoff tables

300 0.10 6 18.80 0.20 0.05 54.78 15.20 57.00 2.00 0.11 48.36
300 0.15 6 27.00 0.00 0.10 75.06 9.40 82.60 37.20 0.16 50.49
300 0.10 12 7.00 0.00 0.01 78.71 5.00 37.00 8.80 0.03 40.15
300 0.15 12 17.00 0.00 0.06 63.69 3.20 69.20 27.80 0.09 34.22

Heuristic payoff tables

300 0.10 6 30.40 0.00 0.66 55.22 26.60 53.40 2.20 1.23 59.34
300 0.15 6 41.20 0.00 1.38 63.52 12.60 81.60 46.80 2.02 49.29
300 0.10 12 17.00 0.00 0.96 35.25 15.80 23.00 3.40 1.31 51.25
300 0.15 12 48.00 0.00 0.91 28.45 28.00 64.80 16.20 1.12 24.05

number of heuristic solutions dominated by the exact ones decreases:
in terms of percentage, it is at most equal to 8.68% when there are
4 zones, and to 5.06% in case of 8 zones. Also on these instances the
Matheuristic approximation covers a greater portion of the Pareto Set,
though the exact approximation is slightly better diversified on the
instances with 4 (8) zones and 15% (10%) of candidates among nodes.

Table 16 compares the Pareto Set Approximations obtained on the
pmed instances with 300 nodes when the payoff tables are either
approximated or heuristic.

The scalability of the Matheuristics emerged from these data: it finds
on average ≈4.3 (resp. ≈1.9) times the number of solutions detected
by the AUGMECON-R method in less than half of its average com-
putational time by using approximated (resp. heuristic) payoff tables.
Moreover, on average only the 27.7% of these solutions are dominated
by those obtained with the AUGMECON-R. Additionally, the average
values of the spread indicators confirm that as the size of the instances
increases, the heuristic Pareto Sets approximation is richer and better
diversified. In particular, the one obtained with heuristic payoff tables
is characteristic by better average values of the Overall Pareto Spread.
This outcome confirms that defining the grid from tighter ranges en-
ables the Matheuristics to perform a more exhaustive exploration of
the feasible region. At this purpose, it is worthwhile noticing that there
is a higher percentage of shared solutions between heuristic and exact
approximations relative to approximated payoff tables for instances
with less zones; this trend is reversed for those problems with more
zones.

Finally, we further analysed the heuristic Pareto Set approxima-
tions: as reported in Table 17 we considered the (average) percentage
of solutions shared between the two heuristic approximations and those
of mutually dominated solutions. As it might be anticipated, a high
percentage of the solutions found with the heuristic payoff tables are
also determined in the other case, and yet the remaining solutions
obtained from approximated payoff tables turn out to be dominated by
those obtained with the heuristic ones. This means that, although with
reduced cardinalities, the approximations obtained with the heuristic
payoff tables are of better quality.

4.5.4. Heuristic Pareto Set Approximations for large sized instances
The results obtained with AugStarExplore on medium instances were

encouraging, suggesting considerable scalability of the method and
good quality of the Pareto Set approximations provided. Consequently,
we conducted further experiments on the large pmed instances, for

the resolution of which the exact approach (though used heuristically)
would present prohibitive computational times, as evidenced by the
times involved in the approximated computation of the payoff tables.
The results are given in Table 18.

On the instances sized 400 nodes, more solutions are found as the
number of zones increases. This trend is reversed on the remaining
instances, suggesting that a greater time limit could allow for a more
thorough exploration of the Pareto Set, given that as the number of
zones increases, so do active facilities to connect and the number of
possible shortest path trees. However, adopting the proposed heuristics
to compute the payoff tables and thus the ranges, yields to better Pareto
Sets approximations with respect to all the evaluation metrics. In fact, a
lower percentage of solutions are non-dominated and spread and distri-
bution indicators show how more profitable Pareto Set approximations
are detected.

It is worth noting that in less than an hour, the algorithm is
able to provide an average of 51.5 efficient solutions to the decision
maker, which are sufficiently diversified. This result represents a con-
siderable support to the decision-making process in view of the fact
that AUGMECON-R provides a Pareto Set approximation in 3.3 h on
instances sized 300 nodes.

4.6. Numerical results for the RC-CluSPT data-set

In this Section we report and analyse the aggregated results relative
to the experimentation conducted on the RC-CluSPT instances. For
all the test problems, the payoff tables were obtained with the lexico-
graphic approach. Specifically, Section 4.6.1 deals with the results of
the AUGMECON-R method, while Section 4.6.2 details the comparison
between the results obtained by AUGMECON-R and the AugStarExplore
Matheuristics on these instances.

4.6.1. Exact Pareto Set Computation
Preliminary tests revealed that the ranges of the 𝐹𝑆𝐶 and 𝐹𝑃𝐿

objective function are not too extended, if compared to those of the
pmed instances; therefore we set the discretisation step equal to 1 to
define the grid-points. It must be underlined that with this choice of the
discretisation step, AUGMECON-R performs a complete exploration of
the Pareto Set.

Results are given in Table 19 which reports, for each the instance
Type the same information given in Table 14. These results show that
also on this data-set the increase in the number of candidates affects
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Table 17
Comparison of the percentage of shared and dominated solutions for AugStarExplore Matheuristics relative to medium
pmed instances with 300 nodes when payoff tables are computed either by approximation or heuristically.

Nodes 𝑞 Zones Approx. payoff tables Heuristic payoff tables

avg(%sh.) avg(%𝜇) avg(%sh.) avg(%𝜇)

300 0.10 6 88.40 0.00 78.82 5.68
300 0.15 6 47.33 6.17 45.78 35.26
300 0.10 12 98.78 0.00 60.89 0.00
300 0.15 12 29.08 1.95 31.83 57.26

Table 18
Comparison of the numerical results of the Matheuristic on the large pmed instances.

Nodes 𝑞 Dem. Cand. Zones Approximated payoff tables Heuristic payoff tables

Sol. 𝜇 OPS SP sh. Sol. 𝜇 OPS SP

400 0.10 360 40 8 51.00 38.00 0.06 41.14 10.00 34.00 0.00 1.06 47.11
400 0.15 344 56 8 46.00 33.00 0.09 34.32 10.00 56.00 0.00 1.93 45.74
400 0.10 368 32 16 87.00 11.00 0.48 24.50 53.00 73.00 2.00 0.99 20.11
400 0.15 352 48 16 84.00 76.00 0.02 41.90 3.00 103.00 3.00 0.90 18.86

500 0.10 450 50 10 61.00 39.00 0.24 51.86 10.00 71.00 11.00 1.18 38.03
500 0.15 430 70 10 54.00 29.00 0.32 36.43 6.00 53.00 19.00 0.89 77.94
500 0.10 460 40 20 33.00 33.00 0.01 35.61 0.00 38.00 0.00 2.40 25.71
500 0.15 440 60 20 36.00 35.00 0.04 42.63 0.00 32.00 0.00 3.88 43.67

600 0.10 540 60 12 68.00 61.00 0.05 38.66 2.00 32.00 1.00 0.94 29.10
600 0.15 516 84 12 58.00 43.00 0.11 85.52 3.00 72.00 12.00 0.97 34.83
600 0.10 552 48 24 16.00 16.00 0.17 45.15 0.00 12.00 0.00 1.13 38.54
600 0.15 528 72 24 24.00 23.00 0.06 38.16 0.00 38.00 1.00 1.06 27.10

Table 19
Aggregated numerical results of the AUGMECON-R method on the RC-CluSPT data-set.

avg(Nodes) Nr. 𝑞 avg(Dem.) avg(Cand.) Zones avg(Pay-L) avg(AUG-R) avg(Sol.) avg(gp) avg(J-byp) avg(J-inf)

Type 1
65.00 5 0.15 52.60 12.40 5 2.74 s 132.59 s 10.00 335.40 695.40 112.00
65.00 5 0.20 48.60 16.40 5 11.49 s 607.86 s 18.40 576.60 1208.80 525.60
99.50 2 0.15 80.00 19.50 10 481.04 s 113.85 s 5.00 85.50 11.50 150.00
99.50 2 0.20 72.50 27.00 10 45.50 s 6034.33 s 19.00 560.00 200.00 272.00

Type 5
80.00 6 0.15 65.50 14.50 5 9.80 s 426.57 s 12.33 370.50 569.33 239.67
80.00 6 0.20 60.83 19.17 5 51.64 s 445.27 s 12.33 258.00 503.50 356.83
105.00 2 0.15 84.50 20.50 10 105.62 s 1175.53 s 18.00 371.00 321.50 156.50
105.00 2 0.20 78.50 26.50 10 1037.03 s 4846.66 s 21.50 488.00 675.50 320.00

Type 6
105.00 1 0.15 88.00 17.00 2 2.95 s 91.52 s 8.00 353.00 2371.00 147.00
105.00 1 0.20 83.00 22.00 2 6.37 s 192.61 s 16.00 373.00 2107.00 0.00
63.75 4 0.15 52.25 11.50 4 2.04 s 66.20 s 6.00 244.25 565.25 129.00
63.75 4 0.20 48.75 15.00 4 5.76 s 339.65 s 15.00 423.75 761.25 238.50
73.00 2 0.15 59.50 13.50 6 2.47 s 120.06 s 11.50 275.00 846.00 136.00
73.00 2 0.20 55.00 18.00 6 12.57 s 870.18 s 26.00 638.50 1156.50 136.00
80.75 4 0.15 64.25 16.50 9 11.57 s 323.34 s 12.25 304.50 632.00 104.25
80.75 4 0.20 58.75 22.00 9 121.64 s 1825.73 s 23.50 392.25 529.25 139.75

the average computational times of both lexicographic approach and
AUGMECON-R. However, this trend for the latter method, on instances
with same Type and number of zones relies on the greater number of
grid-points explored.

In particular, on Type 1 instances - whose zones are defined with
k-means method - and on Type 5 instances - whose zones are identi-
fied through geometric centres -, the average computational times are
affected by the doubling of the number of zones. This is due to the
reduced zone density, if compared to the Type 6 instances, which ren-
ders connectivity features particularly challenging. Notably, on Type 1
instances with 10 zones and 𝑞 = 15% the average computational times
of the lexicographic optimisation are greater than that of AUGMECON-
R method since the latter explores a smaller number of grid-points on
these problems. Moreover, the reduced number of candidates for the
Type 6 instances – whose zones are defined through quadrilaterals –
yields to decreased average computational times, when the number of
zones passes from 2 to 4. Additionally, the statistics for the objective
function values confirmed the trend observed on the pmed data-set;
namely, as the number of zones increases, on average −𝐹𝐷𝐶 values

decrease as there is a greater number of active facilities, though this
negatively impacts on the remaining functions, mainly on 𝐹𝑆𝐶 .

4.6.2. Exact Pareto Sets vs Heuristic Pareto Set Approximations
The experiments with the AugStarExplore Matheuristics were con-

ducted considering a unitary step and the parameter setting obtained
in the calibration (Section 4.3.2), and using 500 s as time limit. Results
are given in Table 20 with the same format adopted in Table 14.

Similarly to what was observed for the pmed, the Matheuristics is
able to determine a number of solutions on this data-set that grows with
the number of candidates and zones. However, the heuristic approxi-
mation of the Pareto Set contains on average only 80% of the exact
solutions. The average percentage of heuristic solutions dominated by
the exact ones is greater on the Type 6 instances (≈20.11%). This
outcome relies on the higher zone density of these problems which
might lead to a greater number of solutions to explore; consequently the
Matheuristics hardly succeeds in improving the pool of solutions found
within the allocated time limit. As concerns the remaining indicators,
the results show that the Matheuristic approximation of the Pareto Set
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Table 20
Comparison of the aggregated evaluation metrics relative to the RC-CluSPT instances.

avg(Nodes) 𝑞 Zones AUGMECON-R AugStarExplore

avg(Sol.) avg(𝜇) avg(OPS) avg(SP) avg(sh.) avg(Sol.) avg(𝜇) avg(OPS) avg(SP)

Type 1
65.00 0.15 5 10.00 0.00 1.00 75.82 7.80 9.80 2.00 1.00 77.76
65.00 0.20 5 18.40 0.00 1.60 70.37 14.40 18.20 3.60 1.57 71.84
99.50 0.15 10 5.00 0.00 2.00 85.22 4.50 5.00 0.50 2.00 85.22
99.50 0.20 10 19.00 0.50 0.50 22.39 14.00 19.50 3.50 0.50 58.24

Type 5
80.00 0.15 5 12.33 0.00 1.10 117.01 10.17 12.33 2.00 1.10 117.81
80.00 0.20 5 12.33 0.00 2.77 162.87 10.50 12.67 1.83 2.77 160.64
105.00 0.15 10 18.00 0.00 0.69 40.16 16.50 19.50 1.50 1.27 83.54
105.00 0.20 10 21.50 0.00 1.54 40.12 19.00 20.50 1.50 1.54 40.05

Type 6
105.00 0.15 2 8.00 0.00 1.00 676.58 6.00 8.00 2.00 1.00 676.58
105.00 0.20 2 16.00 0.00 1.00 58.11 15.00 15.00 0.00 1.00 77.28
63.75 0.15 4 6.00 0.00 1.00 73.78 4.50 6.00 1.50 1.00 73.78
63.75 0.20 4 15.00 0.00 1.48 41.46 11.50 15.00 3.50 1.48 41.38
73.00 0.15 6 11.50 0.00 1.06 50.24 7.00 11.50 3.50 1.06 51.13
73.00 0.20 6 26.00 0.00 1.17 43.06 20.50 29.50 4.50 1.19 35.11
80.75 0.15 9 11.25 0.00 1.08 43.19 9.00 11.50 2.50 1.08 38.44
80.75 0.20 9 24.50 0.00 1.15 32.13 20.25 25.00 3.75 1.08 30.02

has on average the same Overall Pareto Spread of the complete Pareto
Set, given by the exact, though it is slightly less diversified. It is worth
emphasising, however, that this approximation of the Pareto Set is
obtained with a time limit of 500 s, which is approximately half the
average time taken by the AUGMECON-R to calculate the Pareto Set
on these instances.

5. The case with multiple roots: the Shortest Path Forest of Active
Facilities

As highlighted in Sections 1 and 2, both economic and operational
aspects of interconnecting the active facilities can be accounted for
by determining where to install the depot (i.e. the root), and by
constructing a shortest path tree rooted in it and connecting these sites.

Indeed, specific real-world scenarios, e.g. those characterised by a
significant number of active facilities to connect, may necessitate the
presence of multiple roots to ensure that the efficiency of connections
is preserved. Therefore, we considered a variant of the MoCLP-ZSPT
in which, a predetermined number of roots has to be installed. This
led us to the definition of a novel Multi-objective problem: the Multi-
objective Covering Location Problem with Zonal Requirements and Shortest
Path Forest of Active Facilities (MoCLP-ZSPF). Similarly to the MoCLP-
ZSPT, its decision-making process involves the selection of  facilities
that serve as roots of as many shortest path trees connecting active
facilities.

Lemma 2. The MoCLP-ZSPF is NP-hard.

Proof. Letting  = 1, the MoCLP-ZSPF reduces to the MoCLP-ZSPT.
Thus, the MoCLP-ZSPF is NP-hard since otherwise the MoCLP-ZSPT
would be tractable (Lemma 1). □

A mathematical formulation of the MoCLP-ZSPF is detailed in Sec-
tion 5.1 while the adaptation of the AugStarExplore Matheuristics is
described in Section 5.2. Finally, Section 5.3 presents and analyses the
experimentation we conducted.

5.1. Arc-flow multi-objective MILP formulation

The proposed MILP model relies again on flow variables, though
they present four indices this time, since both the origin and destina-
tion of flows have to be considered. Specifically, the proposed model
relies on the use of facility location, demand coverage, root selection
and edge activation variables (cf. Section 2.2), and of the following
variables:

1. non-negative flow variables 𝑓 𝑢𝑣
𝑖𝑗
defined ∀𝑢, 𝑣 ∈ 𝐽 , 𝑢 ≠ 𝑣, ∀(𝑖, 𝑗) ∈

𝐴𝐽 , denoting the flow sent from facility in 𝑢 to facility in 𝑣

through arc (𝑖, 𝑗);
2. binary assignment variables 𝑡𝑢𝑣 defined ∀𝑢, 𝑣 ∈ 𝐽 , 𝑢 ≠ 𝑣, such that

𝑡𝑢𝑣 = 1 if facility in 𝑣 is directly connected with facility in 𝑢.

The definition of overall service costs and maximum path length objec-
tive functions is updated as follows. The former is 𝐹𝑆𝐶 =∑

𝑢,𝑣∈𝐽
𝑢≠𝑣

∑
(𝑖,𝑗)∈𝐴𝐽

𝑐𝑖𝑗𝑓
𝑢𝑣
𝑖𝑗

+
∑

𝑗∈𝐽 𝑠𝑗𝑥𝑗 , where the first term is the inter-

connection costs, i.e. the shortest path forest cost; the latter is 𝐹𝑃𝐿 =

max𝑣∈𝐽
∑

𝑢∈𝐽

[∑
(𝑖,𝑗)∈𝐴𝐽

𝑐𝑖𝑗𝑓
𝑢𝑣
𝑖𝑗

]
.

Indeed, the min–max objective function resulting from minimising
𝐹𝑃𝐿 is linearised similarly to what we did in Section 2.2. Thus, the
resulting Multi-objective MILP is given by (4) in which (4a) accounts
for covered demand maximisation, (4b) denotes the overall costs min-
imisation, and (4c) represents the minimisation of the maximum length
of any solution path (see Box II).

Constraints (2e)–(2i) are adopted to state that the roots are chosen
among active facilities, along with coverage and location rule and the
activation conditions for the edge variables. Constraints (4d) states
that  active facilities have to be set as roots. Then (4e)–(4j) are the
assignment constraints: (4e)–(4f) state that any active facility can be
linked only to any root facility; (4g) ensure that an active facility is
either a root itself or is linked with a root facility, while (4h) ensure
that each root has at least an active facility assigned to it. (4i) state that
each active and non-root facility is assigned to exactly one root facility,
and (4j) force the flow to be sent only from coupled root-destination
facilities. Constraints (4k) are the activation constraints (cf.(2h)–(2j)).
Similarly, (4l) are the typical flow-balancing constraints, and Constraints
(4m) define the dimension of the shortest path forest. Finally, binary
constraints for the 𝑥, 𝑧, 𝑦, 𝑒 and 𝑡 variables, and non-negativity con-
straints for the continuous ones are stated. In particular, the model (4)
encompasses: |𝐼| + (3|𝐽 |2 + |𝐽 |)∕2 binary variables, [|𝐽 |(|𝐽 | − 1)]2 + 1

continuous variables, and 3+ |𝐼|+𝐾 +11|𝐽 |2∕2− 4|𝐽 |3 +5|𝐽 |4∕2 linear
constraints.

5.1.1. Numerical example for the MoCLP-ZSPF

Considering the same example problem of Section 4.1, the aim
of this subsection is to provide a proof of concept for model (4).
In particular, the MILP model comprises: 173 binary variables, 8101
continuous variables, and 21576 linear constraints. We set 𝑆 = 3 and
assumed that two roots have to be chosen, i.e.  = 2. The relative
payoff table is reported in Table 21.
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(𝑀𝑜𝐶𝐿𝑃 −𝑍𝑆𝑃𝐹 ) max𝐹𝐷𝐶 (4a)

min𝐹𝑆𝐶 (4b)

min𝐹𝑃𝐿 (4c)

subject to

Constraints (2e)-(2i)
∑
𝑗∈𝐽

𝑧𝑗 = , (4d)

𝑡𝑢𝑣 ≤ 𝑧𝑢, ∀𝑢, 𝑣 ∈ 𝐽 , 𝑢 ≠ 𝑣 (4e)

𝑡𝑢𝑣 ≤ 𝑥𝑣, ∀𝑢, 𝑣 ∈ 𝐽 , 𝑢 ≠ 𝑣 (4f)

𝑧𝑣 + 𝑡𝑢𝑣 ≤ 1, ∀𝑢, 𝑣 ∈ 𝐽 , 𝑢 ≠ 𝑣 (4g)
∑

𝑣∈𝐽∖{𝑢}

𝑡𝑢𝑣 ≥ 𝑧𝑢, ∀𝑢 ∈ 𝐽 (4h)

∑
𝑢∈𝐽∖{𝑣}

𝑡𝑢𝑣 = 𝑥𝑣 − 𝑧𝑣, ∀𝑣 ∈ 𝐽 (4i)

𝑓 𝑢𝑣
𝑖𝑗

≤ 𝑡𝑢𝑣, ∀(𝑖, 𝑗) ∈ 𝐴𝐽 ,∀𝑢, 𝑣 ∈ 𝐽 , 𝑢 ≠ 𝑣 (4j)

𝑓 𝑢𝑣
𝑖𝑗

+ 𝑓 𝑢𝑣
𝑗𝑖

≤ 𝑒𝑖𝑗 , ∀[𝑖, 𝑗] ∈ 𝐸𝐽 ,∀𝑢, 𝑣 ∈ 𝐽 , 𝑢 ≠ 𝑣 (4k)

∑
𝑗∈𝐹𝑆(𝑖)

𝑓 𝑢𝑣
𝑖𝑗

−
∑

𝑗∈𝐵𝑆(𝑖)

𝑓 𝑢𝑣
𝑗𝑖

=

⎧⎪⎨⎪⎩

𝑡𝑢𝑣 if 𝑖 = 𝑢,

−𝑡𝑢𝑣 if 𝑖 = 𝑣,

0, otherwise.

∀𝑖, 𝑢, 𝑣 ∈ 𝐽 , 𝑢 ≠ 𝑣 (4l)

∑
[𝑖,𝑗]∈𝐸𝐽

𝑒𝑖𝑗 =
∑
𝑗∈𝐽

𝑥𝑗 −, (4m)

Constraints (2s)-(2u)

𝑡𝑢𝑣 ∈ {0, 1}, ∀𝑢, 𝑣 ∈ 𝐽 , 𝑢 ≠ 𝑣 (4n)

𝑓 𝑢𝑣
𝑖𝑗

≥ 0. ∀(𝑖, 𝑗) ∈ 𝐴𝐽 ,∀𝑢, 𝑣 ∈ 𝐽 , 𝑢 ≠ 𝑣 (4o)

Box II.

Table 21
Payoff table obtained with lexicographic optimisation.

−𝐹𝐷𝐶 𝐹𝑆𝐶 𝐹𝑃𝐿

min−𝐹𝐷𝐶 −113 376 25
min𝐹𝑆𝐶 −109 281 40
min𝐹𝑃𝐿 −109 370 20

We chose 𝑞𝑆𝐶 = 𝑞𝑃𝐿 = 20 yielding to discretisation steps equal to
4 and 1, respectively. AUGMECON-R found eight efficient solutions. In
particular, comparing the objective function values in Table 22 with
those in Table 5 it emerges that, as expected, adding a new root yields
the reduction of the maximum values of both 𝐹𝑆𝐶 and 𝐹𝑃𝐿. For example
the first solution activates facilities in 3, 5, 7, 8, 10 and places the roots in
facilities 3 and 5. Also 𝑓 3

(3,7)
= 𝑓 3

(5,10)
= 𝑓 8

(8,7)
= 1, and 𝑡37 = 𝑡38 = 𝑡510 = 1

while the remaining 𝑓 and 𝑡 variables are null. As an example, Fig. 4
shows the second solution from the right-hand side of Table 22.

5.2. Designing a matheuristics for the MoCLP-ZSPF

This Section details the Matheuristics AugForestExplore, devised to
approximate the Pareto Set for the MoCLP-ZSPF. Actually, the logic
behind this approach is similar to that of the AugStarExplore algo-
rithm detailed in Section 3.2: it adopts a tailored heuristic procedure,
called ForestExplore, to solve the SOPs at each iteration of the
AUGMECON-R scheme.

At this purpose, it receives as input the same parameters of AugStar-
Explore, and the parameters 𝛼, 𝜔, 𝛽, 𝛾 and 𝜏 have the same role as in the

StarExplore procedure. Once that a set of fractional values for the
facility variables 𝑥𝑗 is obtained from the continuous relaxation of the
Maximal Covering Location problem featuring Zonal constraints (2g),
at each iteration the ForestExplore heuristics is invoked, whose
pseudo-code is given in Algorithm 5.

After the initialisation operations (Lines 2–6), a set of 𝐾 active
facilities is defined through the pseudo-randomised rounding procedure
detailed in Algorithm 3 (Line 8). Then, each possible combination of
 active facilities is used as roots to compute a forest (Line 10). At
this purpose, the GetForest function (Algorithm 6) is invoked which,
following the k-means logic, assigns each non-root facility to the closest
root. Actually, this is the best assignment that can be made from a
Pareto optimality perspective, for functions 𝐹𝑆𝐶 and 𝐹𝑃𝐿, as stated in
Lemma 3. It is noteworthy that the number of possible forests is

(𝐾


)
.

Later on, if the forest obtained with GetForest presents at least
an isolated root, then all these roots are processed sequentially by
repeatedly invoking the function FixForest (Line 14) detailed in Al-
gorithm 7. This function evaluates the differential contributions related
to switching a non-root facility from the root it has been assigned to
and the isolated root currently processed. Indeed, switches are possible
only from roots with at least two assigned nodes, to avoid creating
new isolated roots (Line 6, Algorithm 7). Then, following a minimum
criterion, a switch occurs whenever it makes the smallest contribution
to either the cost or the path length objective function. Indeed, as
many new forests are created as there are possible switches. Then these
forests are explored (Lines 18–29, Algorithm 5): for each of them,
if the corresponding solution verifies the current 𝜀 constraints (Line
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Table 22
Solutions found by AUGMECON-R. Those marked with asterisk cover all demand nodes except 23.

Active facilities Roots Edges min−𝐹𝐷𝐶 min𝐹𝑆𝐶 min𝐹𝑃𝐿 Active facilities Roots Edges min−𝐹𝐷𝐶 min𝐹𝑆𝐶 min𝐹𝑃𝐿

3, 5, 7, 8, 10 3, 5 [3, 7], [7, 8], [5, 10] −113 37.6 2.5 3, 4, 6, 8, 10 3, 10 [3, 8], [4, 10], [6, 10] −109(∗) 28.1 4.0
3, 5, 6, 8, 10 8, 10 [3, 8], [5, 10], [6, 10] −109(∗) 30.6 2.5 3, 5, 6, 8, 10 3, 10 [3, 8], [5, 10], [6, 10] −109(∗) 30.6 2.5
3, 5, 7, 8, 10 3, 5 [3, 7], [3, 8], [5, 10] −113 37.6 2.5 3, 5, 7, 8, 10 5, 7 [7, 3], [7, 8], [5, 10] −113 37.6 2.5
3, 5, 6, 8, 9 8, 9 [9, 5], [8, 3], [8, 6] −109(∗) 33.1 2.1 2, 5, 6, 8, 9 5, 6 [5, 9], [6, 8], [6, 2] −109(∗) 37.0 2.0

Fig. 4. Solution 2 (right-hand side of Table 22). Active facilities shown in blue while root facilities in red, and covered demand nodes in green. 𝐹𝑆𝐶 = 30.6 and 𝐹𝑃𝐿 = 2.5.

19), the procedure checks whether it is repeated or dominated by any
previously computed solution (Line 21); if not, it is inserted in the
pool. The procedure counts the solutions inserted in the pool (Line
24) and updates max and min slack variables found (Lines 26–27)
analogously to Algorithm 2. If the exploration of the region of the grid
is promising, 𝛾 additional iterations are performed (Line 36). Finally,
the slack variables are obtained as in Algorithm 2.

Lemma 3. The procedure GetForest (Algorithm 6) defines a Pareto
optimal assignment of active facilities to roots, for the overall service costs
objective function and the maximum path length objective function. That
is, there does not exist a different assignment which improves the values of
functions 𝐹𝑆𝐶 and 𝐹𝑃𝐿 obtained with this procedure.

Proof. Given the vector �̄� of facility variables obtained with Pseudo-
RandomisedRounding procedure (cf. Algorithm 3), let 𝑓 be the
vector of flow variables relative to the assignment obtained with Get-
Forest procedure. Let us assume that there exists a different as-
signment of non-root active facilities in �̄� to roots such that, given

the corresponding vector 𝑓 ′ of flow variables,
(
𝐹𝑆𝐶 (𝑓

′, �̄�), 𝐹𝑃𝐿(𝑓
′)
)

dominates
(
𝐹𝑆𝐶 (𝑓, �̄�), 𝐹𝑃𝐿(𝑓 )

)
. Namely, it holds that:

𝐹𝑆𝐶 (𝑓
′, �̄�) ≤ 𝐹𝑆𝐶 (𝑓, �̄�) and 𝐹𝑃𝐿(𝑓

′) ≤ 𝐹𝑃𝐿(𝑓 ),

with at least one strict inequality. However, this outcome is only
possible if there exists at least one path from a root 𝑟 ∈ 𝐽 to an active
(non-root) facility 𝑗 ∈ 𝐽 , relative to the assignment 𝑓 ′, whose cost
is less than that of the path from 𝑟 to 𝑗 in the assignment 𝑓 , i.e. 𝑐𝑟𝑗 .
Nonetheless, the triangular inequality for the cost function 𝑐 ensures
that such a path could not exist. □

Remark 5. Similar to what was observed in Section 3.2, the running
time of the AugForestExplore procedure is determined by the 𝑞𝑆𝐶 ∗ 𝑞𝑃𝐿
calls to the ForestExplore heuristics (cf. Algorithm 5). Therefore it
is necessary to estimate its running time.

As already mentioned, the execution time of the pseudo-randomised
rounding procedure is 𝑂(|𝐽 |), while both GetForest and FixFor-

est complexity is 𝑂(𝐾). The estimated execution time for the loop
on Lines 12–16 is 𝑂(𝐾2). In particular, the cardinality of 𝐹𝑜𝑟𝑒𝑠𝑡_𝑃𝑜𝑜𝑙
in the worst case (i.e. when there are  − 1 isolated roots and all
the switches are possible) is equal to

∏−2
𝑗=0 [𝐾 − − 𝑗] = 𝑂(𝐾 (−1)).

Therefore, the pool checking on Line 21 performs at most 𝑂(𝐾2(−1))

comparisons. Since the loop on Lines 9–29 entails
(𝐾


)
iterations, the

expected running time of the ForestExplore heuristics is 𝑂

(
𝛾 ∗

(𝐾


)
∗ (𝐾2(−1) +𝐾2)

)
.

The worst case occurs when the grid of 𝜀 values is defined with
unitary step and no jump is performed, since AugForestExplore invokes
the ForestExplore heuristics 𝑟𝑆𝐶 ∗ 𝑟𝑃𝐿 times. □

5.3. Computational experiments on the MoCLP-ZSPF

To check the validity of the MoCLP-ZSPF model as well, we per-
formed a series of experiments on a subset of the instances detailed in
Section 4.2. Particularly, we adapted the framework of the AUGMECON-
R method (Section 3.1) to obtain an approximation of the Pareto Sets
which is then compared with the one produced by the AugForestExplore
Matheuristics.

Remark 6. Since we have assumed that only active facilities can act as
roots and that exactly one facility is located in each zone, the maximum
number of allowed roots is ⌊𝐾∕2⌋. □

Given that, when  = 1 the MoCLP-ZSPF reduces to MoCLP-
ZSPT, we first conducted a set of experiments aimed at comparing
the two formulations (2) and (4), detailed in Section 5.3.1. Then,
Section 5.3.2 presents the approximations of the Pareto Sets obtained
with the AUGMECON-R and AugForestExplore methods when  = 2 and
 ≤ 6, respectively.
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Algorithm 5 ForestExplore Procedure

1: procedure ForestExplore((𝐺, {𝐶𝑘}𝑘≤𝐾 , 𝑐, 𝑑, {𝑁𝑖}𝑖∈𝐼 , ℎ, 𝑠,), �̂�, 𝜀𝑃𝐿, 𝜀𝑆𝐶 , 𝛼, 𝜔, 𝛽, 𝛾, 𝜏)
2: Set 𝑆𝑆𝐶 = 0 and 𝑆𝑃𝐿 = 0. ⊳ Slack variables
3: Set 𝑆𝑚𝑎𝑥

𝑆𝐶
= 0 and 𝑆𝑚𝑎𝑥

𝑃𝐿
= 0. ⊳ Minimum slack variables

4: Set 𝑆𝑚𝑖𝑛
𝑆𝐶

= INT_MAX and 𝑆𝑚𝑖𝑛
𝑃𝐿

= INT_MAX. ⊳ Maximum slack variables
5: Set 𝑔𝑜𝑜𝑑_𝑠𝑜𝑙 = 0, 𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 = 0, 𝑖𝑛𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 = 0 and 𝑖𝑛𝑠𝑒𝑟𝑡 = FALSE.
6: Set 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = ∅, 𝑃𝑜𝑜𝑙 = ∅ and 𝐹𝑜𝑟𝑒𝑠𝑡_𝑃𝑜𝑜𝑙 = ∅.
7: for 𝑖𝑡𝑒𝑟 = 1 to 𝛾 do
8: 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = Pseudo-RandomisedRounding({𝐶𝑘}𝑘≤𝐾 , �̂�, 𝛼, 𝜔) ⊳ Activation of facilities
9: for each tuple 𝑟𝑜𝑜𝑡𝑠 of  active facilities do
10: 𝐹𝑜𝑟𝑒𝑠𝑡 = GetForest(𝑟𝑜𝑜𝑡𝑠, 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
11: Add Forest to Forest_Pool.
12: if there is at least an isolated root then
13: for each isolated root 𝑗 do
14: Forest_Pool = FixForest(𝑗, 𝐹 𝑜𝑟𝑒𝑠𝑡_𝑃𝑜𝑜𝑙)
15: endfor
16: endif
17: 𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 = 0.
18: for each forest 𝑓 in Forest_Pool do
19: if 𝐹 𝑓

𝑆𝐶
≤ 𝜀𝑆𝐶 and 𝐹

𝑓

𝑃𝐿
≤ 𝜀𝑃𝐿 then ⊳ The forest is feasible

20: 𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 = 𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 + 1.
21: insert = CheckPool(𝑓, 𝑃 𝑜𝑜𝑙) ⊳ Check for dominated/repeated solution
22: if insert == TRUE then
23: 𝑃𝑜𝑜𝑙 = 𝑃𝑜𝑜𝑙 ∪ {𝑓}

24: 𝑔𝑜𝑜𝑑_𝑠𝑜𝑙 = 𝑔𝑜𝑜𝑑_𝑠𝑜𝑙 + 1.
25: endif
26: 𝑆𝑚𝑖𝑛

𝑆𝐶
= min(𝑆𝑚𝑖𝑛

𝑆𝐶
, 𝜀𝑆𝐶 − 𝐹𝑆𝐶 ) and 𝑆𝑚𝑎𝑥

𝑆𝐶
= max(𝑆𝑚𝑎𝑥

𝑆𝐶
, 𝜀𝑆𝐶 − 𝐹𝑆𝐶 )

27: 𝑆𝑚𝑖𝑛
𝑃𝐿

= min(𝑆𝑚𝑖𝑛
𝑃𝐿

, 𝜀𝑃𝐿 − 𝐹𝑃𝐿) and 𝑆𝑚𝑎𝑥
𝑃𝐿

= max(𝑆𝑚𝑎𝑥
𝑃𝐿

, 𝜀𝑃𝐿 − 𝐹𝑃𝐿)

28: endif
29: endfor
30: if 𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 == 0 then ⊳ The SOP in unfeasible
31: 𝑖𝑛𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 = 𝑖𝑛𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 + 1

32: endif
33: endfor
34: endfor
35: if 𝑖𝑛𝑓𝑒𝑎𝑠_𝑠𝑜𝑙 <

(
𝐾



)
∗ 𝛾 and 𝑔𝑜𝑜𝑑_𝑠𝑜𝑙 ≥ 𝜏 then ⊳ SOP feasible and exploration promising

36: Repeat Lines 7-29. ⊳ 𝛾 extra iterations
37: endif
38: 𝑆𝑆𝐶 = 𝛽 ∗ 𝑆𝑚𝑎𝑥

𝑆𝐶
+ (1 − 𝛽) ∗ 𝑆𝑚𝑖𝑛

𝑆𝐶
and 𝑆𝑃𝐿 = 𝛽 ∗ 𝑆𝑚𝑎𝑥

𝑃𝐿
+ (1 − 𝛽) ∗ 𝑆𝑚𝑖𝑛

𝑃𝐿

39: return 𝑃𝑜𝑜𝑙, 𝑆𝑆𝐶 , 𝑆𝑃𝐿

40: end procedure

Algorithm 6 GetForest Procedure

1: procedure GetForest(𝑟𝑜𝑜𝑡𝑠, 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
2: Set 𝐹𝑜𝑟𝑒𝑠𝑡 = 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠.
3: Set 𝐹𝑆𝐶 =

∑
𝑗∈𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑠𝑗 and 𝐹𝑃𝐿 = 0.

4: for each 𝑣 ∈ 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ∖ 𝑟𝑜𝑜𝑡𝑠 do
5: assign 𝑣 to 𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖∈𝑟𝑜𝑜𝑡𝑠𝑐𝑖𝑣.
6: Update Forest.
7: 𝐹𝑆𝐶 = 𝐹𝑆𝐶 + 𝑐𝑗𝑣.
8: if 𝑐𝑗𝑣 > 𝐹𝑃𝐿 then
9: 𝐹𝑃𝐿 = 𝑐𝑗𝑣
10: endif
11: endfor
12: return Forest
13: end procedure

5.3.1. Comparison of the MoCLP-ZSPT and the MoCLP-ZSPF with single
root

The experiments were conducted considering ≈20% of the small
pmed instances and of the RC-CluSPT ones. The payoff tables were
obtained with the lexicographic optimisation, while the parameters of
the AUGMECON-R method were set analogously to Sections 4.5 and 4.6
respectively. The results are reported in Tables 23 and 24.

These results show that, as expected, the presence of a fourth index
in the formulation has a strong impact on the resolution of the SOPs. In
fact, comparing the average computational times of the lexicographic

Algorithm 7 FixForest Procedure

1: procedure FixForest(𝑗, 𝐹 𝑜𝑟𝑒𝑠𝑡_𝑃𝑜𝑜𝑙)
2: Set 𝑁𝑒𝑤_𝐹𝑜𝑟𝑒𝑠𝑡_𝑃𝑜𝑜𝑙 = ∅.
3: for each forest in Forest_Pool do
4: Remove the forest from Forest_Pool.
5: for 𝑣 ∈ 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ⧵ 𝑟𝑜𝑜𝑡𝑠 do
6: if 𝑣 is assigned to 𝑖 ∈ 𝑟𝑜𝑜𝑡𝑠 and at least two nodes are assigned to

𝑖 then
7: 𝛥𝑆𝐶 [𝑣] = 𝑐𝑗𝑣 − 𝑐𝑖𝑣 and 𝛥𝑃𝐿[𝑣] = 𝑐𝑗𝑣.
8: endif
9: endfor
10: for 𝑣 ∈ 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ⧵ 𝑟𝑜𝑜𝑡𝑠 do
11: if 𝑣 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛥𝑆𝐶 or 𝑣 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛥𝑃𝐿 then
12: assign 𝑣 to 𝑗.
13: 𝐹𝑆𝐶 = 𝐹𝑆𝐶 + 𝛥𝑆𝐶 [𝑣] and 𝐹𝑃𝐿 = 𝛥𝑃𝐿[𝑣]

14: Add the obtained forest to New_Forest_Pool.
15: endif
16: endfor
17: endfor
18: return New_Forest_Pool
19: end procedure

optimisation approach for the same subset of instances, it appears that

the maximum ratio is 17.68 on the pmed problems, and even 402.82 on

the RC-CluSPT ones. Analogously, the average computational times
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Table 23
Comparison of results on the small pmed instances using MoCLP-ZSPT and MoCLP-ZSPF with  = 1.

Nodes Nr. 𝑞 Dem. Cand. Zones MoCLP-ZSPT MoCLP-ZSPF

avg(Pay-L) avg(AUG-R) avg(Sol.) avg(Pay-L) avg(AUG-R) avg(Sol.)

100 3 0.10 90 10 2 0.63 s 6.02 s 4.67 2.61 s 22.73 s 5.00
100 3 0.15 86 14 2 1.52 s 8.01 s 3.00 15.61 s 125.17 s 4.00
100 3 0.20 80 20 2 4.48 s 45.12 s 10.00 64.03 s 833.35 s 10.00
100 3 0.10 92 8 4 0.65 s 6.09 s 3.67 1.88 s 14.62 s 3.67
100 3 0.15 88 12 4 2.26 s 39.43 s 8.00 12.59 s 187.15 s 10.00
100 3 0.20 80 20 4 23.21 s 269.39 s 17.67 410.51 s 3649.20 s 17.67

Table 24
Comparison of results on RC-CluSPT problems using MoCLP-ZSPT and MoCLP-ZSPF with  = 1.

Type Nodes Nr. 𝑞 avg(Dem.) avg(Cand.) Zones MoCLP-ZSPT MoCLP-ZSPF

avg(Pay-L) avg(AUG-R) avg(Sol.) avg(Pay-L) avg(AUG-R) avg(Sol.)

1 99.00 1 0.15 79.00 20.00 10 81.02 s 41.06 s 2.00 27314.95 s 1878.74 s 2.00
1 68.00 3 0.20 50.67 17.33 5 15.26 s 665.52 s 17.67 631.57 s 10196.75 s 17.33
5 67.50 4 0.20 50.75 16.75 5 8.19 s 181.25 s 10.00 288.36 s 2333.27 s 10.00
6 76.00 1 0.20 58.00 18.00 4 8.68 s 447.24 s 19.00 149.81 s 5251.35 s 18.00
6 76.00 1 0.20 58.00 18.00 4 13.89 s 1272.30 s 32.00 252.64 s 5251.35 s 18.00
6 73.00 3 0.20 52.50 20.50 9 40.62 s 498.80 s 10.50 16362.50 s 15879.33 s 10.50

Table 25
Aggregated numerical results on the small and medium pmed instances with  = 2.

Nodes Nr. 𝑞 Dem. Cand Zones Roots avg(Pay-L) avg(AUG-R) avg(Sol.) avg(gp) avg(J-byp) avg(J-inf)

100 1 0.10 92 8 4 2 1.62 s 29.80 s 7.00 103.00 381.00 0.00
100 1 0.15 88 12 4 2 10.52 s 195.37 s 13.00 145.00 282.00 57.00
100 1 0.20 80 20 4 2 348.53 s 2887.03 s 10.00 159.00 325.00 0.00
200 2 0.10 184 16 8 2 1031.65 s 3617.05 s 27.00 236.50 226.00 21.50
200 2 0.10 180 20 4 2 635.65 s 3415.26 s 13.50 158.50 280.00 45.50

Table 26
Aggregated numerical results on the RC-CluSPT instances with  = 2.

Type Nodes Nr. 𝑞 avg(Dem.) avg(Cand.) Zones Roots avg(Pay-L) avg(AUG-R) avg(Sol.) avg(gp) avg(J-byp) avg(J-inf)

1 76.00 2 0.20 57.00 19.00 5 2 1121.24 s 10080.34 s 19.50 400.00 441.00 534.00
5 75.00 1 0.20 57.00 18.00 5 2 173.89 s 6074.62 s 8.00 395.00 1649.00 0.00
6 76.00 1 0.20 58.00 18.00 6 2 1415.11 s 4898.44 s 16.00 233.00 275.00 234.00
6 70.00 1 0.20 50.00 20.00 9 2 25375.50 s 54637.36 s 27.00 810.00 1016.00 274.00

of the AUGMECON-R method are one order of magnitude lower when
the three indices formulation is adopted. This outcome confirms the
strong speed-up due to the presence of one less index; in particular,
the average ratio of the average computational times is equal to 9.76 on
the pmed instances, and 20.28 on the RC-CluSPT. Finally, on the RC-
CluSPT problems the exact approximation of the Pareto Set contains a
greater number of non-dominated solutions when adopting the MoCLP-
ZSPT formulation; while on average only 1 less solution is detected on
the pmed ones. However, considering these results, we can conclude
that the MoCLP-ZSPT formulation has to be preferred when  = 1.

5.3.2. Results with multiple roots
A further computational phase was conducted on both the data-sets

with the aims of: detecting the peculiarities of the MoCLP-ZSPF formu-
lation as the number  of roots varies, and appraising the scalability
of the proposed AugForestExplore Matheuristics. Indeed, preliminary
experimentation revealed that the MoCLP-ZSPF is more challenging for
the AUGMECON-R method already when  = 2, as emerged from the
results in Tables 25 and 26.

These results show that activating one additional root leads to
average computational times increased by at least one order of magni-
tude. Though AUGMECON-R explores more grid-points than the single-
root case. Additionally, on the small pmed instances, the average
computational are strongly impacted when the number of candidates
increases. Instead, on the RC-CluSPT instances, the average com-
putational times of the lexicographic optimisation grow dramatically,
revealing that as the number of roots increases the advanced connec-
tivity constraints become more challenging due to the smaller number
of candidates per zone.

In view of these considerations, we adopted AugForestExplore to
heuristically solve the MoCLP-ZSPF with up to 6 roots. Specifically,
preliminary experiments revealed that with the parameter values de-
tailed in Section 4.3.2, the resulting heuristic Pareto Set approximation
was competitive with the exact one. Therefore, the experimentation
was conducted with these parameters and setting the time limit as
500 s on the RC-CluSPT instances. In particular, we considered a
representative subset of the RC-CluSPT instances.

The results in Table 27 reveal that on the Type 1 instances with the
same characteristics (zones and 𝑞), as  increases, the Matheuristics
detects on average one less efficient solution. This outcome is again re-
lated to the lower zone density which makes the advanced connectivity
features more challenging for the heuristic procedure too. Instead, on
the Type 6 instances with 9 zones and the same 𝑞 values, the Pareto
Set approximations relative to  = 2 and  = 3 contain on average
the same number of solutions. Though, OPS and Spacing values of the
latter are worse. These outcomes suggest that an extended time limit
could allow the Matheuristics to perform a more thorough exploration
of the frontier. However, on this same Type instances, the Matheuristics
efficiently performs a thorough exploration for problems with the same
demand, candidates and 𝑞 values, with 4 and 6 zones. This is confirmed
by the doubled number of solutions detected.

Concerning the pmed data-set, a preliminary set of experiments re-
vealed that an adequate exploration of their Pareto Sets would require
impractical computational times, given the larger size of the instances
and the corresponding density of zones. However, the logic underlying
the heuristic framework ForestExplore is well suited to a parallel
implementation, to which we switched.
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Table 27
Aggregated numerical results of the AugForestExplore Matheuristic on the RC-CluSPT data-set.

avg(Nodes) Nr. 𝑞 avg(Dem.) avg(Cand.) Zones Roots avg(Pay-L) Matheur. avg(Sol.) avg(OPS) avg(SP)

Type 1
68.50 4 0.20 51.25 17.25 5 2 645.52 s 500.00 s 18.50 1.15 49.46
99.50 2 0.15 80.00 19.50 10 2 84695.07 s 500.00 s 5.00 0.89 63.12
99.50 2 0.15 80.00 19.50 10 3 143654.92 s 500.00 s 4.00 0.28 54.00

Type 5
67.50 4 0.20 50.75 16.75 5 2 165.70 s 500.00 s 9.50 0.79 110.87
90.00 1 0.20 66.00 24.00 10 3 236628.48 s 500.00 s 14.00 0.01 100.62

Type 6
76.00 1 0.20 58.00 18.00 4 2 270.03 s 500.00 s 6.00 0.30 49.69
76.00 1 0.20 58.00 18.00 6 2 1415.11 s 500.00 s 13.00 1.15 45.04
76.00 1 0.15 61.00 15.00 9 2 775.26 s 500.00 s 12.00 0.75 31.22
76.00 1 0.15 61.00 15.00 9 3 290.64 s 500.00 s 12.00 0.06 61.85
73.00 2 0.20 52.50 20.50 9 2 24494.17 s 500.00 s 11.00 0.67 15.37
73.00 2 0.20 52.50 20.50 9 3 28187.94 s 500.00 s 12.00 0.16 82.98

Table 28
Aggregated numerical results of the AugForestExplore on the pmed instances with 100 and 200 nodes.

Nodes Nr. 𝑞 Dem. Cand. Zones Roots avg(Pay-L) Matheur. avg(Sol.) avg(OPS) avg(SP)

100 3 0.10 90 10 4 2 1.77 s 301.23 s 3.67 0.44 34.13
100 3 0.15 86 14 4 2 10.57 s 301.21 s 15.33 0.92 47.80
100 3 0.20 80 20 4 2 322.42 s 301.22 s 24.33 1.06 43.47

200 3 0.10 180 20 4 2 1764.61 s 306.02 s 5.33 0.20 37.33
200 3 0.10 184 16 8 2 1283.39 s 311.25 s 20.67 0.66 46.28
200 3 0.10 184 16 8 3 525.59 s 322.47 s 30.00 1.14 40.39
200 3 0.10 184 16 8 4 2340.11 s 328.08 s 23.33 0.68 30.89

On these instances we defined the time limit as 300+
(𝐾


)
∗ 𝑁𝑜𝑑𝑒𝑠 ∗

0.002 seconds, in order to guarantee a 2-day exploration on the largest
problems with 6 roots. In particular, we considered 3 out of 5 instances
for the small and medium pmed ones, along with the large ones.
Table 28 reports the results obtained on a subset of the pmed instances
sized 100 and 200 nodes, for which the payoff tables were obtained
with the lexicographic approach.

Recalling that as the number of candidates grows there is potentially
a greater number of solutions to explore, we can see how on small
instances the Matheuristics succeeds in performing this exploration. In
fact, when the number of candidates doubles, it finds 6 times as many
solutions which are also characterised by better spreads. Nevertheless,
on instances with 200 nodes, when  = 2, as the density of zones
increases, the heuristic approximation of the Pareto Set is poorer,
in terms of cardinality, spread and distribution indicators. Such an
outcome suggests again that zone density affects the performance of
the approach and makes the problem more challenging. Similarly, it
happens that as the number of roots doubles the average computational
times of the lexicographic approach double too, thus confirming that
also  impacts the complexity of the problem. Curiously, the configu-
ration with 3 roots is the one characterised by the best approximation
of the Pareto Sets, in terms of cardinality and spread indicators.

Remark 7. The average computational times for the exact computation
of the payoff tables grow dramatically as the number of roots increases;
thus, we adapted the operations of the 𝛾 iterations in the Forest-
Explore procedure (cf. Algorithm 5, Lines 7–29) to approximate the
payoff table for the pmed instances sized 300 to 600 nodes, using a
time limit of 900 s. □

Table 29 reports the results relative to instances with 300 nodes: it
emerges that on problems with 6 zones, as the number of candidates
grows the Matheuristic approximation of the Pareto Set is poorer in
terms of cardinality and spread indicators, though the solutions are
better diversified. Again, this outcome is related to the increased zone
density which challenges the exploration of the pool of feasible forests
performed in the ForestExplore procedure. However, the results
obtained for instances with 12 zones and  = 2 prove that the parallel
implementation of the heuristics is beneficial to the exploration process;

in fact, the resulting approximations of the Pareto Sets are better with
respect to all indicators in comparison with those obtained for instances
with 6 zones.

Additionally, on these instances, for the same  values, and the
same time limits, when the number of candidates increases the
Matheuristics provides increasingly better approximations with respect
to cardinality and spread indicators. This reveals how successful this
approach is in exploring and determining multiple efficient configura-
tions for scenarios characterised by the presence of several depots. In
particular, it is noteworthy that these approximations are obtained in
at most 15 min.

Finally, Fig. 5 depicts the average of average values of objective
functions 𝐹𝑆𝐶 and 𝐹𝑃𝐿 as the number of roots varies from 1 to 4.
In particular, the values relative to  = 1 are those of the solutions
obtained with AugStarExplore method. These graphics reveal how al-
lowing for the activation of multiple roots (depots) is instrumental at
fulfilling the reachability goal, by decreasing the maximum length of
paths from the root to any active facilities in the spanning forest, as
well as the overall costs. Indeed, the advantages in terms of path length
and related to the installation of multiple roots are already significant
when one additional root is located.

The analysis of results relative to the large pmed problems revealed
that on the instances with 400 nodes, 16 zones and the same number
of candidates, as the number of roots increases, AugForestExplore
finds fewer solutions and produces worse Pareto Sets approximations
with respect to diversification indicators (cf. Table 30). Reversely, on
instances with 8 zones, the approximations with the best values of all
the indicators are those relative to the maximum allowed number of
roots, i.e.  = 4. Similarly, on instances with 500 nodes, the ‘‘worst’’
approximations are relative to configurations with fewer zones and
roots (i.e.  = 2 and 𝐾 = 10), probably due to the reduced time limit
that does not allow for exhaustive exploration. On the other hand, for
the remaining instances, with the same number of candidates, the most
challenging configurations are those with 5 and 6 roots (cf. Table 31).
This is because there might be more isolated roots after the call to
GetForest (cf. Algorithm 6); consequently, the cardinality of the pool
of solutions obtained with FixForest increases rapidly.

Finally, the data relative to experiments conducted on instances
with 600 nodes revealed that, as expected, the higher the number of
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Table 29
Aggregated numerical results of the AugForestExplore Matheuristic on the pmed instances with 300 nodes.

Nodes Nr. 𝑞 Dem. Cand. Zones Roots Pay-A Matheur. avg(Sol.) avg(OPS) avg(SP)

300 3 0.10 270 30 6 2 900 s 315.15 s 8.33 0.16 100.16
300 3 0.15 258 42 6 2 900 s 311.95 s 5.33 0.11 48.50

300 3 0.10 276 24 12

2

900 s

425.54 s 15.33 0.74 36.67
3 432.10 s 14.00 1.41 96.43
4 598.11 s 17.00 1.62 55.27
5 806.21 s 16.67 2.90 94.50
6 855.73 s 12.67 2.78 99.16

300 3 0.15 264 36 12

2

900 s

339.66 s 27.67 0.68 52.54
3 432.13 s 31.33 1.09 55.41
4 597.53 s 31.33 4.93 42.03
5 776.43 s 19.33 16.84 66.48
6 855.36 s 23.00 76.62 54.56

Table 30
Numerical results of the AugForestExplore Matheuristic on the pmed instances with 400 nodes.

Nodes 𝑞 Dem. Cand. Zones Roots Pay-A Matheur. avg(Sol.) avg(OPS) avg(SP)

400 0.10 360 40 8
2

900 s
322.43 s 33 0.49 45.75

3 344.85 s 16 0.70 62.98
4 356.12 s 40 3.39 56.71

400 0.15 344 56 8
2

900 s
322.44 s 10 0.40 106.09

3 344.86 s 20 0.63 100.71
4 356.17 s 26 0.89 50.60

400 0.10 368 32 16

2

900 s

396.02 s 15 0.50 39.81
3 749.51 s 42 3.63 30.01
4 1766.82 s 12 9.58 111.06
5 3811.70 s 20 0.00 53.40
6 6726.94 s 10 0.00 70.89

400 0.15 352 48 16

2

900 s

396.10 s 37 0.47 31.72
3 749.63 s 31 0.79 45.00
4 1756.71 s 20 3.18 57.99
5 3798.23 s 19 2117.99 54.77
6 8080.96 s 6 0.00 118.70

Fig. 5. Representation of the heuristic average values for 𝐹𝑆𝐶 (left) and 𝐹𝑃𝐿 (right) objective functions. Each block of four columns represents average values as  changes and
refers to groups of three medium pmed instances with cardinality of zones equal to 25, and 𝑞 = 0.10, 0.15, as reported in the group name.

zones, the more challenging the MoCLP-ZSPF. In fact, the configura-

tions with 𝐾 = 24 and  = 4, 5, 6 are characterised by very poor

approximations of the Pareto Sets, with respect to all the indicators. For

example, as reported in Table 32, in more than 2 days of computation

the Matheuristics did not detect any solution for the problem with 6

roots. By contrast, the instances with 𝐾 = 12 feature good quality

approximations with multiple roots. In particular, it is noteworthy

that on these problems the Matheuristic approach is able to detect on

average 22 solutions in 15 min which is ≈30% of the time needed by

AUGMECON-R to find the same number of solution but on instances

with only 200 nodes and 2 roots.

6. Conclusions and future lines of research

This paper introduced advanced network connectivity features and
zonal requirements within Covering Location, giving rise to a novel
class of NP-hard Multi-objective Covering Location Problems. By adopt-
ing a broad modelling perspective, it was possible to fill relevant gaps
highlighted in the literature, with the aim of extending the range of
applicability of Network optimisation tools and Location Problems to
practical contexts. Specifically, this research allowed to address all
those real-world scenarios that require not only to locate facilities
that provide maximum coverage for a certain demand for services,
but also to include the economic, strategic and operational aspects of
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Table 31
Numerical results of the AugForestExplore Matheuristic on the pmed instances with 500 nodes.

Nodes 𝑞 Dem. Cand. Zones Roots Pay-A Matheur. avg(Sol.) avg(OPS) avg(SP)

500 0.10 450 50 10

2

900 s

345.01 s 16 0.50 137.50
3 420.17 s 49 0.92 45.40
4 510.17 s 61 3.52 51.64
5 552.04 s 18 0.64 48.76

500 0.15 430 70 10

2

900 s

345.07 s 8 0.17 104.40
3 420.02 s 36 1.22 72.15
4 510.33 s 40 15.67 74.53
5 552.14 s 17 3.39 66.46

500 0.10 460 40 20

2

900 s

490.04 s 8 0.71 43.60
3 1441.16 s 9 1.05 91.82
4 5154.51 s 22 2.05 36.92
5 15840.61 s 36 0.00 12.79
6 44939.19 s 5 0.00 89.52

500 0.15 440 60 20

2

900 s

490.18 s 4 0.25 56.10
3 1440.95 s 14 1.75 103.52
4 5751.49 s 6 2.22 79.27
5 16237.91 s 17 0.00 51.08
6 41841.59 s 2 0.00 0.00

Table 32
Numerical results of the AugForestExplore Matheuristic on the pmed instances with 600 nodes.

Nodes 𝑞 Dem. Cand. Zones Roots Pay-A Matheur. avg(Sol.) avg(OPS) avg(SP)

600 0.10 540 60 12

2

900 s

379.24 s 19 0.31 41.58
3 564.18 s 13 0.95 139.58
4 894.07 s 16 3.60 94.81
5 1251.18 s 12 5.48 90.19
6 1412.05 s 23 12.21 54.00

600 0.15 516 84 12

2

900 s

379.30 s 34 0.86 55.67
3 564.32 s 42 0.72 73.59
4 1116.41 s 10 0.01 8.34
5 1251.96 s 29 4.64 61.00
6 1410.06 s 26 124.14 53.91

600 0.10 552 48 24

2

900 s

631.29 s 6 0.53 50.58
3 2729.60 s 11 1.57 25.15
4 15871.66 s 4 0.00 187.28
5 83180.68 s 7 0.00 33.33
6 200361.43 s 3 0.00 45.03

600 0.15 528 72 24

2

900 s

631.38 s 22 1.53 26.28
3 2730.35 s 24 3.19 57.01
4 13296.22 s 8 0.00 30.77
5 53667.85 s 3 0.00 28.29
6 395014.97 s 0 0.00 0.00

their network connections in the decision-making process. To this end,
while modelling the problems through Multi-objective Mixed Integer
Linear Programming, innovative networks measures were introduced
to contain the distance between any active facility and selected depots
or distribution centres. In addition, the choice of the network structures
to task for these functions was entailed in the decision-making process.
As a result of this workflow, an optimal design was defined for those
scenarios in which the size of the underlying network is restricted; fur-
thermore, contexts characterised by underlying network structures of
significant size were efficiently equipped with an approximate planning
of facility location and connection.

The arising optimisation problems are inherently Multi-objective as
they contemplate different and conflicting managerial perspectives that
come into play when planning systems with the mentioned characteris-
tics. Therefore, this paper proposed a twofold solution approach aimed
at providing an accurate representation of their relevant Pareto Sets,
in order to support optimal decision-making. Firstly, we tailored the
robust version of the Augmented 𝜀-constraint method (AUGMECON-
R) (Nikas et al., 2020) for an exact exploration of the Pareto Sets.
Secondly, we exploited the mathematical properties of the introduced
problems to design tailored Matheuristic algorithms to boost scalability
of the solution method, thus enabling to tackle large size instances
and multiple depots configurations. In particular, from the thorough

experimental analysis conducted, several elements emerged which ap-
pear to yield an increased computational burden during the exploration
of the Pareto Set, namely: an elevated zone density – in terms of
candidates and demands – results in greater computational effort, while
zone sparsity yields to significant challenges for the advanced network
connectivity purposes. Furthermore, specific topologies of the zones
(e.g. not-contiguity) can result in complexities for the fulfilment of all
the objectives. Additionally, from a managerial standpoint, it emerged
how the proposed research effectively responded to the motivating
needs, obtaining a proof of concept for the proposed models while
solving benchmark instances of realistic size.

The number of Pareto optimal solutions keeps limited while in-
creasing network size, despite the massive number of feasible solutions.
This evidence confirms the suitability of adopting the proposed Multi-
objective modelling approach to support real-world decision making, as
the final choice can be safely made by policy makers among a limited
number of efficient configurations.

On the same note, a characterisation of the problems related to
the use of multiple depots/distribution centres was obtained, showing
how investing in the installation of multiple depots proves to be cost-
effective whenever ensuring a high efficiency in sending flows along
the network of active facilities becomes a strategic priority.

As concerns future lines of research, we first aim to develop im-
proved mathematical formulations for the proposed problems. In fact,
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the current MILP model for configurations with multiple depots adopts
a 4-indices formulation. However, as shown by the experimentation,
when the instance size increases, both the resolution of the model and
the heuristic approach require a significant computational effort. In
addition, this research has enabled bridging the gaps highlighted in
the literature on those scenarios in which the primary objective is to
maximise the coverage of demand for specific services. Consequently,
in an attempt to fill similar and/or further gaps, we intend to broaden
our perspective to the cases where the strategic objectives encompass
the allocation of demand.

Data availability

No data was used for the research described in the article
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