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Robustness in Stochastic Frontier Analysis

Alexander D. Stead, Phill Wheat, and William H. Greene

Abstract A number of recent studies have addressed the issue of robustness in the

context of stochastic frontier analysis, and alternative models and estimation meth-

ods have been proposed that appear more robust to outliers. For example, several

models assuming heavy-tailed noise distributions appeared in the literature, includ-

ing the logistic, Laplace, and Student’s t distributions. Despite this, there has been

little explicit discussion of the what is meant by ‘robustness’ and how models might

be compared in terms of robustness to outliers. This chapter discusses two different

aspects of robustness in stochastic frontier analysisȷ first, robustness of parameter

estimates, by comparing the influence of outlying observations across different spec-

ifications – a familiar approach in the wider literature on robust estimation; second,

the robustness of efficiency predictions to outliers across different specifications – a

consideration unique to the efficiency analysis literature.

1 Introduction

Stochastic frontier (SF) analysis involves the estimation of an efficient frontier func-

tion – e.g. a production, cost, or revenue frontier. The robustness of our estimators and

predictors is critical to accurate prediction of efficiency levels or rankings. The pres-

ence of contaminating outliers and other departures from distributional assumptions
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is problematic, since maximum likelihood estimation (MLE) is the most commonly

employed estimation method in the SF literature and it is well known that MLE

and other classical estimation methods are usually non-robust, in that they perform

poorly in the presence of departures from distributional assumptions.

In SF modelling, robustness has additional relevance since a primary concern,

especially in a regulatory context, is the prediction of efficiency levels of individ-

ual firms against the estimated frontier function. We therefore have reason to be

concerned not only with the robustness of our estimation of the frontier, but the

robustness of our efficiency predictions.

Despite this relevance, relatively little attention has been given to the issue of

robustness in the SF literature. In recent years, several studies have proposed alterna-

tive models or estimators relevant to the discussion of robustness, though with little

explicit discussion of what is meant by ‘robustness’ and how it might be measured

and compared across specifications and estimation methods. This chapter discusses

two different aspects of robustness in stochastic frontier analysisȷ first, robustness

of parameter estimates, by comparing the influence of outlying observations across

different specifications – a familiar approach in the wider literature on robust esti-

mation; second, the robustness of efficiency predictions to outliers across different

specifications – a consideration unique to the efficiency analysis literature.

The remainder of this chapter is structured as follows. Sections 2 and « briefly

introduce the SF model and some background and key concepts from the robust-

ness literature, respectively. Section » discusses robust estimation of the SF model,

drawing on the concepts introduced in Section « and relevant SF literature. Sec-

tion 5 discusses the robustness of efficiency prediction. Section 6 summarises and

concludes.

2 The Stochastic Frontier Model

Introduced by Aigner et al. (1977) and Meeusen and van Den Broeck (1977), the

basic cross-sectional stochastic frontier model is given by

𝑦𝑖 = x
′

iβ + 𝜀𝑖 , 𝜀𝑖 = 𝑣𝑖 − 𝑠𝑢𝑖 , (1)

where for the 𝑖𝑡ℎ firm, 𝑦𝑖 is the dependent variable, xi is a vector of independent

variables, β is a vector of frontier coefficients, and 𝜀𝑖 is an error term. The latter

is composed of a two-sided term, 𝑣𝑖 , representing random measurement error and

other noise factors, and a non-negative term, 𝑢𝑖 , representing departure from the

frontier function as a result of inefficiency. In the case of a production frontier, firms

may only be on or below the frontier, in which case 𝑠 = 1. On the other hand, in

the case of a cost frontier, firms may only be on or above the frontier, in which

case 𝑠 = −1. However, note that the composed error 𝜀𝑖 may take on either sign

owing to the presence of the two-sided noise term 𝑣𝑖 . Many extensions of this model,

particularly to panel data settings, have been proposed; see reviews of the literature
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by Kumbhakar and Lovell (2000), Murillo-Zamorano (200»), Coelli et al. (2005),

Greene (2008), Parmeter and Kumbhakar (201»), and Stead et al. (2019).

Though alternative parametric and semiparametric approaches to estimation of the

model have been explored, some of which are of particular interest from a robustness

perspective and discussed further in Sect. », MLE is the most common approach

in theoretical and applied SF literature. This necessitates specific distributional

assumptions regarding the error terms 𝑣𝑖 and 𝑢𝑖; Aigner et al. (1977) and Meeusen

and van Den Broeck (1977) explored estimation of the model under the assumption

that

𝑣𝑖 ∼ N(0, 𝜎2
𝑣 ), 𝑢𝑖 = |𝑤𝑖 |, 𝑤𝑖 ∼ N(0, 𝜎2

𝑢),

known as the normal-half normal (N-HN) model, or alternatively that

𝑣𝑖 ∼ N(0, 𝜎2
𝑣 ), 𝑢𝑖 ∼ Exponential(1/𝜎𝑢),

known as the normal-exponential (N-EXP) model. In both cases it is assumed that

𝑣𝑖 and 𝑢𝑖 are independent. The marginal density of the composed error, 𝜀𝑖 , is then

derived via the convolution

𝑓𝜀 (𝜀𝑖 , θ) =
∫ ∞

0

𝑓𝑣,𝑢 (𝜀𝑖 + 𝑠𝑢𝑖 , 𝑢𝑖 , θ)d𝑢𝑖 , θ =
(
β′,ϑ′

)′
, (2)

where 𝑓𝑣,𝑢 is the joint density of 𝑣𝑖 and 𝑢𝑖–which under the assumption of indepen-

dence, is just the product of their marginal densities–and θ is a vector of parameters.

This is then used to form the log-likelihood function.

The next step in SF modelling is then to predict observation-specific efficiency,

𝑢𝑖 , relative to the estimated frontier. These predictions are based on the conditional

distribution

𝑓𝑢 |𝜀 (𝑢𝑖 |𝜀𝑖 , θ) =
𝑓𝑣,𝑢 (𝜀𝑖 + 𝑠𝑢𝑖 , 𝑢𝑖 , θ)

𝑓𝜀 (𝜀𝑖 , θ)
, («)

following Jondrow et al. (1982). Both the log-likelihood function and 𝑓𝑢 |𝜀 clearly

depend on our underlying assumptions about the distribution of 𝑣𝑖 and 𝑢𝑖 . Many gen-

eralisations of and departures from the N-HN and N-EXP cases have been proposed,

and a detailed discussion of these is beyond the scope of this chapter, but is available

in the aforementioned reviews of the SF literature. From a robustness perspective,

the essential point is that distributional assumptions about 𝑣𝑖 and 𝑢𝑖 are critical to

both estimation of the frontier function and the prediction of efficiency relative to it.

3 Definitions and Measures of Robustness

Robustness, broadly defined, means a lack of sensitivity to small departures from

our model assumptions. Ideally, we would like a robust estimator, i.e. one that is

not unduly sensitive such departures. The main concern in many applications is
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robustness to ‘outliers’, i.e. outlying observations drawn from some contaminating

distribution. Robustness to outliers will also be the main focus of this chapter, though

given the critical role of specific distributional assumptions in SF modelling, it is

worth keeping in mind a broader definition, especially in relation to issues from

the SF literature such as ‘wrong skew’. Two related but distinct concepts in the

literature on robust estimation are robustness, measured in terms of the influence of

contaminating observations on an estimator, and resistance, measured in terms of

the estimator’s breakdown point. These are discussed below.

3.1 The Influence Function

Analysis of robustness often centres around the influence of contaminating obser-

vations on a statistical functional. Introduced by Hampel et al. (1986), the influence

function measures the effect on a statistical functional 𝑇 of an infinitesimal pertur-

bation of the distribution of the data 𝐹 at a point (𝑦,x) , and is given by

𝐿𝑇 (𝑦,x) = lim
𝜖→0

𝑇
(
(1 − 𝜖)𝐹 + 𝜖𝛿𝑦

)
− 𝑇 (𝐹)

𝜖
, (»)

where 𝛿𝑦 is a point mass at 𝑦. A statistical functional, in turn, is any function that

maps a distribution to a real scalar or vector. The greater the magnitude of 𝐿𝑇 ,

the greater the influence of the contaminating observation. The usefulness of this

concept is clear, since it can be applied to many different kinds of estimators and

predictors, enabling the discussion of the robustness of SF estimation and efficiency

prediction in terms of a consistent set of concepts and measures.

The influence function can be derived as a limiting case of the Gąteaux derivative,

a generalisation of the directional derivative to differentiation in vector spaces. In

the current context, we could generalise the influence function given by Eq. » to the

Gąteaux derivative

d𝑇 (𝐹, 𝐺) = lim
𝜖→0

𝑇
(
(1 − 𝜖)𝐹 + 𝜖𝐺

)
− 𝑇 (𝐹)

𝜖
,

where𝐺 is potentially any contaminating distribution. This potentially offers a useful

way of analysing the influence of other kinds of departures from our distributional

assumptions, though such a discussion is beyond the scope of this chapter. However,

we will exploit a useful property of the influence function which it owes to this

relationship. As with ordinary derivatives, a chain rule exists for Gąteaux derivatives,

and therefore for influence functions. If we have a statistical functional which can be

expressed in terms of 𝐽 functionals such that

𝑇 (𝐹) = 𝑇
(
𝑇1 (𝐹), . . . , 𝑇𝐽 (𝐹)

)
,

then the overall influence on the functional 𝑇 (𝐹) of an infinitesimal peturbation of

the data 𝐹 at 𝑦 is given by
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𝐿𝑇 (𝑦,x) =
𝐽∑︁
𝑗=1

𝜕𝑇 (𝐹)
𝜕𝑇𝑗 (𝐹)

𝐿 𝑗 (𝑦,x), (5)

where 𝑇𝑗 (𝐹) is the 𝑗 th functional, and 𝐿 𝑗 is its corresponding influence function.

Some key measures derived from the influence function include the rejection

point, the gross-error sensitivity, and the local-shift sensitivity, discussed below. We

also discuss the related concept of leverage.

3.1.1 Gross-error sensitivity

A key measure of the robustness of a functional is the gross-error sensitivity

𝛾∗𝑇 (x) = inf
𝑦

��𝐿𝑇 (𝑦,x)
�� (6)

which is the infimum of the magnitude of the influence function over all points for

which the influence function exists. If the gross-error sensitivity is finite, that is

the influence is bounded, we say that a functional is bias-robust or simply robust;

the lower the gross-error sensitivity, the more robust the model is to contaminating

outliers.

3.1.2 Local-shift sensitivity

An alternative metric, the local-shift sensitivity

𝜆∗𝑇 (x) = inf
𝑦≠𝑧

��𝐿𝑇 (𝑦,x) − 𝐿𝑇 (𝑧,x)
��

|𝑦 − 𝑧 | , (7)

where the infimum is taken over all 𝑦, 𝑧 for which 𝑦 ≠ 𝑧 and the influence functions

exist. The local-shift sensitivity measures the sensitivity of the estimator to a small

change in observed values.

3.1.3 Rejection point

Another measure of interest is the rejection point

𝜌∗𝑇 (x) = inf
𝑟>0

{
𝑟 : 𝐿𝑇 (𝑦,x) = 0, |𝑦 | > 𝑟

}
, (8)

which tells us how large an outlier must become before the influence function

becomes zero. If the influence of gross outliers becomes zero, the effect is the same

as removing them from the sample, hence the name rejection point.
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3.1.4 Leverage

In regression-type settings which involve linear functions of vectors of covariates,

such as our SF model described by Eq. 1, we are interested in the predicted values

of the dependent variable for some xi, given by 𝑦̂ = x′

i
β̂, where β̂ is our estimator

for β. Predicted values are, of course, of particular interest in SF modelling, given

our interest in estimating the distance of the firm from the frontier. The sensitivity

of 𝑦̂𝑖 to contaminating observations is therefore of particular interest. Given that we

can think of 𝑦̂𝑖 as a function of functionals as in Eq. 5, it has an influence function.

Applying the influence function chain rule as given in Eq. », this is simply

𝐿 𝑦̂𝑖 (𝑦,x) = x′

iL𝜷 (𝑦,x), (9)

where L𝜷 is the influence function for β̂. It is of natural interest here to consider the

evaluation of 𝐿 𝑦̂𝑖 at (𝑦𝑖 ,xi),

𝐿 𝑦̂𝑖 (𝑦𝑖 ,xi) = x′

iL𝜷 (𝑦𝑖 ,xi), (10)

that is the influence on the predicted value for a observation 𝑖 of a peturbation of the

data at (𝑦𝑖 ,xi). This is known as the self-influence or leverage of the observation,

and depends fundamentally on the on the values of the independent variables. The

direct relationship between the leverage, the influence of an observation on β̂, and

the values of the covariates is apparent from Eq. 10.

3.2 Breakdown point

Aside from influence-based measures and definitions of robustness, there is a related

but distinct concept of the breakdown point. The concept of the breakdown point,

introduced by Hampel (1971; 1968), gives the smallest fraction of sampled obser-

vations that would be needed to make an estimator take on an arbitrary value. There

is a distinction between the replacement breakdown point (the minimum fraction of

existing observations one would need to contaminate) and the addition breakdown

point (the fraction of additional contaminating observations one would need to add

to an existing sample). Both asymptotic and finite sample definitions exist – see

Donoho and Huber (198«). An estimator with a high breakdown point is said to be

resistant.

The concept of the breakdown point is easily illustrated by contrasting the sample

mean and sample median; the former has a breakdown point of 1/𝑛 in small samples

and zero asymptotically, while the latter has a breakdown point of 1/2. The sample

mean and median therefore represent opposite extremes in terms of breakdown points

and resistance to contaminating observations.

In terms of the asymptotic breakdown points of functionals, the asymptotic addi-

tion breakdown point is, from Huber (1981)
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𝜖∗𝑇 = inf

{
𝜖 > 0 : sup

𝐺

���𝑇 (
(1 − 𝜖)𝐹 + 𝜖𝐺

)
− 𝑇 (𝐹)

��� = ∞
}
, (11)

where the supremum is taken over all possible contaminating distributions.

3.3 Summary of measures

In this section, we have introduced several related concepts from the literature on

robustness. With the exception of the breakdown point these measures relate to the

influence of contaminating observations, which can be evaluated using the influence

function describing the relationship between the influence of an observation and

its value. The gross-error sensitivity is defined as the supremum of the magnitude

of the influence function, while the local-shift sensitivity reflects its slope, and the

rejection point is how large |𝑦 | must be for influence to become zero.

The breakdown point offers an alternative approach. In contrast to the influence

function, we are not aware of convenient formulae for the breakdown point of general

classes of functionals, and therefore most of the discussion hereafter will focus on

influence-based measures. The influence function also offers a more natural way to

extend the discussion to the robustness of post-estimation predictions. It will, how-

ever, be useful to discuss breakdown points in the context of, e.g. conditional quantile

regression estimation approaches that have been proposed in the SF literature.

4 Robustness and stochastic frontier estimation

In this section, we move on to discuss SF estimation in light of the concepts from the

robustness literature introduced in the previous Sect «. MLE is the workhorse of the

SF literature, in terms of both the attention it has received in theoretical literature, and

its useage in empirical applications. Other estimation methods we consider are the

corrected ordinary least squares (COLS), and quantile regression (QR) approaches,

and some generalisations of MLE. We discuss the robustness properties of each of

these estimators in the context of SF modelling, and some of the approaches that have

been taken to deal with outliers, including both alternative approaches to estimation

and alteration of distributional assumptions.

This discussion is aided by the fact that all of the estimation methods under

consideration belong to a broader class of M-estimators. Following Huber (196»,

1981), an M-estimator is any that can be defined as the solution to the problem

θ̂ = arg min
θ

𝑛∑︁
𝑖=1

𝜌(𝑦𝑖 ,xi, θ). (12)
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where 𝑛 is the number of observations and 𝜌 is a loss function. If the loss function

has a derivative with respect to θ, denoted ψ, we can define the M-estimator as the

solution to the equation

𝑛∑︁
𝑖=1

ψ(𝑦𝑖, xi, θ̂) = 0, ψ(𝑦𝑖, xi, θ̂) =
𝜕𝜌(𝑦𝑖 ,xi, θ)

𝜕θ

����
θ=θ̂

, (1«)

where 0 denotes a column vectors of zeros of the same length as θ. From Huber

(1981), the influence function for an M-estimator is given by

𝐿
θ̂
(𝑦,x) = − ©­«

E

(
𝜕ψ(𝑦, x, θ)

𝜕θ′

����
θ=θ̂

)ª®¬
−1

ψ(𝑦, x, θ̂). (1»)

This class of M-estimators encompasses many classical estimators, including MLE

and ordinary least squares (OLS), two methods commonly employed in the SF

literature. The robustness properties of M-estimators have been studied extensively,

and several robust M-estimators have been proposed in the literature on robust

estimation, though application of these in the SF literature has so far been limited.

4.1 Corrected ordinary least squares

Where we have a stochastic frontier model of the form introduced in Sect. 2, the

corrected ordinary least squares (COLS) estimation method proceeds by noting that,

assuming independence of 𝑣𝑖 and 𝑢𝑖 , we may re-write Eq. 1 as

𝑦𝑖 = 𝛼∗ + x∗′

𝒊 β
∗ + 𝜀∗𝑖 , 𝜀∗𝑖 = 𝑣 − 𝑠𝑢∗𝑖 , (15)

𝛼∗
= 𝛼 − 𝑠E(𝑢𝑖), 𝑢∗𝑖 = 𝑢𝑖 − E(𝑢𝑖), β = (𝛼,β∗′), xi = (1,x∗′

𝒊 )′,

where E(𝜀∗𝑖 ) = 0, and that therefore OLS may be used to obtain unbiased estimates

of 𝛼∗ andβ∗. That is, OLS yields unbiased estimates of all of the frontier parameters

apart from the intercept, which is biased downward (upward) in a production (cost)

frontier model by E(𝑢𝑖). Parameters of the distributions of 𝑣𝑖 and 𝑢𝑖 are then obtained

based on the sample moments of the distribution of the OLS residuals, given a set

of distributional assumptions. The moment-based estimator of E(𝑢𝑖) is then used to

correct our estimated intercept, hence the name corrected ordinary least squares1.

Solutions have been derived for several different models – see Aigner et al. (1977)

and Olson et al. (1980) for the N-HN model, Greene (1980) for the N-EXP model,

and Greene (1990) for the normal-gamma (N-G) model.

It is straightforward, however, to show that COLS is non-robust. If we partition

the parameter vector such that

1 Not to be confused with the modified ordinary least squares (MOLS) approach to estimating

a deterministic frontier function. The two terms are often used interchangeably; for an extensive

discussion, see Parmeter (2021).
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θ = (𝛼,β∗′,ϑ′)′,

where ϑ is the vector of parameters of the distribution of the composed error, the

COLS estimator θ̃ may expressed as a function of the OLS estimator

θ̃ =

(
𝛼̂∗ + 𝑠𝑔

(
µ(θ̂)

)
, β̂∗′,h

(
µ(θ̂)′

) ) ′
, θ̂ = (𝛼̂∗, β̂∗′), (16)

where θ̂ is the OLS estimator, µ(θ̂) is a vector of moments of the distribution of

estimated OLS residuals, and 𝑔 andh are functions of the latter yielding our moment-

based estimators of E(𝑢𝑖) and ϑ, respectively. Applying the influence function chain

rule gives

𝐿
θ̃
(𝑦,x) = 𝐿

θ̂
(𝑦,x)′ 𝜕θ̃

𝜕θ̂′
, (17)

from which it is clear that the robustness properties of COLS follow directly from

those of OLS. The non-robustness of OLS is well-known, but one convenient way

to demonstrate this is by recognising that OLS is an M-estimator where

𝜌(𝑦𝑖 ,xi, θ) = (𝑦𝑖 − x′

iθ)
2,

ψ(𝑦, x, θ̂) = −2(𝑦 − x′θ̂)x, 𝜕ψ(𝑦, x, θ)
𝜕θ′

����
θ=θ̂

= 2xx′,

and substituting these expressions in to Eq. 1» leads to a simple formula for influence

𝐿
θ̂
(𝑦,x) = (𝑦 − x′θ̂)

(
E(xx′)

)−1
x, (18)

which is clearly unbounded. The gross-error sensitivity of OLS is infinite, and it has

the lowest possible breakdown point of 1/𝑛. Substituting Eq. 18 in to Eq. 17, we

then see that COLS inherits these properties and is likewise non-robust.

This is unfortunate for two main reasons. First, COLS is otherwise an attractive

estimator in its own right because of its simplicity and ease of implementation,

and is possibly second only to MLE in terms of its usage and coverage in the SF

literature. In addition, evidence from Monte Carlo experiments suggests that COLS

may perform well relative to MLE in small samples (Olson et al., 1980). Second,

COLS is often used as a means of obtaining starting values for iterative optimisation

algorithms such as those used for MLE. The sensitivity of these starting values

to contaminating outliers may be problematic given that in SF modelling, the log-

likelihood is not always well-behaved. Similarly, obtaining good starting values can

become particularly important in the context of certain robust M-estimators, for

which multiple local optima may exist.
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Robust alternatives to COLS

The preceding discussion leads us to consider potential robust alternative to COLS.

In principle we could estimate 𝛼∗ and β∗ in Eq. 15 using any linear unbiased

estimator and, redefining θ̂ as an alternative robust estimator, substitute in to Eq.

16 for the corresponding ‘corrected’ estimator for the SF model. To give a concrete

example, we could use the least absolute deviations (LAD) estimator to obtain robust

estimates of 𝛼∗ and β∗, and then estimate E(𝑢𝑖) and remaining parameters of the

marginal distribution of 𝜀𝑖 based on moments of the LAD residuals, and making the

necessary correction to the intercept. By analogy with COLS, we might name this

the CLAD estimator.

LAD is a well-known estimator with a long history, predating even OLS; for an

extensive background and discussion see Dielman (2005). LAD is an M-estimator

where

𝜌(𝑦𝑖 ,xi, θ) = |𝑦𝑖 − x′

𝒊θ |, ψ(𝑦, x, θ̂) = −sgn(𝑦 − x′θ̂)x,

however are not able to derive the influence function via Eq. 1» owing to the

singularity of the Hessian2. Following Koenker (2005), the influence function for

the class of quantile regression estimators to which LAD belongs is given by

𝐿
θ̂
(𝑦,x) = Q−1sgn(𝑦 − x′θ̂)x, (19)

Q =

∫
xx′ 𝑓 (x′θ̂)d𝐺 (x), d𝐹 = d𝐺 (x) 𝑓 (𝑦 |x),

and by comparing this to the OLS influence function, we can see that LAD gives

less weight to outlying observations. Regarding the resistance of of the estimator,

a distinction needs to be made between the finite sample breakdown point or con-

ditional breakdown point (Donoho and Huber, 198«) and the ordinary breakdown

point. The conditional breakdown point considers contamination in 𝑦 only, taking x

as fixed, while the ordinary breakdown point considers contamination with respect

to both 𝑦 and x. It has been shown that the conditional breakdown point of the LAD

estimator can be greater than 1/𝑛 (He et al., 1990; Mizera and Müller, 2001; Giloni

and Padberg, 200»). On the other hand, the ordinary breakdown point of LAD is

1/𝑛. Giloni et al. (2006) propose a weighted LAD estimator with a high breakdown

point.

In addition to LAD, there are many other alternatives to OLS notable for their

outlier robustness or resistance, which we could consider as the first stage in some

corrected regression approach. A comprehensive discussion of robust and resistant

regression estimators is beyond the scope of this chapter, but some prominent exam-

ples include M-estimation approaches, least median of squares (LMS) (Siegel, 1982),

and least trimmed squares (LTS) (Rousseeuw, 198»). Early resistant regression tech-

niques such as LMS and LTS have high breakdown points, but low efficiency. More

2 Another consequence of the singularity of the Hessian is that the usual asymptotic results cannot

be applied. Bassett and Koenker (1978) show that LAD is asymptotically normal. A simpler proof

is given by Pollard (1991).
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recently, techniques have been developed with higher efficiency under the assump-

tion of normality, though computational issues can be significant – for a review,

see Yu and Yao (2017). Seaver and Triantis (1995) discuss the sensitivity of COLS

to outliers and compare production function estimates under OLS, LTS, LMS, and

weighted least squares (WLS).

Of particular relevance in the context of SF modelling, small sample results from

Lind et al (1992) suggest that LAD significantly outperforms OLS in terms of bias

and mean squared error when the error distribution is asymmetric. This suggests

that CLAD or and corrected robust or resistant regression estimators could offer

significant improvements over COLS.

4.2 Quantile regression

An alternative estimation approach that has gained some attention in the SF literature

in recent years is quantile regression (QR). Introduced by Koenker and Bassett

(1978), the QR estimator is an M-estimator where the loss function corresponding

to the 𝜏th conditional quantile is given by

𝜌(𝑦𝑖 ,xi, θ) = 𝜌𝜏 (𝑦𝑖 − x′

iθ), 𝜌𝜏 (𝜀𝑖) = 𝜀𝑖
(
𝜏 − I𝜀𝑖<0

)
, (20)

where I denotes the indicator function. Note that when 𝜏 = 0.5, we have the con-

ditional median or LAD estimator discussed in Sect. ».1. Rather than estimating a

conditional mean function as in OLS, we are estimating a conditional median or

other quantile. The intuitive appeal of QR is clear, since in SF modelling we expect

most of the observations to lie below (above) the estimated production (cost) func-

tion. Moreover, for an appropriate choice of 𝜏, the estimator will be unbiased, even

for the intercept. To see this, note that – assuming that 𝜀𝑖 is independent of xi – the

𝜏th conditional quantile of 𝑦𝑖 is given by

𝑄(𝜏 |xi) = x′

iβ + 𝐹−1
𝜀 (𝜏),

where 𝐹−1
𝜀 denotes the quantile function of composed error distribution. The QR

estimator of the intercept will then be biased by 𝐹−1
𝜀 (𝜏), so the problem is to choose

some optimal 𝜏∗ such that

𝐹−1
𝜀 (𝜏∗) = 0,

which depends on specific distributional assumptions. Early applications of quantile

regression to frontier estimation chose 𝜏 arbitrarily, e.g. Bernini et al. (200»), Knox

et al. (2007), Liu et al. (2008), and Behr (2010). More recently, Jradi and Ruggiero

(2019) noted that a formula for 𝜏∗ can be derived by evaluating 𝐹𝜀 , the distribution

function for the composed error, at zero, showing that for the N-HN model this gives

𝜏∗ =
1

2
+ 𝑠

1

𝜋
arctan

(𝜎𝑢

𝜎𝑣

)
,



12 Alexander D. Stead, Phill Wheat, and William H. Greene

and Jradi et al. (2021) show that for the N-EXP model

𝜏∗ =
1

2
+ 𝑠 exp

(
1

2

(𝜎𝑣

𝜎𝑢

)2
)
Φ

(
− 𝜎𝑢

𝜎𝑣

)
.

Jradi and Ruggiero (2019) suggest comparing likelihood values for different

values of 𝜏, while Jradi et al. (2019) choose the 𝜏 that minimises 𝜏 − 𝜏∗. A simpler

approach approach based on evaluating 𝐹𝜀 at the expected value of the OLS residuals

is proposed by Jradi et al. (2021) and applied to the N-EXP model; Zhao (2021)

implement this approach in the N-HN case. Bayesian approaches to QR estimation of

the SF model are explored by Tsionas (2020) and Tsionas et al. (2020). For a recent

in-depth review and discussion of the application of QR to estimate SF models, see

Papadopoulos and Parmeter (2022).

Robustness properties of quantile regression

The perceived robustness of QR estimation relative to MLE has been cited as a

key motivation for the its use in a SF context. Papadopoulos and Parmeter (2022)

argue that, under usual assumptions about independence of the errors from the

regressors, the appeal of QR is diminished and “the one remaining advantage of

quantile regression is its robustness to outliers”. The robustness properties of QR have

not been discussed in detail in the SF literature, and warrant further consideration.

Of particular relevance is the fact that the choice of 𝜏, which has been a focus of

the previous discussion, has a direct bearing on the resistance of the estimator to

outliers.

In a linear regression model, at least 𝑘 points will lie exactly on the estimated

regression plane under QR, where 𝑘 is the number of regressors; in other words,

𝜀𝑖 = 0 for at least 𝑘 observations. If we can correctly guess the sign of the residuals, we

can run the regression excluding all the observations above and below the estimated

regression plane and obtain exactly the same results. This property has been exploited

in order to design faster algorithms for QR estimation; see Portnoy and Koenker

(1997) and Chernozhukov et al. (2022). But it is also helpful in understanding

intuitively the effect of contaminating outliers on the estimator. When 𝜏 = 0.5,

contaminating outliers are likely to be points above or below the estimated QR

plane; yet as we move to more extreme quantiles, it becomes increasingly likely that

they will be included in the 𝑘 observations interpolated by the plane. This presents

a potential problem in the context of SF estimation where the quantile 𝜏∗ could

plausibly be rather extreme, the problem becoming more acute when 𝑘 is large

relative to 𝑛.

The influence function and breakdown points of QR have been examined in some

detail. As noted previously, the LAD estimator is a special case of QR that arises

when 𝜏 = 0.5. As such, much of our previous discussion of the properties of the

LAD estimator in Sect. ».1 applies to QR in general. The influence function is as

given in Eq. 19, meaning that the influence of an contaminating observation depends

only on its sign and xi. In that sense, in line with the previous discussion, QR is

robust provided we don’t venture too far into the tails of the distribution.
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The ordinary breakdown point of QR is 1/𝑛 and thus no better than that of

OLS, while the conditional breakdown point can be larger than 1/𝑛. This is easily

understood in terms of the preceding discussion and the influence function, since

we can potentially alter 𝑦𝑖 for 𝑛 − 𝑘 observations without influencing the estimator,

so long as the residuals don’t change sign, while even for a single observation, we

could choose 𝑦𝑖 and xi such that the QR plane is forced to intersect it. Accordingly

He et al. (1990) show that the conditional breakdown point of the QR estimator has

an upper bound which decreases with 𝜏.

To summarise, QR is a potentially robust estimation method, and may also have

a conditional breakdown point over 1/𝑛. On the other hand, its resistance to outliers

is reduced for more extreme quantiles, potentially lessening its appeal in the context

of SF modelling. Further examination of this issue is needed to assess the appeal of

QR as a robust estimator of the SF model.

4.3 Maximum likelihood estimation

Beginning with Aigner et al. (1977) and Meeusen and van Den Broeck (1977),

MLE has been the most commonly used estimation method in the SF literature. As

mentioned previously, as with COLS and QR estimation, MLE belongs to the class

of M-estimators. In the case of MLE

𝜌(𝑦𝑖 ,xi, θ) = − ln 𝑓𝜀 (𝑦𝑖 − x′

𝒊β, θ),

ψ(𝑦,x, θ̂) = −𝜕 ln 𝑓𝜀 (𝑦 − x′β, θ)
𝜕θ

����
θ=θ̂

,

where 𝑓𝜀 denotes the density of the composed error. Substituting these expressions

into Eq. 1», the influence function is given by

𝐿
θ̂
(𝑦,x) = −

(
I (θ̂)

)−1 𝜕 ln 𝑓𝜀 (𝑦 − x′β, θ)
𝜕θ

����
θ=θ̂

, (21)

where I (θ̂) denotes the Fisher information. It is straightforward to calculate the

influence for each observation in this way, since both of the terms on the right-hand

side of Eq. 15 are ordinarily available as by-products of MLE in most statistical

and econometric software packagesȷ the inverse information may be estimated by

the covariance matrix which, following the Cramér-Rao Theorem, is typically the

inverse of the observed information, and the second term is simply the observation-

level score vector.

It is useful at this point to dispel a common misconception that MLE is non-

robust in general. MLE is sometimes said to be ‘non-robust’ because of its typical

1/𝑛 ordinary breakdown point (i.e. non-resistance to leverage points). However, this
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is a property shared by most M-estimators3, even those that are robust in the sense of

having finite gross-error sensitivity to contamination in 𝑦. In other cases, it is perhaps

taken for granted that the gross-error sensitivity will always be infinite under MLE,

but as we will see, though that is often the case, it is not always so.

From Eq. 21 we can see that the influence function for the maximum likeli-

hood estimator is simply a linear transformation, by a matrix of constants, of the

observation-level score vector. In order to determine whether or not MLE is robust,

it is therefore sufficient to check whether the score vector is bounded. This is true of

M-estimators generally, but in the case of MLE, this depends entirely on the assumed

error distribution. It is therefore of interest to consider how the behaviour of the influ-

ence function differs under various assumptions considered in the SF literature, and

whether or not some distributional assumptions can be considered robust. We will

begin by discussing the canonical cases such as the N-HN and N-EXP specifications,

which have received the most attention in the literature, and then consider potentially

robust alternatives.

Influence under canonical distributional assumptions

As discussed in Sect. 2, Aigner et al. (1977) and Meeusen and van Den Broeck (1977)

originally considered the N-HN and N-EXP cases. An immediate generalisation

of the N-HN model is the normal-truncated normal (N-TN) model considered by

Stevenson (1980). In each of these cases, 𝑓𝜀 has a convenient closed-form expression,

making derivation of the influence function particularly straightforward. Given this,

and the large amount of attention given to the N-HN and N-EXP models in the SF

literature, it is worth discussing their robustness properties specifically. The ‘wrong

skew’ problem has particular relevance in these cases.

As shown by Waldman (1982), the OLS estimator is a stationary point in the

log-likelihood function in the N-HN case, and a sufficient condition for the stability

of this stationary point is that the skewness of the OLS residuals has the wrong sign4.

Horrace and Wright (2020) generalise this result to the N-TN model and the normal-

doubly truncated normal (N-DTN) model proposed by Almanidis et al. (201»), and

show that the OLS estimator is also a stable stationary point in the N-EXP case.

This is well-known in the SF literature as the ‘wrong skew’ problem. It follows

immediately MLE of the SF model is non-robust in these casesȷ it is straightforward

to show via the influence function chain rule that the skewness of the OLS residuals

is itself a non-robust functional, implying that even a single contaminating outlier in

the ‘wrong’ direction may result in the OLS estimator being returned. In the event

of wrong skew, the influence function therefore becomes that of the OLS estimator.

In other instances, the influence function is more complex. For the N-HN model,

where θ = (β, 𝜎𝑣, 𝜎𝑢) ′,

3 Other M-estimation techniques, e.g. QR, are therefore no more ‘robust’ than MLE in this sense.

4 Assuming independence of 𝑣𝑖 and 𝑢𝑖 , and that the distribution of 𝑢𝑖 is positively skewed,

sgn
(
Skew(𝑣𝑖 − 𝑠𝑢𝑖)

)
= sgn(−𝑠) , and therefore we expect the OLS residuals to be negatively

skewed in the production frontier case, and positively skewed in the cost function case.
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𝐿
θ̂
(𝑦,x) = −

(
I (θ̂)

)−1

©­­­­­­­­«

− 𝜎̂𝑢/𝜎̂𝑣√︁
𝜎̂2
𝑣 + 𝜎̂2

𝑢

(( 𝜎̂𝑣

𝜎̂𝑢

)2

𝑧 + 𝑠ℎ(𝑧)
)
x

𝜎̂𝑣

𝜎̂2
𝑣 + 𝜎̂2

𝑢

(
1 − 2

( 𝜎̂𝑣

𝜎̂𝑢

)2

𝑧2 − 𝑠

(
2 +

( 𝜎̂𝑢

𝜎̂𝑣

)2
)
𝑧ℎ(𝑧)

)

𝜎̂𝑢

𝜎̂2
𝑣 + 𝜎̂2

𝑢

(
1 − 2

( 𝜎̂𝑣

𝜎̂𝑢

)2

𝑧2 + 𝑠
( 𝜎̂𝑣

𝜎̂𝑢

)2

𝑧ℎ(𝑧)
)

ª®®®®®®®®¬
, (22)

ℎ(𝑧) = 𝜙(𝑠𝑧)
1 −Φ(𝑠𝑧) , 𝑧 =

𝑦 − x′β̂√︁
𝜎̂2
𝑣 + 𝜎̂2

𝑢

𝜎̂𝑢

𝜎̂𝑣

,

where 𝜙 andΦ are the standard normal probability density and distribution functions,

respectively. From this, we can conclude that MLE is non-robust in the N-HN case

generally, since each element of the influence function is unbounded, approaching

infinity as we increase 𝜀𝑖 in either direction – though the influence increases more

slowly for outliers below (above) the production (cost) frontier, there is no robustness

to outliers caused by extremely inefficient firms.

The unboundedness of the influence function in the N-TN case is similar and has

previously been shown by Song et al. (2017). In the N-EXP case, intuition suggests

the model should be better at handling outliers, since the exponential distribution

has heavier tails than the half normal distribution. However the influence function

for the N-EXP model

𝐿
θ̂
(𝑦,x) = −

(
I (θ̂)

)−1

©­­­­­­­«

𝑠

(
1

𝜎̂𝑣

ℎ
(
𝑧 − 𝜎̂𝑣

𝜎̂𝑢

)
− 1

𝜎̂𝑢

)
x

𝜎̂𝑣

𝜎̂2
𝑢

− 𝑠

𝜎̂𝑣

(
𝑧 + 𝜎̂𝑣

𝜎̂𝑢

)
ℎ
(
𝑧 − 𝜎̂𝑣

𝜎̂𝑢

)
1

𝜎̂𝑢

(
𝜎̂𝑣

𝜎̂𝑢

ℎ
(
𝑧 − 𝜎̂𝑣

𝜎̂𝑢

)
− 1 + 𝑧 − 𝜎̂2

𝑣

𝜎̂2
𝑢

)
ª®®®®®®®¬
, (2«)

ℎ
(
𝑧 − 𝜎̂𝑣

𝜎̂𝑢

)
=

𝜙
(
𝑧 − 𝜎̂𝑣

𝜎̂𝑢

)

Φ

(
𝑧 − 𝜎̂𝑣

𝜎̂𝑢

) , 𝑧 = −𝑠 𝑦 − x
′β̂

𝜎̂𝑢

,

is likewise unbounded, though it is apparent that influence of outlying observations

ought to be less than in the N-EXP case given the contrast between the linear

functions of the error term found in Eq. 2« and the quadratic functions that appear

in Eq. 22.

Alternative distributional assumptions

As mentioned in Sect. 2, many alternative distributional assumptions have been

suggested in the SF literature. Following the intuition that outliers should be modelled
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as instances of large |𝑣𝑖 | rather than contaminating the distribution of 𝑢𝑖 , several

studies have explored the use of noise distributions with heavier tails than the usual

normal distribution, which ought to better accomodate contaminating outliers.

In an early example of this approach, Janssens and van Den Broeck (199«) suggest

the use of an ‘approximative t’ distribution, and derive 𝑓𝜀 for an approximative t-

exponential (AT-EXP) SF model. However the authors do not operationalise the

model, and to our knowledge its use remains unexplored. More recent proposals for

the heavy-tailed noise distributions include the logistic (Stead et al., 2018), Laplace

(Nguyen, 2010; Horrace and Parmeter, 2018), Cauchy (Gupta and Nguyen, 2010),

scale contaminated normal (Stead et al., Forthcoming), and Student’s t (Tancredi,

2002; Wheat et al., 2019) distributions5. Note that the contaminated normal and

Student’s t distributions contain the the normal distribution is nested as a limiting

case; Stead et al. (Forthcoming) and Wheat et al. (2019) discuss testing against

the N-HN model, which can be interpreted as testing for heavy-tails in the noise

distribution.

A common characteristic of these sub-Gaussian SF models is the atypical tail

behaviour of the efficiency predictor, which is discussed in Sect. 5. In terms of

parameter estimates, results suggest that adopting such distributions for 𝑣𝑖 can lead

to substantive changes relative to the normal case, even when assumptions about

𝑢𝑖 are unaltered. In empirical applications, estimates from the logistic-half normal

(LOG-HN), contaminated normal-half normal (CN-HN) and Student’s t-half nor-

mal (T-HN) models can differ significantly from the N-HN estimates (Stead et al.,

Forthcoming; Wheat et al., 2019), especially with respect to 𝜎𝑢.

An interesting feature of the aforementioned sub-Gaussian noise distributions is

that each may be characterised as a scale mixture of normal distributions. That is, in

each case

𝑓𝑣 (𝑣𝑖 , θ𝑣) =
∫ ∞

0

1

𝜍𝜎𝑣

𝜙
( 𝑣𝑖

𝜍𝜎𝑣

)
𝑓𝜍 (𝜍)d𝜍,

where 𝜙 is the standard normal density and 𝑓𝜍 is the density of the mixing distribu-

tion. In the degenerate case, we recover the normal distribution

𝑓𝜍 (𝜍) = 𝛿(𝜍 − 1) =⇒ 𝑓𝑣 (𝑣𝑖 , θ𝑣) =
1

𝜎𝑣

𝜙
( 𝑣𝑖
𝜎𝑣

)
,

while the CN-HN case explored by Stead et al. (2018) is obtained by assuming that

𝜍 follows a generalised multinomial distribution, such that

𝑓𝜍 (𝜍) =
∑︁
𝑗

[𝜍 = 𝜍 𝑗 ]𝑝 𝑗 =⇒ 𝑓𝑣 (𝑣𝑖 , θ𝑣) =
∑︁
𝑗

𝑝 𝑗

1

𝜍 𝑗𝜎𝑣

𝜙
( 𝑣𝑖

𝜍 𝑗𝜎𝑣

)
.

This discrete approach may be used to approximate any mixing distribution arbitrarily

well, though at the cost of increasing the number of parameters to be estimated in

more flexible cases. Moving from a finite to an infinite mixture setting, Stefanski

5 For packages facilitating estimation some of these models, see httpsȷ//github.com/AlexStead.
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(1991) shows that the logistic distribution is obtained when the mixing distribution

is Kolmogorov-Smirnov; that is

𝑓𝜍 (𝜍) = 2𝜍

∞∑︁
𝑚=1

(−1)𝑚+1𝑚2𝑒−
1
2
(𝑚𝜍 )2

=⇒ 𝑓𝑣 (𝑣𝑖 , θ𝑣) =
exp

(
− 𝑣𝑖

𝜎𝑣

)
𝜎𝑣

(
1 + exp

(
− 𝑣𝑖

𝜎𝑣

) )2
.

Similarly, Andrews and Mallows (197») show that the Laplace distribution is ob-

tained when the mixture distribution is exponential with a variance of », such that

𝑓𝜍 (𝜍) =
1

2
𝑒−

𝜍
2 =⇒ 𝑓𝑣 (𝑣𝑖 , θ𝑣) =

1

2𝜎𝑣

exp
(
− |𝑣𝑖 |

𝜎𝑣

)
,

and that the Student’s t distribution is obtained when 𝜍2 follows an inverse gamma

distribution with scale and shape parameter both equal to 1
2𝛼

, such that

𝑓𝜍 (𝜍) =
(2𝛼√𝜍)− 1

2𝛼

Γ
(

1
2𝛼

)
𝜍

𝑒
− 1

2𝛼
√
𝜍 =⇒ 𝑓𝑣 (𝑣𝑖 , θ𝑣) =

√︂
2𝛼

𝜋

Γ
(

2𝛼+1
4𝛼

)
Γ
(

1
2𝛼

)
𝜎𝑣

(
1 + 2𝛼

( 𝑣𝑖
𝜎𝑣

)2
)− 2𝛼+1

4𝛼

,

(2»)

where 𝛼 is an inverse degrees of freedom parameter6. This characterisation is useful

since it provides a way of conceptualising these alternative specifications in terms

of departures from normality driven by explicit contamination models. Assuming

independence of 𝑣𝑖 and 𝑢𝑖 , the marginal density of 𝜀𝑖 is given by

𝑓𝜀 (𝑦𝑖 − x′

iβ, θ) =
∫ ∞

0

∫ ∞

0

1

𝜍𝜎𝑣

𝜙
( 𝑦𝑖 − x′

i
β + 𝑠𝑢𝑖

𝜍𝜎𝑣

)
𝑓𝜍 (𝜍) 𝑓𝑢 (𝑢, θ𝑢)d𝜍d𝑢𝑖 .

Making use of the Fubini-Tonelli theorem, we can interchange the order of integration

and then integrate out 𝑢𝑖 in order to express the contaminated density as

𝑓𝜀 (𝑦𝑖 − x′

iβ, θ) =
∫ ∞

0

𝑓 ∗𝜀
(
𝑦𝑖 − x′

iβ, (β
′, 𝜍𝜎𝑣, θ

′

𝑢)′
)
𝑓𝜍 (𝜍)d𝜍, (25)

where 𝑓 ∗𝜀 denotes the corresponding density that arises when 𝑣𝑖 ∼ N(0, 𝜎2
𝑣 ). For

example, in the T-HN case, the expression above becomes

𝑓𝜀 (𝑦𝑖 − x′

iβ, θ) =
∫ ∞

0

2

𝜎
𝜙

(
𝑦𝑖 − x′

i
β

𝜎

)
Φ

(−(𝑦𝑖 − x′

i
β)𝜆

𝜎

) (2𝛼√𝜍)− 1
2𝛼

Γ
(

1
2𝛼

)
𝜍

𝑒
− 1

2𝛼
√
𝜍 d𝜍,

𝜎 =

√︃
𝜍2𝜎2

𝑣 + 𝜎2
𝑢 , 𝜆 =

𝜎𝑢

𝜍𝜎𝑣

.

6 Wheat et al. (2019) parameterise the T-HN model in terms of the degrees of freedom 𝜐 =
1
𝛼

, but

for the purposes of the following discussion, the inverse will be more useful.
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This result is potentially useful in solving for or approximating 𝑓𝜀 (𝜀𝑖 , θ), but also

suggests an alternative way of conceptualising MLE under these alternative distri-

butional assumptions; if the true distribution is such that 𝑣𝑖 ∼ N(0, 𝜎2
𝑣 ), we are

effectively maximising a pseudolikelihood that reflects an particular contamination

model.

Simulation evidence suggests that these models perform well under misspecifi-

cation – Horrace and Parmeter (2018) show that the Laplace-Exponential (L-EXP)

performs better when the true data generating process (DGP) is N-EXP than vice-

versa, and likewise Wheat et al. (2019) show that that Student’s t-half normal (T-HN)

model performs well when the DGP is N-HN, while the N-HN model performs poorly

when the DGP is T-HN. In addition, the L-EXP and T-HN models appear to perform

better than the N-EXP and N-HN models in the presence of ‘wrong skew’ (Horrace

and Parmeter, 2018; Wheat et al., 2019).

While simulation results offer an encouraging indication that sub-Gaussian SF

models may be less sensitive to misspecification in a general sense, none of the

aforementioned studies examine the behaviour of the influence function under their

models explicitly, leaving the actual robustness of the various specifications to out-

liers an open question. Examination of the properties of influence function in each

case would be tedious, especially in cases where 𝑓𝜀 lacks a convenient analytical

expression. Such an approach would also shed relatively little light on how we might

choose distributional assumptions with robustness in mind.

Recent results from Stead et al. (202«) are useful in this respect. The authors

derive some sufficient conditions for boundedness of the score vector and hence the

robustness of MLE of the SF model, and discuss distributional assumptions which

satisfy these. An exhaustive discussion of these conditions is beyond the scope of

this chapter, however they relate to the boundedness of the logarithmic derivatives

of the joint density function 𝑓𝑣,𝑢. The authors show that these conditions are not

satisfied under the canonical distributional assumptions – e.g. N-HN, N-EXP – nor

even in most of the sub-Gaussian cases just discussed.

In fact, of the proposed alternative noise distributions discussed, only the Student’s

t distribution (including its Cauchy special case) is found to satisfy the Stead et al.

(202«) conditions for robust MLE. Under the assumption of independence, it may

be paired with any one-parameter scale family – eg. half normal, exponential –

for 𝑢𝑖 and these conditions will be satisfied. A particularly attractive feature of the

Student’s t model is that it appears to be robust to contamination in both 𝑦 and x.

In other words, it is robust to both outliers and leverage points, and has an ordinary

breakdown point greater than 1/𝑛; its robustness properties in this sense are better

than those of the QR estimator. It should be noted that these results may depend on

treating the ‘degrees of freedom’ or shape parameter as a fixed tuning parameter,

rather than estimating it via MLE as in Wheat et al. (2019). The authors note that

proposed flexible distributions of 𝑢𝑖 with two or more parameters, e.g. gamma, do

not satisfy their conditions, nor do copulae that have been proposed for modelling

dependence between 𝑣𝑖 and 𝑢𝑖 .

These results demonstrate that simply adopting a sub-Gaussian distribution for

𝑣𝑖 , such as the logistic or Laplace distributions, is not enough to ensure robustness of
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MLE. On the other hand, they indicate the flexibility of the Student’s t distribution

in robust MLE of the SF model. The T-HN and Student’s t-exponential (T-EXP)

models may be estimated robustly via MLE, and the results may be used as a guide

to identify further robust pairings. Usefully, this offers a path to robust estimation

while remaining within the framework of MLE.

4.4 Alternative M-estimators

One particular class of M-estimators generalises MLE by specifying some alternative

loss function containing − ln 𝑓𝜀 as a limiting case, such that

𝜌(𝑦𝑖 ,xi, θ) =
{

𝜌𝛼 (𝑦𝑖 ,xi, θ), 𝛼 > 0

− ln 𝑓𝜀 (𝑦𝑖 − x′

i
β, θ), 𝛼 = 0

, (26)

ψ𝛼 (𝑦, x, θ̂) =
𝜕𝜌𝛼 (𝑦,x, θ)

𝜕θ

����
θ=θ̂

,

where 𝛼 ≥ 0 is some tuning parameter and ψ𝛼 (𝑦,x, θ̂) is bounded when 𝛼 > 0.

The gross-error sensitivity and efficiency of these estimators both decrease as 𝛼

increases, creating a trade-off between robustness and efficiency. A loss function

𝜌𝛼 (𝑦𝑖 ,xi, θ) is chosen such that this trade-off is minimised.

Examples of this approach include minimum density power divergence estimation

(MDPDE) (Basu et al., 1998), in which

𝜌𝛼 (𝑦𝑖 ,xi, θ) =
∫

𝑓 1+𝛼
𝜀 (𝑦 − x′

iβ, θ)d𝑦 +
𝛼 + 1

𝛼
𝑓 𝛼𝜀 (𝑦𝑖 − x′

iβ, θ).

Comparable methods are maximum 𝐿𝑞-likelihood estimation (M𝐿𝑞LE) (Ferrari and

Yang, 2010) and maximum Ψ-likelihood estimation (MΨLE) (Eguchi and Kano,

2001; Miyamura and Kano, 2006). M𝐿𝑞LE replaces the logarithm of the density

with its Box-Cox transformation

𝜌𝛼 (𝑦𝑖 ,xi, θ) = −𝛼 + 1

𝛼

(
𝑓

𝛼
𝛼+1
𝜀 (𝑦𝑖 − x′

iβ, θ) − 1
)
,

while (MΨLE) makes one of several transformations of the likelihood. Miyamura

and Kano (2006) propose

𝜌𝛼 (𝑦𝑖 ,xi, θ) =
1

𝛼 + 1

∫
𝑓 𝛼+1
𝜀 (𝑦 − x′

iβ, θ)d𝑦 −
1

𝛼
𝑓 𝛼𝜀 (𝑦𝑖 − x′

iβ, θ),
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which, up to a constant factor, is identical to the minimum density power divergence

estimator. MDPDE, M𝐿𝑞LE, and MΨLE are equivalent to maximising weighted

likelihood functions, where outlying observations are downweighted7.

The use of MDPDE as a robust estimator of the SF model is explored by Song et al.

(2017), who provide simulation evidence suggesting that the estimator outperforms

MLE in the presence of contaminating outliers, as expected, but also that its small-

sample performance is comparable to that of MLE. Similar results with respect to

MΨLE are shown by Bernstein et al. (2021)8, who also explore use of M𝐿𝑞LE, for

which the results are by contrast mixed.

We can understand these approaches as maximising some quasi-likelihood func-

tion – see White (1982). As discussed in Sect. ».«, MLE under alternative distribu-

tional assumptions can be conceptualised in the same way. In particular, following

Eqs. 2» and 25, if 𝑣𝑖 ∼ N(0, 𝜎2
𝑣 ) then the Student’s t model can be understood as a

Student’s t-based robust M-estimator such that,

𝜌𝛼 (𝑦𝑖 ,xi, θ) = − ln

∫ ∞

0

𝑓𝜀
(
𝑦𝑖 − x′

iβ, (β, 𝜍𝜎𝑣, θ𝑢)′
) (2𝛼𝜍)− 1

2𝛼

Γ
(

1
2𝛼

)
𝜍

𝑒
− 1

2𝛼𝜍 d𝜍,

which fits the general framework described by Eq. 26. As with MDPDE, MΨLE,

and M𝐿𝑞LE, we have an tuning parameter 𝛼 which governs the trade-off between

robustness and efficiency, and − ln 𝑓𝜀 is recovered when 𝛼 = 0. This provides an

alternative motivation for the Student’s t model as a robust M-estimator based on

a particular model of contamination. This is advantageous, since the contamination

model is then incorporated into efficiency prediction in a consistent way by use of

the corresponding Student’s t based efficiency predictor. By contrast, other robust

M-estimation methods leave robust efficiency prediction as a separate problem.

Further investigation would be useful to compare the performance of these meth-

ods in estimating SF models, in terms of robustness to differing contamination

models and the trade-off between robustness and efficiency. Intuition suggests that

these quasi-likelihood methods may outperform QR and similar methods. The choice

of 𝛼 is crucial in each case. Song et al. (2017) discuss the choice of 𝛼 under MDPDE,

and follow Durio and Isaia (2011) in using an approach to select 𝛼 based on a mea-

sure of the similarity of MDPDE and MLE results. Bernstein et al. (2021) discuss

the choice of 𝛼 under M𝐿𝑞LE, noting that the estimator is biased except when 𝛼 = 0

and suggest setting 𝛼 equal to a function of 𝑛 such that 𝛼 → 0 in large samples,

though in this case we approach MLE. For the Student’s t based M-estimator, Wheat

et al. (2019) discuss hypothesis testing in the case that 𝛼 is estimated directly via

MLE; if we treat it instead as a fixed tuning parameter, information criteria could be

used.

7 In the case of M𝐿𝑞LE, Ferrari and Yang (2010) use a different formulation for in terms of 𝑞 =
1

1+𝛼
and allow for 𝑞 > 1, which effectively upweights outliers.

8 note that the authors use the Miyamura and Kano (2006) transformation. As noted previously,

this is equivalent to MDPDE, so the similarity of these results is to be expected.
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5 Robustness and efficiency prediction

As discussed previously, the robustness literature is concerned with ensuring that

departures from our model assumptions, such as contaminating observations, cannot

push some functional to a boundary of its sample space. In the case of functionals

that are defined as measures of technical or cost efficiency, these must belong to the

interval (0, 1]. In most cases we might consider a finding that all firms are on the

frontier, in other words that sample mean efficiency is 1, to be unrealistic. Such a

situation can only arise when we are at a boundary of the parameter space, and is an

issue of the robustness of the estimation method.

We will be concerned if efficiency predictions start approaching zero. On the

other hand, when it comes to predicting firm-specific efficiency scores we may not

regard an efficiency prediction of 1 as problematic; identification of firms on the

frontier may be of particular interest in some applications. However, when seeking

to identify the most efficient firms, we may wish to exclude extreme outliers. This

motivates consideration of potentially robust efficiency predictors that are not unduly

sensitive to extreme outliers.

As discussed in Sect 2, firm-specific efficiency prediction is based on the condi-

tional distribution given by Eq. 2. Since the true parameter values are not known in

practice, we use some estimator θ̂. By definition, the influence of a contaminating

point (𝑦𝑖 ,xi) on some predictor 𝑢̂ 𝑗 of (the natural logarithm of) efficiency evaluated

for the 𝑗 th observation is

𝐿𝑢̂ 𝑗
(𝑦𝑖 ,xi) = 𝑢̂ 𝑗 (𝑦 𝑗 − x′

jβ̂i, θ̂i) − 𝑢̂ 𝑗 (𝑦 𝑗 − x′

jβ̂, θ̂)

where θ̂i =
(
β̂′

i
, ϑ̂′

i

)
′

and θ̂ =

(
β̂′, ϑ̂′

)
′

denote the estimator including and exclud-

ing (𝑦𝑖 ,xi), respectively. From this, we can derive the expression

𝑢̂𝑙 (𝑦𝑙 − x′

lβ̂k, θ̂k) − 𝑢̂ 𝑗 (𝑦 𝑗 − x′

jβ̂i, θ̂i) = 𝑢̂𝑙 (𝑦𝑙 − x′

lβ̂, θ̂) − 𝑢̂ 𝑗 (𝑦 𝑗 − x′

jβ̂, θ̂)
+ 𝐿𝑢̂𝑙 (𝑦𝑘 ,xk) − 𝐿𝑢̂ 𝑗

(𝑦𝑖 ,xi). (27)

When 𝑙 = 𝑗 , Eq. 27 gives us the influence on the prediction for the 𝑗 th observation

of removing a contaminating point (𝑦𝑖 ,xi) and replacing it with another, (𝑦𝑘 ,xk),

𝑢̂ 𝑗 (𝑦 𝑗 − x′

jβ̂k, θ̂k) − 𝑢̂ 𝑗 (𝑦 𝑗 − x′

jβ̂i, θ̂i) = 𝐿𝑢̂ 𝑗
(𝑦𝑘 ,xk) − 𝐿𝑢̂ 𝑗

(𝑦𝑖 ,xi), (28)

while if 𝑗 = 𝑖, 𝑙 = 𝑘 , we have an expression for the effect of replacing (𝑦𝑖 ,xi) with

(𝑦𝑘 ,xk) on the efficiency predictor evaluated at the contaminating point

𝑢̂𝑘 (𝑦𝑘 − x′

kβ̂k, θ̂k) − 𝑢̂𝑖 (𝑦𝑖 − x′

iβ̂i, θ̂i) = 𝑢̂𝑙 (𝑦𝑘 − x′

kβ̂, θ̂) − 𝑢̂𝑖 (𝑦𝑖 − x′

iβ̂, θ̂)
+ 𝐿𝑢̂𝑘

(𝑦𝑘 ,xk) − 𝐿𝑢̂𝑖 (𝑦𝑖 ,xi). (29)

Eq. 28 may be interpreted as the effect of changing the 𝑖th observation on the 𝑗 th

efficiency prediction where 𝑖 ≠ 𝑗 , and depends only on the change in influence,
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whereas Eq. 29 gives the effect of changing the 𝑖th observation on its own efficiency

prediction, which depends also on the direct effect of evaluating the predictor at a

different point. Stead et al. (202«) note that, since 𝑢̂𝑖 is a function of θ̂, the influence

of some contaminating observation (𝑦,x) on 𝑢̂𝑖 can be derived via the influence

function chain rule

𝐿𝑢̂𝑖 (𝑦,x) =
𝜕𝑢̂𝑖

𝜕θ̂′
𝐿
θ̂
(𝑦,x). («0)

From Eq. «0 we can see that one sufficient, though not necessary, condition for the

robustness of 𝑢̂𝑖 is that robustness of θ̂, and thus the boundedness of 𝐿
θ̂
(𝑦,x). Stead

et al. (202«) apply this formula to compare the sensitivity of efficiency predictions

across specifications, finding that predictions from robust specifications appear less

sensitive than those from non-robust specifications. The authors, confine their atten-

tion to the conditional mean predictor, though it is clear from Eq. «0 that the choice

of predictor will also have an impact on sensitivity. We will now consider various

predictors and their robustness properties, in terms of both their influence functions

and their tail behaviour.

5.1 Conditional mean

The most commonly used efficiency predictor is the conditional mean. Following

Jondrow et al. (1982), this is given by

E(𝑢𝑖 |𝑦𝑖 − x′

iβ)
����
θ=θ̂

=

∫ ∞

0

𝑢𝑖 𝑓𝑢 |𝜀 (𝑢𝑖 |𝑦𝑖 − x′

iβ, θ)d𝑢𝑖
����
θ=θ̂

, («1)

or alternatively following Battese and Coelli (1988), we use

E(𝑒−𝑢𝑖 |𝑦𝑖 − x′

iβ)
����
θ=θ̂

=

∫ ∞

0

𝑒−𝑢𝑖 𝑓𝑢 |𝜀 (𝑢𝑖 |𝑦𝑖 − x′

iβ, θ)d𝑢𝑖
����
θ=θ̂

.

It will be convenient to limit discussion to the Jondrow et al. (1982) predictor. From

Jensen’s inequality, we can see that

exp
(
− E(𝑢𝑖 |𝑦𝑖 − x′

iβ)
)
≤ E(𝑒−𝑢𝑖 |𝑦𝑖 − x′

iβ),

and in practice the difference between the two predictors is usually negligible. Let

us consider the influence of contaminating observations on the Jondrow et al. (1982)

predictor given by Eq. 27. From Eq. «0, the influence function is given by

𝐿E(𝑢𝑖 |𝜀𝑖) (𝑦,x) =
𝜕E(𝑢𝑖 |𝑦𝑖 − x′

i
β)

𝜕θ

����
θ=θ̂

𝐿
θ̂
(𝑦,x).

The robustness of the conditional mean efficiency predictor therefore depends not

only on the robustness of the estimator θ̂ but also on the derivative of the predictor

with respect to the estimated parameter vector, which will depend on the model’s
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distributional assumptions. Again, it would be tedious to examine this derivative

under all proposed distributional assumptions, but in the N-HN case

E(𝑢𝑖 |𝑦𝑖 − x′

iβ)
����
θ=θ̂

=
𝜎̂𝑣𝜎̂𝑢√︁
𝜎̂2
𝑣 + 𝜎̂2

𝑢

(
𝜙(𝑧𝑖)

1 −Φ(𝑠𝑧𝑖)
− 𝑠𝑧𝑖

)
,

𝜕E(𝑢𝑖 |𝑦𝑖 − x′

i
β)

𝜕θ

����
θ=θ̂

=

©­­­­­­­­­
«

−𝑠 𝜎̂2
𝑢

𝜎̂2
𝑣 + 𝜎̂2

𝑢

(
ℎ′(𝑧𝑖) − 1

)
xi(

𝜎̂𝑢√︁
𝜎̂2
𝑣 + 𝜎̂2

𝑢

)3 (
ℎ(𝑧𝑖) − 𝑠𝑧𝑖 − 𝑠𝑧𝑖𝜎̂𝑣

(
2
𝜎̂𝑣

𝜎̂𝑢

+ 𝜎̂𝑢

𝜎̂𝑣

) (
ℎ′(𝑧𝑖) − 1

) )
(

𝜎̂𝑣√︁
𝜎̂2
𝑣 + 𝜎̂2

𝑢

)3
(
ℎ(𝑧𝑖) − 𝑠𝑧𝑖 + 𝑠𝑧𝑖

𝜎̂𝑢

𝜎̂𝑣

(
ℎ′(𝑧𝑖) − 1

))

ª®®®®®®®®®
¬

,

ℎ′(𝑧𝑖) = ℎ(𝑧𝑖)
(
ℎ(𝑧𝑖) − 𝑠𝑧𝑖

)
ℎ(𝑧𝑖) =

𝜙(𝑠𝑧𝑖)
1 −Φ(𝑠𝑧𝑖)

, 𝑧𝑖 =
𝑦𝑖 − x′

i
β̂√︁

𝜎̂2
𝑣 + 𝜎̂2

𝑢

𝜎̂𝑢

𝜎̂𝑣

,

which is clearly unbounded. Therefore, even if our estimator θ̂ is robust, contaminat-

ing outliers could have an arbitrarily large impact on efficiency predictions for some

observations. Additionally, in the N-HN case the tail behaviour of the conditional

mean predictor is such that

lim
𝑠𝜀→∞

E(𝑢𝑖 |𝑦𝑖 − x′

iβ) = ∞, lim
𝑠𝜀→−∞

E(𝑢𝑖 |𝑦𝑖 − x′

iβ) = 0,

so that efficiency predictions can approach zero or one as the magnitude of the

estimated residual is increased, depending on the sign. Under the assumption of

independence of 𝑣𝑖 and 𝑢𝑖 , Ondrich and Ruggiero (2001) show that, when the

distribution of 𝑣𝑖 is log-concave, the conditional mean predictor decreases (increases)

monotonically as the residual increases (decreases) in a production (cost) frontier

setting. Their result implies that this monotonicity is strong when the log-concavity

is strong, weak where the log-concavity is weak, and that in the case of log-convex 𝑣𝑖 ,

the direction of the relationship may be reversed. The distribution of 𝑣𝑖 is therefore

crucial in determining whether or not the efficiency predictions may approach zero or

one when the residual is sufficiently large in magnitude. Since the normal distribution

is strongly log-concave everywhere, the Ondrich and Ruggiero (2001) result implies

that this is the case not only in the N-HN model, but whenever 𝑣𝑖 ∼ N(0, 𝜎2
𝑣 ) and

𝑣𝑖 and 𝑢𝑖 are independent. It follows from this that the conditional mean cannot be

considered robust in these cases.

Under alternative distributional assumptions, the conditional mean may well be

bounded or even non-monotonic; Horrace and Parmeter (2018) show that, in the L-

TL and L-EXP cases, the predictor is only weakly monotonic, being constant when

the estimated residual is positive (negative) for a production (cost) frontier. This
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is in accordance with the Ondrich and Ruggiero (2001) result, since the Laplace

distribution is only weakly log-concave everywhere. The logistic distribution is

strongly log-concave everywhere but approaches weak log-concavity at the tails,

and accordingly Stead et al. (2018) show that the conditional mean predictor in the

Log-HN case appears to approach finite, non-zero limits at the tails. Under the CN-

HN specification explored by Stead et al. (202«), the predictor is non-monotonic,

changing direction at the shoulders of the distribution where the scale-contaminated

normal distribution is strongly log-convex, but since the tails of the distribution are

Gaussian, efficiency predictions nevertheless approach zero or one as the magnitude

of the residual becomes large. By contrast, the Student’s t distribution being strongly

log-convex in its tails, Wheat et al. (2019) show that conditional mean predictor in

the T-HN case is also non-monotonic, but that the change in direction is sustained

as the residual becomes large in magnitude; in fact, the conditional mean appears to

approach the unconditional mean E(𝑢𝑖) in both directions as |𝜀𝑖 | → ∞.

Tancredi (2002) sheds additional light on the latter result, contrasting the limiting

behaviour of 𝑓𝑢 |𝜀 under the N-HN and Student’s t-half t (T-HT) cases; in the former

case, 𝑓𝑢 |𝜀 becomes increasingly concentrated as |𝜀𝑖 | → ∞, while in the latter case

𝑓𝑢 |𝜀 becomes increasingly flat. This points to an important qualitative difference

in the way the two models handles efficiency prediction for outlying observations

– in the N-HN case, prediction uncertainty decreases as |𝜀𝑖 | → ∞, while in the

T-HT case the prediction uncertainty increases. A similar result appears to hold in

the T-HN case. This differing tail behaviour of the conditional mean predictor and

the conditional distribution generally clearly have important implications in terms

of comparing efficiency predictions between firms, and especially in identifying the

most and least efficient firms in a sample.

Overall, there appears to be a link between log-convexity of the distribution of

𝑣𝑖 and robustness of the conditional mean predictor. This apparent link is interest-

ing, since the results of Stead et al. (202«) indicate a link between log-convexity

and robustness in estimation. This suggests that distributional assumptions are key,

and that under appropriate distributional assumptions, robust estimation and robust

efficiency prediction coincide.

5.2 Conditional Mode

As an alternative to the conditional mean, Jondrow et al. (1982) also suggested using

the mode of the conditional distribution. The conditional mode predictor is

M(𝑢𝑖 |𝑦𝑖 − x′

iβ)
����
θ=θ̂

= arg min
𝑢𝑖

(
− 𝑓𝑢 |𝜀 (𝑢𝑖 |𝑦𝑖 − x′

iβ, θ)
) ����
θ=θ̂

, («2)

which, as Jondrow et al. (1982) noted, is analogous to a maximum likelihood esti-

mator. This suggests that the conditional mode predictor will not generally be robust

to contaminating outliers. It also suggests possible approaches to robust prediction,

drawing on the literature on robust M-estimation. For example, we could apply a
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Box-Cox transformation to 𝑓𝑢 |𝜀 in Eq. «2 for an approach analogous to M𝐿𝑞LE.

The conditional mode has not received as much attention in the SF literature as the

conditional mean, but in the N-HN case is given by

M(𝑢𝑖 |𝜀𝑖)
����
θ=θ̂

= −𝑠𝜎̂𝑣𝜎̂𝑢𝑧𝑖I𝑠𝑧𝑖≤0.

The conditional mode therefore results in an efficiency prediction of 1 whenever

𝑠𝑧𝑖 > 0, while approaching zero monotonically as 𝑠𝑧𝑖 → −∞. A similar result holds

in the N-EXP model – see Jondrow et al. (1982) for a discussion of the behaviour of

the conditional mode in both cases. Although, as discussed, we may not regard an

efficiency score of 1 as problematic in some cases, the conditional mode is no more

robust than the conditional mean in the opposite direction. Likewise, we can see that

the derivative of the predictor in the N-HN case

𝜕M(𝑢𝑖 |𝑦𝑖 − x′

i
β)
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is unbounded. Thus a contaminating outlier may have an arbitrarily large influ-

ence on not only its own efficiency prediction, but efficiency predictions for other

observations using the conditional mode in the N-HN case.

The properties of the conditional mode under alternative distributional assump-

tions do not seem to have been investigated in detail, though findings on the behaviour

of the conditional distribution generally imply that its behaviour is similar to that of

the conditional mean – Horrace and Parmeter (2018) find that 𝑓𝑢 |𝜀 is constant for

𝑠𝜀𝑖 ≥ 0, but varies with 𝜀𝑖 when 𝑠𝜀𝑖 < 0. The behaviour of the conditional mode

predictor in other cases, such as the Log-HN or T-HN models, is worth exploring

further.

5.3 Conditional Median

Yet another potential efficiency predictor is the median of the conditional efficiency

distribution, as proposed by Tsukuda and Miyakoshi (200«). This is given by

Median(𝑢𝑖 |𝑦𝑖 − x′

iβ)
����
θ=θ̂

= 𝐹−1
𝑢 |𝜀

(1

2

���𝑦𝑖 − x′

iβ, θ
)����
θ=θ̂

,

where 𝐹−1
𝑢 |𝜀 denotes the quantile function of the conditional distribution. In the

N-HN case this has a convenient expression since, as Jondrow et al. (1982) note,

the conditional distribution is simply that of a truncated normal random variable.
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Substituting in the relevant parameters, this is given by

Median(𝑢𝑖 |𝑦𝑖−x′

iβ)
����
θ=θ̂
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, (««)

where Φ−1 denotes the standard normal quantile function9. Since the sample median

is robust, in contrast to the sample mean, it may be tempting to intuit that the

conditional median predictor ought to be a robust alternative to the conditional

mean. However, comparisons shown by Tsukuda and Miyakoshi (200«) for the N-

HN case indicate that the two predictors are very similar, and from Eq. «« we can

see that it is monotonic and shares the same limits as the conditional mean. In terms

of deriving the influence function, the derivative of the predictor in the N-HN case

is given by
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which is unbounded. The conditional median therefore appears no more robust

than the conditional mean in the N-HN case. Horrace and Parmeter (2018) derive

the conditional median predictor for the L-TL and L-EXP models, which again

exhibits similar behaviour to the conditional mean. To summarise, the choice of

mean, median, or mode of the conditional distribution appears less important than

the model’s distributional assumptions with respect to robustness. However, further

investigation of possible alternative predictors is needed.

6 Summary and Conclusions

The robustness of stochastic frontier (SF) modelling has been an understudied area,

but has been given increased attention in recent years, with the use alternative estima-

tors and distributional assumptions better able to accomodate contaminating outliers

explored. Despite this there has been relatively little explicit discussion and compar-

ison of the robustness properties of different estimators and model specifications. In

9 An equivalent expression for inefficiency, defined as 1 − exp(−Median(𝑢𝑖 |𝜀𝑖)) is given by

Tsukuda and Miyakoshi (200«).
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this chapter we have aimed to address this gap, discussing the robustness properties

of various approaches in terms of the influence functions, gross error sensitivities,

and breakdown points of estimators. The discussion of influence is particularly use-

ful, since the concept is easily extended to efficiency prediction, allowing discussion

of the sensitivity of efficiency predictions to contaminating observations.

We show that the influence function for the maximum likelihood estimator is

unbounded under standard distributional assumptions, although under alternative

distributional assumptions the estimator may be robust. Recent results from Stead et

al. (202«) give sufficient conditions for robust maximum likelihood estimation (MLE)

of the SF model. Some recent proposals, such as the use of logistic or Laplace noise

distributions – see Stead et al. (2018) and Horrace and Parmeter (2018), respectively

– do not satisfy these conditions. On the other hand, the Student’s t distribution for

noise satisfying these conditions when paired with many inefficiency distributions.

This offers a route to achieving robust estimation while remaining within the

framework of MLE, which is attractive for two main reasons. First, we would like

to retain the efficiency of ML estimation. With robust estimation methods, there is

generally a trade-off between robustness and efficiency. Second, a key objective of

SF modelling is the deconvolution of 𝜀𝑖 into 𝑣𝑖 and 𝑢𝑖 . Derivation of the Jondrow et

al. (1982) and Battese and Coelli (1988) efficiency predictors under alternative dis-

tributional assumptions is straightforward. As such, alternative estimation methods

can be used to deal with outliers when it comes to estimation, but leave handling out-

liers in the efficiency prediction stage as a separate problem. Altering distributional

assumptions offers a consistent way of dealing with outliers in both stages.

Alternative approaches generalising MLE by changing the loss function such that

the influence function is unbounded, such as minimum density power divergence

estimation, maximum 𝐿𝑞-likelihood estimation, and maximum Ψ-likelihood esti-

mation, have recently been considered by Song et al. (2017) and Bernstein et al.

(2021). Under these approaches, the loss function is transformed such that MLE is

contained as a limiting case, and a tuning parameter controls the trade-off between

robustness and efficiency. We note that MLE under the assumption of Student’s t

noise can be conceptualised in the same way, where the transformed loss function is

derived directly from an explicit model of contamination, which is also reflected in

efficiency prediction.

We show that the corrected ordinary least squares (COLS) approach to estimation

is non-robust, though analogous ‘corrected’ robust regression methods could be

considered. We also consider the application of quantile regression (QR) to SF

modelling, which has gained attention recently. QR represents another possible

approach to robust estimation of the SF model, though the robustness of the estimator

is reduced when we choose extreme quantiles. The appropriate choice of quantile

reflects underlying distributional assumptions – see Jradi and Ruggiero (2019) and

Jradi et al. (2021), suggesting that as with MLE, the robustness of QR estimation of

the SF model depends fundamentally on distributional assumptions.

To summarise, recent work on robust estimation of the SF model highlights three

main approachesȷ MLE under appropriate distributional assumptions, alternative ro-

bust M-estimation methods, and QR estimation. Each of these belong to the general
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class of M-estimators, making the derivation and comparison of influence functions

straightforward. For large samples, MLE and related approaches may offer a bet-

ter trade-off between robustness and efficiency than QR when the ‘true’ model is

correctly specified.

With respect to efficiency prediction, we discuss robustness in two related sensesȷ

the tail behavior of predictors, and the sensitivity of predictors to contaminating out-

liers via influence on parameter estimates. The former is relevant when considering

the efficiency prediction with respect to gross outliers, and how such outliers may

affect the identification of the highest and lowest ranking firms. We discuss deriva-

tion of influence functions for efficiency predictors, and their resulting properties.

We note that the conditional mean, conditional mode, and conditional median are

all non-robust under standard distributional assumptions. Results on the limiting be-

haviour of the conditional distribution of efficiency again suggest that distributional

assumptions are key – for instance, the conditional mean predictor is robust in the

Student’s t-half normal case.

Our discussion highlights several interesting avenues for future research. With

respect to robust estimation, direct comparison of the various robust estimators

discussed in the context of SF modelling is needed to establish how they compare

in terms of robustness, efficiency, and the trade-off between the two under various

settings. In addition, while we identify estimators that are robust in the sense of having

finite gross error sensitivity, a natural next step would be to investigate estimators

that are resistant in terms of having high breakdown points. The distinction between

the ordinary breakdown point and the finite sample breakdown point is crucial here;

QR estimation has a finite sample breakdown point greater than 1/𝑛, but a 1/𝑛
ordinary breakdown point, while both are greater than 1/𝑛 for the the Student’s t

model. This suggests that the latter offers some robustness to leverage points as

well as outliers, but the extent of this resistance needs further investigation. In

terms of efficiency prediction, further investigation is needed into the link between

distributional assumptions and the robustness of efficiency predictors, and also into

possible robust approaches to prediction under standard distributional assumptions.
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