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Lifelong Generative Adversarial Autoencoder
Fei Ye and Adrian G. Bors, IEEE Senior Member

Department of Computer Science, University of York, York YO10 5GH, UK

Abstract—Lifelong learning describes an ability that enables
humans to continually acquire and learn new information without
forgetting. This capability, common to humans and animals, has
lately been identified as an essential function for an artificial
intelligence system aiming to learn continuously from a stream
of data during a certain period of time. However, modern neural
networks suffer from degenerated performance when learning
multiple domains sequentially, and fail to recognize past learnt
tasks after being retrained. This corresponds to catastrophic
forgetting and is ultimately induced by replacing the parameters
associated with previously learnt tasks with new values. One ap-
proach in lifelong learning is the Generative Replay Mechanism
(GRM) that trains a powerful generator as the generative replay
network, implemented by a Variational Autoencoder (VAE) or
a Generative Adversarial Networks (GANs). In this paper, we
study the forgetting behaviour of GRM-based learning systems by
developing a new theoretical framework in which the forgetting
process is expressed as an increase in the model’s risk during
the training. Although many recent attempts have provided
high-quality generative replay samples by using GANs, they are
limited to mainly downstream tasks due to the lack of inference.
Inspired by the theoretical analysis while aiming to address
the drawbacks of existing approaches, we propose the Lifelong
Generative Adversarial Autoencoder (LGAA). LGAA consists of
a generative replay network and three inference models, each
addressing the inference of a different type of latent variable.
The experimental results show that LGAA learns novel visual
concepts without forgetting and can be applied to a wide range
of downstream tasks.

Index Terms—Lifelong learning, Generative Adversarial Au-
toencoders, Generative Replay Mechanism.

I. INTRODUCTION

L IFELONG learning is becoming a requirement in real-

time applications of artificial intelligence systems. This

underlines the capability of remembering previously learned

knowledge from multiple sources, during several training

stages [1]. Such abilities are genetically inherited in humans

and animals, enabling them to adapt to the environment during

their entire life. However, neural network systems are far

from matching such capabilities. The current state-of-the-art

deep learning approaches would perform well on individual

databases [2], [3], but suffer from degenerated performance

when attempting to learn a sequence of tasks, where each task

is associated with a different database [4], [5], [6], [7], [8], [9].

After having previously learnt the information associated with

a certain dataset, a deep neural network updates its parameters

when training for a new task. Consequently, its performance on

the previous dataset degenerates due to the significant changes

in the model’s parameters, resulting in catastrophic forgetting

when testing on the data learnt in the past.

In order to alleviate catastrophic forgetting, memory-based

approaches employ additional buffers to store a small subset

of previously seen data samples [10], [11], [12]. However,

such an approach requires to design the criteria that would

dynamically remove or add data samples in the buffer. Addi-

tionally, as the number of tasks increases, memory-based ap-

proaches require large buffers, which is unsuitable in practical

applications. Another solution, called the Generative Replay

Mechanism (GRM), consists of enabling a generator as the

generative replay network for reproducing past samples when

learning new tasks.

Many lifelong learning approaches employ Generative Ad-

versarial Networks (GANs) as GRMs. Such an approach was

firstly proposed in [13], where a classifier was used with

the GRM framework, learning from the samples associated

with a new task while generated samples are drawn from

the outputs of the generator. However, such an approach

requires generating a large number of samples after each

task switch, which results in significant memory requirements.

More recently, GRM was combined with the Knowledge

Distillation for Conditional Image Generation, in an approach

called the Lifelong GAN [14], which is built upon the Bi-

cycleGAN framework [15]. Lifelong GAN mainly focuses

on the conditional image generation task while requiring the

storage of past samples when learning new databases, which

is not applicable for learning an infinite number of tasks.

Additionally, such approaches require designing a specific

network architecture for the classifier [13] and an encoding-

decoding framework [14] to support the learning of many

downstream tasks. Moreover, they do not learn meaningful

latent representations within a single latent space. This repre-

sents a challenge for many tasks including image interpolation

[16] and disentangled representation learning [17].

Learning meaningful and disentangled data representations

has been shown to benefit many tasks [18]. Recently, learning

disentangled representations under the lifelong learning was

explored by introducing a framework based on the Variational

Autoencoder (VAE), called VAE with Shared Embeddings

(VASE) [19], which uses an environment-dependent mask

to learn domain-specific latent representations. Additionally,

VASE also uses the GRM to relieve forgetting. However,

VAE-based GRM methods usually yield blurred generative

replay images when compared with using GANs, leading

to degenerated performance on the past tasks. Furthermore,

existing lifelong learning literature does not provide the the-

oretical analysis for GRM-based approaches. This inspires us

to develop a new theoretical framework in order to understand

the forgetting behaviour of GRM-based models during lifelong

learning. The main idea of the proposed theoretical analysis

is to treat the lifelong learning problem as a dynamic domain

adaptation problem in which the source domain is evolved over

time. We then derive the risk bound based on the results for the

dynamic domain adaptation problem in which we formulate



2

the variance of the model’s risk as a learning or forgetting

process, providing new insights into the forgetting behaviour

of GRM-based models. Our other contribution consists in the

development of Lifelong Generative Adversarial Autoencoders

(LGAA), representing a new approach to lifelong learning

which combines the advantages of both GANs and VAEs.

We propose to train a powerful generative replay network by

using adversarial learning while also training the inference

models on the joint data samples corresponding to the new task

combined with those produced by the generator, through a new

optimization approach. The trained inference models can be

used in a variety of applications, such as classification, image

interpolation and for learning disentangled representations.

The advantage of the proposed LGAA over existing GRM-

based methods is that LGAA can train a robust generative

replay network compared to VAE-based methods, while it

can capture meaningful latent representations across domains

compared to GAN-based approaches.

Our contributions are as follows :

1) We propose a novel lifelong learning model, called the

Lifelong Generative Adversarial Autoencoder (LGAA),

which not only it trains a robust generative replay network

but also induces accurate inference models.

2) We develop a new theoretical framework for GRM-based

models, in which the forgetting process is expressed by

an increase in the model’s risk during the training. The

proposed theoretical analysis provides new insights into

the forgetting behaviour of GRM-based models.

3) We extend LGAA by using adversarial learning to be used

in a self-supervised manner while enforcing the inference

models to capture data generative factors across domains.

4) Experiments show that the proposed LGAA can accu-

mulate latent information from multiple domains without

forgetting, which benefits many downstream tasks such

as classification, reconstruction, and interpolation.

The rest of the paper is organized as in the following.

Section II outlines the main approaches in the area of lifelong

learning, while Section III outlines the background of Gen-

erative Reply Mechanisms (GRMs) and Section IV provides

their theoretical analysis. The proposed Lifelong Generative

Adversarial Autoencoder (LGAA) model is introduced in

Section V and its training in Section VI. The experimental

results are provided and discussed in Section VII, while the

conclusions of this study are drawn in Section VIII.

II. RELATED WORKS

Lifelong learning can be branched into three different per-

spectives : regularization, dynamic architectures, and memory

replay based methods. Regularization methods introduce an

additional term in the loss function that penalizes changes

in the weights when the model is trained on a new task

[13], [20], [21], [22], [23], [24], [25], [26]. This can prevent

forgetting by preserving the weights considered important

for storing the knowledge about previous tasks. Meanwhile,

dynamic architectures increase the number of neurons and

network layers in order to adapt to learning novel informa-

tion [27]. Most memory replay approaches are using either

Generative Adversarial Networks (GANs) [28] or Variational

Autoencoders (VAEs) [29] to replay the previously learnt

knowledge [30], [31], [32], [33]. For instance, Wu et al.

[34] proposed the Memory Replay GANs (MeRGANs), which

generates images from new categories under the lifelong

learning setting. Meanwhile, Lifelong GAN [14] enables im-

age to image translation under lifelong learning. However,

the approaches from [34] and [14] lack a data inference

procedure and Lifelong GAN requires to load all previously

learnt data in order to be able to appropriately reproduce

the corresponding information. Approaches employing both

generative and inference mechanisms are based on the VAE

framework [19], [35]. However, the VAE-based framework can

not provide high-quality generative replay samples resulting

in blurred images when trained on image databases. Also

knowledge distillation was explored for lifelong learning in

[36], [21]. The Lifelong Teacher-Student (LTS) [37], is a

knowledge distillation approach which not only that transfers

the discriminative information but also the data generative

factors when continuously learning various tasks. However,

LTS has an extra module (Student), which requires more

parameters and additional computational cost to train when

compared with the proposed LGAA.

Hybrid VAE-GAN methods adopt the inference mechanism

from a VAE model which can capture data representations

[38] enabling then adversarial learning to match either the

data distribution [39], the latent variables distribution [40],

or their joint distributions [38], [41], [42], [43], [44], [45],

[46], [47]. Adversarial Autoencoder (AAE) [40] is the first

method based on a VAE-GAN architecture, which replaces

the Kullback-Leibler (KL) divergence with adversarial loss,

encouraging the output distribution of the encoder to match the

prior distribution. BiGANs [42] is another hybrid model which

trains a discriminator network to learn the inverse mapping by

projecting data back into the latent space. More recently, the

Introspective Variational Autoencoder (IntroVAE) was applied

for photographic image synthesis [48]. Unlike most other

hybrid methods, which require an additional discriminator

network for adversarial learning, IntroVAE employs the In-

ference network to distinguish between fake and real data. In

addition, the hybrid model can be used to prevent the mode

collapse from the GAN model [47] in which a reconstructing

network is used for improving GAN’s optimization. Although

these hybrid models have shown promising performance in

both generation as well as in inference mechanisms, they

perform well only when trained on a single dataset and their

performance degenerates when learning additional new tasks.

This paper is the first research study to propose a novel

hybrid lifelong learning model, which not only that it ad-

dresses the drawbacks of existing hybrid methods but also

provides inference mechanisms for GRM, benefiting on many

downstream tasks across domains under the lifelong learning

framework. Furthermore, the approach proposed in this paper

also addresses disentangled representation learning [49] in the

context of lifelong learning. Many recent approaches aim to

modify the VAE framework in order to learn a meaningful

representation of data by imposing a large penalty on the

Kullback-Leibler (KL) divergence term [50], [51], [52], or
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on the total correlation latent variables [17], [53], [54], [55].

These methods perform well on independent and identically

distributed data samples from a single domain and cannot learn

the information when changing the probabilistic representa-

tions of the data associated with multiple databases.

III. THE GENERATIVE REPLAY MECHANISM (GRM)

In this section, we introduce the background of genera-

tive replay approaches including GAN-based and VAE-based

GRMs.

A. GAN-based GRM

A GAN model [28] consists of a discriminator fω : X → R

and a generator Gθ : Z → X where X and Z represent

the input data and latent spaces, respectively; {θ, ω} are the

parameters for the generator and discriminator. GANs enjoy an

efficient sampling process where a random vector z is drawn

from a simple prior distribution p(z) = N (0, I), and is then

used as input to Gθ(·) for producing data, considered in the

following as images x′. The learning goal of GANs is that

of trying to train an optimal discriminator that distinguishes

between a real image x drawn from the empirical data

distribution Px, and a fake one x′, output of the generator.

Meanwhile the generator is encouraged to produce samples x′

that can best cheat the discriminator. This learning process can

be summarized as a two-player minimax game with the loss

function :

min
G

max
f

V (G, f) = Ex∼Px
[log f(x)]

+ Ez∼p(z)[1− log(f(G(z)))].
(1)

By considering the properties of GANs, forgetfulness could

be relieved by training a GAN model on a joint dataset con-

sisting of generative samples produced by using the generator

Gθ(·) and real data sampled from a database corresponding to

a given task.

B. VAE-based GRM

The VAE [29] is a generative latent variable model pθ(x, z)
which is enabled with an inference mechanism. VAEs consist

of a decoder, used as generator Gθ : Z → X , similar to that

found in GANs, and an encoder, used as the inference model

Fξ : X → Z , where ξ are the parameters of the inference net-

work. Typically, training a VAE model requires to maximize

the sample log-likelihood log pθ(x) = log
∫

pθ(x | z)p(z) dz
which is intractable during the optimization because it requires

to get all latent variables z. To address this, VAEs use

variational inference which decomposes log pθ(x) as :

log pθ(x)−DKL(qξ(z |x) || p(z |x)) =
Ez∼qξ(z |x) [log pθ(x | z)]−DKL [qξ(z |x) || p(z)]

(2)

where DKL(·) is the Kullback–Leibler (KL) divergence and

p(z |x) is the posterior. qξ(z |x) is the variational distribution,

implemented by the inference model Fξ(·). Since DKL(·) ≥ 0,

the sample log-likelihood log pθ(x) can be approximated by a

lower bound, called the Evidence Lower Bound (ELBO) :

log pθ(x) ≥ LVAE(x) :=Ez∼qξ(z|x) [log pθ(x | z)]−
DKL [qξ(z |x) || p(z)] .

(3)

The last term from the right-hand side of Eq. (3) can be

seen as the regularization term penalizing the deviation of the

variational distribution qξ(z |x) from the prior p(z). This can

allow VAEs to generate images from the random noise vector

z ∼ p(z). Similar to GANs, a VAE model can be trained on its

generations to relieve the forgetting when learning new tasks.

IV. THEORETICAL ANALYSIS OF THE GRM

In Section III, we have introduced two different generative

models, GAN and VAE, which can be used as generative

replay mechanisms. In this section, we provide the theoretical

framework in which we analyze the forgetting behaviour of

GRM-based systems. This framework represents the motiva-

tion for the proposed Lifelong Generative Adversarial Autoen-

coder method, detailed in Section V. We firstly introduce some

definitions of key concepts used in this framework.

Definition 1: We consider the data xt and their t-th task

probabilistic representation, xt ∼ Pxt , t ≥ 1. Let us consider

a model Mt (implemented by a generative model, GAN or

VAE), which has been trained for the t-th given task, under

the lifelong learning assumption of training sequentially with

multiple tasks. Let Px̃t be the distribution of generative replay

samples drawn from the generator of Mt and x̃t the random

variable over Px̃t .

Then we have the following conditional probability.

Definition 2: Let us define

p(x̃t | x̃t−1,xt) = exp(−Ψ(P(x̃t−1,xt),Px̃t)), (4)

as the probability of generated data x̃t when observing x̃t−1

and xt of the joint probability P(x̃t−1,xt), where Ψ(·) is a

probabilistic measure of comparison between two distribu-

tions, which can be the f -divergence [56], or the Wasserstein

distance [57] (Earth-Mover distance).

Theorem 1: By marginalizing over x̃t−1 and xt, on p(x̃t |
x̃t−1,xt), the resulting marginal distribution p(x̃t) encodes the

statistical correlations from all previously learnt distributions :

p(x̃t) =

∫

. . .

∫

p(x̃1)

t−2
∏

i=0

p(x̃t−i | x̃t−i−1,xt−i)

t−2
∏

i=0

p(xt−i) dx̃1 . . . dx̃t−1 dx2 . . . dxt

(5)

The proof is provided in Appendix-A. In the following, we

describe how a GRM-based model can avoid forgetting when

achieving the optimal solution.

Lemma 1: As shown in Definition 2, the conditional prob-

ability p(x̃t | x̃t−1,xt) can evaluate the knowledge loss when

learning the t-th task. As p(x̃t | x̃t−1,xt) ≈ 1, the model

would approximate P(x̃t−1,xt). Then, we conclude that p(x̃t)

approximates the true joint distribution
∏t

i=1 p(x
i) when all

previously learnt distributions are the exact approximations

to their target distributions while learning every task from a

sequence of tasks.

The detailed proof for Lemma 1 is provided in Appendix-

B. In order to analyse how a GRM-based model would lose

knowledge when learning new tasks, we propose to adopt the

domain theoretical analysis from [58] (Theorem 2) in order to
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evaluate the model’s risk. Firstly, we define the model’s risk

as :

R(h, h(νt)) = Ex∼νt
[L(h(x), h(νt)(x))] (6)

where h : X → X is the given model (usually representing

the encoding-decoding process) and L(·) is the loss function

(usually the classification loss). h(νt) is the identity function

x = h(νt)(x) for the dataset νt. Then we can derive the risk

bound between the target and source distribution as follows.

Theorem 2: Let us consider two data population samples,

one corresponding to the generated data {νt′ ∈ R
s|νt′ ∼ Px̃t}

and another corresponding to the real data {νt ∈ R
s|νt ∼ Pxt}

of sizes nt and nt′ . For any s′ > s and a′ <
√
2, there is a

constant n0, depending on s′, satisfying that for any δ > 0 and

min(νt, nt′) ≥ n0 max(δ−(s′+2), 1). Then with the probability

of at least 1−δ for all h ∈ H, where H is a family of models,

we have:

R
(

h, h(νt)

)

≤ R
(

h, h(νt′ )

)

+W (νt, νt′)

+

√

2 log

(

1

δ

)

/a′
(
√

1

nt

+

√

1

nt′

)

+D(R(h, h(νt)) +R(h, h(νt′ )
)),

(7)

where R(h, h(νt)) and R(h, h(νt′ )
) denote the observed risks

for νt and νt′ , respectively, and W (νt, νt′) is the Wasserstein

distance between νt and νt′ . D(·) is the combined error when

we find the optimal model, h′ :

h′ := argmin
h∈H

(R(h, h(νt) +R(h, h(νt′ )
). (8)

Remark 1: We have the following observations :

• The risk R
(

h, h(νt)

)

of the model h on real training data

samples is bounded by the model’s risk on the generative

replay samples plus the Wasserstein distance between νt
and νt′ , and the combined error, according to Eq. (7).

• The bound is tight when the Wasserstein distance between

the target and source distribution is small.

Theorem 2 only provides a risk bound for a single task

and does not explain how a GRM-based model loses the

knowledge when learning new tasks. In the following, we

propose a risk bound for multi-task learning analysis, which

assesses how the knowledge learnt from a task j is forgotten

after the model is trained with other tasks.

Since the generator of a GRM-based model reproduces

data consistent with all previously learnt data probabilistic

representations of the given tasks, we assume that we have

an optimal task-inference model ftask : X → R which can

provide the exact task label for each data sample. With

ftask(·), we can form several distributions for the generative

samples in different training phases. Let P
(t,j)
x̃ be the distri-

bution of the generative samples drawn and selected from the

model Mt, where if ftask(x
′) = j then sample x′ ∼ Px̃t

is selected. Therefore, P
(t,j)
x̃ represents the distribution of

generative samples corresponding to the j-th task and we have

{P(j−1,j)
x̃ ,P

(j,j)
x̃ , . . . ,P

(t,j)
x̃ } at different training phases, where

P
(j−1,j)
x̃ and P

(k,j)
x̃ , k ≥ j represent the distributions of the

training set of the j-th task and the distribution of generative

samples drawn and selected from Px̃k and ftask(·) at the k-th

task learning. Considering these assumptions and notations, we

derive the risk bound which measures the forgetting behaviour

of a model after learning each task during lifelong learning.

Lemma 2: We derive the risk bound for learning the j-th

task, at the t-th task learning, t ≥ j, as :

R
(

h, h(νj)

)

≤ R
(

h, h(ν(t,j))

)

+

t−1
∑

k=j−1

{

W
(

ν(k,j), ν(k+1,j)

)

+

√

2 log

(

1

δ

)

/a′

(
√

1

nν(k,j)

+

√

1

nν(k+1,j)

)

+D(R(h, h(ν(k,j))) +R(h, h(ν(k+1,j)))
}

, (9)

where ν(j−1,j) represents νj , and {ν(t,j) ∈ R
s|ν(t,j) ∼ P

(t,j)
x̃ }

and nν(t,j)
is the corresponding sample size. We provide the

detailed proof in Appendix-C.

From Eq. (9), we observe that the difference between the

target and source distributions, evaluated by the Wasserstein

distance, during the learning of each task plays an important

role in the performance. Suppose the model achieves the

optimal solution (Lemma 1), then the risk bound from Eq. (9)

is tight since the tightness of this bound depends only on the

Wasserstein distance between the target and generator distri-

butions and a constant. As we discussed in Sections III-A and

III-B, GANs and VAEs exhibit different forgetting behaviours

according to Eq. (9). For instance, a GAN usually produces

better data generations when compared to the VAE, and,

therefore, can provide high-quality generative replay samples

when learning a new task. This can minimize the Wasserstein

distance between the target and source distribution in each task

learning, leading to a tight risk bound.

In the following, we extend Lemma 2 to the situation when

learning multiple tasks.

Lemma 3: For a given sequence of t tasks, we derive the

risk bound at the t-th task learning :

t
∑

c=1

R
(

h, h(νc)

)

≤
t
∑

c=1

{

R
(

h, h(ν(t,c))

)

+

t−1
∑

k=c−1

{

W
(

ν(k,c), ν(k+1,c)

)

+

√

2 log

(

1

δ

)

/a′

(
√

1

nν(k,j)

+

√

1

nν(k+1,j)

)

+D(R(h, h(ν(k,c))) +R(h, h(ν(k+1,c))))
}}

.

(10)

For the proof, we sum up the risks of the model, defined

according to Lemma 2, for all tasks.

Remark 2: The following observations are consequences of

Lemma 3.

• From Eq. (10), we observe that the error terms are accu-

mulated when learning an increasing number of tasks.

• The errors for the earlier learnt tasks are larger than those

corresponding to those learnt more recently due to the
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Fig. 1. The network structure of the proposed LGAA model. The whole learning procedure is divided into two steps. At the first step, we draw random
vectors {u, z,d} from the prior distributions and then consider them as input for the generator for producing the fake image. The adversarial loss, defined
by Eq. (12), is used for both the generator and discriminator. At the second step, we use the inference model (Encoder 1, Encoder 2, Encoder 3) to infer the
latent variables {u, z,d} which are used for the reconstruction through the decoding process. The loss function Eq. (14), is used to jointly train all modules.

degeneration in the previously learned knowledge and the

generator’s retraining limitations.

• The optimal performance of the model h can be achieved

if the generator distribution approximates the target dis-

tribution in each task learning (Lemma 1). This requires

training a good generative replay network that generates

high-quality data consistent with the learnt knowledge.

• GANs, when compared to VAE models, provide high-

quality generative replay samples which can lead to

better performance, generating sharper images for ex-

ample. This phenomenon is theoretically explained in

Lemma 3 where the Wasserstein distance between the

generator’s distribution and the target distribution in each

task learning is crucial for performance.

V. LIFELONG GENERATIVE ADVERSARIAL AUTOENCODER

From the theoretical analysis section, we observe that the

quality of generative replay samples is the key to the per-

formance of the GRM-based models during lifelong learning.

Additionally, most GRM-based approaches do not have an

inference model to train, which prevents them from extracting

meaningful representations for downstream tasks. This inspires

us to propose the Lifelong Generative Adversarial Autoen-

coder (LGAA), which not only learns a powerful generative

replay network but also trains accurate inference models for

representation learning.

A. Problem formulation

For a given sequence of t tasks, each characterized by

a distinct data set, corresponding to the data distributions

{Px1 ,Px2 , . . . ,Pxt}, our learning goal is to learn an inference

model which can infer and accumulate the representation

information from novel concepts without forgetting previ-

ously learnt knowledge. This can allow us to perform many

downstream tasks, such as classification, reconstruction and

interpolation, by using the inference model.

B. Training a powerful generative replay network

We consider that the underlying information from the

observed data samples is defined by three latent variables

{u,d, z} where d = {di|i = 1, . . . ,K} is the discrete variable

Algorithm 1: The supervised learning for LGAA

Input: All training databases
Output: The model’s parameters

1 for i < taskCount do
2 P

x̃(i−1) ← Gθ(i−1)
(z) Form the generator distribution ;

3 Ỹ(i−1) ← Fδ(i−1)
(u | x) Generate class labels ;

4 Ã(i−1) Generate domain labels using the sample process
d ∼ qε(i−1)

(d | z), z ∼ qς(i−1)
(z | x),x ∼ Px̃(i−1) ;

5 Combine the data;
6 P(xi,x̃(i−1)) = Pxi

⋃
P
x̃(i−1) ;

7 A = Ai
⋃

Ã(i−1) ;

8 Y = Yi
⋃

Ỹ(i−1) ;
9 for j < batchCount do

10 (x,y) ∼ (P(xi,x̃(i−1)),Y). ;

11 Adversarial learning ;
12 Update the generator and discriminator using

min
G

max
D
LG

GAN (θi, ωi) ;

13 Learning by the VAE loss ;

14 Update all components using LSup
V AE(θi, ςi, εi, δi) ;

15 Update the inference models ;
16 Update qεi(d | z) using Ld(εi);
17 Update qδi(u |x) using Lu(δi);
18 end
19 end

(one-hot vector) representing the domain information, where

K is the number of domains; u = {ui|i = 1, . . . ,M} is

a discrete variable of dimension M , which represents the

discriminative information; z is the continuous variable. The

generation process is defined by :

d = fOneHot(d), d ∼ Cat (K, 1/K) ,

u = fOneHot(u), u ∼ Cat (M, 1/M) ,

z ∼ N (0, I),

x̃ ∼ pθ(x | z,d,u),

(11)

where Cat(·) is the Categorical distribution, and pθ(x | z,u,d)
is the generator distribution implemented by a neural network

with trainable parameters, θ. fOneHot is the function that

transfers the category variable to the one-hot vector. In order

to train a powerful generative replay network, we use the

Wasserstein GAN (WGAN) [57] objective function with the
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Fig. 2. Using the memory buffer in the LGAA framework. Once the first task is learnt, we use a buffer to preserve the parameters of the generator. Then
during the second task learning, the preserved generator is used as a generative replay mechanism producing a batch of samples. The generated data samples
are incorporated together with new samples drawn from the second task for training LGAA. Then the process of creating buffers for temporary storing
generator parameters is repeated each time when learning a new task.

gradient penalty [59], defined by :

min
G

max
D

LG
GAN (θ, ω) = Ez∼p(z),u∼p(u),d∼p(d)[D(G(u, z,d))]

− Ex∼Px
[D(x)] + λEx̃∼p(x̃)[(‖∇x̃D(x̃)‖2 − 1)2] , (12)

where D represents the discriminator, implemented by a neural

network with trainable parameters ω, Px is the real data

distribution, and the third term from the right-hand side is the

gradient weighted by the penalty λ. The adversarial loss allows

the generator and discriminator to be trained alternately such

that the discriminator aims to distinguish real from generated

data, while the generator aims to fool the discriminator by

generating realistic data [28], [57].

C. The inference mechanism of LGAA

Most GAN-based lifelong methods [13], [14], [34] do not

learn an accurate inference model and therefore can not derive

a meaningful data representation. For the model proposed in

this paper, we consider three differentiable non-linear func-

tions Fς(·), Fε(·), Fδ(·), aiming to infer three different types

of latent variables {z,d,u}, as indicated in Section V-B.

We implement Fς(·) considering the underlying Gaussian

distribution N (µ, σ), where {µ, σ} are the hyperparameters

of the Gaussian distribution. We use the reparameterization

trick [29], [60] for sampling z = µ + π ⊙ σ, where π is a

random noise vector sampled from N (0, I), in order to ensure

end-to-end training.

We can not sample the discrete latent variables d and u

from Fε(·) and Fδ(·), respectively, because the categorical

representations are non-differentiable. In order to mitigate

this, we use the Gumbel-Max trick [61], [62] for achieving

the differentiable relaxation of discrete random variables. The

Gumbel-softmax trick was also used in [51], [63], [64] and its

capability of reducing the variation of gradients was studied

in [65].

The sampling process of discrete latent variables is defined

as:

dj =
exp((log d′j + gj)/T )

K
∑

i=1

exp((log d′i + gi)/T )
(13)

where d′i is the i-th entry of the probability defined by the

softmax layer characterizing Fε(·) and dj is the continuous

relaxation of the j-th dimension of the variable d, while gk
is sampled from the distribution Gumbel(0, 1) and T is the

temperature parameter controlling the degree of smoothness.

A small T indicates that d is close to the one-hot vector.

In contrast, a large T indicates that d is close to the samples

drawn from a uniform distribution [63]. In our experiment, we

set T = 0.5 to encourage sampling the one-hot representation.

We use the Gumbel softmax trick for sampling both domain

d and discrete u variables.

D. The objective function for the inference models

GANs lack an inference mechanism, preventing them from

capturing data representations properly. In this paper we

aim for updating inference models attached to a generative

network using a VAE framework with three latent variables.

Training a VAE framework usually maximises a lower bound

to the sample log-likelihood. However, such optimization is

intractable when involving multiple latent variables. Therefore,

we derive a tractable VAE-based objective function as follows :

LVAE(θ, ς, ε, δ) = Eqς,ε,δ(z,u,d |x) log[pθ(x | z,u,d)]
−DKL[qς(z |x) || p(z)]−DKL[qε(d | z) || p(d)]
−DKL[qδ(u |x) || p(u)].

(14)

The detailed derivation is provided in Appendix-D. qς(z |x),
qε(u | z), qδ(d |x) are variational distributions modelled by

Fς(·), Fε(·), Fδ(·), respectively. p(d) is the prior distribution

by the Concrete distribution, where each parameter is set to the

same value 1/K. We consider qε(d | z) as the task-inference
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(a) Real samples. (b) Generations. (c) Reconstructions.

Fig. 3. The reconstruction and generation results under the CelebA to CACD lifelong learning.

(a) Real samples. (b) Generations. (c) Reconstructions.

Fig. 4. The reconstruction and generation results under the CelebA to 3D-Chair lifelong learning.

model which aims to infer the task ID for the given data

samples.

For the supervised learning setting, auxiliary information

such as class labels is used to guide the inference model. In this

case we minimize the cross-entropy loss η(·, ·) for qε(d | z)
and qδ(u |x), as:

Ld(ε) = E(x,d∗)∼(X,A),z∼qς(z |x)η(qε(d | z),d∗) , (15)

Lu(δ) = E(x,y)∼(X,Y)η(qδ(u |x),y) , (16)

where X and Y represent the empirical data and target

distributions, respectively. d∗ is the variable drawn from

A, which represents the domain variables distribution. The

network architecture of the generator and inference networks

of the proposed LGAA is shown in Fig. 1, where the variable

d is conditioned on z. The proposed model is flexible to be

extended for recognizing new tasks by automatically append-

ing the domain variable d and optimizing the task-inference

model qε(d | z) when faced with learning a new task.

The inference models in the proposed LGAA aim to map

an input into three compact low-dimensional feature vectors

{z,d,u}, with each describing different characteristics of

the input. The decoder (generator) will recover an image

from these three feature vectors. In the supervised learning

framework we optimize these feature vectors by introducing

additional cross-entropy loss functions, such as Eq. (15) and

Eq. (16), which encourage each feature vector to capture

different characteristics of an input. It allows for performing

many downstream tasks, including image classification and

interpolation, within a unified framework at the same time.

Additionally, LGAA introduces a robust generative replay net-

work for producing samples which are statistically consistent

with those previously learnt from various databases during the

lifelong learning. This allows the inference models to capture

the context information and implicitly model the correlation

between the new task and the previously learnt knowledge. The

following section introduces the algorithm used for training

LGAA.

VI. LIFELONG TRAINING ALGORITHM FOR LGAA

In the following, we introduce a new training algorithm

that enables LGAA to learn knowledge from a sequence of

tasks without forgetting. The key idea of the proposed train-

ing algorithm consists of enabling two distinct optimization
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(a) CelebA-CACD (b) CelebA-3DChair

Fig. 5. Interpolation results under CelebA to CACD and CelebA to 3DChair, respectively. We first select two images from two different datasets and calculate
their latent codes using the inference models. Then we perform the interpolation on these latent codes, and the resulting interpolated code is fed into the
decoder to produce the interpolated reconstruction.

procedures where we firstly update the parameters of the

generative replay network and afterwards those of the whole

model. Our algorithm is different from existing hybrid models

by three aspects : 1) Existing hybrid models are only trained

for a single dataset. However, the proposed LGAA is able

to learn several data domains successively without forgetting;

2) Existing hybrid models usually train the generator and

inference modules with a single optimisation function [39] or

learn an optimal coupling between the generator and inference

modules using adversarial learning [39], [40], [41], [42], [43],

[44], [45], [47]. The proposed LGAA introduces a training

algorithm consisting of two optimization procedures in which

we first update the parameters of the generative replay network

and afterwards those of the whole network architecture, includ-

ing the inference models; 3) Existing hybrid models usually

learn a single latent variable during the training, which is not

applicable for a wide range of applications. The proposed

LGAA learns both discrete and continuous variables, which

can be used in classification and disentangled representation

learning. In the following, we introduce the loss functions for

LGAA in order to adapt its parameters for supervised learning,

semi-supervised learning and unsupervised learning.

A. Supervised learning

During the training, we first update the parameters of the

generator by minimizing the Wasserstein distance between the

generator distribution and the target distribution P(x̃t−1,xt) at

the t-th task learning, as stated by Theorem 2 and the subse-

quent theoretical derivations from Section IV. The adversarial

objective function for the generator (G) and discriminator (D)

is defined as :

min
G

max
D

LG
GAN (θt, ωt)

∆
= Ep(z),p(d),p(u)[D(G(u, z,d))]

− Ex∼P(x̃t−1,xt)
[D(x)], (17)

where we omit the weighted penalty term, as in Eq. (12), for

the sake of simplification.

In the second training procedure, we update the parameters

of the whole model by maximizing the sample log-likelihood

on the joint distribution of the generated and empirical data.

The loss function (ELBO) is defined as :

LSup
V AE(θt, ςt, εt, δt)

∆
= Eqς,ε,δ(z,u,d |xt)

[

log
pθ(x

t | z,u,d)
qς,ε,δ(z,u,d|xt)

]

+ Eqς,ε,δ(z,u,d | x̃t−1)

[

log
pθ(x̃

t−1 | z,u,d)
qς,ε,δ(z,u,d | x̃t−1)

]

. (18)

We also optimize the inference model qδ(u |xt) on both

the real training samples from the t-th task, and the gen-

erative replay samples from the previously trained generator

pθt−1(x̃
t−1 | z,u,d), by minimizing the entropy loss defined

in Eq. (16). During the testing phase, the inference model

qδ(u |x) is used for classification.

We provide the pseudocode for the supervised learning of

the LGAA in Algorithm 1, which can be summarized into

three steps :

Step 1. Generative replay process : At the first task learning,

the proposed models do not require the generative replay

process to relive forgetting. We assume that the model was

trained on (i−1) tasks. In a new task learning (i), we perform

the generative replay process to create a joint data distribution

by combining P
i
x and Px̃(i−1) , expressed as P(xi,x̃(i−1)) =

Pxi

⋃

Px̃(i−1) where
⋃

represents the joint data distribution.

Then we create the class label set Y = Yi
⋃

Ỹ(i−1), corre-

sponding to P(xi,x̃(i−1)), where Yi denotes the class label set

from the new task, and Ỹ(i−1) is formed by inferring genera-

tive replay samples using Fδ(i−1)
(u |x). We also generate the

domain label set Ã(i−1) by using the sampling process de-

scribed as follows : we firstly draw generative replay samples

x ∼ Px̃(i−1) and then latent variables z ∼ qς(i−1)
(z |x). Then

we can get the domain labels using d ∼ qε(i−1)
(d | z). Ai is

the domain label set for the new task (i).

Step 2. Adversarial learning : We train the discriminator

and generator on samples drawn from P(xi,x̃(i−1)) using

min
G

max
D

LG
GAN (θi, ωi) at the i-th task learning.
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(a) Gender change (b) Face width manipulation

(c) Skin variation (d) Pose change

(e) Chair style in 3D chairs (f) Chair size variation in 3D chairs

Fig. 6. Results obtained when manipulating the latent variables under the CelebA to 3D-Chair lifelong learning when considering the loss function from (23).
We change a single latent variable in turns, in the latent space from -3.0 to 3.0 while fixing all others.

Step 3. The whole model optimization : In the i-th task learn-

ing, we firstly update all components on samples drawn

from {P(xi,x̃(i−1)),A,Y} using LSup
V AE(θi, ςi, εi, δi). We then

update qεi(d | z) and qδi(u |x) on samples drawn from

{P(xi,x̃(i−1)),A,Y}, using Ld(εi) and Lu(δi), according to

Eq. (15) and (16), respectively.

B. Semi-supervised learning

We apply our model to the lifelong semi-supervised learning

setting where only a small subset of samples from each task

is labeled, while the rest is unlabelled. We design different

loss functions for the labelled and unlabelled samples. The

generator training is the same as in Eq. (17). The whole model

is optimized by the loss function for the labelled data without

the inference model qδ(u |x) :

LS
V AE(θt, ςt, εt, δt)

∆
= Eqς(z |xt),qε(d|xt),p(y)[log pθ(x

t | z,d,y)]
−DKL[qς(z |xt) || p(z)]−DKL[qε(d | z) || p(d)]
−DKL[qδ(u |xt) || p(u)]
+ Eqς(z | x̃t−1),qε(d|x̃t−1),p(y)[log pθ(x̃

t−1 | z,d,y)]
−DKL[qς(z | x̃t−1) || p(z)]
−DKL[qε(d | z) || p(d)]
−DKL[qδ(u |x) || p(u)]. (19)

In addition, we model the unlabeled data samples by using

LV AE(θt, ςt, εt, δt), where the discrete variable u is sam-

pled from the Gumbel-softmax distribution whose probability

vector is obtained by the encoder qδ(u |x). Then the semi-

supervised loss used to train the hybrid model is defined as :

LSemi
V AE

∆
= LS

V AE + βLV AE , (20)

where β is used to control the importance of unsupervised

learning when compared with the component associated with

supervised learning, [33]. In addition, the entropy loss Lu(δ),
as in Eq. (16), is considered for the labelled samples in order

to enhance the prediction ability of qδ(u |x).

C. Unsupervised learning

In this section, we apply the proposed LGAA for the

lifelong unsupervised learning setting, where the class labels

for samples are not available. Similarly to the supervised learn-

ing framework and according to the theoretical derivations

from Section IV, the first optimization stage of the training

minimizes the Wasserstein distance between the generated data

distribution and P(x̃t−1,xt) :

min
G

max
D

LU
GAN (θt, ωt)

∆
= Ep(z),p(d)[D(G(z,d))]

− Ex∼P(x̃t−1,xt)
[D(x)].

(21)
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Fig. 7. Fréchet Inception Distance (FID) for generated images after CelebA
and CACD lifelong learning.

At the second optimization stage of the training, the whole

model is trained by:

LU
V AE(θt, ςt, εt)

∆
= Eqς(z | x̃t−1),qε(d | x̃t−1)[log pθ(x̃

t−1 | z,d)]
−DKL[qς(z | x̃t−1) || p(z)]
−DKL[qε(d | z) || p(d)]
+ Eqς(z |xt),qε(d |xt)[log pθ(x

t | z,d)]
−DKL[qς(z |xt) || p(z)]
−DKL[qε(d | z) || p(d)]. (22)

For the generation process, we only have two variables,

continuous z, and d corresponding to the domain. In order

to encourage learning disentangled representations across do-

mains, we employ the Minimum Description Length (MDL)

principle [50], [66] which replaces the second term, as well

as the first before the last term from Eq. (22), resulting in :

LUdis

V AE(θt, ςt, εt)
∆
= Eqς(z | x̃t−1),qε(d|x̃t−1)[log pθ(x̃

t−1 | z,d)]
− γ|DKL[qς(z | x̃t−1) || p(z)]− C|
− Eqς(z | x̃t−1)DKL[qε(d | z) || p(d | z)]
+ Eqς(z |xt),qε(d |xt)[log pθ(x

t | z,d)]
− γ|DKL[qς(z |xt) || p(z)]− C|
−DKL[qε(d | z) || p(d)], (23)

where γ and C are a multiplicative and a linear constant used

for controlling the degree of disentanglement.

D. Minimizing the required memory

Instead of generating a collection of data samples by the

generator, we can define a small memory buffer to preserve

the current model’s parameters before learning the next task.

Then, the preserved model is used to generate a batch of data

to be used for training together with data sampled from the

database corresponding to the next task learning. The buffer

is always fixed in size while increasing the number of tasks to

be learnt during lifelong learning. After learning the current

task, the old model parameters stored in the buffer will be

LGAA                              VAEGAN                              LGM

Methods

IS
 s

co
re

Fig. 8. Inception Score (IS) for image reconstructions after Cifar10 to MNIST
lifelong learning.

replaced by the current model parameters. Then during the

new task learning, the parameters from this buffer are used

by the model for generating a batch of data corresponding to

the stored model. The buffer used in our model can achieve a

similar performance without the need to increase the required

memory when adding new tasks to be learnt. This mechanism

which reduces the memory required by the proposed model is

illustrated in Fig. 2.

VII. EXPERIMENTS

In this section, we investigate how the proposed Life-

long Generative Adversarial Autoencoder (LGAA) model

learns meaningful and interpretable image representa-

tions under the lifelong learning of several tasks. We

provide the source code at https://github.com/dtuzi123/

Lifelong-Generative-Adversarial-Autoencoder .

A. Reconstruction and Interpolation results following unsu-

pervised lifelong learning

We train the LGAA model using the loss functions LU
GAN

and LU
V AE from equations (21) and (22), which contain adver-

sarial and VAE learning terms, respectively, and we consider

a learning rate of 0.001. The results for the unsupervised

lifelong learning of CelebA [67] to CACD [68] are provided

in Figures 3a-c where we show real images, generated images,

and the image reconstructions for the images from Figures 3-

a, respectively. Meanwhile, in Figures 4a-c we provide real

images, generated images and the reconstructions of the real

images from Fig. 4-a after the lifelong learning of CelebA

to 3DChair [69]. From these results, it can be observed

that the proposed approach can learn different data domains

sequentially and provide good reconstruction results.

In the following we perform data interpolation experiments

under the lifelong learning setting in order to evaluate the

manifold continuity in the latent space. We call lifelong inter-

polation when the interpolation is performed between multiple

data domains, by considering data from different databases,

under the lifelong learning setting. We randomly select two
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TABLE I
CLASSIFICATION RESULTS FOLLOWING THE LIFELONG LEARNING OF MNIST (M) AND FASHION (F) DATABASES.

Dataset Lifelong LGAA LGAN [13] LGM [35] EWC [23] Transfer MeRGANs [34]

MNIST M-F 98.76 98.41 97.29 37.7 40.63 98.34

MNIST F-M 98.77 98.32 98.85 99.12 98.25 98.27

Fashion M-F 92.01 91.42 91.71 91.38 91.01 91.12

Fashion F-M 89.24 89.15 86.05 54.53 37.92 88.86

TABLE II
CLASSIFICATION RESULTS UNDER MNIST, SVHN, FASHION,

INVERSEFASHION, INVERSEMNIST AND INVERSEMNIST LIFELONG

LEARNING.

Dataset LGAA LGM [35] MeRGANs [34]

MNIST 86.79 86.14 82.08

SVHN 52.18 23.87 34.20

Fashion 64.37 55.00 61.20

InverseFashion 78.60 49.83 74.17

InverseMNIST 97.33 86.49 93.44

CIFAR10 52.36 57.09 58.49

Average 71.94 59.74 67.27

images and then infer their discrete u, and continuous z latent

variables by using the inference model. Then we perform

the interpolation on these latent variables and the resulting

interpolated variables are used as inputs to the generator

for reconstructing images and modelling smooth transitions

between the chosen image pair. The interpolation results are

shown in Fig. 5-a for CelebA to CACD, and in Fig. 5-b for

CelebA to 3D-chair lifelong learning. We can observe from

the images from the last two rows of Fig. 5-b that a chair

is transformed into a human face, where the chair’s seat and

backside are smoothly changed into the eyes and hair of a

person. This shows that the LGAA model can learn the joint

latent space of two completely different data configurations.

B. Lifelong Disentangled Representations

Within the unsupervised lifelong learning framework we

train the LGAA model under the CelebA to 3D-Chairs life-

long learning by using the loss function from Eq. (23) in

order to achieve unsupervised disentangled representations,

as described in Section VI-C. We consider the multiplicative

parameter γ = 4, while increasing the linear one C from 0.5

to 25.0 in Eq. (23), during the training. After the training,

we change one of the dimensions of a continuous latent

representation z, inferred by using the inference model, for a

given input, and then map it back to the visual data space by

using the generator. The disentangled results are presented in

Figures 6a-f, indicating changes in the appearance of gender,

facial narrowing, skin tone variation, skin appearance, face

pose, chairs’ size, and chairs’ style. These results show that

the LGAA model can discover various disentangled represen-

tations in CelebA and 3D-Chairs databases following lifelong

learning.

TABLE III
SEMI-SUPERVISED CLASSIFICATION ERROR RESULTS ON MNIST

DATABASE. LGAA AND LGAN ARE TRAINED UNDER THE MNIST TO

FASHION LIFELONG LEARNING.

Methods Lifelong Error

LGAA Yes 4.34

LGAN [13] Yes 5.46

Neural networks (NN) [70] No 10.7

Deep networks (CNN) [70] No 6.45

TSVM [70] No 5.38

CAE [70] No 4.77

M1+TSVM [70] No 4.24

M2 [70] No 3.60

M1+M2 [70] No 2.40

Semi-VAE [71] No 2.88

C. Quantitative assessment of the generated images quality

We use Inception score (IS) [72] and Fréchet Inception

Distance (FID) [73] in order to evaluate the quality of gener-

ated images after lifelong learning. We train various methods

under the CelebA to CACD lifelong learning setting. The

FID scores, calculated between 5,000 target images and 5,000

generated images, where target images include samples from

both CelebA and CACD databases, are provided in Fig. 7.

The results by the proposed LGAA are compared with three

other lifelong learning approaches: LGAN [74], LifelongGAN

[75] and LGM [35]. We also consider Cifar10 [76] to MNIST

database lifelong learning. The IS score on the reconstructions

of 5,000 CIFAR10 testing samples, is provided in Fig. 8,

where we compare with VAEGAN [45] and LGM [35]. The

results from Fig. 8 show that GAN-based lifelong approaches

achieve higher IS scores than VAE-based methods. This can be

observed in the quality of the images generated, where VAE-

based methods usually generate blurred images. The approach

proposed in this paper produces higher-quality generative

replay images and learns representations of data that other

GAN-based lifelong learning approaches can not model.

D. Lifelong supervised learning

We compare LGAA with various methods under the lifelong

supervised learning setting as described in Section VI-A.

LGAN [13] typically trains a classifier (called Solver) on

both images generated by the GAN module and form the

training samples from the current task. We also consider an

auxiliary classifier for LGM [35] by training it on the mixed

data consisting of images generated by LGM and from the

training samples of the current task.
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(a) Changing the first dimension of z
from -2 to 2 .

(b) Changing the second dimension of
z from -1 to 1.

Fig. 9. Reconstruction results on MNIST when changing a single continuous
latent variable while fixing all others.

We train the LGAA model under the MNIST to Fashion [77]

(M-F) lifelong learning and also when considering the reversed

order of learning, as F-M. The classification results, after the

lifelong training, are reported in Table I, where we compare

with several models. We observe that GRM-based methods can

prevent forgetting, and their performance relies on the quality

of generative replay samples. GAN-based methods provide

slightly better results than the VAE-based methods, since the

generative replay network using a GAN can produce higher-

quality data samples compared with models using VAEs. From

Table I, we can also find that only the first task would suffer

from the degenerated performance caused by the forgetting.

When comparing with the results provided by the baselines,

the proposed LGAA model achieves the best results on the

first task, demonstrating that LGAA can generate high-quality

samples which reduces the Wasserstein distance between the

target and source distributions, resulting in a small target risk

on the first task. Additionally, LGAA also outperforms other

baselines when considering the average classification accuracy.

In addition, from the results in Table I we can also observe that

all models suffer from a significant degenerated performance

when changing the lifelong learning order setting from M-

F to F-M. The main reason for this phenomenon is that

Fashion database contains more complex images than MNIST.

When Fashion is used as the first task, we replay samples

corresponding to Fashion at the second task learning in which

the performance loss on Fashion is mainly caused by the GRM.

In contrast, when MNIST is used as the first task, we do not

see a significant drop in performance after lifelong learning.

This is because the MNIST is a dataset with simpler images

and the GRM can produce more realistic images corresponding

to MNIST during the learning of the second task. These results

also indicate that changing the order of tasks can influence the

performance of the model.

We also investigate the performance of the proposed ap-

proach when learning a long sequence of tasks. We train var-

ious models under lifelong learning of MNIST, SVHN, Fash-

ion, InverseFashion, InverseMNIST and CIFAR10, namely

MSFIIC. For InverseFashion and InverseMNIST, we inverse

the values of pixels x in each image as 255 - x. We report

the classification results in Table II. We can observe that the

proposed LGAA achieves the best results for almost every

TABLE IV
SEMI-SUPERVISED CLASSIFICATION ERROR RESULTS ON SVHN

DATABASE, UNDER THE SVHN TO FASHION LIFELONG LEARNING.

Methods Lifelong Error

LGAA Yes 60.36

LGAN [13] Yes 63.25

kNN [70] No 77.93

TSVN [70] No 66.55

M1+KNN [70] No 65.63

M1+TSVM [70] No 54.33

M1+M2 [70] No 36.02

task when compared to the other methods. We also observe

that GAN-based models can relieve forgetting better than the

VAE-based models and outperform the latter in terms of the

average classification accuracy.

E. Semi-supervised learning

For the semi-supervised lifelong training of LGAA, de-

scribed in Section VI-B, we consider only a small number

of labelled images from each database (1,000 for MNIST

and 10,000 for Fashion) while the other images are not

labelled (59,000 for MNIST and 50,000 for Fashion). The

classification results following lifelong learning when using

LGAA compared to other semi-supervised learning methods

are provided in Table III. These results show that the proposed

approach LGAA outperforms LGAN [13], under the semi-

supervised learning setting.

In the following, we train LGAN and LGAA models under

the lifelong learning of SVHN and Fashion. We only use 1,000

and 10,000 labelled training samples, while the remaining

72,257 and 50,000, for SVHN and Fashion, respectively,

are unlabelled. The results from Table IV indicate that the

proposed LGAA still outperforms LGAN for lifelong semi-

supervised learning. In Tables III and IV we include the results

for the methods which are only trained on one database,

and we can observe that LGAA provides similar results to

these methods, despite being at a great disadvantage when

learning successively two databases. This demonstrates that

the proposed approach can be potentially used in other semi-

supervised learning applications such as in anomaly detection

[78], [79].

F. Ablation study

In this section, we investigate the importance of different

latent variables used in the proposed LGAA model.

The choice of the latent variables. First, we consider the

proposed framework with only the continuous latent vari-

able z as a baseline for comparison. Afterwards, we train

the proposed framework with two inference models {z,d}.

We investigate whether using the task inference model can

degenerate the performance of the proposed approach. The

average reconstruction error evaluated as the Mean Square

Error (MSE) across all testing data is reported in Table V. We

also train a simple classifier on the reconstructions produced

by the model on all training samples. Then we evaluate the
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Fig. 10. Average reconstruction error on CACD during the lifelong CelebA
to CACD.
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Fig. 11. Average reconstruction error on 3D-Chair during the lifelong CelebA
to 3D-Chair.

classification accuracy on all testing samples using the classi-

fier. The classification accuracy can reflect the quality of the

reconstruction results and is reported in Table V. We observe

that the proposed LGAA model performance, enabled with the

task inference, does not deteriorate while the model learns the

information from several databases. Then we perform the task

inference experiments under the lifelong learning of MNIST

followed by the Fashion, as well as the other way around under

the F-M sequence. The results, when estimating the domain

d, are reported in Table VI. We find that the task-inference

model can infer, in most cases, the task ID for the given data.

This result also demonstrates that the latent variable z captures

the task and implicitly domain information, which enables the

task-inference model qε(d | z) to make accurate predictions.

Enforcing the disentanglement between the latent variables

z and u. We train the proposed model considering three

latent vectors {u, z,d} under the lifelong supervised learning

setting. After training, the inference model qδ(u |x) is used

to make predictions. Then we change one dimension of the

latent vector z inferred by qς(z |x) while fixing the others.

In Figures 9-a and 9-b we show the results for the images

showing the digit ‘7’ from MNIST, when changing the first

and the second dimension of z within the ranges [−2, 2] and

[−1, 1], respectively. From the results in Fig. 9 we observe

that the latent variable z only represents the handwriting styles

instead of the digit types in the images, which is modelled by

the variable u.

G. Transfer metric and transfer learning

By using the generative replay mechanism, the proposed

approach can accelerate the training speed for learning the

next tasks by transferring the previously learned knowledge.

The transfer of knowledge between a past task and the

currently given task is stronger when the new task is related

to previously learned data distributions and then the model

should be able to adapt quickly when learning the new task.

In order to measure the task knowledge transferability in the

network, we define a performance score for a model trained

in the past, when shown a new batch sample while learning

the (i)-th task :

Fα(xi,j , fθi,j−1
(xi,j)), j > 0, (24)

where fθi,j−1(·) is the model updated using the (j − 1)-th
batch during the learning of the (i)-th task. Eq. (24) evaluates

the performance for the (j)-th batch of training samples xi,j

on the (i)-th task, achieved by the model which was trained

with the (j − 1)-th data batch from the (i)-th task. Fα(·, ·) is

a performance metric which can be implemented by MSE or

the classification accuracy, depending on the given task. This

performance criterion has the ability to evaluate the capacity

of transfer learning from one task to another.

In the following, we train the proposed model under the

CelebA to CACD, and CelebA to 3D-Chair lifelong learn-

ing frameworks, respectively. We consider that the baseline

is our model trained only on either CACD or 3D-Chair

dataset. During the training, we evaluate the performance

score Fα(xi,j , fθi,j−1
(xi,j)) from Eq. (24) when learning each

data batch and use the average reconstruction error (MSE)

as the performance metric Fα(·, ·). The results are shown in

Figures 10 and 11 for the CelebA to CACD database, and

CelebA to 3D-Chair, respectively. From Fig. 10 we observe

that our model provides reasonable reconstruction errors in the

initial training phase of the second task while the learning for

the baseline proceeds rather slowly. This is due to the fact

the CACD and CelebA are both human face datasets, which

means that they share similar facial feature information with

each other. So the model can quickly adapt to a new task, when

this is similar to one of the previously learnt tasks, as we can

observe from the decrease of the average reconstruction errors

during the learning. From Fig. 11 we observe that the proposed

LGAA approach achieves lower reconstruction errors than the

baseline at the beginning of the training. Then the baseline

learns better than the proposed approach, while the proposed

LGAA approach is actually a lifelong approach which knows

the information from the datasets learnt in the past. The reason

behind this is that a human face image dataset shares few

features with the 3D-chair images, which have a completely
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TABLE V
QUANTITATIVE EVALUATION ON THE

REPRESENTATION LEARNING ABILITY

Methods Lifelong Dataset Reconstruction error (MSE) Accuracy (%)

LGAA M-F MNIST 4.75 92.53

Baseline M-F MNIST 4.71 91.29

LGAA M-F Fashion 17.44 67.66

Baseline M-F Fashion 16.54 67.97

LGAA F-M MNIST 4.92 93.29

Baseline F-M MNIST 5.14 92.34

LGAA F-M Fashion 13.16 66.97

Baseline F-M Fashion 14.78 66.45

TABLE VI
TASK INFERENCE ACCURACY ON MNIST AND FASHION EVALUATED

USING THE TASK-INFERENCE MODEL.

Methods Lifelong Dataset Accuracy (%)

LGAA M-F MNIST 91.26

LGAA M-F Fashion 91.12

LGAA F-M MNIST 94.25

LGAA F-M Fashion 97.48

distinct feature probabilistic representation. The knowledge

learned by CelebA cannot have a positive transferable effect

when learning an entirely different dataset.

VIII. CONCLUSION

In this paper, we propose a new approach for lifelong learn-

ing, called the Lifelong Generative Adversarial Autoencoder

(LGAA) which benefits from the advantages of enabling GAN

and VAE generative deep learning methods into a unified

lifelong learning framework. The proposed LGAA can learn

meaningful representations across domains without forgetting

under lifelong learning. The proposed lifelong framework can

be used in a wide range of applications, including data classi-

fication, semi-supervised learning, data reconstruction, gener-

ation and inter-domain interpolation. Another contribution of

this paper consists in developing a theoretical framework for

analyzing the information loss of GRM-based models under

lifelong learning. The proposed theoretical analysis provides

new insights into the forgetting behaviour of the GRM-based

methods, resulting in guidelines for robust lifelong learning

model design.

One limitation of this study is that the proposed LGAA

is still limited when learning an infinite number of tasks

since GAN would suffer from the mode collapse [47] when

learning several entirely different datasets. This eventually

results in catastrophic forgetting given that the model can not

endlessly rely on reasonable good generative replay samples

during its lifelong learning. This inspires us to explore in

the future a dynamic expansion mechanism for the proposed

LGAA, which would enable the model to deal with more tasks

by dynamically increasing the model’s capacity whenever

necessary.

APPENDIX A

PROOF OF Theorem 1

By using mathematical induction over the lifelong learning

of the probabilistic representations associated with various

tasks, the marginal distribution is rewritten as:

p(x̃t) =

∫∫

p(x̃t|x̃t−1,xt)p(x̃t−1,xt)dx̃t−1dxt

=

∫∫

p(x̃t|x̃t−1,xt)p(x̃t−1)p(xt)dx̃t−1dxt

=

∫∫∫∫

p(x̃t|x̃t−1,xt)p(x̃t−1|x̃t−2,xt−1)·

· p(x̃t−2)p(xt)p(xt−1)dx̃t−1dxtdx̃t−2dxt−1

=

∫

. . .

∫

p(x̃1)

t−2
∏

i=0

p(x̃t−i|x̃t−i−1,xt−i)

t−2
∏

i=0

p(xt−i)

dx̃1 . . . dx̃t−1dx2 . . . dxt

�

(25)

This corresponds to Eq. (5) and proves Theorem 1.

APPENDIX B

PROOF OF LEMMA 1

In order to have p(x̃t) =
∏t

i=1 p(x
i), we must firstly satisfy

the following condition:

p(x̃t | x̃t−1,xt) = 1 ⇒ p(x̃t) = p(x̃t−1,xt) (26)

where the right hand side can be decomposed as p(x̃t−1)p(xt)
since p(x̃t−1) is independent from p(xt). We further decom-

pose p(x̃t−1) = p(x̃t−2)p(xt−1) if p(x̃t−1 | x̃t−2,xt−1) = 1.

By considering all decompositions through induction :

∏t−2

i=0
p(x̃t−i | x̃t−i−1,xt−i) = 1,

p(x̃1) = p(x1) ⇒ p(x̃t) = p(x1, . . . ,xt)

�

(27)

This proves Lemma 1.

APPENDIX C

PROOF OF LEMMA 2

Firstly, we consider that the model has finished learning the

(j)-th task and then we evaluate the risk bound for Pxj and

P
(j,j)
x̃ , according to Theorem 2, as :

R
(

h, h(νj)

)

≤ R
(

h, h(ν(j,j))

)

+W
(

νj , ν(j,j)
)

+

√

2 log

(

1

δ

)

/a′

(√

1

nνj

+

√

1

nν(j,j)

)

+D(R(h, h(νj)) +R(h, h(ν(j,j))))

(28)

where {ν(j,j) ∈ R
s|ν(j,j) ∼ P

(j,j)
x̃ } and nν(j,j)

is the cor-

responding sample size. h(ν(j,j)) is the identity function for

samples drawn from ν(j,j). D(·) is the optimal combined error.

Eq. (28) describes the risk bound after the (j)-th task learning.

In the following, we consider P
(j,j)
x̃ to be the target distribution
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and P
(j+1,j)
x̃ to be the source distribution and we have the risk

bound :

R
(

h, h(ν(j,j))

)

≤ R
(

h, h(ν(j+1,j))

)

+W
(

ν(j,j), ν(j+1,j)

)

+

√

2 log

(

1

δ

)

/a′

(
√

1

nν(j,j)

+

√

1

nν(j+1,j)

)

+D(R(h, h(ν(j,j))) +R(h, h(ν(j+1,j))))
(29)

Similarly, we can repeat the risk calculation, until the t-th
task learning :

R
(

h, h(ν(j+1,j))

)

≤ R
(

h, h(ν(j+1,j+2))

)

+W
(

ν(j+1,j), ν(j+2,j)

)

+

√

2 log

(

1

δ

)

/a′

(
√

1

nν(j+1,j)

+

√

1

nν(j+2,j)

)

+D(R(h, h(ν(j+1,j))) +R(h, h(ν(j+2,j))))

. . .

R
(

h, h(ν(t−1,j))

)

≤ R
(

h, h(ν(t,j))

)

+W
(

ν(t−1,j), ν(t,j)
)

+

√

2 log

(

1

δ

)

/a′

(
√

1

nν(t−1,j)

+

√

1

nν(t,j)

)

+D(R(h, h(ν(t−1,j))) +R(h, h(ν(t,j)
))

(30)

Then we replace each risk into another successively for all

the above inequalities, resulting in :

R
(

h, h(νj)

)

≤ R
(

h, h(ν(t,j))

)

+

t−1
∑

k=j−1

{

W
(

ν(k,j), ν(k+1,j)

)

+

√

2 log

(

1

δ

)

/a′

(
√

1

nν(k,j)

+

√

1

nν(k+1,j)

)

+D(R(h, h(ν(k,j))) +R(h, h(ν(k+1,j)))
}

�

(31)

This proves Lemma 2.

APPENDIX D

THE DERIVATION OF LVAE

In the following we consider modeling a single task:

log p(x) = logEqς,ε,δ(z,u,d|x)

[

pθ(x, z,u,d)

qς,ε,δ(z,u,d|x)

]

(32)

Then, according to Jensens’ inequality, we have:

log p(x) ≥ Eqς,ε,δ(z,u,d|x)

[

log
pθ(x, z,u,d)

qς,ε,δ(z,u,d|x)

]

(33)

LVAE(θ, ς, ε, δ) = Eqς,ε,δ(z,u,d|x) log

[

pθ(x, z,u,d)

qς,ε,δ(z,u,d|x)

]

= Eqδ(u|x)qε(d|z)qς(z|x) log

[

pθ(x|z,u,d)p(d|z)p(z)p(u)
qδ(u|x)qε(d|z)qς(z|x)

]

(34)

Since qε(d|x) takes an image as the input that is high-

dimensional data, we usually process this input data using a

CNN network with several convolutional layers, which leads to

more parameters. To further reduce the number of parameters,

we consider replacing qε(d|x) by using a lightweight inference

model qε(d|z) implemented by a simple fully connected

network with fewer parameters since z is a low-dimensional

latent representation. Then, Eq. (34) is rewritten as :

LVAE(θ, ς, ε, δ) = Eqς,ε,δ(z,d,u |x) log[pθ(x | z,d,u)]
−DKL[qς(z |x) || p(z)]
−DKL[qε(d | z) || p(d)]
−DKL[qδ(u |x) || p(u)]

(35)

where we have separated the Kullback-Leibler (KL) diver-

gence components for the continuous z space, as well as for

the discrete and domain spaces u and d, respectively. Mean-

while, θ, ς, ε, δ represent the parameters of the corresponding

networks.
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