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Lifelong Dual Generative Adversarial Nets

Learning in Tandem
Fei Ye and Adrian G. Bors, IEEE Senior Member

Department of Computer Science, University of York, York YO10 5GH, UK

Abstract—Continually capturing novel concepts without forget-
ting is one of the most critical functions sought for in artificial
intelligence systems. However, even the most advanced deep
learning networks are prone to quickly forgetting previously
learnt knowledge after training with new data. The proposed
Lifelong Dual Generative Adversarial Networks (LD-GANs)
consists of two Generative Adversarial Networks (GANs), namely
a Teacher and an Assistant teaching each other in tandem while
successively learning a series of tasks. A single Discriminator is
used to decide the realism of generated images by the dual GANs.
A new training algorithm, called the Lifelong Self Knowledge
Distillation (LSKD) is proposed for training the LD-GAN while
learning each new task during lifelong learning (LLL). LSKD
enables the transfer of knowledge from one more knowledgeable
player to the other jointly with learning the information from a
newly given dataset, within an adversarial playing game setting.
In contrast to other lifelong learning models, LD-GANs is mem-
ory efficient and does not require freezing any parameters after
learning each given task. Furthermore, we extend the LD-GANs
to being the Teacher module in a Teacher-Student network for
assimilating data representations across several domains during
LLL. Experimental results indicate a better performance for
the proposed framework in unsupervised lifelong representation
learning when compared to other methods.

Index Terms—Lifelong learning, Generative Adversarial Net-
work (GAN), Representation Learning, Teacher-Student network.

I. INTRODUCTION

Humans and living beings in general are able to learn

during their entire life while artificial learning systems are

far from achieving such capabilities [1]. Despite all recent

achievements in the area of artificial intelligence, existing

deep learning models are not enabled with lifelong learning

abilities. Each time when a neural network is retrained on

a new database, its old parameters are overwritten. This

phenomenon is called catastrophic forgetting [2]. Lifelong

learning capabilities would enable streaming the learning in

artificial systems, which is essential in observing and analysing

phenomena, semantic analysis of documents, surveillance,

robot and unmanned vehicle control, or for adapting to chang-

ing environments among many other applications.

During lifelong learning (LLL), an agent or a model is

trained on a series of tasks, where each task is associated

with a different data domain. We assume that the model can

only access the training samples from the current task while

all previously learnt samples are unavailable during further

training. In such a case, catastrophic forgetting represents a

severe challenge for the model. The LLL aims to minimize the

performance loss on the past learnt tasks while also achieving

good performance on those learnt recently. Once all tasks have

been learnt, we evaluate the generalization performance of a

model on all testing sets, both from the past as well as those

new. This paper mainly focuses on the lifelong generative

modelling task, which is not well explored in other LLL

research studies.

One of the solutions proposed to relieve catastrophic forget-

ting is to impose constraints on the parameters of the network

[3], [4] using a regularization term, where the model’s parame-

ters important to past tasks will undergo smaller changes when

learning new tasks. Another approach consists in increasing

the number of neurons and network layers [5], or employing a

specific learning metric [6]. Such approaches can preserve the

optimal performance for all past tasks when updating model’s

parameters while adapting to new tasks as well. However,

these methods are only used in the supervised learning setting,

where the ground truth labels for each task are provided.

Unlike the approaches mentioned above, in this paper, we

consider unsupervised learning under the LLL setting, where

class labels are not available, [5].

Generative Adversarial Nets (GANs) [7] represent one of

the most popular methods in unsupervised learning, which

provide good results in image synthesis [8], image-to-image

translation [9], image dehazing [10], [11] and for learning

interpretable representations [12], [13]. However, GANs only

perform well on data samples originating from a single

database. GANs can relieve catastrophic forgetting following

self-supervised training, such as being retrained with genera-

tive replay samples. A new training set can be made up by

combining data generated by a GAN and the newly available

data [14]. Another approach consists in preserving some or

old model’s parameters [15] to be used later for training. LLL

models based on GAN generators lack inference mechanisms,

representing a critical problem in the lifelong unsupervised

learning setting because they cannot capture complex data

structures.

The proposed Lifelong Dual Generative Adversarial Net-

works (LD-GANs) addresses catastrophic forgetting by accu-

mulating information through a dual Teacher-Assistant net-

work, working in tandem, enabled by adversarial learning

during the learning of a sequence of tasks. We introduce the

Lifelong Self Knowledge Distillation (LSKD) which distils

the information from a more knowledgeable generator to

another one in a tandem process where a Teacher and an

Assistant interchange their functions of teaching and learning.

We also implement a Teacher-Student network, where the LD-

GANs model represent the Teacher, used to train a lightweight
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probabilistic generative model as a Student which acquire

meaningful data representations.

The following contributions are brought in this paper:

• We propose the LD-GANs, a dual GAN model for

learning successively a set of tasks, in tandem.

• A new lifelong training approach, namely the Lifelong

Adversarial Knowledge Distillation (LSKD), represents

an end-to-end memory efficient method for learning es-

sential information from several tasks.

• We extend the proposed LD-GANs to a Teacher-Student

network for enabling the online learning of statistical

data representations while capturing both continuous and

domain-specific generative factors across tasks.

• We introduce a new theoretical framework based on the

Wasserstein distance, which provides new insights into

the forgetting behaviour of the Student module when

learning several tasks.

The rest of paper consists of Section II, which outlines the

main approaches in the area of lifelong learning, Section III

introduces the proposed Lifelong Dual Generative Adversarial

Nets, while in Section IV we provide the theoretical analysis

for the forgetting behaviour of the proposed approach. Finally,

Section V contains the experimental results and their discus-

sion, while the conclusions are drawn in Section VI.

II. RELATED WORKS

Current research studies in lifelong learning can be grouped

under three categories: memory-based systems [16], [17], [18],

regularization-based [3], [4] and using architecture expansion

[2], [5]. Memory-based approaches usually utilize a small

memory buffer to store past samples and these are merged

with novel samples for learning a new task aiming to relieve

forgetting. Meanwhile, generators such as the Variational

Autoencoder (VAE) [19] or Generative Adversarial Network

(GAN) [7] can be used for reproducing previously learnt data.

These generative replay samples are then mixed with data

corresponding to a new task making up together a training

set. GANs can be used as generative replay networks (GRM)

[20], but they lack inference mechanisms, which prevent their

applicability to many down-stream tasks, including image

reconstruction and interpolation. Meanwhile, the Variational

Autoencoder with Shared Embeddings (VASE) [21] aims to

learn disentangled representations under lifelong learning. To

enable learning meaningful latent variables across multiple

domains, VASE introduces a new loss function based on the

Minimum Description Length (MDL) principle [22], which

progressively increases the representational capacity to ac-

commodate learning new data. More recently, Ramapuram et

al. [23] proposed the Lifelong Generative Modeling (LGM)

which employs VAEs for two networks teaching each other

as a Teacher and Student. Kuzina et al. [24] introduced the

Boosting Approach for continual learning of VAE (BooVAE),

which learns the approximation of the aggregated posterior as

a prior for each given task. BooVAE uses the trainable pseudo-

inputs as the parameters corresponding to the approximation of

the posterior, thus preserving the past knowledge. Since VAEs

have inference mechanisms, they can model cross-domain

representations over several tasks. However, VAEs tend to

produce relatively low-quality data, such as blurred images

[25], [26], which negatively affects their ability to reproduce

past information.

Regularization methods usually introduce an additional term

in the optimization function, penalizing parameter changes

when learning new tasks [27]. Kirkpatrick et al. [3] propose

the Elastic Weight Consolidation (EWC), which employs a

quadratic penalty on the difference between the parameters

for the old and new tasks, aiming to minimize the change

on the previously learnt parameters when learning a new task.

However, one drawback of EWC is the growing computational

complexity of learning a long sequence of tasks. This problem

is addressed by Schwarz et al. [28], which only regulates the

model updating to more recent tasks. The EWC was further

improved in terms of reducing the computational cost by using

a single diagonal Fisher matrix to preserve the information

of all previously learned tasks, which is then updated using

the moving average [29]. More recently, regularization ap-

proaches have been developed based on the Bayesian Inference

framework. For instance, Nguyen et al. [27] introduced a new

continual learning framework called the Variational Continual

Learning (VCL), which employs the Bayesian principle to

overcome forgetting. However, VCL requires to store past

samples during inference. Hongjoon et al. [30] addressed the

drawbacks of VCL, including the computation time and space

complexity, by introducing two additional regularisation terms

that preserve old knowledge by freezing important parameters

and allocating the remaining capacity to tackle a new task.

Chen et al. [31] used for text and images a hybrid approach for

continual learning combining the advantages of the stochastic

gradient Markov chain Monte Carlo and variance inference.

In Federated Learning [32], a collaboratively set of networks

was used for training a model, while a GAN was employed

as a Teacher in the Lifelong Teacher-Student [17]. In another

group of approaches, Coupled GANs (CoGANs) [33] consist

of a pair of GANs, where each generator and discrimina-

tor shares some of its weights with another generator and

discriminator. DualGANs [34], has some structural similar-

ities with CoGANs, while aiming to learn image-to-image

correspondences, unlike the joint data distributions learnt in

CoGANs. The Twin Auxiliary Classifiers GANs (TAC-GAN)

[35] enforces data diversity by considering classifiers when

interacting with a GAN’s generator and discriminator.

The LD-GANs, introduced in this research study, has

completely different characteristics from the other coupled

approaches. Firstly, other coupled approaches update all their

generators during training while LD-GANs trains only one

generator for each task at a time. Secondly, LD-GANs trans-

fers knowledge between the two generators using the proposed

Lifelong Self Knowledge Distillation (LSKD) training algo-

rithm. Thirdly, LD-GANs is able to learn new tasks without

forgetting. Finally, the proposed LD-GANs can also provide

higher-quality underlying data representation transfer from the

Teacher to a Student model and consequently learn many

informative latent representations over time.
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III. LIFELONG DUAL GENERATIVE

ADVERSARIAL NETWORKS

In this section, we introduce the Lifelong Dual Generative

Adversarial Networks (LD-GANs), which is afterwards ex-

tended into a Teacher-Student network.

A. Problem definition

Let us assume a set of N databases, each associated with

a task, T = {T1, T2, · · · , TN}. A lifelong model aims to be

able to learn and use the probabilistic representations of all

tasks T at any given time. Most existing lifelong learning

approaches would normally employ a classifier f(y|x) which

minimizes the empirical loss across all given tasks from T .

However, in practice it is impossible to acquire labels for a

larger-scale database since it is time-consuming and requires

extensive data annotation work. The problem of unsupervised

learning under the lifelong setting has the advantage that the

learner or agent does not have access to external supervision

signals, including class labels or regression targets. Under this

setting, the learning goal is to model a set of generative factors

(latent variables) {z1, z2, . . . , zN}, which are shared between

different domains and can be used to explain their underlying

data representations following knowledge distillation.

B. Learning a single task

The LD-GANs model contains two generators and a dis-

criminator. One of the generators is called the Teacher while

the other is the Assistant and their function is switched

whenever LD-GANs is learning a new task. Let as consider a

latent vector space Z , defined by the random variable z ∈ Z ,

which is defined by a Normal distribution p(z) = N (0, I). The

Teacher and Assistant, implemented by identical neural net-

work structures GθT (z) and GθA(z), are used for generating

the data x′
t and x′

a, considered as images in the experiments,

using z as input. When learning the first given task, the goal of

LD-GANs is similar to that of a GAN [7] and in this study we

consider minimizing the Wasserstein (Earth-Mover) distance

as a probabilistic distance, [36], [37]:

min
GθT

,GθA

max
D∈Θ

{E
x
1∼p(x1)[D(x1)]− E

x
′

t∼p(xT )[D(x′
t)]

︸ ︷︷ ︸

Teacher optimization

+ E
x
1∼p(x1)[D(x1)]− E

x
′

a∼p(xA)[D(x′
a)]

︸ ︷︷ ︸

Assistant optimization

}.

(1)

where p(x1) as the probabilistic representation of the task

defined by the first database, p(xT ) and p(xA) represent the

generator distributions for the Teacher GθT (z) and Assistant

GθA(z), respectively, D(·) is the discriminant, and Θ define a

set of 1-Lipschitz functions. We introduce a gradient penalty

term (momentum) [38], enforcing the Lipschitz constraint:

min
GθT

,GθA

max
D∈Θ

{E
x
1∼p(x1)[D(x1)]− E

x
′

t∼p(xT )[D(x′
t)]

+ λEx̃t∼Px̃T
[(∥∇x̃t

D(x̃t)∥2 − 1)2]

+ E
x
1∼p(x1)[D(x1)]− E

x
′

a∼p(xA)[D(x′
a)]

+ λEx̃a∼Px̃A
[(∥∇x̃a

D(x̃a)∥2 − 1)2]},

(2)

where Px̃T
and Px̃A

are joint distributions defining data inter-

polating samples from p(x1) and pairs of real data, sampled

from p(xT ) and p(xA), generated by the Teacher and Assistant

networks, respectively. The structure of the LD-GANs network

and its training is shown in Fig. 1.

C. Lifelong Self Knowledge Distillation

Knowledge distillation learning assumes that a classifier is

trained on the predictions of another classifier [39], [40]. For

improving the performance, some recent studies propose em-

ploying an ensemble of networks [41], [42], which mixes the

distributions of the predictions from an ensemble. However,

these methods use real data and class information from a

single domain, representing a severe challenge for the general

application of the lifelong learning setting. In this research

study, we introduce a new approach for knowledge transfer

in LD-GANs, namely Lifelong Self Knowledge Distillation

(LSKD). Through LSKD we employ one of the generators to

be a Teacher and use its generated data for training another

generator, called the Assistant. Then, following the learning of

an initial dataset, we freeze the Teacher’s parameters during

the learning of a second database. Meanwhile, data from a

second database is mixed with the data generated by the

Teacher and together are used to train the Assistant. When

learning each additional new task, the roles of the Teacher

and Assistant are exchanged during learning in LSKD, with

both GAN generators becoming alternatively the Teacher and

the Assistant, respectively. The LSKD objective function is

defined as:

min
G

max
D∈Θ

{E
x∼p(xk)p(xk−1

T
)[D(x)]− E

x
′∼p(xk

A
)[D(x′)]

+ λEx̃∼Px̃A
[(∥∇x̃D(x̃)∥2 − 1)2]},

(3)

where the data x are uniformly sampled from the probabilistic

representation p(xk) of the t-th task and the Teacher’s distri-

bution p(xk−1
T ), after being trained on the (k − 1)-th task.

The sample x′ is drawn from p(xk
A) characterizing the data

generated by the Assistant Gθk
A
(z) following its training on the

k-th task. The proposed LSKD training algorithm has multiple

advantages over other lifelong learning methods [21], [43].

Firstly, LSKD is memory efficient because it does not require

to know the data from all past databases [20]. Secondly, the

model’s parameters, or even a subset of these parameters,

do not have to be preserved, as is the case for many other

generative replay methods [21], [43]. The description of LSKD

is provided in Algorithm 1.

D. Training a Student network for representation learning

In the following we extend LD-GANs to be used in a

lifelong Teacher-Student framework [17]. The Teacher is im-

plemented by the two GAN generators from LD-GANs, while

the Student component is represented by a latent variable gen-

erative model p(x, z) = p(x|z)p(z). The marginal likelihood

of p(x, z) is intractable, requiring the integration over the

entire latent variable space p(x) =
∫
p(x|z)p(z)dz. Instead,
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Teacher

Assistant

First task learning

Teacher

Assistant

Second task learning

Teacher

Assistant

Third task learning

Real samples

Generative samples

Real samples
Real samples

Generative samples

Student
Knowledge distillation

Student
Knowledge distillation

Fig. 1. The lifelong learning flow for LD-GANs. During the learning of the first task, both GAN generators, the Teacher and Assistant, are trained. Afterwards,
the Teacher and Assistant teach each other alternatively, exchanging their roles after learning each task. Meanwhile, within the Teacher-Student architecture,
the Student accumulates the generative data representations across domains over time.

we maximize the evidence lower bound (ELBO) on the sample

log-likelihood, as in the VAE inference, [19]:

log p(x) ≥ E
z∼qε(z |x)[log pω(x | z)]

−DKL[qε(z|x) || p(z)] = LVAE(ω, ε),
(4)

where pω(x | z) is the decoder and qε(z |x) is an inference

network of prior parameters {µ,σ}, characterizing the mean

and variance of a Gaussian implemented by the last network’

layer, while DKL represents the Kullback-Leibler (KL) di-

vergence. The latent vector z is sampled by means of the

reparametrisation trick z = µ+ γ ⊙ σ, where γ is a random

vector drawn from N (0, I) and ⊙ is the element-wise product.

In order to learn cross-domain representations under the

lifelong learning framework, we transfer the knowledge from

the most knowledgeable generator, out of the two from the

LD-GANs, to the Student network. Therefore, we define the

objective function according to the following Lemma:

Lemma 1: Let us consider that xk and xk−1
Q represent

samples from the data distribution characterizing the k-th task

and also which are synthesized by the generator distribution

(Teacher), respectively. We define a new distillation loss

function guaranteeing a lower bound to the data log-likelihood

over the joint variables {xk,xk−1
Q } at the k-th task learning:

log[p(xk)p(xk−1
Q )] ≥ Lstu(ω, ε) =

E
z∼qε(z|xk)[log pω(x | z)]−DKL[qε(z |xk) || p(z)]

︸ ︷︷ ︸

Loss on samples drawn from the k-th task

+ E
z∼qε(z |x′)[log pω(x | z)]−DKL[qε(z|x′) || p(z)]

︸ ︷︷ ︸

KD loss

.

(5)

where p(xk−1
Q ) can be either p(xk−1

A ) or p(xk−1
T ), depending

on which one is more knowledgeable when learning the k-th

task, and x′ represents its generated data samples.

Proof. We assume that (xk,xk−1
Q ) ∼ p(xk,xk−1

Q ) is a

pair of samples drawn from the joint distribution. We also

know that p(xk) is independent from p(xk−1
Q ). Then we

define a latent variable model pω(x
k,xk−1

Q , zk, zk−1
Q ) =

pω(x
k,xk−1

Q | zk, zk−1
Q )p(zk, zk−1

Q ), with the marginal log dis-

tribution defined as:

log pω(x
k,xk−1

Q ) = log

∫∫

p(xk,xk−1
Q , zk, zk−1

Q )dzkdzk−1
Q .

(6)

We further assume that xk−1
Q is also independent from xk

and zk from zk−1
Q . We decompose Eq. (6) as:

log pω(x
k,xk−1

Q ) = log

∫

p(xk, zk)dzk

· p(xk−1
Q , zk−1

Q )dzk−1
Q .

(7)

Then we can further consider :

log pω(x
k,xk−1

Q ) = log

∫

p(xk, zk)
qε(z|xk)

qε(z|xk)
dzk

· p(xk−1
Q , zk−1

Q )
qε(z

k+1
Q |xk+1

Q )

qε(z
k+1
Q |xk+1

Q )
dzk−1

Q

= log

(

Eqε(z|xk)

p(xk, zk)

qε(z|xk)

·E
qε(z

k+1

Q
|xk+1

Q
)

p(xk−1
Q , zk−1

Q )

qε(z
k+1
Q |xk+1

Q )

)

.

(8)

By using the Jensens inequality, we have:

log pω(x
k,xk−1

Q ) ≥ E
z
k∼qε(zk |xk) log

[
pω(x

k, zk)

qε(z|xt)

]

+ E
z
k−1

Q
∼qε(z

k−1

Q
|xk−1

Q
) log

[

pω(x
k−1
Q , zk−1

Q )

qε(zk+1Q |xk+1Q)

]

.

(9)

Eventually, the above equation is rewritten as:

log p(xk)p(xk−1
Q ) ≥ Lstu(ω, ε) =

E
z∼qε(z |xk)[log pω(x | z)]−DKL[qε(z |xk) || p(z)]

︸ ︷︷ ︸

Loss on samples drawn from the k-th task

+ E
z∼qε(z |x′)[log pω(x | z)]−DKL[qε(z |x′) || p(z)]

︸ ︷︷ ︸

KD loss

,

(10)
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where we simply use the same z for all latent variables

since we use a single inference model and x′ replaces xk−1
Q

for simplicity. More importantly, this choice can allow the

inference model to automatically capture both shared and

domain-specific generative factors in the same latent space.

The loss defined by Eq. (10), corresponding to maximizing

ELBO on the joint sample log-likelihood, is used to train

the Student network when learning the k-th task, k > 1. In

practice, the Student network learning is synchronized with

training the LD-GANs in each task and is the only part of the

model trained when learning the last task, providing a flexible

training manner for the proposed Teacher-Student framework.

Algorithm: We provide the pseudocode in Algorithm 1, which

is used for training the proposed Teacher-Student framework

and can be summarized into three steps:

Step 1. The first task learning: We draw training samples

from the first task, which are used for training both the Teacher

and Assistant using Eq. (1). Using the first dataset, we also

train the Student using Eq. (4).

Step 2. The subsequent task learning: If the Teacher learns

more tasks than the Assistant at the i-th task learning, we fix

the Teacher and treat it as the generative replay network. Then

we incorporate generative replay samples from the Teacher and

real samples from the i-th task, which are used for training the

Assistant using Eq. (3). If the Assistant learns more tasks than

the Teacher, we interchange their roles aiming for the model

to accumulate more knowledge during the lifelong learning.

Step 3. The knowledge distillation: We transfer the informa-

tion from a more knowledgeable Teacher component (Teacher

or Assistant) to the Student while allowing the Student to learn

novel samples from the new task as well, using Eq. (10).

E. Learning disentangled representations over time

In the following, we enable the Student network to learn

disentangled representations across domains. The Total Cor-

relation (TC) term has been used in various VAE frameworks

[44], [45] to encourage learning disentangled representations

for a single database. However, these approaches require an

extra sampling process [45], or an additional discriminator

network which is used to estimate the TC term [44]. In this

research study, we simply penalize the Kullback-Leibler (KL)

divergence between the posterior and prior distributions [22]

in order to encourage disentanglement in the latent variables.

By enforcing disentanglement, we model data properties over

continuously learning several tasks. The resulting disentangled

loss for the Student model is defined as:

log[p(xk)p(xk−1
Q )] ≥ E

z∼qε(z |xk)[log pω(x | z)]
− βDKL[qε(z |xk) || p(z)] (11)

+ E
z∼qε(z |x′)[log pω(x | z)]

− βDKL[qε(z |x′) || p(z)] = LDis(ω, ε).

For β = 1, Eq. (11) corresponds to Eq. (10) and a large β
leads to more independent latent variables while decreasing

the reconstruction quality, [46].

Algorithm 1: The unsupervised learning for LD-GANs

Input: A sequence of datasets;
Input: The number of tasks (n);
Input: The number of iterations (m);
Output: The parameters of the model;

1 for i < n do
2 for j < m do
3 Teacher learning;
4 if i==0 then

5 x ∼ p(xi);
6 Train GθT

(z) and GθA
(z) on x by Eq. (2);

7 Train the Student on x using Eq. (4);
8 end
9 else

10 if i mod 2 == 0 then

11 x ∼ p(xi)p(xk

A);
12 Train GθT

(z) while fixing GθA
(z) on x;

13 end
14 else

15 x ∼ p(xi)p(xk

T );
16 Train GθA

(z) while fixing GθT
(z) on x;

17 end
18 end
19 Knowledge distillation;
20 if i mod 2 == 0 then

21 x ∼ p(xi)p(xk

A);
22 end
23 else

24 x ∼ p(xi)p(xk

T );
25 end
26 Train the Student using Eq. (10) on x;
27 end
28 end

F. Supervised Learning

Although the proposed LD-GANs mainly focuses on unsu-

pervised learning, we show that LD-GANs can be extended

to supervised learning with minimal modifications. To imple-

ment this goal, we introduce a classifier for the Teacher and

Assistant, represented by fϕt
and fϕa

, respectively. During

the learning of the first task, we train jointly fϕt
and fϕa

on

the first dataset by using the loss functions:

Lt1 =
1

n

n∑

i=1

{
Lce(fϕt

(x1
i ),y

1
i ))

}
, (12)

La1 =
1

n

n∑

i=1

{
Lce(fϕa

(x1
i ),y

1
i ))

}
, (13)

where Lce(·) is the cross-entropy loss and {x1
i ,y

1
i } is the

i-th paired samples, each representing a sample and its cor-

responding class, i = 1, . . . , n, drawn from the distribution

{p(x1), p(y1)} from the first dataset. When learning a new

task, such as the j-th task, we train the classifier alternately

on a joint dataset which consists of real samples from the j-th

task and generated samples drawn from one of the two GANs,

whichever is the Teacher at that learning stage. After the

lifelong learning process is finished, we choose the classifier

which has learnt more tasks for evaluation.
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(a) LD-GAN generations. (b) Real testing samples. (c) LD-GAN reconstructions.

(d) LTS Generations. (e) LTS reconstructions.

Fig. 2. Generations and reconstructions after CCCSSM lifelong learning.

IV. THEORETICAL ANALYSIS FOR

THE FORGETTING BEHAVIOUR

In this section, we study the forgetting behaviour of LD-

GANs by deriving its learning bounds based on the Wasser-

stein distance [47].

A. Preliminary

Definition 1: (Data distributions.) Let Qi and Pi represent

the distribution for the testing and training sets of the i-th task,

respectively.

Definition 2: (Approximate distribution.) Let Pj represent

the sample distribution drawn from the data generated by

the Teacher after learning the j-th task. We assume that we

have an optimal task labelling function Fl which receives

a sample and returns its true task label. We can form the

approximate distribution for a certain task (i-th task) at the

j-th task learning by the sampling process :

X′ = {x′
j ∼ Pj |Fl(x

′
j) = i, j = 1, . . . , n}, (14)

where n is the total number of samples. Let Pi
(j,j−i) denote the

probability distribution of samples from Eq. (14), where j− i
represent the number of GRM processes needed for generating

the data for i-th task when training with the j-th task. We also

use P
i
(j,0) and P

i
(j,−1) to represent Pi and Qi, respectively.

Definition 3: (Risks.) Let H be a class of hypotheses, and

h ∈ H a hypothesis implemented by the Student module. For

a given domain Pi, we define the risk as:

R(h, Pi) =
1

m

m∑

k=1

L(h(xk),xk), (15)

where L is the loss function implemented by the reconstruction

error and h(·) returns the reconstruction. Each xk is drawn

from Pi and m is the total number of samples.

B. Forgetting analysis

We first derive the risk bound between the two fixed

domains Qi and Pi based on these definitions.

Theorem 1: Let us consider Ux1 and Ux2 be two sample

populations of sizes NS and NT , drawn from two domains Qi

and Pi, respectively, while Q̃i and P̃i are the empirical prob-

abilistic representations for Ux1 and Ux2, respectively. With

the probability of 1−u, we have the following generalization

bound (GB):

R (h,Qi) ≤ R (h, Pi) +W1

(

Q̃i, P̃i

)

+

√

2 log

(
1

u

)

/ς ′
(√

1

NS

+

√
1

NT

)

+Rλ, (16)
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(a) Real samples. (b) CURL [48] reconstructions. (c) LD-GANs reconstructions.

(d) CURL generations. (e) LD-GANs generations.

Fig. 3. Image generations and reconstructions after the lifelong learning of CCCSSM sequence of tasks.

where W1 is the Wasserstein distance,
√
2 > ς ′ > 0 and we

have the combined error

Rλ = R(h∗, Pi) +R(h∗, Qi), (17)

achieved by the optimal hypothesis h∗ that minimizes this

error. The detailed proof is provided in [47].

Theorem 1 defines the risk bound that measures the gener-

alization performance on Qi, achieved by the Student model

h trained on Pi. In the following, we extend the results

from Theorem 1 for deriving a risk bound that measures the

generalization of the model when learning several tasks.

Theorem 2: Let us consider the proposed LD-GANs model

when learning the j-th task. We derive the risk bound for a

certain i-th task, learnt by the model in the past, as:

R (h,Qi) ≤ R
(
h,Pi

j,j−i

)
+W1

(

Q̃i, P̃
i
j,j−i

)

(18)

+

√

2 log

(
1

u

)

/ς ′
(√

1

NS

+

√
1

NT

)

+Rλ(Qi,P
i
j,j−i),

where P
i
j,j−1 is the data probabilistic representation from the

j-th task, achieved through the generation process of the model

and P̃
i
j,j−i its empirical probabilistic representations and

Rλ(Qi,P
i
j,j−1) = R(h∗, Qi) +R(h∗,Pi

j,j−i). (19)

Remark. From Theorem 2, we have several observations.

• The generalization performance of h is relying on the

Wasserstein distance between the empirical distribution

Q̃i and the approximate distribution P̃
i
j,j−i.

• By learning more tasks (j is increased), the term

W1

(
Q̃i, P̃

i
j,j−i

)
increases, leading to the degenerated

performance on the target domain Qi.

In the following, we extend Theorem 2 to derive a lemma

demonstrating how accumulated errors contribute to forgetting.

Lemma 2: Let us consider that LD-GANs model is trained

with the j-th task and we evaluate its performance for a

certain learnt task, such as the i-th task, i < j, considering

that the learning process has undergone repeatedly Generative

Reply Mechanisms (GRMs), each time when training on a

new database. The risk bound is derived as:

R (h,Qi) ≤ R
(
h,Pi

j,j−i

)
+

j−i−1
∑

k=0

{

W1

(

P̃
i
j,k, P̃

i
j,k+1

)

+Rλ(P̃
i
j,k, P̃

i
j,k+1)

}

+ (k − j)

√

2 log

(
1

u

)

/ς ′
(√

1

NS

+

√
1

NT

)

, (20)

Proof. Firstly, let P
i
j,0 and P

i
j,1 be the target and source

domain, respectively. We can derive the risk bound according
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Fig. 4. Generative results when interpolating in the latent space of the Student network, under the lifelong LD-GANs Teacher-Student learning setting. The top
two rows show interpolations between images from the 3D-Chair dataset, while the bottom two show interpolated images between an image from 3D-Chair
and another from CelebA databse.

to Theorem 2:

R
(
h,Pi

j,0

)
≤ R

(
h,Pi

j,1

)
+W1

(

P̃
i
j,0, P̃

i
j,1

)

(21)

+

√

2 log

(
1

u

)

/ς ′
(√

1

NS

+

√
1

NT

)

+Rλ(P̃
i
j,0, P̃

i
j,1).

We then take P
i
j,1 and P

i
j,2 as the target and source domain

and we have:

R
(
h,Pi

j,1

)
≤ R

(
h,Pi

j,2

)
+W1

(

P̃
i
j,1, P̃

i
j,2

)

(22)

+

√

2 log

(
1

u

)

/ς ′
(√

1

NS

+

√
1

NT

)

+Rλ(P̃
i
j,1, P̃

i
j,2),

Following mathematical induction, we have the following

bounds:

R
(
h,Pi

j,2

)
≤ R

(
h,Pi

j,3

)
+W1

(

P̃
i
j,2, P̃

i
j,3

)

+

√

2 log

(
1

u

)

/ς ′
(√

1

NS

+

√
1

NT

)

+Rλ(P̃
i
j,2, P̃

i
j,3)

· · ·
R

(
h,Pi

j,j−i−1

)
≤ R

(
h,Pi

j,j−1

)
+W1

(

P̃
i
j,j−i−1, P̃

i
j,j−i

)

+

√

2 log

(
1

u

)

/ς ′
(√

1

NS

+

√
1

NT

)

+Rλ(P̃
i
j,j−1−i, P̃

i
j,j−1).

(23)

Then we sum up all the above expressions, resulting in:

R (h,Qi) ≤ R
(
h,Pi

j,j−i

)
+

j−i−1
∑

k=0

{

W1

(

P̃
i
j,k, P̃

i
j,k+1

)

+Rλ(P̃
i
j,k, P̃

i
j,k+1)

}

+ (k − j)

√

2 log

(
1

u

)

/ς ′
(√

1

NS

+

√
1

NT

)

. (24)

□

Remark. From Lemma 2, we have several observations.

• The second term from the right-hand side of Eq. (20)

is increasing by accumulating errors during each task

learning. When learning a growing number of tasks, the

error of the model tends to increase.

• The model’s performance on the early tasks (i is very

small) has more accumulated errors, resulting in a de-

generated performance.

In the following, we extend Lemma 2 to derive the risk

bound for all tasks.

Theorem 3: Let us consider that LD-GANs is learning j-th

task. We derive the risk bound for all previously learnt tasks

as:

j
∑

t=1

{

R (h,Qt)
}

≤
j

∑

t=1

{

R
(
h,Pt

j,j−i

)

+

j−t−1
∑

k=0

{

W1

(

P̃
t
j,k, P̃

t
j,k+1

)

+Rλ(P̃
t
j,k, P̃

t
j,k+1)

}

+ (k − j)

√

2 log

(
1

u

)

/ς ′
(√

1

NS

+

√
1

NT

)}

,

(25)

The proof results from summing up the risk bounds for all

tasks, according to Lemma 2.

Remark. From Theorem 3, we have several observations.

• The optimal performance can be achieved by minimizing

the Wasserstein distance between the target and source

distribution when learning every given task.

• In practice, when learning several different probabilistic

representations, characterizing a variety of tasks, in-

creases the Wasserstein distance when learning each new

task, and the GAN model would eventually face mode

collapse.

• The proposed LD-GANs model can relieve this challenge

through balancing replay mechanisms through the LSKD

training algorithm, as explained in Section III-C.

V. EXPERIMENTS

In this section we provide the experimental results when

evaluating the abilities of the proposed LD-GANs model,

which consists of two GAN networks, representing the Teacher

and Assistant, which alternatively teach each other after each

task switch, for learning a succession of databases. One of
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(a) Modelling the turning of a face.

(b) Changing the width of a face.

(c) Chair backside change.

(d) Chair size change.

Fig. 5. Disentanglement results following the LD-GANs learning of CelebA to 3D-Chair.

TABLE I
THE PERFORMANCE OF VARIOUS MODELS UNDER THE MSFIR LIFELONG LEARNING SETTING,

WHERE THE RESULT FOR LIMIX-STU IS REPORTED FROM [2]

SSIM PSNR

Datasets LGM [23] LD-GAN BE-Stu [49] LTS [17] LIMix-Stu [2] LGM [23] LD-GAN BE-Stu [49] LTS [17] LIMix-Stu [2]

MNIST 0.81 0.73 0.86 0.71 0.42 18.34 17.10 20.16 16.56 13.72

Fashion 0.40 0.54 0.41 0.71 0.37 10.63 11.91 12.33 17.76 8.81

SVHN 0.25 0.72 0.45 0.45 0.47 7.56 17.77 11.01 11.03 13.58

IFashion 0.30 0.76 0.60 0.75 0.43 7.27 18.34 15.46 18.05 14.17

RMNIST 0.91 0.90 0.90 0.89 0.43 22.01 21.64 21.58 21.31 14.18

Average 0.53 0.73 0.64 0.70 0.42 13.16 17.35 16.11 16.94 12.89

aims of LD-GANs is to learn meaningful and interpretable

latent representations across domains. We also evaluate the

performance of the proposed LD-GANs on several down

stream tasks, including prediction and classification tasks.

The source code is provided at https://github.com/dtuzi123/

Lifelong-Dual-GAN.

A. Datasets and evaluation criteria

Datasets. We follow the learning setting from [2] which con-

siders a sequence of five tasks including MNIST [50], SVHN

[51], Fashion [52], InverseFashion (IFashion) and Rotated

MNIST (RMNIST) databases. We name this learning setting

as MSFIR. We also consider a sequence named CCCSSM of

datasets, which contain images of higher complexity, including

CelebA [53], CACD [54], CIFAR10 [55], Sub-ImageNet [56],

SVHN and MNIST.

Baselines. Since this paper mainly focuses on the generative

replay methods, we compare our approach with this cate-

gory of lifelong learning approaches, including LGM [23]

and MemoryGANs [57]. We also compare LD-GANs with

Teacher-Student models including LTS [17] and BE-Stu [49].

We implement BE-Stu by using the BatchEnsemble [49] as

the Teacher where each component is a VAE and the model

shares parameters between components. The Student in BE-

Stu is implemented by a VAE which is trained on the generated

images by the Teacher. We also compare with LIMix-Stu [2]

which uses the Teacher-Student framework.

Evaluation criteria. We adapt the criteria according to the

unsupervised learning setting from [2], which includes the

structural similarity index measure (SSIM) [58] and the Peak-

Signal-to-Noise Ratio (PSNR) [58] as performance criteria.

B. The evaluation of the generative task

We evaluate the performance of the trained Student model

on the image generation task. Firstly, we train our model under

MSFIR, where the number of training epochs for learning each

task is 20. We use the Stochastic Gradient Descent (SGD)

algorithm with a learning rate of 0.0002 for training LD-

GANs. After the training with all given tasks is finished, we

evaluate the performance of various models on each testing

dataset and report the results in Table I. From this table we

observe that LD-GANs achieves the best results for both SSIM

and PSNR criteria when compared with other methods. From

Table I we can also observe that GAN-based models such as
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TABLE II
THE PERFORMANCE OF VARIOUS MODELS UNDER THE MSFIR LIFELONG LEARNING SETTING.

FID IS

Datasets LGM [23] LD-GAN BE-Stu [49] LTS [17] LIMix-Stu [2] LGM [23] LD-GAN BE-Stu [49] LTS [17] LIMix-Stu [2]

MNIST 82.62 81.15 36.28 75.80 104.94 3.12 3.08 3.97 2.29 1.93

Fashion 155.12 72.41 203.81 126.16 217.87 2.67 3.64 3.30 3.68 2.93

SVHN 187.07 167.06 322.87 180.15 286.89 2.06 2.14 2.37 2.37 2.84

IFashion . . . 77.25 49.46 391.90 120.55 314.49 3.10 3.84 1.03 3.49 1.63

RMNIST 76.29 24.27 26.26 41.01 51.36 2.25 2.08 2.02 2.00 1.99

Average 115.67 78.87 196.22 108.73 195.11 2.62 2.96 2.53 2.77 2.26

TABLE III
THE PERFORMANCE OF VARIOUS MODELS WHEN LEARNING DATASETS WITH IMAGES OF HIGHER COMPLEXITY.

SSIM PSNR

Datasets LGM [23] LD-GAN BE-Stu [49] LTS [17] LGM [23] LD-GAN BE-Stu [49] LTS [17]

CelebA 0.05 0.57 0.56 0.25 12.06 19.07 19.26 13.33

CACD 0.01 0.61 0.46 0.33 10.53 18.92 17.06 14.52

CIFAR10 0.06 0.46 0.25 0.24 12.85 17.19 16.25 13.25

Sub-ImageNet 0.06 0.46 0.26 0.24 12.65 17.16 16.25 13.14

SVHN 0.20 0.66 0.50 0.57 13.54 13.65 13.08 12.75

MNIST 0.89 0.90 0.89 0.89 22.02 21.61 21.18 21.47

Average 0.21 0.61 0.49 0.42 13.94 17.93 17.18 14.74

LD-GAN and LTS outperform the VAE-based models such

as LGM on all past tasks except MNIST, a result which

is explained by Theorem 3. GANs usually produces better

generative replay samples than VAE-based models and thus

can reduce the Wasserstein distance term in RHS of Eq. (25),

resulting in better performance. Since RMNIST shares similar

visual concepts with MNIST, and thus none of the models

suffers from forgetting when considering MNIST. We also

evaluate the performance of various models in terms of Fréchet

Inception Difference (FID) and Inception Score (IS) criteria

under the MSFIR learning setting. The results are provided

in Table II. Furthermore, the number of parameters of various

models is provided in Table IV. From Tables II and IV we can

observe that the proposed LD-GAN uses fewer parameters and

achieves better performance than other models.

In the following, we consider randomly collecting 60,000

and 10,000 samples, from ImageNet database [56], as

the training and testing set, respectively, creating the sub-

ImageNet database. Then we consider a sequence of six tasks

including CelebA, CACD, CIFAR10, Sub-ImageNet, SVHN

and MNIST, namely CCCSSM. In Table III we evaluate LD-

GANs, on the CCCSSM, which is more challenging than MS-

FIR, because of the complexity of the images from CCCSSM.

These results show that the proposed LD-GANs outperforms

other methods under this challenging learning setting. Finally,

we present the visual results in Fig. 2 where the Teacher

and Student alternatively are used to generate and reconstruct

images. These results show that the proposed LD-GANs can

provide better image generations and reconstructions when

TABLE IV
THE NUMBER OF PARAMETERS NEEDED BY VARIOUS MODELS FOR

LEARNING MSFIR.

LGM [23] LD-GAN BE-Stu [49] LTS [17] LIMix-Stu [2]

6.5× 10
7

3.3× 10
7

2.1× 10
8

4.1× 10
7

1.8× 10
8

compared to LTS [17].

C. Lifelong learning evaluation on natural images

We create two subsets, from ImageNet database [56], con-

tain a wide diversity of natural images, by randomly selecting

30,000 images from the original ImageNet for each subset,

called Sub1 and Sub2, respectively. We should emphasize that

we do not choose a subset of classes, but random images from

all classes. This means that the chosen 60,000 selected images

can cover all classes in various proportions. In addition, we

ensure that there is no single image to be present in both Sub1

and Sub2. Then we train all models under CIFAR10, Sub1 and

Sub2, by using a learning rate of 0,0002 and considering 20

epochs for each task training. The IS results when reconstruct-

ing 5,000 testing images, are provided in Table V. We evaluate

the generated images quality by considering the FID score af-

ter each task switch, with the results reported in Table VI. The

proposed LD-GANs framework outperforms other generative

replay approaches, such as CURL [48] or LGM [23], by a large

margin in terms of both IS and FID scores. The visual results

of the reconstructed and generated images, after the lifelong
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TABLE V
IS SCORE EVALUATED AFTER THE LIFELONG LEARNING OF CIFAR10

AND SUB-IMAGENET DATABASES SUB1 AND SUB2.

Dataset LD-GANs CURL [48] LGM [23]

CIFAR10 4.58 3.46 3.41

Sub1 4.69 3.64 3.28

Sub2 4.73 3.63 3.32

TABLE VI
FID SCORE EVALUATED AFTER THE LIFELONG LEARNING OF CIFAR10

AND SUB-IMAGENET DATABASES SUB1 AND SUB2.

Tasks LD-GANs CURL [48]

First task 62.85 155.59

Second task 59.27 166.47

Third task 60.35 169.28

learning when considering a long sequence of tasks such

as CCCSSM, where the first ‘S’ represents Sub1 and Sub2

data, are presented in Fig. 3-(c) and (e), respectively. We can

observe that the LD-GANs can give higher-quality generations

as well as better image reconstructions than CURL, whose

reconstructions and generations are shown in Fig. 3-(b) and

(d), respectively.

D. Learning interpretable representations across domains

The Student module of the lifelong LD-GANs Teacher-

Student network, described in Section III-D, is trained con-

sidering the ELBO criterion from Eq. (10), under CelebA

[53] to CACD [54], and CelebA to 3D-Chair [59] lifelong

learning, respectively. Two latent vectors encoding distinct

images are interpolated, and the results are shown in Fig. 4.

These results indicate that a given image can be progressively

transformed into another one, which is completely different

from the initial image, even when these two images are

sourced from completely different domains. This demonstrates

that the higher-quality knowledge transferring process between

the Teacher and Student can allow a simply designed latent

variable model, from the Student’s representation, to capture

over time both continuous and domain-specific features.

We also test the disentanglement ability by training the LD-

GANs Teacher-Student using CelebA and 3D-Chairs databases

considering the loss defined by Eq. (11), where we consider

β = 4. We then change a latent variable while fixing the

others and the results are shown in Fig. 5 for CelebA to 3D-

Chair lifelong learning. In Fig. 5-(a) and (b) we show how

we can change face orientation and width, respectively, while

in Fig 5-(c) and (d), we change the back side of a chair and

chair’s size, respectively.

E. Supervised learning

In this section, we focus on the lifelong classification task.

We consider the classification accuracy as the performance

criterion, which was also used for testing other continual

supervised learning methods [2], [60]. We consider three

TABLE VII
CLASSIFICATION RESULTS FOLLOWING THE LIFELONG LEARNING OF

MNIST AND SVHN DATABASES. THE RESULTS FROM OTHER BASELINES

ARE CITED FROM [17].

Methods Testing data set Lifelong Accuracy

LTS [17] MNIST M-S 96.66

MemoryGANs [57] MNIST M-S 96.04

LGM [23] MNIST M-S 96.59

LD-GANs MNIST M-S 96.89

LTS [17] SVHN M-S 80.15

MemoryGANs [57] SVHN M-S 80.03

LGM [23] SVHN M-S 80.77

LD-GANs SVHN M-S 81.02

LTS [17] MNIST S-M 98.80

MemoryGANs [57] MNIST S-M 98.29

LGM [23] MNIST S-M 98.56

LD-GANs MNIST S-M 98.93

LTS [17] SVHN S-M 80.39

MemoryGANs [57] SVHN S-M 79.34

LGM [23] SVHN S-M 76.76

LD-GANs SVHN S-M 80.45

datasets, MNIST [50] and SVHN [51] and Fashion [52] and

resize their images to 32 × 32 × 3 pixels. We consider a

simple CNN consisting of two convolution layers for both

the decoder and encoder of the Student module as well as for

each expert. The number of training epochs for each task is

set to 10. We then evaluate the performance of various models

under supervised learning and report the results in Tables VII

and VIII, respectively, where “M-S” represents the model that

firstly learns MNIST and afterwards SVHN, while “M-F”

represents that case when reversing the order of training for the

two databases. These results show that the proposed LD-GANs

outperforms other supervised lifelong learning baselines.

In the following, we also investigate the performance of the

proposed approach in a more challenging setting, the learning

of a long sequence of tasks. We train the LD-GANs with the

images from the database sequence called MSFIIC, containing

MNIST, SVHN, Fashion, InverseFashion, InverseMNIST and

CIFAR10. We also create InverseFashion and InverseMNIST,

by inversing each pixel in all images from Fashion and MNIST

databases, respectively. We report the results in Table IX,

which indicate that the GAN-based models achieve better

results for each task than VAE-based methods.

F. Empirical results for forgetting analysis

In this section, we investigate the forgetting behaviour of

the proposed LD-GANs model. Firstly, for evaluating how

the error is accumulated when learning each new task, we

train LD-GANs considering CIFAR10, CACD and MNIST

(CCM) databases under the lifelong learning setting. We also

train a task-inference model that returns the task label for

each sample, which is used to select the generated samples

that belong to CIFAR10. We then evaluate the target risk

(CIFAR10) and source risk (selected generated dataset) in each
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(a) Risks on CIFAR10. (b) Risks on all previously learnt tasks.

Fig. 6. The risk estimated by LD-GANs under CIFAR10, CACD and MNIST lifelong learning, where 20 training epochs are considered for learning each
database.

TABLE VIII
CLASSIFICATION RESULTS FOLLOWING THE LIFELONG LEARNING OF

MNIST AND FASHION. THE RESULTS FROM OTHER BASELINES ARE

CITED FROM [17].

Methods Testing data set Lifelong Accuracy

LTS [17] MNIST M-F 98.51

LGM [23] MNIST M-F 97.29

MemoryGANs [57] MNIST M-F 98.15

LD-GANs MNIST M-F 98.62

LTS [17] Fashion M-F 91.49

LGM [23] Fashion M-F 91.71

MemoryGANs [57] Fashion M-F 91.35

LD-GANs Fashion M-F 91.68

LTS [17] MNIST F-M 98.42

LGM [23] MNIST F-M 98.85

MemoryGANs [57] MNIST F-M 98.52

LD-GANs MNIST F-M 98.95

LTS [17] Fashion F-M 89.35

LGM [23] Fashion F-M 86.05

MemoryGANs [57] Fashion F-M 89.13

LD-GANs Fashion F-M 89.44

training epoch and report the results in Fig 6-(a). From this

plot, we observe that the target risk is gradually increasing

while the source risk is rather constant, when learning other

tasks after the initial CIFAR10 database. This result indicates

that the lower source risk can not guarantee a good generaliza-

tion performance due to the accumulated errors, as discussed

in Lemma 2. Additionally, we also evaluate the risk on all

previously learnt tasks when learning each task and present

the results in Fig 6-(b), which shows that the model tends to

have degenerated performance on all previously learnt tasks.

This is due to the accumulated errors caused by the GRM

process during each task learning, according to Theorem 3.

TABLE IX
CLASSIFICATION RESULTS UNDER MSFIIC LIFELONG LEARNING.

Dataset LD-GAN LGM [23] MeRGANs [20]

MNIST 83.33 81.08 85.87

SVHN 53.88 24.28 32.85

Fashion 76.05 49.70 61.75

InverseFashion 77.76 38.39 64.38

InverseMNIST 96.96 80.86 95.52

CIFAR10 54.44 56.79 58.71

Average 73.74 55.18 66.51

VI. CONCLUSION

In this research study we propose a novel lifelong gen-

erative learning model called the Lifelong Dual Generative

Adversarial Nets (LD-GANs), which is used to learn suc-

cessively multiple tasks. In order to train the LD-GANs,

we propose the Lifelong Adversarial Knowledge Distillation

(LSKD), representing an end-to-end memory efficient method

for accumulating information from several tasks. LD-GANs

consists of two GAN generators, implementing the Teacher

and Assistant, which under LSKD are used to generate data

by teaching each other, each time when receiving a new

task for learning. This model is extended to a Teacher-

Student framework in order to learn data representations over

time. Based on the higher-quality knowledge transfer from

LD-GANs to the Student model, the network can capture

shared and task-specific parameters across tasks over time.

We also introduce a new theoretical framework based on the

Wasserstein distance, which provides new insights into the

forgetting behaviour of the Student. From both theoretical

concepts and through extensive experimental results we show

that the proposed methodology is better than other lifelong

learning approaches.
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