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a b s t r a c t

Content-based image retrieval (CBIR) aims to provide the most similar images to a given query. Feature
extraction plays an essential role in retrieval performance within a CBIR pipeline. Current CBIR studies
would either uniformly extract feature information from the input image and use it directly or employ
some trainable spatial weighting module which is then used for similarity comparison between pairs
of query and candidate matching images. These spatial weighting modules are normally query non-
sensitive and only based on the knowledge learned during the training stage. They may focus towards
incorrect regions, especially when the target image is not salient or is surrounded by distractors. This
paper proposes an efficient query sensitive co-attention1 mechanism for large-scale CBIR tasks. In
order to reduce the extra computation cost required by the query sensitivity to the co-attention
mechanism, the proposed method employs clustering of the selected local features. Experimental
results indicate that the co-attention maps can provide the best retrieval results on benchmark datasets
under challenging situations, such as having completely different image acquisition conditions between
the query and its match image.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Due to the variability in the image content and extensive
uncertainty in the data, selecting underlying image features has
always been a challenging problem for the Content-Based Image
Retrieval (CBIR) task. In earlier approaches, image features are de-
scribed by hand-crafted descriptors based on low-level feature in-
formation (Bay, Tuytelaars, & Gool, 2006; Lowe, 2004; Manjunath
& Ma, 1996; Papushoy & Bors, 2015; Park, Jin, & Wilson, 2002;
Swain & Ballard, 1991). However, these approaches could not
bridge the gap between the information carried by the low-level
features and the high-level semantic meaning when considering
hand-crafted descriptors. Significant progress was made follow-
ing the success of deep Convolution Neural Networks (CNNs) on
large-scale image classification tasks (Krizhevsky, Sutskever, &
Hinton, 2012).

CNN-based image feature extraction for CBIR is categorized
according to the features extracted by relying on global or local
features. Global feature methods (Babenko & Lempitsky, 2015;
Babenko, Slesarev, Chigorin, & Lempitsky, 2014; Radenović, To-
lias, & Chum, 2018; Tolias, Sicre, & Jégou, 2016) extract a compact
feature vector from each image following a single forward passing
through the network. Local feature based CBIR output consists of

∗ Corresponding author.

E-mail address: adrian.bors@york.ac.uk (A.G. Bors).
1 ‘‘Co-attention’’ in this paper refers to spatial attention conditioned on the

query content.

a tensor, with each entry representing features from local image
regions, followed by a separate aggregation method to build the
final image representation (Arandjelovic, Gronat, Torii, Pajdla, &
Sivic, 2016; Mohedano et al., 2016; Yue-Hei Ng, Yang, & Davis,
2015). In recent works, the local features are further used in
spatial verification mechanisms for re-ranking (Cao, Araujo, &
Sim, 2020; Noh, Araujo, Sim, Weyand, & Han, 2017).

Despite the successes of CNN-based methods for CBIR, existing
spatial attention modules (Noh et al., 2017; Wu, Irie, Hiramatsu, &
Kashino, 2018; Yang, Wang, Song, & Gao, 2019) are all query non-
sensitive: for a given candidate image, they predict the region of
interest purely based on the knowledge learned during the train-
ing, regardless of what the query content is about. These query
non-sensitive spatial attention modules are very likely to focus
on incorrect regions and ignore the object of interest when the
target object is not salient or surrounded by distractors relevant
to the training data. In Fig. 1, we show some examples in which
the query-nonsensitive attention mechanism from the Weighted
Generalized Mean (WGeM) pooling (Wu et al., 2018) fails. The
Louvre Pyramid and Palace are both potential objects of interest
in Fig. 1. When treating the Louvre Pyramid as a query item, it
is always ignored by the attention module, while the adjacent
Louvre Palace attracts more attention.

Ideally, the attention should be query sensitive, consistent
with the current query content. In the examples shown in Fig. 2,
when the Louvre Pyramid is treated as the query, this is then
correctly highlighted in the resulting co-attention map and vice
versa. This kind of query sensitive attention that dynamically
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Fig. 1. Examples of query non-sensitive attention where WGeM fails.

Source: Images taken from Wu et al. (2018).

Fig. 2. Examples of query sensitive co-attention maps. (a): Candidate image. Co-attention maps in (c) and (e) are conditioned on the query image in (b) and (d)

respectively.

changes with the actual query content is called co-attention. The
intuition of applying co-attention is that we only focus on the
visually similar regions to the query content when searching for
an image. Moreover, in some other computer vision tasks (Hsieh,
Lo, Chen, & Liu, 2019; Munjal, Amin, Tombari, & Galasso, 2019;
Wang, Zhang, Bertinetto, Hu, & Torr, 2019), the query pattern
was shown to be essential for feature extraction and object de-
tection. However, by applying the co-attention to CBIR would
require significant extra computation costs, as all potentially use-
ful local features from each database image need to be cached.
This cost could be unbearable and make co-attention impractical,
especially for large-scale image retrieval.

In this research study, we propose an efficient co-attention
method for CBIR, which does not need extra trainable layer op-
timization but is only used as a post-processing mechanism.
In order to reduce the extra computation cost resulting from
employing the co-attention mechanism, we consider local feature
selection and clustering over candidate local features. Then the
co-attention is calculated using the similarity between the query
image global feature and the cluster centers of the candidate
image local features. This approach dramatically reduces the com-
putation costs while still generating good co-attention maps. The
generated co-attention maps are then utilized to re-weight the
feature tensor output by the final convolution layer, leading to
much better retrieval results.

In summary, our contributions are: (1) a practical co-attention
method for large-scale image retrieval; (2) we show that our
method can generate good co-attention maps even for some hard
image correspondence examples; (3) the retrieval performance
is greatly improved with our co-attention method according to
the experiments and reaches new state of the art performance
on several benchmark datasets; (4) comprehensive ablation study
experiments are provided to further prove the effectiveness of the
proposed method.

The rest of the paper has the following content. Relevant
research studies are reviewed in Section 2. The Generalized Mean
pooling and how this is used in training is introduced in Section 3,
while the efficiency of employing clustering on the co-attention

results, in the context of CBIR, is discussed in Section 4. Further
optimization and computation cost reduction are discussed in
Section 5. Experimental results are provided and discussed in Sec-
tion 6. Ablation studies and discussion are provided in Section 7.
The conclusions are drawn in Section 8.

2. Related work

In this section, we review CNN-based CBIR works and applica-
tions of the co-attention mechanism in computer vision.

Global feature methods. The first deep CNN-based global
feature method for content-based image retrieval can be tracked
back to the Neural Code model (Babenko et al., 2014), where
a pre-trained AlexNet, without the final classification layer, is
used as the backbone network followed by a fully connected
layer to map the convolutional feature map into a fixed size
feature vector. The study from Razavian, Sullivan, Carlsson, and
Maki (2016) further demonstrates that, after intensive training,
CNN-based image representations can outperform conventional
methods using hand-crafted features, and spatial pooling is more
appropriate for object retrieval than using fully connected layers.
After that, more spatial pooling based methods were proposed
for CBIR, including sum-pooling (Babenko & Lempitsky, 2015),
max-pooling (Tolias, Sicre, & Jégou, 2016) and generalized mean
pooling (Radenović et al., 2018). Compared to the fully connected
layer, spatial pooling is faster and requires lower computational
resources without employing additional parameters. Moreover,
spatial pooling extracts compact feature vectors without requir-
ing any image transformation, while it is also not sensitive to
the input image size. To make the global feature lay more em-
phasis on the designated target object, some spatial attention
mechanisms have been implemented in the later works. For in-
stance, in Gordo, Almazán, Revaud, and Larlus (2016, 2017), a
Region Proposal Network (RPN) (Ren, He, Girshick, & Sun, 2016)
is implemented to enhance the regional max-pooling for image
retrieval. The whole model is end-to-end trainable and has a
reasonable image retrieval performance. The Weighted General-
ized Mean pooling (WGeM) (Wu et al., 2018) applies a trainable
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spatial weighting module by adding an extra convolutional layer
at the end of a CNN backbone structure. It can effectively localize
objects of interest while ignoring redundant regions. However,
the spatial weighting may fail when the target object is not
discriminating or not matching the training data (Wu et al.,
2018). The Second-Order Loss and Attention for image Retrieval
(SOLAR) (Ng, Balntas, Tian, & Mikolajczyk, 2020) explores the co-
relations between the features from location pairs from the CNN
feature map using the second-order spatial information. Unlike
the attention methods mentioned above, the SOLAR pipeline gen-
erates only one attention map applied on the CNN feature map
for each location and a second-order attention map is created
to indicate its connection to all other locations. SOLAR is trained
on the Google Landmark Dataset (GLD) (Noh et al., 2017), so the
model tends to treat all landmark relevant regions as regions of
interest. For the irrelevant locations, such as those corresponding
to common compact regions like grass or sky, the second-order
attention is sparsely distributed over all landmark-like regions.
Meanwhile, for locations on the landmark object, the second-
order attention would highlight the most distinctive part of that
landmark. The Deep Orthogonal Local and Global (DOLG) (Yang
et al., 2021) proposes a more comprehensive global feature ex-
traction pipeline, in which an Orthogonal Fusion module is im-
plemented to complement the global feature vector with critical
local feature information leading to the current state-of-the-art
results for CBIR.

Local feature methods. The deep local feature methods could
be further divided into two categories. The first category em-
ploys a separate feature aggregation method to generate a sin-
gle compact feature vector from local descriptors. For exam-
ple, Yue-Hei Ng et al. (2015) adapts the Vector of Locally Ag-
gregated Descriptors (VLAD) algorithm (Jégou, Douze, Schmid, &
Pérez, 2010) as an encoding method for aggregating local features
of convolutions into a single feature vector for image retrieval.
NetVLAD (Arandjelovic et al., 2016) embeds VLAD into the feature
extraction pipeline as a generalized VLAD layer which is end-to-
end trainable. The aggregating convolution kernels (ACK) (Wang
et al., 2020) utilize convolution kernels to capture specific feature
patterns and then combine top activated kernel outputs as the
final image representation for CBIR. In order to make the local
feature usage more selective, the Deep Local Feature (DELF) (Noh
et al., 2017) utilizes a score function with two convolutional
layers on top of the CNN backbone for relevant local feature
selection. The DELF model has two stages for image retrieval. The
first stage calculates a weighted sum of selected local features to
get a global feature vector for the initial retrieval results. Then,
the selected local features are utilized to perform the spatial
verification for a second stage re-ranking and to yield the final
retrieval result. After that, this two-stage CBIR framework were
improved by other works. The DEep Local and Global features
(DELG) model (Cao et al., 2020), based on DELF, unifies the train-
ing procedures of global and local features into a single pipeline
and further improves the performance of this two-stage image re-
trieval framework. Detect-to-Retrieve (D2R) (Teichmann, Araujo,
Zhu, & Sim, 2019) proposes the Regional Aggregated Selective
Match Kernel (R-ASMK), which unifies the region of interest
detection, regional local feature aggregation and the similarity
measure into one pipeline. Instead of applying feature aggrega-
tion or geometry verification with local features, HOW (Tolias,
Jenicek, & Chum, 2020) extracts deep local features using the Ag-
gregated Selective Match Kernel (ASMK) (Tolias, Avrithis, & Jégou,
2016) to perform many-to-many local feature matching for CBIR
task achieving better results with lower memory requirements
than DELF (Noh et al., 2017).

Co-attention has drawn research interest from various com-
puter vision tasks but was hardly considered for CBIR. For in-
stance, the query-guided end-to-end person search network

(QEEPS) (Munjal et al., 2019) proposes three query guided sub-

networks: QSSE-Net, QRPN and QSimNet which embed the query

information into the CNN feature channel after re-weigh-

ting, relevant region proposal, and similarity score prediction,

respectively. The co-attention and co-excitation (CoAE) frame-

work (Hsieh et al., 2019) utilizes the non-local operation (Wang,

Girshick, Gupta, & He, 2018) to explore the correlated evidence

revealed by the query-target pairs. The extended feature maps are

then channel-wise re-weighted by the squeeze-and-co-excitation

(SCE) technique. The Region Proposal Network (RPN) (Ren et al.,

2016) selects relevant regions based on the extended target

image feature map. RPN can predict relevant regions with re-

spect to the query content even when images from the query

class have not been seen during training. The SiamMask (Wang

et al., 2019) uses depth-wise cross-correlation to generate re-

sponse maps of the target image with respect to the query.

Then the response map is fed into the convolution layers for

pixel-wise classification in order to generate binary co-attention

masks. The most relevant work to this paper is the Conditional

Attention Network (CANet) proposed in Hu and Bors (2020).

CANet considers the global feature vector of the query to each

location of the candidate image’s convolutional feature map.

A set of Multi-Scale convolution blocks (Hu & Bors, 2020) is

applied for feature fusion and co-attention map generation for

CBIR. In addition, CANet is trained under the supervision of

SuperPoint (DeTone, Malisiewicz, & Rabinovich, 2018), where

the ground-truth co-attention label for training is automatically

generated from the rSfM120k dataset (Radenović et al., 2018).

Despite its positive impact on retrieval accuracy, CANet causes

unaffordable computation costs, making it impractical for large-

scale image retrieval. All these co-attention approaches involve

different attention module structures requiring extra attention

annotations for model training, while our co-attention method

is based on the pre-trained image global descriptor and does

not require any network structure modifications or parameter

fine-tuning.

3. Spatial pooling and baseline model

The proposed co-attention mechanism does not involve any

training and could be treated as a post-processing module for

re-weighting on the feature tensor output by a pre-trained CNN-

based spatial pooling CBIR model. Accordingly, in this section,

we first discuss some insights about spatial pooling. Then, we

introduce the structure and training details of the baseline model,

which serves as the feature extractor for our co-attention method.

3.1. Spatial pooling

Given an input image I being processed by a CNN backbone, its

output consists of a feature tensor X ∈ R
H×W×D, where H,W ,D

represents feature map height, width and the number of channels

from the last convolutional layer, respectively. Let us consider

that the generalized mean pooling (GeM) layer maps the feature

tensor X = [xl,d] ∈ R
L×D, where l ∈ {1, . . . , L}, L = H × W ,

d ∈ {1, . . . ,D} is the channel index, into a compact feature vector

V = [vd] ∈ R
D using :

vd =

(
1

L

L∑

l=1

x
p

l,d

) 1
p

, (1)

where p is a trainable power coefficient. Each feature vector

element vd represents the result of a mapping of the original
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feature tensor X. The ratio between each specific feature tensor
element xl,d and the feature vector element vd is expressed as:

rxl,d =
xl,d

vd

=
xl,d

(
1
L

) 1
p
(∑L

l′=1 xl′,d
p

) 1
p

= L
1
p

(
xl,d

p

x1,dp + x2,dp + · · · + xl,dp + · · · + xL,dp

) 1
p

= L
1
p

⎛
⎝ 1

(
x1,d
xl,d

)
p + (

x2,d
xl,d

)
p + · · · + 1 + · · · + (

xL,d
xl,d

)
p

⎞
⎠

1
p

.

(2)

According to Eq. (2), when p = 1, vd is the mean of each feature
map element xl,d at channel d, and the pooling result equals
the global average pooling (sum-pooling) (Babenko & Lempitsky,
2015). When p → ∞, it has rxmax,d

→ 1 (xmax,d = maxl xl,d),
vd → xmax,d, and the pooling gives similar result to the max-
pooling (Tolias, Sicre, & Jégou, 2016). When p ∈ (1, ∞) it is
the so called Generalized Mean pooling (GeM) (Radenović et al.,
2018), so we could treat sum-pooling and max-pooling as special
cases of the GeM, and this explains why GeM outperforms the
other two pooling methods. Through the power coefficient p, GeM
is more selective than the simple global average pooling while
considering additional feature information than the max-pooling.

Usually, the similarity measure between spatial pooling fea-
ture vectors is performed using cosine similarity or L2 distance
(after being L2-normalized). Considering the query image Iq and
a candidate image Ic , their cosine similarity with spatial pooling
feature vector is given by:

sq,c = (η(Vq)Vq)(η(Vc)Vc)
T

= η(Vq)η(Vc)

D∑

d=1

vq,dvc,d

=
η(Vq)η(Vc)

(LqLc)
1
p

D∑

d=1

⎛
⎝

Lq∑

lq=1

Lc∑

lc=1

(
xq,lq,dxc,lc ,d

)p
⎞
⎠

1
p

(3)

where η(V ) = 1/∥V∥ is a L2 normalization factor. Accord-
ing to Eq. (3), the cosine similarity between two global spatial
pooling feature vectors can be interpreted as the sum of mul-
tiplications between the entries of the corresponding feature
tensors. When the model is trained with either the contrastive
loss (Chopra, Hadsell, & LeCun, 2005) or the triplet loss (Arand-
jelovic et al., 2016), that optimizes the cosine similarity between
the global spatial pooling features of image pairs, we can iden-
tify the following situations in the context of CBIR: the content
from background locations characterized by uniformly consistent
information, such as sky, sand, grass, is usually shared among
many images. Features from such backgrounds are not distinctive
and could not be utilized to distinguish two distinct images or to
find correspondences between two matching ones. Accordingly,
the activation value across all channels, when considering such
plain background locations, tends to be zero (xlbg ,d → 0). So
these locations make little contribution to the final similarity
score. On the contrary, distinctive foreground feature locations
across all channels tend to have large absolute values (

⏐⏐xlfg ,d

⏐⏐
is maximized), resulting in significant contributions to the final
similarity score. Meanwhile, for certain foreground location pairs,
which depict the matching objects or regions between Iq and Ic ,
their feature representations are pushed closer together such that
they yield large positive product values for the final similarity
score. Conversely, feature representations for location pairs that

depict unmatching objects are pushed away from each other,
yielding minimal (negative) values for the final similarity score
in Eq. (3).

Training with the cosine similarity loss between spatial pool-
ing feature vectors from Eq. (3) provides useful hints to the CNN
model. First, optimizing the global feature vector’s cosine simi-
larity between image pairs implicitly optimizes the local feature
matching. Foreground locations have higher absolute feature acti-
vation values across all channels (having higher L2 and L1 norms),
while the background locations have lower feature activation
values.

3.2. Baseline model structure and training

The general framework that uses a deep CNN for feature
tensor extraction followed by a global spatial pooling layer for
compact global feature vector building has been widely used in
CBIR works (Cao et al., 2020; Radenović et al., 2018; Wu et al.,
2018; Yang et al., 2021). In this research study, we employ the
ResNet (He, Zhang, Ren, & Sun, 2016) as the backbone network for
the feature tensor extraction. The feature tensor output from the
final convolution layer is pooled by a generalized mean pooling
(GeM) layer, where we consider the power co-efficient p = 3 in
Eq. (1), followed by a trainable fully connected layer for feature
whitening.

The recent models DELG (Cao et al., 2020) and DOLG (Yang
et al., 2021) models are trained on the Google Landmark version
2 dataset (GLDv2) (Weyand, Araujo, Cao, & Sim, 2020). For a fair
comparison with these models, in our experimental section, we
also train our baseline model on GLDv2. Following the approach
in DELG (Cao et al., 2020), we also consider image-level class
labels and ArcFace margin loss (Deng, Guo, Xue, & Zafeiriou, 2019)
for the model training, defined by:

L(̂Vg , y) = − log
exp(γ AF(̂Vgŵ

T
i , yi))∑Nc

j=1 exp(γ AF(̂Vgŵ
T
j , yj))

, (4)

where V̂g is the whitened, then L2 normalized global GeM feature
vector from Eq. (1), for each input training image. ŵi refers to
the trainable L2 normalized classifier weights for class i from the
ArcFace weight matrix W ∈ R

Nc×D, Nc represents the number of
classes in the training dataset. y is a one-hot class label vector
and i is the index of ground-truth class of V̂g (yi = 1). γ is a
trainable temperature parameter. AF(u, y) is the ArcFace-adjusted
cosine similarity (Cao et al., 2020):

AF(u, z) =
{

cos(arccos(u) + m), if z = 1
u, if z = 0

, (5)

where u is the cosine similarity, z indicates whether it is the
ground-truth class and m is the ArcFace margin.

The ArcFace margin loss from Eq. (5) is also referred to as a
‘‘cosine classifier’’ (Cao et al., 2020). Within the ArcFace weight
matrix W , each row wi, i ∈ {1, 2, 3, . . . ,Nc} can be treated as
a proxy feature vector for class i. In other words, these proxy
features approximate corresponding original class image features.
Accordingly, the ArcFace loss aims to optimize the cosine sim-
ilarity not between single image pairs but between query and
proxies of image classes. Compared to the traditional image pair
similarity loss (contrastive loss or triplet loss), this kind of proxy-
based similarity loss does not need hard sample mining and
converges faster than the simple similarity loss between specific
image pairs (Movshovitz-Attias, Toshev, Leung, Ioffe, & Singh,
2017).

4. Enabling CBIR with co-attention

In the following, we consider using the convolution feature
tensor output by the pre-trained CNN model for enabling the co-
attention generation process. The baseline GeM model, trained as
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described in Section 3.2, is used for feature extraction without
considering any parameter fine-tuning or structure modification.

4.1. A naive way for co-attention feature generation

Let us consider a pair of images representing the query image
Iq and the candidate image Ic from a given database. After feeding
through the backbone CNN, these images yield the feature tensors
Xq ∈ R

Hq×Wq×D and Xc ∈ R
Hc×Wc×D as the outputs. The former

query tensor is transformed into a compact query feature vector
Vq ∈ R

D by the spatial pooling using Eq. (1). The feature ten-
sor Xc , resulting from the final convolutional layer, models the
grid-structured representations according to the corresponding
locations for the candidate image. The precision of the correspon-
dence between each entry from the feature tensor and locations
on the input image depends on the processing properties of the
CNN backbone structure. For example, ResNet (He et al., 2016)
contains five blocks, each down-sampling the input feature tensor
by half. Each local feature from the output feature tensor Xc

corresponds to a 32 × 32 (25 = 32) pixels region from the input
image.

A naive and straightforward way to get the co-attention map
anaive = [alc ] ∈ R

Hc×Wc of the candidate image Ic with respect to
the query image Iq is by simply calculating the cosine similarity
between the global query feature vector Vq and the candidate
feature tensor Xc from each location, as :

alc = V̂q · x̂T
c,lc

, (6)

where V̂q represents the whitened (by the pre-trained fully con-
nected layer) and L2 normalized query feature Vq. x̂c,lc ∈ R

D

is a local feature vector at location lc from the candidate image
feature tensor Xc that has been whitened and then L2 normalized.
We apply a Softmax operation on alc ∈ [−1, 1] to normalize their
values into the range [0, 1]:

a′
lc

=
exp(alc )

K∑

i=1

exp(ai)

. (7)

The visualization comparison of the results for the L2 norm
attention and naive co-attention map is provided in Fig. 3. The
L2 norm attention maps, shown in the third column of Fig. 3,
are obtained by calculating the L2 norm of the feature tensor Xc

at each location. The resulting attention map is then resized to
the original image size and then overlapped onto the image as a
heat-map for the sake of visualization. We can observe that L2
norm attention maps tend to highlight representative parts of all
landmark buildings. The naive co-attention maps, shown in the
fourth column of Fig. 3, are visualizations of the results provided
by Eqs. (6) and (7). We can observe that simple cosine similarity
between candidate local features and the query global feature can
give some not-bad co-attention results. The first row from Fig. 3
shows an easy case of image retrieval, in which the target object
is salient, while also being large in the candidate image without
having any distractors around; both L2 norm attention and the
naive co-attention indicate reasonable highlight regions. For the
hard case from the second row of Fig. 3, the target object is not
only small and remote but there are some similar architecture
class buildings nearby, and the naive co-attention indicates the
correct matching region, while the L2 norm highlights many
irrelevant distractor objects and regions.

Despite the above discussion about the suitability of co-atte-
ntion generated based on global-to-local feature matching, there
are still two main problems with this naive co-attention imple-
mentation. First, each local feature from the candidate image
feature tensor corresponds to a small region from the original

input image. These localized features may not be comprehensive
enough to represent the whole object or regions of interest, which
may indicate wrong regions or even noisy undefined areas. Sec-
ond but also the most critical problem with the method described
above is its computation cost. Consider an input image I of size
h × w, after feeding through ResNet (He et al., 2016), the output
feature tensor X is of size h

25
× w

25
. For a high-resolution image

of 1024 × 1024 pixels, the output candidate feature tensor size
could be as large as 32 × 32. For each element of these local
features, if we have a 4 Byte float number for representation,
the total memory cost for each candidate image local features is
2048 × ( 1024

32
)2 × 4 Bytes ≈ 8 MB, where 2048 is the channel

count for the feature output by ResNet network. If consider-
ing the multi-scale feature extraction (Radenović et al., 2018),
the memory cost would increase exponentially. Pre-caching that
many local features for a large image retrieval database becomes
impractical.

In the following, we aim to make the co-attention mechanism
efficient and practical to be used even for large-scale image
retrieval tasks. As mentioned above, the most critical problem for
co-attention is the memory and computation costs required when
considering a large number of local features that could be ex-
tracted from a single image. To address this problem, we consider
clustering in order to define and extract a smaller characteris-
tic latent space. Such a representative latent space can uncover
subspace data structures based on the feature self-expressiveness
properties, which can be optimally used for retrieval.

4.2. Co-attention enabled through feature selection and clustering

Local feature selection and clustering. An intuitive way to
reduce the extra cost in computation and memory requirements
is to decrease the number of local features which have to be
stored for each image. Not all local features from the feature
tensor output by the backbone network are relevant for the CBIR
task. For example, local features from the background are not
relevant for the identification of the image content and should be
discarded. As discussed in Section 3.1, the L2 norm of each entry
from the CNN feature tensor reflects its importance. Accordingly,
after feeding through the backbone network, L2 norm based
feature selection is performed on the feature tensor X output by
the final convolution layer. Consequently, we retain only the top
N local features with the highest L2 norm, resulting in a set of
local features XN ∈ R

N×D.
By considering ResNet as the backbone structure, each lo-

cal feature could be treated as representing a small region of
32 × 32 pixels from the original image. These local features may
correspond to a small region of the object of interest and lack
high-level semantic meaning. Meanwhile, we want to reduce the
number of candidate local features further. Thus, for the initially
selected local features XN , we employ k-means clustering, group-
ing them into K clusters and extracting the centers of the clusters
as characteristic feature vectors. Within each cluster, we perform
generalized mean pooling to get the representative feature vector
of the cluster followed by whitening with the fully connected
layer, resulting in the local feature set XK ∈ R

K×D, K ≪ N .
Clustering the set of N features corresponds to grouping together
image regions defined by similar features.

The original k-means clustering method randomly initializes
cluster centers, resulting in large variations in the results, which
is not desirable for a stable CBIR system. In order to address
this drawback, we adapt a stable cluster initialization approach,
namely k-means++, which was proposed in Arthur and Vassil-
vitskii (2007). Considering the local features XN = [xn] ∈ R

N×D,
where xn ∈ R

D indicates the nth local feature from XN as input,
the cluster center initialization is conducted as :
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Fig. 3. Visualization comparison of L2 norm attention and naive co-attention. The first column shows the query image with a yellow bounding box outlining the

target object, while the second column shows the candidate image. The third column shows the L2 norm attention while the fourth column represents the result of

the naive co-attention evaluated as described in Section 4.1.

Fig. 4. Illustration of clustering-based co-attention generation and weighted feature extraction.

Step 1: Among [xn], choose xi (i = argmaxn ∥xn∥2) as the first
cluster center.

Step 2: For each local feature xn not chosen yet, compute d(xn),
the smallest distance between xn and all centers that have
already been chosen.

Step 3: Choose xm (m = argmaxn d(xn)) as one of the new
centers.

Step 4: Repeat Steps 2 and 3 until K centers are chosen.

The selected cluster centers are then used to initialize the stan-
dard k-means clustering and eventually get the clustered local
feature set XK .

Co-attention generation with clustered local features. The
pipeline for the co-attention generation and weighted feature
extraction is illustrated in Fig. 4. Each time we consider the query
Iq and the candidate image Ic pair, fed through the backbone
network and following the local feature selection using the L2
norm, selected query local features Xq,N are directly GeM pooled
and whitened to obtain the query global feature Vq. Selected

2 ∥·∥ represents the L2 norm of the feature.

candidate local features Xc,N are clustered and then whitened,
resulting in the clustered local feature set Xc,K . Then, the co-
attention weights a = [ai] ∈ R

K are the result of the cosine
similarity between Vq and each local feature extracted from Xc,K .
As the feature weights are calculated by cosine similarity between
query and candidate features, they range between [−1, 1], which
may not ensure a high contrast among the results. For better
controlling the weight distribution, we normalize a into the range
[0, 1] using SoftMax function with a temperature parameter T

defined by:

a′
i =

exp(aiT )∑K

j exp(ajT )
(8)

The final co-attention weighted candidate global feature vector
Vc is defined by weighted sum pooling:

Vc =
1

K

K∑

i

aiXc,i. (9)

The final similarity measure Sq,c between the query image Iq and
the candidate Ic image is performed by evaluating the cosine
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similarity between Vq and Vc :

Sq,c = cos(Vq · Vc) . (10)

5. Further computation cost optimization

In this section, we provide some further processing steps
employed during the retrieval stage to ensure that the proposed
co-attention is practical to be used for large-scale image retrieval.

5.1. Feature dimension reduction by PCA

Principal component analysis (PCA) has been used as a com-
mon method for feature dimension reduction. Unlike some other
works that jointly perform dimension reduction and feature
whitening by one fully connected layer (Tolias et al., 2020), we
perform dimension reduction by using the Principal Component
Analysis (PCA) as a post-processing step. There are two main
reasons to use the PCA: first, we found that training with the
original feature dimension, which is 2048 for ResNet, makes the
model converge faster; second, it is more convenient and fair
to compare the retrieval performance with different dimension
settings as all experiments are based on the same pre-trained
model. For the query image, PCA dimension reduction is applied
on its whitened global feature vector Vq. For the candidate image
local features, PCA is applied on each whitened local feature from
Xc,K before L2 normalization.

Given NF sample features in DF dimensions: F ∈ R
NF×DF , let

m ∈ R
1×DF denote the mean vector:

m =
1

NF

NF∑

i=1

Fi . (11)

Then the covariance matrix of standardized sample features F is:

CovF =
1

NF

(F − m)T(F − m) . (12)

Let P ∈ R
DP×DF , denote the DP largest eigenvalues of CovF ,

where 0 < DP < DF . For a given feature vector Y ∈ R
NY ×DF , the

dimension reduced output feature Y′ ∈ R
NY ×DP is calculated by:

Y′ = (Y − m)PT. (13)

In our implementation, PCA components mv ∈ R
1×D and

Pv ∈ R
D′×D, where D′ denotes the feature dimension after PCA

dimension reduction, are learned from the whitened global GeM
pooling feature vectors (without L2 normalization) of randomly
selected images from the training dataset.

5.2. Filtering out evident non-matching images with the inverted file

indexing

For image retrieval, especially on a large-scale candidate image
database, we may not necessarily need to apply the co-attention
mechanism for each candidate image. Actually, some candidate
images are evidently not worth considering for the similarity
measure with the query. We employ the inverted file indexing in
order to reduce the number of candidate images to be considered
when assessing the similarity with the query image. Similar tech-
niques have been applied in other CBIR methods. For example,
HOW (Tolias et al., 2020) only performs feature comparisons
between the local features that share the same visual word.
Similarly, after the feature dimension reduction using PCA, we
use the local features from the feature tensor output by the final
convolution layer to train the codebook. At the feature extraction
stage, both query and candidate image local features Xc,N and
Xq,N , after dimension reduction and whitening, are clustered over

the visual words from the codebook. We record the visual word
indices to which each image is assigned. Then during the retrieval
stage, for each query image, we only pick out candidate images
that share at least one visual word with the query image to
perform co-attention generation and assess their similarity. The
other candidate images which are not selected are simply set to
have zero similarity score with the query image.

The global pipeline of the proposed co-attention enabled CBIR
framework when considering the inverted file indexing is pro-
vided in Fig. 5.

Codebook training. The inverted file indexing starts with the
codebook training. As shown in Fig. 5(a), at the codebook training
stage, each sample image is fed through the pre-trained back-
bone network followed by the L2 norm based feature selection,
resulting in Ncdb local features. With Ns sample images from the
training dataset, there would be Ns×Ncdb sample local features. To
reduce the computation cost, PCA dimension reduction is applied,
resulting in mcdb ∈ R

1×D and Pcdb ∈ R
Dcdb×D, which are learned

from these sample local features.3 After the PCA dimension re-
duction, k-means clustering is applied to get the final Kcdb visual
words, with their index represented by {v1, v2, . . . , vcdb}, as the
codebook.

Feature caching. As shown in Fig. 5(b), each database image Ic
is fed through the backbone network during the offline database
image feature extraction and caching stage. After the feature
selection, one processing branch performs k-means clustering
over Xc,N followed by PCA dimension reduction with parameters
mv and Pv , resulting in the dimension reduced clustered local
features Xc,K

′ ∈ R
1×D′

. Another processing branch performs PCA
dimension reduction, with the parametersmcdb and Pcdb, followed
by clustering over the codebook and assigning each local feature
to the closest visual word. A dictionary is then used to record
the database image ID for each visual word index. Each key of
this dictionary is a visual word index corresponding to a set
of database image IDs whose any one of the local features is
assigned to this visual word. The dictionary is then updated for
the entire database of candidate images.

Online retrieval. As shown in Fig. 5(c), at the online retrieval
stage, the selected query image local features Xq,N , after PCA
dimension reduction with mv and Pv , are also clustered over the
codebook. Then, based on the cached dictionary, we only pick out
those database images that share at least one visual word with
the query image for the following co-attention weighted feature
extraction (as shown in Fig. 4) and similarity assessment. All
other candidate images are treated as having zero similarity score
to this query and are removed from the image search. For the
inverted file indexing, the only extra thing needed to be cached
is the visual word index dictionary and the codebook, so it would
hardly require any extra memory.

6. Experiments

We initially discuss the experiment setup, including the hyper-
parameter setting and implementation details. Then, we provide
and analyze the co-attention and retrieval results for the pro-
posed methodology, along with comparisons to the state of the
art.

6.1. Experiment setup

Implementation details. For the training, we follow the
methodology adopted in DOLG (Yang et al., 2021). Input images
are data augmented by randomly cropping, changing image ratios

3 Note that mcdb and Pcdb are another set of PCA components used for the

inverted file indexing only.
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Fig. 5. Pipeline of the CBIR using inverted file indexing.

and then resizing them to 512 × 512 pixels. The batch size is
set to 128. The model is optimized using the Stochastic Gradient
Descent (SGD) optimizer with an initial learning rate of 0.05
and a weight decay of 0.0001. A cosine learning rate decay
strategy (Yang et al., 2021) is considered. We set γ = 30 and
margin m = 0.15 for the ArcFace loss in Eqs. (4) and (5), while
the power coefficient is p = 3 for the GeM pooling in Eq. (1). The
training is conducted with 4 NVIDIA Tesla GPU and the model is
trained for no more than 50 epochs.

For the co-attention mechanism described in Section 4.2, we
set N = 500 for local feature selection, cluster count K = 10 for
k-means clustering and T = 10 for the SoftMax temperature in
Eq. (8).

For the dimension reduction of query image and candidate
image features, the PCA components mv and Pv are learned with
whitened global GeM pooling feature vectors (without L2 nor-
malization) of 50,000 random images from the training dataset.
After whitening, the global query image feature vector Vq and
clustered candidate image local features Xc,K are compressed
using the PCA dimension reduction with parameters mv and Pv

to the dimension D′ = 512.

For the inverted file indexing, we use Ns = 60,000 random im-

ages in a single original scale from the training dataset (GLDv2),

with Ncdb = 300 local features being selected from each of them

to train the codebook. The size (cluster count) of codebook Kcdb =
65536. For computation cost reduction, PCA parameters mcdb and

Pcdb are learned from these sample features and used to compress

them to dimension Dcdb = 128.

Evaluation datasets. ROxf/RPar datasets (Radenovic, Iscen, To-

lias, Avrithis, & Chum, 2018) have commonly been used for large-

scale CBIR performance evaluation in recent years. The ground-

truth matching images to each query image are divided into 3

categories, Easy, Medium, Hard, according to the level of difficulty

in assessing the similarity of their image representation with the

corresponding query. In addition, R1M (Radenovic et al., 2018) is

an additional distractor set containing 1 million images, which is

used in combination with ROxf and RPar. The retrieval results are

reported by mean average precision (mAP) (Philbin, Chum, Isard,

Sivic, & Zisserman, 2007).

Feature extraction with multi-scale scheme. The multi-scale

feature extraction scheme has been widely applied in both global
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Fig. 6. Visualization of the feature selection and k-means clustering for the proposed co-attention mechanism. The first column represents original images, while

the images from the second column show the selected local features marked with circles. The size of the radius in the circles indicates the scale of the image where

they originate from. The color variation for circles, from yellow to red, indicates an increasing L2 norm attention score, with red being the highest score. The third

column of images shows the result of k-means clustering over selected local features, where the local features assigned to the same cluster are marked by the same

color. These examples consider N = 500 for feature selection and K = 10 for k-means clustering.

and local algorithms for CBIR. We implement our method consid-

ering 5 scales:
{

1

2
√
2
, 1

2
, 1√

2
, 1,

√
2
}
. Local features extracted from

different scales are merged together and jointly selected using the
L2 norm.

6.2. Visualization of feature selection and clustering

Fig. 6 shows the visualization result of the L2 norm based fea-
ture selection and k-means clustering over selected local features
identified from the images. Selected local features are mainly
distributed in regions of the main landmark building displaying
architectural details. The most representative parts of the build-
ing, like the towers on the top of the building in the top row
of images from Fig. 6, have relatively higher attention scores.
By applying k-means clustering we group the positions that are
visually similar to each other while different parts of the building
are assigned to different clusters. Those positions assigned to the
same cluster, marked with the same color in the third column of
Fig. 6, are considered to share the corresponding clustered local
feature from Xc,K ∈ R

K×D, as their representation. Clustering
divides and groups the local image features into fewer but more
comprehensive information description features.

6.3. Visualization of co-attention results

Examples of co-attention generation, considering the baseline
GeM model trained on GLDv2 dataset, are shown in Fig. 7. The
first and second columns show the query and target images,
respectively. In the third column, we provide the co-attention
generation results, where the local features grouped in the same
cluster share the corresponding clustered feature vector as their

representation. Co-attention scores for the locations that are not
selected are set to zero. Co-attention scores of all local features
from different input image scales are projected back to the cor-
responding locations on the original image and are accumulated
to get the final co-attention map. The L2 norm attention of the
baseline GeM model is also visualized in the fourth column of
Fig. 7 for comparison. As discussed in Section 3.1, the L2 norm
reflects the importance of each location with respect to how
much it contributes to the final feature vector obtained by global
pooling. In other words, the L2 norm is also a query non-sensitive
attention that the spatial pooling model implicitly learns during
the training.

In examples 1–4 from Fig. 7, some typical retrieval situations
are shown in which the target object is not salient or there are
similar distractors nearby in the image. The L2 norm attention
tends to uniformly highlight all potential relevant regions as it
has no access to the actual query information, and its action
is only driven by the knowledge learned during training. As a
consequence, the L2 norm attention could successfully discard
background regions, but it has no idea of which foreground object
to consider. In example 4, the L2 norm attention almost ignores
the desired query house from the remote part of the scene while
wrongly laying most emphasis on the tower building, which is
more salient and appears as more significant. Example 5 shows
another really hard example, in which the target building is not
shown in its entirety, but it is only visible as a small part of the
resized tower in the top-left corner of the target image. Moreover,
there is a spire from the right side of the target building, which is
very similar to the top part of the query object. In this case, the
L2 norm mostly highlights the area around that spire, while the
proposed co-attention mechanism focuses on the window and
edge structure for the correct target object. Examples 6 and 7
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Fig. 7. Attention map visualizations for 12 cases. The first column shows the query image with a yellow bounding box outlining the target object, as provided in the

ROxf/RPar dataset. The second column is the target image. The third column represents the co-attention map, while the final column provides the L2 norm attention

of the Generalized Mean pooling (GeM).

show the co-attention with the same target image but different
query content. In example 6, when considering the whole build-
ing as a query, the dome region is central to the co-attention
generation. However, in example 7, when using only a window
as query, the co-attention correctly focuses on the corresponding
region on the target image, despite the dramatic change in the
image acquisition conditions. These results indicate the high level
of sensitivity of the proposed co-attention method to the query
content.

For another set of cases, examples 8 and 9 from Fig. 7 show
some easy situations where the target object is salient enough
and not surrounded by hard distractors. In such cases, the co-
attention mechanism and L2 norm both correctly highlight the
target objects despite the challenges in the scene representations
due to illumination as well as view perspective changes during
image acquisition. Examples 10–12 from Fig. 7 show some cases
when the proposed co-attention method fails or does not provide
good enough results. Example 12 is one of the hardest cases
in which the query content is not even a building but a small
sculpture attached as one of the architectural elements on the
skyway between two historic buildings. In this case, the co-
attention does not highlight just the target region but also the
surrounding regions.

6.4. Image retrieval results

Image retrieval results for the proposed method and com-
parisons with other methods are provided in Table 1. For a fair
comparison, some of the recent state of the art (SOTA) works
are re-implemented according to the setting from Section 6.1
and marked with ‘‘†’’. The results for DOLG are reported as
those revised by the authors.4 Group (A) from Table 1 shows
the results for the local feature methods. R101−-HOW (GLDv2)†5

4 https://github.com/feymanpriv/DOLG
5 R101− represents the ResNet101 without the final convolution block.

According to the study from Tolias et al. (2020), HOW gives better results when

discarding the final block, and we follow this setting for our re-implementation.

is re-implementation of HOW (Tolias et al., 2020) on GLDv2
dataset with ResNet101 backbone and ArcFace loss. Under this
re-implementation, it does have a great improvement across all
evaluation protocols, especially on ROxf hard set, as it reaches
71.3% mAP, up from 56.9% before. However, HOW has a weak
performance on RPar+1M dataset with the hard evaluation pro-
tocol. Group (B) shows the results of the global feature methods.
They give worse results than the local feature methods, like
HOW (Tolias et al., 2020), on ROxf hard set, but they show better
generalization ability in the case when considering the 1 million
distractor set. The original DELG (Cao et al., 2020) was trained
on GLDv2 with a small batch size of 32. R101-DELG† is its re-
implemented version with ResNet101 as the backbone network,
under the training setting from Section 6.1. It can be seen that the
spatial verification gives limited improvement, especially when
considering the 1 million distractor set. The bottom group (C)
shows the results of the baseline model GeM†, as described in
Section 3.2, and when it is combined with the proposed co-
attention method (GeM†-CA). In other words, for the results of
GeM† and GeM†+CA, they share the same exact GeM backbone
network with the training setting from Section 3.2, the only
difference is that GeM†+CA implements the co-attention method
as described in Section 4.2 (as well as PCA dimension reduction
and inverted file indexing from Section 5) to re-weight the can-
didate image feature tensor before the global GeM pooling. It
can be observed that introducing the co-attention to the CBIR
pipeline can greatly improve the retrieval performance. Especially
on the hard set of ROxf (RPar), GeM†+CA reaches the best result
72.6% (85.6%). When considering the 1 million distractor set, the
proposed co-attention method still gives the best retrieval results.

6.5. Qualitative retrieval results

Fig. 8 provides a qualitative comparison between the co-
attention enabled GeM method ‘‘GeM†-CA’’ and the baseline
retrained GeM model ‘‘GeM†’’, on the challenging ROxf dataset
(Radenovic et al., 2018), considering the Hard evaluation protocol.
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Table 1

Image retrieval results on ROxf/RPar datasets and their extended versions when adding the 1 million distractor set R1M, for the

Medium and Hard evaluation protocols.

Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

(A) Local feature

DELF-ASMK*+SP (Teichmann et al., 2019) 67.8 53.8 76.9 57.3 43.1 31.2 55.4 26.4

DELF-D2R-R-ASMK*+SP (Teichmann et al., 2019) 76.0 64.0 80.2 59.7 52.4 38.1 58.6 29.4

R50−-HOW-MDA (Wu, Wang, Zhou, & Li, 2021) 82.0 68.7 83.3 64.7 62.2 45.3 66.2 38.9

R50−-HOW (Tolias et al., 2020) 79.4 65.8 81.6 61.8 56.9 38.9 62.4 33.7

R101−-HOW (GLDv2) † 83.9 77.9 87.9 76.4 71.3 52.8 76.0 56.4

(B) Global feature

R101-R-MAC (Gordo et al., 2016) 60.9 39.3 78.9 54.8 32.4 12.5 59.4 28.0

R101-GeM (GLD) (Ng et al., 2020) 67.3 49.5 80.6 57.3 44.3 25.7 61.5 29.8

R101-DSM (Siméoni, Avrithis, & Chum, 2019) 65.3 47.6 77.4 52.8 39.2 23.2 56.2 25.0

R101-SOLAR (Ng et al., 2020) 69.9 53.5 81.6 59.2 47.9 29.9 64.5 33.4

R50-DELG (Cao et al., 2020) 73.6 60.6 85.7 68.6 51.0 32.7 71.5 44.4

R50-DELG + SP (Cao et al., 2020) 78.3 67.2 85.7 69.6 57.9 43.6 71.0 45.7

R101-DELG (Cao et al., 2020) 76.3 63.7 86.6 70.6 55.6 37.5 72.4 46.9

R101-DELG + SP (Cao et al., 2020) 81.2 69.1 87.2 71.5 64.0 47.5 72.8 48.7

R101-DELG† 82.4 73.0 90.1 78.0 65.2 50.1 80.6 59.2

R101-DELG + SP† 84.1 75.9 91.0 79.2 68.8 53.6 83.0 62.3

R50-DOLG (Yang et al., 2021)4 81.2 71.4 90.1 79.0 62.6 47.3 79.2 59.8

R101-DOLG (Yang et al., 2021)4 82.3 73.6 90.9 80.4 64.9 51.6 81.7 62.9

R101-GLAM (Song, Han, & Avrithis, 2022) 78.6 68.0 88.5 73.5 60.2 43.5 76.8 53.1

(C) Proposed co-attention

R50-GeM† 79.8 69.0 87.3 73.1 60.4 44.2 74.0 52.0

R50-GeM†-CA 83.8 75.3 91.5 77.2 67.8 52.4 82.7 56.8

R101-GeM† 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

R101-GeM†-CA 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

Groups (A) and (B) separately show the results of local and global feature methods, respectively.

Group (C) shows the results of the proposed co-attention method.

‘‘†’’ indicates re-implemented model using the training details from Section 6.1.

‘‘SP’’ refers to the spatial verification re-ranking (Noh et al., 2017).

Fig. 8. Top 5 retrieval results for GeM†-CA (with co-attention) and GeM† on images from the hard set of ROxf dataset (Radenovic et al., 2018). Co-attention maps

are also provided underneath the retrievals provided by ‘‘GeM†-CA’’.

The query image is shown on the first column from the left side of

each row with a yellow bounding box indicating the query region

of interest. The top 5 retrieval results are shown with the green

outline denoting correct retrieval results, while red markings

denote incorrect results. The co-attention maps are shown below

each row with the retrieved images, with a heatmap indicating

the detection of targeted regions for each image. The proposed

model outperforms the original GeM model, whose retrieved

images are shown underneath. Especially in the top-left query

example, the query region is not an intact building, but it only
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Fig. 9. Ablation experiment results when varying the hyper-parameters.

shows a structure from its middle part, and GeM gives wrong
results for 3 retrievals out of the top 5. Meanwhile, the proposed
co-attention method correctly provides all top 5 retrievals for the
specific target region.

7. Ablation experiment and discussion

In this section, we present the ablation experiment results for
hyper-parameter settings and discuss the computation costs of
the proposed method.

7.1. Impact of clustering parameters

Plots from Figs. 9(a), (b) and (c) show the impact of vary-
ing cluster hyper-parameters N , K , and the temperature T from
Eq. (8), respectively, on the model retrieval performance. Gener-
ally, the proposed method is robust to changes in these hyper-
parameters, the difference is mainly reflected on the ROxf Hard
set. We can observe that using a small N = 200 cannot enable
using enough local representative features, while a too large
N = 1000 may pick out too many backgrounds or irrelevant
local features, and also it would slow down the feature extraction
procedure without bringing any obvious result improvement.
Varying the number of clusters K , has implications not only on
the performance but also on the computation cost. A smaller K

could further reduce the computation cost, but it will arbitrarily
fuse many local features into larger clusters reducing the co-
attention benefits. A larger number of clusters K can further
improve the retrieval performance as it leads to smaller clusters.
However, it will require additional computation costs, and the
improvement is very limited for K > 16.

For clearly showing the impact of parameter T on the co-
attention generation, some co-attention maps, generated as de-
scribed in Section 4.2, but considering different T values in Eq. (8)
are shown in Fig. 10. We can observe, that for a small T = 1,
the co-attention maps based on the clustered candidate image
local features tend to cover more contextual regions of the target
object. Nevertheless, there are still some unwanted regions. After
considering a larger T = 10, the co-attention results become more
focused on the target object.

7.2. The impact of PCA dimension reduction

The experiment results for the feature vector reduction using
PCA are shown in Table 2. According to the results from Table 2,
by increasing the feature dimension from the default setting of
512 to 1024 doubles the computation cost without bringing any
significant improvement. On the contrary, when considering a
feature dimension of 256 or even smaller will lead to significantly
lower performance. In conclusion, a feature dimension of 512 is
a good balance between the performance and computation cost.

Table 2

CBIR mAP results on ROxf and RPar datasets when varying the feature dimension.

FeatureDimension
Medium (%) Hard (%)

ROxf RPar ROxf RPar

128 84.1 91.4 68.3 82.5

256 86.0 93.0 71.3 84.4

512 86.4 93.2 72.6 85.6

1024 86.4 93.2 72.7 85.7

Table 3

Retrieval results on ROxf and RPar when considering different image scaling.

1
1√
2

√
2

1

2
√
2

1
2

1
4

2
Medium (%) Hard (%)

ROxf RPar ROxf RPar

" – – – – – – 83.3 89.4 66.3 79.2

" " " – – – – 85.5 91.8 70.6 83.3

" " " " " – – 86.4 93.2 72.6 85.6

" " " " " " " 86.7 93.2 73.3 85.9

7.3. Impact of image scaling

Scaling can account for significant changes in image acquisi-

tion, such as under the perspective projection transformations.

Retrieval results of the proposed method ‘‘GeM†+CA’’ when con-

sidering different image scaling are provided in Table 3. There are

3 different image scaling combinations implemented in the liter-

ature :
{

1√
2
, 1,

√
2
}
from Radenović et al. (2018),

{
1

2
√
2
, 1

2
, 1√

2
, 1,

√
2
}
from Yang et al. (2021), and

{
1
4
, 1

2
√
2
, 1

2
, 1√

2
, 1,

√
2, 2

}
from

Cao et al. (2020), Tolias et al. (2020). According to Table 3, when

considering the combination of 5 scales gives the best result for

the proposed co-attention method. Using 7 scales does not bring

much improvement while increasing the computational cost for

the feature extraction.

7.4. Impact of local feature clustering

Apart from the computation cost reduction brought by cluster-

ing, we also test implementing the co-attention without consid-

ering the clustering, which corresponds to the naïve co-attention

case described in Section 4.1. According to the results from

Table 4, the co-attention always improves the baseline GeM

model’s performance, even with the naïve co-attention imple-

mentation. Although the proposed clustering procedure forcibly

merges many local features into a few groups, which makes it

lose some local feature information, it actually provides a positive

contribution to the final retrieval performance. This result again

proves that considering clustering for co-attention not only re-

lieves the extra computation cost caused by the query-sensitivity

search but also further improves the retrieval results.
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Fig. 10. Co-attention map generated with clustering as described in Section 4.2, when T is set to 1 and 10.

Table 4

CBIR mAP results on ROxf/RPar datasets with naïve co-attention.

Model Co-attention Clustering
Medium (%) Hard (%)

ROxf RPar ROxf RPar

R101-GeM† % % 83.0 90.2 65.5 80.7

R101-GeM†-CA (naive) " % 83.7 90.4 69.9 80.9

R101-GeM†-CA " " 86.4 93.2 72.6 85.6

7.5. Clustering approach

In this ablation study, we provide further discussion about
the clustering method selection. The classical k-means cluster-
ing works well only for convexly distributed data. In the fol-
lowing, we consider two completely different clustering algo-
rithms: Spectral Clustering (Von Luxburg, 2007) and the Mean-
Shift (Cheng, 1995). While the former relies on graph spectral
analysis, the latter is based on non-parametric kernel-based data
representation. The results are provided in Table 5 Spectral clus-
tering is a graph-based clustering method which works well on
certain non-convex distributed data. In the spectral clustering
implementation, k-means is applied over the eigenvectors of the
Laplacian of the graph and the cluster number is set to 10.
According to the results from Table 5, k-means++ and spectral
clustering actually give similar results. However, spectral cluster-
ing requires significantly more computational requirements and
consequently has a higher time cost. The Mean-Shift does not
require the manual setting of the cluster center count but requires
setting a bandwidth parameter for the kernel (Bors & Nasios,
2009), which is assumed as Gaussian in our implementation.
Although by carefully setting the bandwidth value, according to
the results from Table 6, the Mean-Shift could give results close to
those of the other two clustering methods from Table 5. However,
the Mean-Shift eventually keeps more local features and requires
more computation costs. From these results, we decided to use
k-means++ for clustering the co-attention features.

7.6. The impact of re-ranking

The impact of re-ranking on the proposed co-attention en-
abled CBIR pipeline is explored in this subsection. We consider
two different re-ranking methods : α-weighted query expan-
sion (αQE) (Radenović et al., 2018) and diffusion (Iscen, Tolias,

Table 5

Retrieval results on ROxf and RPar with Spectral Clustering.

Clustering

Method

Medium (%) Hard (%)

ROxf RPar ROxf RPar

Spectral 86.4 93.1 72.7 85.6

k-means++ 86.4 93.2 72.6 85.6

Table 6

Retrieval results on ROxf and RPar datasets with Mean-Shift clustering and

different bandwidth setting. ‘‘Selected features’’ indicate the average number

of local features after clustering by the Mean-Shift.

Clustering

method

Band

width

Selected

features

Medium (%) Hard (%)

ROxf RPar ROxf RPar

0.5 325 87.2 92.3 74.1 83.8

Mean-Shift 1.0 76 85.4 91.6 71.7 82.6

1.5 11 84.1 91.5 68.4 82.6

Avrithis, Furon, & Chum, 2017). αQE acts on feature vectors of
top-ranked n images from the initial retrieval result by applying
weighted average and re-normalization. The weight of the ith
ranked image descriptor is defined by (Vq

TVi)
α where Vq and

Vi are the global feature vectors corresponding to the query
image and the ith ranked image. The aggregated feature vector
serves as a query descriptor for the second-round retrieval and
produces the final retrieval result. Diffusion is another powerful
re-ranking method and has been applied in CBIR works (Siméoni
et al., 2019). Diffusion could be treated as an extension of the
query expansion. Instead of only utilizing top n images as query
expansion, based on the first round retrieval results, diffusion ex-
plores the nearest neighbors by building a connection graph with
similarity scores between each pair of images from the whole
database for re-ranking. The retrieval results of the baseline GeM
(GeM†) and the proposed co-attention method (GeM†+CA) with
these re-ranking methods are presented in Table 7. The proposed
method GeM†+CA always gives better retrieval accuracy with or
without re-ranking. Specifically, on ROxford hard set, even with
re-ranking, GeM† is still outperformed by GeM†+CA without any
re-ranking. From the visualization examples shown in Fig. 7, the
reason why GeM is not working is not that the query information
is not comprehensive enough, but because simply the query non-
sensitive feature extraction manner will look at the wrong place
in the image for feature extraction, especially when the target
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Table 7

Retrieval results on ROxf and RPar datasets with re-ranking. For comparison, the re-ranking results for DELG (Cao et al., 2020) with

spatial verification (SP) are also provided.

Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

R101-GeM† 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

R101-GeM†+αQE 84.4 77.8 91.7 82.7 68.8 56.2 82.8 65.9

R101-GeM†+DF 85.6 79.9 91.9 84.3 69.4 60.1 85.3 69.3

R101-DELG† 82.4 73.0 90.1 78.0 65.2 50.1 80.6 59.2

R101-DELG + SP† 84.1 75.9 91.0 79.2 68.8 53.6 83.0 62.3

R101-GeM†+CA 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

R101-GeM†+CA+αQE 86.9 79.6 93.3 84.5 72.8 60.2 85.7 68.7

R101-GeM†+CA+DF 87.2 81.1 94.4 86.1 73.7 63.9 88.4 72.0

Fig. 11. Co-attention visualization without query crop.

object is not salient. This problem can only be solved by a proper
query sensitive attention mechanism, which would force the
model to look towards the regions that match the query content,
namely the proposed co-attention mechanism.

7.7. Impact of the query clutter

As the standard evaluation protocol of ROxf/RPar dataset is to
provide the bounding box for each query image, and by default,
all existing research studies utilize the existing bounding boxes
to crop the query image and only use the resulting image region
as query input. One major concern for the proposed co-attention
method is that of overfitting to ROxf/RPar dataset evaluation
protocol or whether it is robust enough when the query image
contains noise or is cluttered. Fig. 11 visualizes the co-attention
map when not cropping the query image. When comparing the
co-attention with and without the query crop, it can be observed
that there is not much difference in the results, even though
the query image in the second row contains a lot of background
clutter. Following the discussion from Section 3.1, spatial pooling
implicitly implements an L2 norm attention mechanism. Within
the proposed co-attention method pipeline, the query image fea-
tures are selected based on their L2 norms before global pooling.
Thus it has a strong robustness to the background clutter that is
irrelevant to training data (such as grass, sky, street, the presence
of humans, and so on) from the query image.

We do not consider the situation when one query image
contains more than one potential object of interest because the
benchmark datasets ROxf/RPar (Radenovic et al., 2018) does not
include such situations. On the other hand, the search purpose
depends on the user; if the input query image contains multiple
potential objects of interest, the user is supposed to specify which

exact object (or region) needs to be considered for the search, as
the CBIR system cannot guess the user intention. If the user would
still like to use a whole image that contains multiple training data
relevant objects (regions) as query input and uniformly retrieve
image content that matches with the query, as the example
shown in Fig. 12, then our co-attention will work similarly to
the query-nonsensitive attention, uniformly highlighting all train-
ing data relevant regions. Table 8 provides the retrieval results
of the baseline ‘‘GeM†’’, the proposed method ‘‘GeM†+CA’’ and
the current state of the art work DOLG with/without the query
image crop. It can be seen that with or without query crop,
the co-attention method always improves over the baseline GeM
model’s results.

7.8. Robustness to the baseline model training

The previous retrieval results are all based on using the GeM
model pre-trained on GLDv2 dataset with large data batch size
and with the ArcFace margin loss from Eq. (4). In the following,
we consider that the baseline model is trained with a much
smaller dataset and a simpler loss function in order to test the
efficiency of the adapted training approach. In order to test the ro-
bustness of baseline model training, we follow the practice from
the original GeM pooling paper (Radenović et al., 2018). Another
GeM baseline model is trained on rSfM-120k dataset (Radenović
et al., 2018), which only contains around 90,000 images. The
model is optimized with the simplest contrastive loss (Chopra
et al., 2005). Following the setting from Radenović et al. (2018),
the batch size is set to 5. Each batch contains 5 image tuples, with
each tuple containing 1 query image, 1 positive matching image
and 5 negative match images. The hard sample mining is also
performed according to the description in Radenović et al. (2018),
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Fig. 12. Co-attention visualization when consider a query image that contains multiple training data relevant object.

Table 8

Retrieval results on ROxf and RPar datasets with/without considering the query crop.

Method
Query

crop

Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

GeM† % 82.5 78.4 90.7 81.3 62.9 56.1 81.0 65.1

GeM† " 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

DOLG (Yang et al., 2021)4 % 83.2 79.0 91.6 82.9 64.8 57.9 82.6 67.3

DOLG (Yang et al., 2021)4 " 82.3 73.6 90.9 80.4 64.9 51.6 81.7 62.9

GeM†+CA % 85.5 81.8 93.6 83.9 69.2 61.4 85.8 67.7

GeM†+CA " 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

Table 9

Retrieval results on ROxf and RPar datasets when trained on rSfM dataset with

contrastive loss.

Backbone Co-attention
Medium (%) Hard (%)

ROxf RPar ROxf RPar

Res50 % 62.6 75.4 39.9 53.1

Res50 " 69.3 79.2 42.9 57.5

Res101 % 66.8 78.9 41.8 55.2

Res101 " 70.1 80.3 45.1 59.5

and the model is trained for 100 epochs. Then, the proposed co-
attention method is applied with the trained GeM model and we
provide the experimental results in Table 9. From these results,
it can be seen that even with training on a smaller dataset and
a simpler loss function, the proposed co-attention still brings
positive effects for the retrieval performance. Of course, the im-
provement is not as impressive as that from above, as proposed in
this paper, because when considering a smaller training dataset
and a simpler loss function for the training, the feature tensor
output by the backbone network is not as efficient and well-
trained as when considering a larger dataset GLDv2 and the
ArcFace loss for training.

7.9. Why not directly consider the similarity measure in a one-to-

many manner?

In the proposed co-attention method, the similarity scores
between the query image global feature Vq and candidate image
clustered local features Xc,K are used as co-attention scores to
re-weight Xc,K and then perform GeM pooling to get the final
candidate image global feature Vc . One concern about the pro-
posed co-attention method could be the necessity of co-attention
weighted pooling. Why not just evaluate the similarity measure
with Vq and Xc,K in a one-to-many manner? In the following,
three different selection methods are tested to evaluate the fi-
nal image pair matching score from K local matching similarity
scores between Vq and Xc,K . In Table 10, ‘‘Max’’ means choosing
the maximum from among K local matching similarity scores
as the final image pair matching score while ‘‘Mean’’ means

Table 10

Retrieval results on ROxf and RPar with different selection methods.

Method
Medium (%) Hard (%)

ROxf RPar ROxf RPar

Max 81.4 90.3 64.8 81.6

Mean 77.4 88.1 58.7 77.2

SoftMax 79.6 89.0 62.5 79.3

GeM†+CA 86.4 93.2 72.6 85.6

to calculate their average as the final result. ‘‘SoftMax’’ means

applying SoftMax function over the K local match scores and

then performing the weighted sum over the K local matching

similarity scores. All these methods lead to much worse results

than the co-attention pipeline proposed in Section 4.2. This is

expected because each local feature from Xc,K represents a re-

gional level descriptor which is not comprehensive enough as the

representation built by the co-attention weighted global pooling.

7.10. Why not directly perform the similarity measure in a many-

to-many manner?

Another concern about the proposed co-attention method is

that: why not perform local feature clustering on the query image

and then use the clustered query local features (after the PCA
dimension reduction) Xq,K = [xq,k] ∈ R

K×D′
, where xq,k ∈

R
1×D′

represents the kth clustered local feature from Xq,K and

D′ = 512, to evaluate the similarity with the clustered candidate
image local features Xc,K = [xc,k] ∈ R

K×D′
in a many-to-many

manner. To perform the many-to-many similarity with clustered

local features from the query image and candidate image, as each

clustered local feature could be treated as a representation of

a corresponding region from the input image, in the following,

we define a local patch matching strategy. Firstly, a similarity

matrix M = {[mi,j] ∈ R
K×K } is obtained by calculating the cosine

similarity score between each pair of query local feature xq,i and

local feature candidates xc,j:

mi,j = xq,i · xc,j. (14)
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Table 11

Retrieval results comparison on ROxf and RPar with the baseline ‘‘GeM†’’, the

proposed co-attention method ‘‘GeM†+CA’’ and the many-to-many local match

‘‘GeM†+Local Match’’.

Method
Medium (%) Hard (%)

ROxf RPar ROxf RPar

GeM† 83.0 90.2 65.5 80.7

GeM†+CA 86.4 93.2 72.6 85.6

GeM†+Local Match 86.4 92.3 71.5 84.1

Table 12

Retrieval results on ROxf and RPar when considering different feature selection

approaches.

s(bq,i, Ic ) define S(Iq, Ic ) define
Medium (%) Hard (%)

ROxf RPar ROxf RPar

Max Mean 86.4 92.3 71.5 84.1

Max Max 78.2 89.0 60.1 76.4

Max SoftMax 86.3 92.0 71.7 83.5

Mean Max 55.9 78.1 41.4 64.6

Mean Mean 77.3 87.9 59.9 76.3

Mean SoftMax 77.2 87.7 59.5 76.0

SoftMax Max 62.9 81.8 47.0 68.0

SoftMax Mean 80.0 89.0 63.1 78.5

SoftMax SoftMax 79.9 88.8 62.9 78.2

GeM†+CA 86.4 93.2 72.6 85.6

Accordingly, the ith row of the similarity matrix M stores the
similarity score between xq,i and each local feature from the
candidate image feature set Xc,K . In principle, the matrix M needs
to be transformed into a single similarity score between local
features {Xq,K ,Xc,K }. Thus, the similarity score between a single
query local feature xq,i and the whole candidate image is defined
by:

s(xq,i, Ic) = max
j

mi,j, (15)

and eventually, the similarity between clustered local features
Xq,K and Xc,K , is given by :

S(Xq,K ,Xc,K ) =
∑K

i=1 s(xq,i, Ic)

K
. (16)

The retrieval result comparison between the baseline GeM,
the proposed co-attention method and the many-to-many match
method is provided in Table 11. We can observe that by perform-
ing many-to-many local matching, as mentioned above, could
also improve the baseline GeM model’s performance, but the
results are still worse than the proposed co-attention method
‘‘GeM†+CA’’.

Apart from the many-to-many definition as mentioned above
from Razavian et al. (2016), we further consider different defini-
tions of s(xq,i, Ic) and S(Xq,K ,Xc,K ), where by ‘‘Max’’, ‘‘Mean’’ and
‘‘SoftMax’’ represents using the maximum, average or applying
SoftMax function overall values then applying the weighted sum,
respectively. The corresponding retrieval results are provided in
Table 12. Despite considering all these matching possibilities, the
many-to-many local matching is always outperformed by the
proposed co-attention weighted global feature ‘‘GeM†+CA’’.

7.11. Computation cost and memory requirements

Considering K = 10 clusters, feature dimension D′ = 512,
the memory cost to cache one candidate image is 10 × 512 ×
4 Bytes ≈ 0.02 MB and it takes around 21 GB to cache the
whole ROxf/RPar database considering the 1 million distractor
set. The feature extraction takes an average 240 ms to cache one
candidate image’s local features with 5 scales, including the time
cost for the local feature clustering. This could be time consuming,

especially for a large database, but it can be performed offline,
and it is only done once. With pre-cached features and inverted
file indexing, searching on ROxf/RPar with the 1 million distractor
dataset for one query image takes around 530 ms with the help
of acceleration by an NVIDIA Tesla GPU.

Detailed computation cost requirements and comparison with
other models are provided in Table 13. The proposed method
‘‘GeM†+CA’’ requires a similar memory cost as DELG (Cao et al.,
2020). When it comes to the retrieval time cost, ‘‘GeM†+CA’’
takes longer than others when considering a Tesla GPU, and is
especially slower than GeM and DOLG, because they are simple
global feature methods in which each image is only represented
by a single global feature vector and the similarity measure is
as simple as just calculating the cosine similarity with the global
feature vector. However, the proposed method provides the best
retrieval performance.

7.12. Additional discussion about the inverted file indexing

The local features selected by the L2 norm but without clus-
tering are used for inverted file indexing implementation. One
concern about this approach is that: why not apply inverted file
indexing with the clustered local features Xc,K . Intuitively speak-
ing, within the co-attention enabled CBIR pipeline, the inverted
file indexing is a very general coarse-level filter that tries to filter
out candidate images that are unlikely to match the query. When
applying the inverted file indexing, it is unwanted to acciden-
tally filter out candidate images that actually are ground-truth
matched with the query. Accordingly, the inverted file indexing
is implemented with a large codebook size of 65536, as well as a
large enough number of local features N = 500 from each image,
so that any of the candidate image local features shares the same
visual representation with any of the query local features. This
candidate image will be selected for later co-attention generation
and similarity evaluation. The features from the clustered local
feature set Xc,K represent a compact and focused representation
of relatively high-level semantic meaning, which are deemed as
being highly distinguishable between images. According to the
testing results, by applying inverted file indexing with clustered
local features Xc,K will filter out all unwanted images in the
database.

Moreover, the visual word codebook is important in both in-
verted file indexing and image representation building in
HOW (Tolias et al., 2020), as ASMK method used by HOW to build
local feature representations is based on using the visual word
codebook. On the contrary, in the proposed co-attention enabled
CBIR framework, the inverted file indexing only serves as a very
general coarse-level filter to initially pick out necessary candidate
images for later comparison. In other words, the performance
of the proposed co-attention method and image representation
building does not actually rely on it. The inverted file index-
ing module only helps to speed up the retrieval. Although the
inverted file indexing setting appears to show that the filter con-
dition is very loose, according to the experiment results, it speeds
up the retrieval considerably. To be more specific, the inverted
file index, as described in Section 5.2, significantly speeds up
the retrieval by filtering out around 70% distractor images from
the database. When considering the evaluation dataset ROxf/RPar
with 1 million distractor images, each query image only needs
to perform the similarity measure with around 300,000 database
images. According to the results from Table 14, the proposed
method ‘‘GeM†+CA’’ gives almost the same mAP results across
ROxf/RPar datasets with or without the inverted file indexing
(IVF), while it requires lower computational resources and time.
The entire inverted file indexing module hyper-parameter setting,
like the codebook size, which is set to 65536, is based on the
setting from HOW (Tolias et al., 2020) and is not specifically
optimized, given that it already results in a good retrieval speed.
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Fig. 13. Attention map visualization. The first column shows the query image with a yellow bounding box outlining the target object. The second column represents

the target image. The third column shows the co-attention map generated by CANet, while the fourth column indicates the co-attention map generated by the

proposed clustering-based co-attention method.

Table 13

Computation cost comparison.

Method Device Memory (GB)

ROxf/RPar+1M

Retrieval time (ms)

in average

HOW (Tolias et al., 2020) CPU 14 750

GeM (Radenović et al., 2018) Tesla GPU 8 250

DOLG (Yang et al., 2021) Tesla GPU 2 220

DELG+SP (Cao et al., 2020) Tesla GPU 22 383

GeM†+CA (ours) Tesla GPU 21 530

Table 14

Retrieval results on ROxf and RPar datasets with/without inverted file indexing (IVF).

Method IVF
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

GeM†+CA % 86.4 79.3 93.1 81.8 72.7 59.9 85.7 64.1

GeM†+CA " 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

7.13. Comparison with the Conditional Attention Network (CANet)

In the following, we compare the proposed clustering-based
co-attention method with CANet (Hu & Bors, 2020). CANet and
the proposed co-attention method are both relying on post-
processing feature re-weighting modules for pre-trained CNN. For
a fair comparison, the GeM model described in Section 3.2 is
used as the baseline model. The results on ROxf/RPar datasets are
provided in Table 15. We can observe that both methods greatly
boost the baseline model’s performance, while the ‘‘CA (cluster)’’
gives the best results.

In Fig. 13, we compare the generated attention map results for
the method proposed in this paper and for CANet. Both methods
can generate rather good query sensitive attention maps. Due
to the usage of the convolution layer based fusion module, the
CANet tends to highlight a regular square area. Meanwhile, the
proposed clustering-based co-attention is based on local feature
clustering. As a result, highlighted regions could be irregularly
shaped. To limit the computation costs, the cluster count is man-
ually set to a small value (K = 10 in the experiments), and some
neighbor locations belonging to different objects may inevitably

be grouped together, leading to a slight lack of accuracy in the
final attention map. In the example 3 from Fig. 13, the region
of the target building along with some spire structures at the
bottom-left side, which is quite similar to the top parts of the
target building, are equally highlighted. On the contrary, in this
case, the CANet gives a better attention map. However, as men-
tioned above, the CANet is globally outperformed, according to
the results from Table 15, by the clustering-based co-attention
method with respect to the global retrieval accuracy. In addition,
CANet requires feeding the query image and candidate image in
an online manner, leading to significant extra computation costs
at the online retrieval stage. For comparison, CANet takes several
hours to search on ROxf/RPar with the 1 million distractor dataset
for one query image, while the proposed co-attention method
only requires 530 ms, as mentioned in Section 7.11.

In summary, when comparing to the CBIR results by CANet (Hu
& Bors, 2020), the clustering-based co-attention method proposed
in this paper represents a globally improved query sensitive at-
tention mechanism for CBIR. Although both methods are based
on modeling the interaction between the query image global fea-
tures and the candidate image local features, CANet utilizes stacks
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Table 15

Retrieval results on ROxf and RPar datasets.

Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

R101-GeM† (baseline) 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

R101-GeM†-CANet 84.3 74.5 91.0 78.7 68.9 51.4 82.0 60.8

R101-GeM†-CA (cluster) 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

‘‘R101-GeM† (baseline)’’ indicate the baseline model as described in Section 3.2.

‘‘R101-GeM†-CANet’’ represents the baseline model combined with CANet from Hu and Bors (2020).

‘‘R101-GeM†-CA (cluster)’’ represents the baseline model combined with the clustering-based co-attention method proposed in this

paper.

of trainable convolution layers for feature fusion and co-attention
generation, which requires significant computation costs at the
retrieval stage. Conversely, in the methodology proposed in this
paper, the co-attention is intuitively generated by the cosine sim-
ilarity between the query global feature and clustered candidate
image local features. By adopting this approach, we significantly
reduce the additional computation costs required by the query
sensitivity while still generating high-quality co-attention maps
under challenging situations.

8. Conclusion

In this paper, we enable large-scale content-based image re-
trieval with an efficient co-attention mechanism. The proposed
co-attention method can be treated as a non-trainable-parameter
module for a pre-trained spatial pooling model. It is intuitively
based on the similarity score between the global feature vector
of the query image and the clustered local features from the
candidate image. The extra computation cost caused by the query
sensitivity is addressed by employing local feature clustering
while also considering the inverted file indexing to speed up the
retrieval procedure. While being straightforward, the proposed
co-attention method generates good co-attention maps even un-
der some challenging conditions of image acquisition. By simply
embedding our co-attention method with the pre-trained base-
line GeM model, the retrieval performance is greatly improved
and results in a new state of the art retrieval performance on
benchmark datasets requiring comparable computation costs to
those of other models.
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