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ENABLING LARGE-SCALE IMAGE SEARCH WITH CO-ATTENTION MECHANISM

Zechao Hu and Adrian G. Bors*

Department of Computer Science, University of York, York YO10 5GH, UK

ABSTRACT

Content-based image retrieval (CBIR) consists of searching

the most similar images to a given query. Most existing at-

tention mechanisms for CBIR are query non-sensitive and are

only based on single candidate image’s feature regardless of

the actual query content. This can result in incorrect regions

especially when the target object is not salient or surrounded

by distractors. This paper proposes an efficient and effective

query sensitive co-attention mechanism for large scale CBIR

tasks. Local feature selection and clustering are employed

to reduce the computation cost caused by the query sensi-

tivity. Experimental results indicate that the proposed co-

attention method can generate good co-attention maps even

under challenging situations leading to a new state of the art

performance on several benchmark datasets.

Index Terms— Image retrieval, Co-attention mecha-

nisms, Feature clustering.

1. INTRODUCTION

Deep Convolution Neural Network (CNN) based methods for

CBIR can be divided into two categories: global and local

feature methods. Global feature methods extract a compact

feature vector from each image using a single forward pass-

ing through the network. It can be achieved by a fully con-

nected layer [1] or by global spatial pooling [2, 3, 4]. In ad-

dition, several attention mechanisms have been proposed for

feature refinement before global pooling. The Weighted Gen-

eralized Mean pooling (WGeM) [5] employs a trainable spa-

tial weighting module for feature re-weighting. SOLAR [6]

explores the correlation between each entry from the convo-

lution feature tensor with the second order attention. Deep

Orthogonal Local and Global (DOLG) [7] proposes an Or-

thogonal Fusion module to combine the global feature with

critical local features for better image representation, while

a dot-product fusion module is trained in [8]. Local feature

methods treat each entry from the feature tensor as a local de-

scriptor followed by a separate aggregation method to build

the final image representation [9, 10, 11]. In recent works,

selected local features are further used in spatial verification

mechanisms for re-ranking [12, 13]. For example HOW [14]
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combines CNN-based local features with the Aggregated Se-

lective Match Kernel (ASMK) [15] to directly perform many-

to-many local feature matching for image retrieval.

Despite the successes of CNN-based methods, existing at-

tention mechanisms for CBIR [5, 12, 13, 14] are all query

non-sensitive; for the given candidate images they predict the

regions of interest purely based on the knowledge learned dur-

ing the training, regardless of what the query content is about.

These query non-sensitive spatial attention modules are very

likely to fail when the target object is not salient or surrounded

by distractors. For example in Fig. 1, the query-nonsensitive

attention mechanism from the WGeM [5] fails. As the Lou-

vre Pyramid and Palace are both potential objects of inter-

est, when treating the Louvre Pyramid as the query item, it

is always ignored by the WGeM attention module while the

adjacent Louvre Palace attracts more attention.

Fig. 1. Examples of query non-sensitive attention where

WGeM approach fails. Images taken from [5].

Ideally, the attention should be query sensitive, consistent

with the current query content. When the Louvre Pyramid is

treated as query, it should be highlighted in the resulting co-

attention map and vice versa, as shown in the examples 3-4

from Fig. 3. This kind of query sensitive attention, condi-

tioned on the query content, is called co-attention in this pa-

per. In some other co-attention works [16, 17, 18] the query

pattern was shown to be essential for feature extraction.

Our contributions are : 1) we propose an efficient co-

attention method based on local feature selection and cluster-

ing without the requirement of extra parameter training; 2) we

show that our method could generate good co-attention maps

even for some hard situations; 3) the retrieval performance is

greatly improved with our co-attention method according to

the experimental results and reaches new state of art perfor-

mance on several benchmark datasets.

2. BASELINE MODEL STRUCTURE

The proposed co-attention method serves as a post-processing

module for pre-trained spatial pooling models without requir-



Fig. 2. Illustration of clustering based co-attention generation and weighted feature extraction.

ing the training of any extra parameters. Accordingly, in this

paper, we follow the framework from [4] to construct the

baseline GeM model. ResNet101 [19] is used as the backbone

network for the feature tensor extraction. The output feature

tensor is globally pooled by a GeM layer [4] followed by a

fully connected layer for feature whitening. Let X = [xl] ∈
R

H×W×D denote the feature tensor output by the backbone

network before pooling, where H , W , D represent the height,

width and the channel count (D = 2048 for ResNet101), xl

represents the local feature at location l from X. According to

the spatial pooling from [14], any loss function that optimizes

the cosine similarity between global pooling features would

implicitly optimize the following aspects : first, for irrelevant

background locations xbg , the L2 norm is minimized, leading

to little or no contribution to the final similarity score. On the

contrary, for distinct foreground objects or region locations

xbg , the L2 norm is maximized. Accordingly, the L2 norm

can be treated as a spatial attention that the model implicitly

learns at the training stage [14].

3. ENABLING CBIR WITH CO-ATTENTION

In the following we consider the convolution feature tensor

output by the pre-trained GeM model from Section 2 for en-

abling the co-attention generation process.

Local feature selection and clustering. The first challenge

for using co-attention is the computation cost required by the

large number of local features that are extracted from a single

image. Hundreds of local features could be extracted from

a single high resolution image. However, it is impractical to

cache all these features. An intuitive way to reduce the mem-

ory cost is to discard the irrelevant background local features.

L2 norm of each entry on the CNN feature tensor can be used

as an indicator of feature importance. Then, feature selec-

tion can be performed by keeping the top N local features

with the highest L2 norm from feature tensor X, resulting in

a selected local feature set XN ∈ R
N×D. To further reduce

the number of local features, k-means clustering is employed

on XN , grouping them into K clusters. Within each cluster,

after performing GeM pooling in order to select the represen-

tative local features centers, followed by whitening with the

fully connected layer, results in the clustered local features

XK ∈ R
K×D, K << N .

Co-attention generation with local features. The pipeline

of co-attention generation and weighted feature extraction is

illustrated in Fig. 2. After extracting the representative fea-

tures by feeding the query image Iq and the candidate im-

age Ic through the backbone network, we consider L2 norm

for the feature selection. The selected query local features

Xq,N are then directly GeM pooled and whitened to obtain

the query global feature Vq . In order to extract representa-

tive feature vectors, selected candidate local features Xc,N

are clustered and then whitened, resulting in the local fea-

ture set Xc,K . Then, the co-attention weights a = [ai] ∈ R
K

are obtained by calculating the cosine similarity between Vq

and each local feature from Xc,K . However, the range of the

attention weights is within [−1, 1], which may not ensure a

high contrast among the locations. For better controlling the

weight distribution and normalizing them into the range [0, 1],
the SoftMax function is then applied on a :

a′i =
exp(aiT )

K
∑

j

exp(ajT )

, (1)

where T is a temperature parameter. The final co-attention

weighted candidate global feature vector Vc is defined by

weighted sum pooling :

Vc =
1

K

K
∑

i

aiXc,i. (2)

The similarity measure is performed by evaluating the cosine

similarity between Vq and Vc.

Further computation cost reducing. In order to make the

co-attention practical to large-scale image retrieval and for

further reducing the required computation costs we propose

two extra processing steps during the retrieval stage. First,

PCA dimension reduction is performed on both query global

feature Vq and the candidate image local features from Xc,K .

Second, an inverted file indexing [23] module is applied to re-

duce the candidate image count that need to be compared with



Fig. 3. Attention map visualizations on target images.

Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

(A) Local feature

DELF-D2R-R-ASMK*+SP [20] 76.0 64.0 80.2 59.7 52.4 38.1 58.6 29.4

R50−-HOW [14] 79.4 65.8 81.6 61.8 56.9 38.9 62.4 33.7

R101−-HOW (GLDv2)[14] †2 83.9 77.9 87.9 76.4 71.3 52.8 76.0 56.4

(B) Global feature

R101-R-MAC [21] 60.9 39.3 78.9 54.8 32.4 12.5 59.4 28.0

R101-GeM (GLD) [6] 67.3 49.5 80.6 57.3 44.3 25.7 61.5 29.8

R101-DSM [22] 65.3 47.6 77.4 52.8 39.2 23.2 56.2 25.0

R101-SOLAR [6] 69.9 53.5 81.6 59.2 47.9 29.9 64.5 33.4

R50-DELG + SP [13] 78.3 67.2 85.7 69.6 57.9 43.6 71.0 45.7

R101-DELG + SP [13] 81.2 69.1 87.2 71.5 64.0 47.5 72.8 48.7

R101-DELG + SP [13]† 84.1 75.9 91.0 79.2 68.8 53.6 83.0 62.3

R50-DOLG [7]1 81.2 71.4 90.1 79.0 62.6 47.3 79.2 59.8

R101-DOLG [7]1 82.3 73.6 90.9 80.4 64.9 51.6 81.7 62.9

(C) the proposed co-attention method

R50-GeM† 79.8 69.0 87.3 73.1 60.4 44.2 74.0 52.0

R50-GeM†-CA 83.8 75.3 91.5 77.2 67.8 52.4 82.7 56.8

R101-GeM† 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

R101-GeM†-CA 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

Table 1. Image retrieval results on ROxf/RPar datasets and when adding the 1 million distractor set R1M, for the Medium and

Hard evaluation protocols. “†” indicates re-implemented model under the training details from Section 4.

Fig. 4. Ablation results for the hyper-parameters.

the query image at the retrieval stage. At the feature extrac-

tion stage, both selected query image and candidate image

local features Xc,N and Xq,N , after dimension reduction and

whitening, are clustered over the visual words [23] from the

codebook while recording the visual word indices that each

image is assigned to. Then during the retrieval stage, for each

query image we only pick out those candidate database im-

ages that share at least one visual word with the query image

to perform co-attention generation and assess their similarity.

The other images are no longer considered.

4. EXPERIMENTS

Experiment setup. For a fair comparison with the current

state-of-art (SOTA) work Deep Orthogonal Local and Global

(DOLG) [7], the baseline model described in Section 2 is

trained on GLDv2 dataset [24] with ArcFace margin loss [13].

The batch-size is set to 128. The initial learning rate is consid-

ered as 0.05 together with a cosine learning rate decay strat-

egy [7]. The model is trained for no more than 50 epochs. We

set N = 500 for local feature selection, cluster count K = 10
for k-means clustering and T = 10 for the SoftMax temper-

ature in Eq. (1). The feature dimension is reduced to 512 by

PCA. For the inverted file index, we use single scale 60,000

images from the training dataset (GLDv2) to train the code-

book. From each image, 300 local features are picked out and

compressed to a dimension of 128 by the PCA. The visual

word count of the codebook is set to 65,536. In addition, the

multi-scale feature extraction scheme [4] is applied, where we
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. Local features ex-

tracted from different scales are merged together and jointly

selected using the L2 norm. We consider ROxf/RPar datasets

[25] along with a 1 million images distractor set R1M [25] for

the performance evaluation.

Visualization results. Visualization examples of the pro-

posed co-attention are shown in Fig. 3. For comparison, the

query non-sensitive L2 norm attention is shown in the forth

column. As we can observe, the L2 norm attention tends

to highlight regions relevant to the training data, while our

co-attention can accurately highlight regions that match the

query content.

Image retrieval results1. Image retrieval results for the pro-

posed method and comparisons with other methods are pro-

vided in Table 1. For a fair comparison, some of the recent

works are re-implemented and marked with “†”. The group

(A) of results from Table 1 shows the results of local feature

methods. R101−-HOW (GLDv2)†2 is the reimplementation

of HOW [14] on GLDv2 dataset with ResNet101 backbone

and ArcFace loss. It reaches 71.3% mAP on ROxf hard set

before but it has relatively weak performance with the 1 mil-

lion distractors. Group (B) shows the results of the global

feature methods. The original DEep Local and Global fea-

tures (DELG) model [13] was trained on GLDv2 with a small

batch size of 32. R101-DELG† is its re-implemented version

with ResNet101 as the backbone network. It can be seen that

the spatial verification gives limited improvement, especially

when considering the 1 million distractor set. The bottom

group (C) shows the results for the baseline model (GeM†)

as described in Section 2 and when it is combined with the

proposed co-attention method (GeM†-CA). For the results of

GeM† and GeM†+CA, they share the same exact GeM model

with that described in Section 2, the only difference is that

GeM†+CA implements the co-attention method as in Sec-

tion 3 as well as PCA dimension reduction and inverted file

indexing from Section 3) to re-weight the candidate image

feature tensor before global GeM pooling. We observe that by

introducing the co-attention to the CBIR pipeline greatly im-

proves the retrieval performance. Especially, on the hard set

of ROxf (RPar), GeM†+CA reaches the best results of 72.6%

(85.6%). Also the proposed co-attention method still gives

the best retrieval results when considering the 1 million dis-

tractor set.

5. ABLATION EXPERIMENT AND DISCUSSION

Impact of clustering parameters. We evaluate in the plots

from Figures 4 (a), (b) and (c) the impact of cluster hyper-

parameters features N , clusters k, and temperature T from

Eq. (1), on the model retrieval performance. The proposed

1https://github.com/feymanpriv/DOLG
2R101− represents the ResNet101 without the final convolution block.

According to the study from [14], HOW gives better results when discarding

the final block and we follow this setting for our reimplementation.

method is robust to changes in these hyper-parameters. Vary-

ing the number of clusters k, has implications not only on the

performance but also on the computation cost. The setting de-

scribed in the beginning of Section 4 reaches a good balance

between performance and computation costs.

Computation cost and speed. For the memory cost, it takes

around 21GB to cache the whole ROxf/RPar database with

the 1 million distractor set. For the time cost, the feature ex-

traction takes in average 240ms to cache one candidate im-

age’s local features but it can be performed offline and it is

only done once. It takes on average 530ms with accelera-

tion on a NVIDIA Tesla GPU, when searching on ROxf/RPar

with the 1 million distractor dataset for one query image. De-

tailed computation cost comparision is provided in Table 2.

The proposed method “GeM†+CA” requires a similar mem-

ory cost as DELG [13]. Although the proposed co-attention

method requires more time cost than those simple global fea-

ture methods, like GeM [4] and DOLG [7], it provides the

best retrieval performance.

Method Device
Memory (GB)

ROxf/RPar+1M

Retrieval time (ms)

in average

HOW [14] CPU 14 750

GeM [4] Tesla GPU 8 250

DOLG [7] Tesla GPU 2 220

DELG+SP [13] Tesla GPU 22 383

GeM†+CA (ours) Tesla GPU 21 530

Table 2. Computation cost comparison.

6. CONCLUSION

In this paper, we enable large-scale content-based image

retrieval with co-attention mechanisms. The proposed co-

attention method can be treated as a non-trainable-parameter

module for a pre-trained spatial pooling model. It is in-

tuitively based on the similarity score between the global

feature vector of the query image and the clustered local fea-

tures from the candidate image. The extra computation cost

caused by the query-sensitivity is addressed by employing

local feature selection and clustering while also considering

the inverted file indexing to speed up the retrieval procedure.

While straightforward, the proposed co-attention method

generates good co-attention maps even in some challeng-

ing cases. By simply adding our co-attention method to the

pre-trained baseline GeM model, the retrieval performance

is greatly improved and results in a new state of the art re-

trieval performance on benchmark datasets white requirying

comparable computation costs to other models.
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