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Abstract—Motion planning is essential for robotic automation
across various industries. However, generalizing research out-
comes has been challenging due to the narrow focus of previous
work on a specific robot arm system. Here, we take a broader
approach by exploring the combinations of three popular robot
arm systems, three levels of clutterness in the environment,
and twelve popular motion planners. To conduct the necessary
performance analysis, we employ Motionbenchmaker tool and
introduce a sensitivity metric. Our approach is structured and
accessible, enabling the identification of the best-performing
planner-robotic arm combinations. We find that the LBKPIECE,
RRTConnect, and BKPIECE planners with Franka and UR5
offers the best balance of effectiveness and robustness. More
generally, our results help researchers and practitioners make
informed decisions when selecting robotic arms and motion
planners, for use in environments with different degrees of
clutterness.

Index Terms—Motion planning, Benchmarking, Motionbench-
maker, Robotic arms

I. INTRODUCTION

Motion planning is essential for industrial robots to en-

sure precise movements and avoid obstacles [1]. However,

challenges persist, including limited generalizability across

robotic arm systems and insufficient examination of cluttered

environments [2]–[4]. Several benchmarking studies have been

conducted to evaluate and compare the performance of motion

planning algorithms and robotic arm systems. For instance, a

study [5] focused on the optimization and evaluation of motion

planning algorithms in various scenarios, proposing a motion

planning pipeline connecting the Open Motion Planning Li-

brary (OMPL) with optimized CHOMP or STOMP algorithms.

Also [6] performed benchmarking tests on a 7-DOF robotic

arm with various controllers to evaluate their accuracy, control

efficiency, jitter, and robustness. While these studies provide

valuable insights into motion planning algorithm performance,

there are still gaps that need to be addressed. [7] introduced

the Motionbenchmaker tool to generate and benchmark motion

planning datasets. Another study [8] presented an extensible

infrastructure for the analysis and visualization of motion

planning algorithms. While these studies provide valuable

insights into motion planning algorithm performance, various

gaps still need to be addressed.

One of the major gaps in existing studies is the limited

generalizability of the results to other robotic arm systems,

Fig. 1: An illustration of motion planning for Scenario 2. The

end-effector of the Franka robot arm is inside the box, moving

from one of the objects to the top of the other object without

obstacle collisions in the process.

as many studies focused on one robotic arm. Moreover, there

is a lack of comprehensive investigation into the impacts of

the working environment on motion planning, especially in

the context of cluttered environments. The influence of the

environment’s properties, such as the size of the working

space and the dimensions of obstacles, on motion planning

performance, remains unexplored. Furthermore, there is a

need for a standardized framework that enables the systematic

comparison and evaluation of motion planners and robotic arm

systems in various environments.

To address this gap, we conduct benchmarking studies that

compare the performance of twelve OMPL [9] motion plan-

ners used with three different robotic arms: Franka [10], UR5

[11], and Kuka [12], see (TABLE I), in three environments

of different levels of clutter. The Motionbenchmaker tool [7]

is utilized to facilitate the benchmarking process, providing

a unified platform for performing the evaluation of different

motion planners and robotic arms. Our experiments investigate

the performance of three robotic arms to determine their

suitability for motion planning tasks in cluttered environments.

The motion planners are tested in three distinct cluttered

environments with varying levels of complexity: simple, mod-

erate, and difficult, based on the benchmarks proposed by

[13]. These environments will present unique features and

require different planning strategies. The performance of the



motion planners and robotic arms will be evaluated using

the following metrics, as suggested by [14]: time efficiency,

success rate, and sensitivity to the range parameter.

Fig. 2: In Scenario 2, the Franka robot arm’s motion planning

resulted in a trajectory depicted by a blue line.

TABLE I: Features of the robotic arm
Robotic arm Feature Application

Franka

7 DOFs, real-time motion
planning, compliance control,
advanced sensing capabilities,

scalability

Assembly complex mechanical
parts in manufacturing,

inspections and measurements
in research, surgical

procedures in healthcare

UR5

6 DOFs, user-friendly
interface, safe operation,
repeatability, flexibility

integration

Picking and placing goods,
testing and evaluating new

robotic algorithms, assisting to
patients

Kuka

6 DOFs, precision and
accuracy, high speed and

performance, safe operation,
customization, integration

It can be used in industrial
production to automate the
process of placing goods or

products onto pallets

Contributions are: (1) exploration and analysis of the in-

fluence of the working environment properties on motion

planning for robotic arms, with a focus on the size of the

working space and the height of obstacles, (2) the evaluation

of motion planning methods using three key metrics: time effi-

ciency, success rate, and parameter sensitivity, (3) developing

a cost function that can score motion planners across different

scenarios, and recommend the appropriate planner based on

the specific task requirements, and (4) a comparison of the

performance of three robotic arms (Franka, UR5, and Kuka)

in various cluttered environments, providing insights into

the most efficient and robust planner-arm combinations. Our

results enable researchers and practitioners to make informed

decisions when selecting robotic arms and motion planners for

their specific applications, ultimately improving the efficiency

and robustness of robotic systems in complex environments.

In the following section, we review related work on motion

planning in benchmarking. Section 3 presents the variations in

scenarios and queries, as well as the metrics used for bench-

marking. In Section 4, we describe the experimental setup

and methodology for the benchmarking. A final section draws

conclusions and discusses the implications of the findings.

II. RELATED WORKS

Chamzas et al. [7] introduced MotionBenchMaker, a tool

for generating diverse datasets with various robotic arms for

benchmarking. They assessed planners using planning time

and best cost but only tested three planners, limiting the

analysis. In this paper, we address this limitation by analyzing

twelve motion planners across three robotic arm systems and

different levels of environmental clutter.

The RRT [15] motion planner uses randomized search and

a tree-like structure in the configuration space to find a path

between an initial and a goal configuration. RRTConnect [15]

is a variant of RRT that generates two trees, one starting

from the initial configuration and the other from the goal

configuration, and connects them to find a path. RRTstar [15]

is another RRT variant that employs cost-based rewiring to

dynamically adjust the tree structure and find a lower-cost

path. TRRT [16] is a version of RRT that uses adaptive

sampling to adjust the distribution of random samples based on

the current state of the tree and the progress toward the goal.

EST [17] employs randomized search and space expansion

principles, where the tree size is dynamically adjusted to focus

the search in areas of the configuration space more likely to

contain a path to the goal. SBL [18], KPIECE [19], BKPIECE

[19], and LBKPIECE [19] are variants of single-query motion

planning algorithms that use a graph-based structure in the

configuration space to find a path. STRIDE [20] is designed for

use in dynamic environments, where the environment changes

over time, and FMT (Fast Marching Tree) [21] is a fast

marching algorithm that uses a hierarchical tree structure to

find a path.

III. SOFTWARE

We employ the Robot Operating System (ROS) [22] frame-

work, the MoveIt [23] library for planning and executing

robotic arm movements, and the Motionbenchmaker [7] repos-

itory for benchmarking motion planning algorithms. ROS

is an open-source platform for building robot applications,

while MoveIt provides a unified interface for performing

complex tasks, such as grasping objects and navigating in

three-dimensional space. The Motionbenchmaker repository

offers a standardized and modular interface for benchmark-

ing motion planning algorithms, supporting a wide range of

robotic platforms and planning algorithms for performance

evaluation and comparison.

IV. PROBLEM FORMULATION

A. Variation definitions

Motionbenchmaker can generate diverse scenes by intro-

ducing random variations to a nominal scene’s object poses,

both globally and locally. These perturbations are controlled

by parameters specified in a configuration file and follow a

Gaussian distribution for the probability of the random variable

that perturbs the nominal positions of the objects. It can also

define start and goal manipulation queries as pose offsets,

creating a variety of motion planning problems. By combining

scene sampling with problems, motion planning algorithms

can be evaluated across a wide range of environments and

scenarios under varying conditions influenced by Gaussian-

based variations.



Fig. 3: Three scenarios setting: (a) represents a flat surface on which obstacles of different shapes are placed, the simplest

scene without space constraints; (b) is a semi-closed box, which compresses a lot of space compared to (a); (c) is similar to

a drawer, where the working space is significantly limited compared to (a) and (b).

B. Scenarios

In the first scenario (Fig.3.a), cluttered environments with-

out spatial constraints feature obstacles on a single plane. A

scene generation module is utilized to add random noise to

the pose of collision objects relative to the global frame in

a standard scene, as described in [24]. This study focuses on

motion planning, not object grasping, with the robotic arm

reaching an object.

The second scenario (Fig.3.b) reduces workspace with a

semi-closed box, adding spatial constraints. The robotic arm

must plan movements within the restricted space and reach an

object, simulating motion planning in a more confined space

compared to the previous scenario.

The third scenario (Fig.3.c) resembles a living room drawer

with a more restricted workspace and obstacles that cannot be

bypassed directly from above. The robotic arm must enter the

drawer and reach an object, simulating motion planning in an

even more confined space than before.

C. Metrics for selection

Various metrics are used based on time efficiency and

success rate. Time efficiency is defined by the mean time

taken by motion planners to compute feasible paths, while suc-

cess rate assesses the percentage of successful path planning

attempts. The robustness of the motion planner is evaluated

by analyzing the impact of varying the parameter range on

computation time. This study serves as a foundation for further

investigations into refining parameters. In motion planning, the

range parameter represents a finite interval or a set of discrete

values, such as the maximum length of motion segments in

tree-based algorithms. Larger range values can decrease the

number of samples required but increase the complexity of

collision checking, while smaller values may simplify these

processes, albeit at the expense of slower planning.

D. Planners’ score

To evaluate the planners’ performance in each scenario and

across all scenario-arm combinations, we calculate the average

time efficiency (Tavg) for each planner in every scenario. Then

we normalize the time efficiency scores using the subsequent

formula:

Nt = 1−
Tavg −min(Tavg)

max(Tavg)−min(Tavg)
(1)

Here, Nt represents the normalized time efficiency scores,

which are inverted and scaled to a range of 0 to 1, with 1

signifying optimal performance.

Apply a weighted average function to aggregate the nor-

malized time efficiency scores (Nt) from each scenario, ac-

counting for the varying difficulty levels of the scenarios with

weights w1, w2, and w3. The essential function for computing

the weighted average scores (Wavg) is presented as follows:

Wavg = w1 ∗Nt1 + w2 ∗Nt2 + w3 ∗Nt3 (2)

In this equation, Nt1 , Nt2 , and Nt3 denote the normalized

time efficiency scores for each planner within their respective

scenarios. The planners are subsequently ranked according to

their weighted average scores.

V. EXPERIMENTS

We conducted experiments using Motionbenchmaker tool

to create scenarios for benchmarking motion planners in con-

junction with robotic arms. These scenarios and queries were

generated through C++ and Python scripts. For environmental

configuration benchmarking, we used single-query planners

from OMPL, selecting the most popular motion planners for

comparison during parameter sensitivity benchmarking. Each

test in Section 1 consisted of 100 runs with a planned timeout

of 30 seconds. Planners’ scores depend on assigned weights

(1/6, 1/3, 1/2) for Scenarios 1, 2, and 3. For Section 2, each

parameter range trial included 100 runs with a 30-second

scheduled timeout, where a 0 mean time indicated all exper-

iments failed. The mean time units in the experiments were

seconds, and the success rate was expressed as a percentage.

We conducted the experiment on a computer equipped with

an Intel i9-11900 processor and an NVIDIA 3050.

A. Environment configuration benchmarking

As shown in TABLE II,III, and IV, the RRTConnect, SBL,

BKPIECE, and LBKPIECE planners demonstrate impressive

success rates in all three scenarios. Our evaluation considered



TABLE II: Scenario 1
Planner name Franka UR5 Kuka

Mean time (s) Success rate (%) Mean time (s) Success rate (%) Mean time (s) Success rate (%)

RRT 1.504 89 4.793 59 1.622 65

RRTConnect 0.014 100 0.069 100 0.070 100

RRTstar 30.003 75 30.040 47 30.030 60

TRRT 1.288 66 5.150 37 1.216 70

EST 0.073 100 1.670 100 0.696 100

SBL 0.042 100 0.354 100 0.397 100

KPIECE 0.060 100 1.771 100 0.617 100

BKPIECE 0.063 100 0.793 100 1.542 100

LBKPIECE 0.066 100 1.507 100 1.579 100

PDST 0.059 99 3.351 97 0.685 100

STRIDE 0.095 100 1.762 100 0.794 100

FMT 0.615 100 5.643 100 22.058 99

TABLE III: Scenario 2
Planner name Franka UR5 Kuka

Mean time (s) Success rate (%) Mean time (s) Success rate (%) Mean time (s) Success rate (%)

RRT 2.196 9 7.935 43 0.048 47

RRTConnect 0.408 100 1.047 100 3.616 99

RRTstar 30.001 4 30.058 31 30.057 52

TRRT 0.592 30 2.343 26 0.069 48

EST 2.239 98 5.228 97 2.086 53

SBL 0.529 100 1.505 99 5.762 100

KPIECE 2.521 94 6.349 92 4.157 57

BKPIECE 0.975 100 3.883 98 9.398 85

LBKPIECE 0.235 100 2.351 99 4.916 100

PDST 1.154 100 6.587 76 2.119 53

STRIDE 1.967 97 6.256 87 2.727 60

FMT 1.989 98 6.240 100 8.476 66

TABLE IV: Scenario 3
Planner name Franka UR5 Kuka

Mean time (s) Success rate (%) Mean time (s) Success rate (%) Mean time (s) Success rate (%)

RRT 2.219 63 2.063 65 5.462 2

RRTConnect 0.092 100 0.330 100 7.351 79

RRTstar 30.002 50 30.023 55 30.005 1

TRRT 3.987 23 5.089 40 0

EST 2.419 95 4.255 88 15.719 5

SBL 0.156 100 0.488 100 6.100 91

KPIECE 1.084 84 4.039 85 15.166 6

BKPIECE 0.571 100 1.543 100 10.484 62

LBKPIECE 0.086 100 1.486 100 4.650 100

PDST 1.648 85 5.822 61 8.602 3

STRIDE 2.183 93 4.414 81 10.424 6

FMT 1.789 90 5.791 100 22.036 17

normalized time efficiency scores and employed a weighted

average for each scenario. Based on these calculations, the

planners score according to their success rates as follows:

RRTConnect (0.88), SBL (0.82), LBKPIECE (0.75), and

BKPIECE (0.04). Although BKPIECE falls under the high

success rates category, it is important to note that its planning

time of approximately 10 seconds is considerably longer

than that of the other planners, particularly in high clutter

environments like scenarios 2 and 3. This analysis indicates

that RRTConnect stands out as the most time-efficient planner

across the three scenarios, with SBL coming in a close second.

LBKPIECE takes third place, while BKPIECE significantly

lags behind the other planners in terms of time efficiency.

As per TABLE II,III, and IV, the PDST, STRIDE, EST,

KPIECE, and FMT planners exhibit moderate success rates

across all three scenarios. The scores for these moderate

success rate planners are as follows: PDST (0.98), STRIDE

(0.90), EST (0.77), KPIECE (0.68), and FMT (0.00). PDST

stands out as the leading planner in this group, achieving

the highest overall score. STRIDE takes the second spot,

displaying strong performance in these environments, though

not as efficient as PDST. Interestingly, despite being classified

as moderate success rate planners, PDST and STRIDE’s time

efficiency is close to that of the top-performing RRTConnect,

SBL, BKPIECE, and LBKPIECE planners. In fact, they are

even slightly faster by 2 seconds in scenario 2, indicat-

ing promising motion planning capabilities in moderately

cluttered environments. EST and KPIECE show respectable

performance in these scenarios, securing the third and fourth

positions, respectively. In contrast, FMT underperforms in this

group, obtaining the lowest score, which suggests that it may

not be well-adapted for moderate success rate scenarios.

In TABLE II,III and IV, RRT, TRRT, and RRTstar reveal

low success rates across all three scenarios. The resulting

ranking for low success rate planners is as follows: RRT

(1.00), TRRT (0.73), RRTstar (0.00). RRT emerges as the

top-performing planner in this category, attaining the highest

overall score, emphasizing RRT’s efficiency in handling low

success rate scenarios. TRRT, ranking second, displays con-

siderable performance in low success rate scenarios, albeit not

reaching the same level of efficiency as RRT. RRTstar, on the

other hand, ranks last with the lowest score, suggesting it may

not be well-suited for low success rate scenarios.

RRTConnect, SBL, and LBKPIECE consistently demon-

strate superior efficiency and robustness, and are the most

scalable planners, maintaining high success rates and rela-

tively low mean times across different clutter levels making

them ideal candidates for diverse situations. While BKPIECE,

PDST, and STRIDE display potential for further research,

RRT, RRTstar, and TRRT exhibit the least favorable perfor-

mance among all planners.

B. Parameter sensitivity benchmarking

In this benchmarking (Fig. 4), for Franka, LBKPIECE,

RRTConnect, and BKPIECE consistently showed the best time

efficiency across all scenarios, with SBL performing well in



Fig. 4: The present study employed six motion planners, namely EST, TRRT, SBL, STRIDE, RRTConnect, BKPIECE, and

LBKPIECE to analyze the difference in mean time, measured in seconds, among robotic arms and planners by varying the

parameter range. Specifically, the parameter is systematically varied from 0 to 3 with an incremental interval of 0.25. The

trials for each parameter range consist of 100 runs with a planned timeout of 30 seconds, where a mean time of 0 seconds

indicates that all failed.

less complex environments. EST, TRRT, and STRIDE had

higher mean times. For UR5, LBKPIECE, RRTConnect, and

BKPIECE displayed the best performance across all scenar-

ios, while SBL showed promising results for lower range

values. EST, TRRT, and STRIDE had higher mean times

and lower success rates. For Kuka, LBKPIECE, RRTConnect,

and BKPIECE outperformed other planners consistently. SBL,

with proper range adjustment, could perform better in complex

scenarios. EST, TRRT, and STRIDE showed higher mean

times and significantly lower success rates. Additionally, it

is demonstrated that the majority of planners exhibit low

mean times and high success rates within the parameter range

interval of 0.25 to 0.5. It can also be observed that most of

the curves begin to stabilize regionally after the parameter

value reaches 1.5, including the notably unstable TRRT, whose

amplitude frequency displays a decreasing trend beyond this

point.

Overall, LBKPIECE, RRTConnect, and BKPIECE demon-

strated robust performance across all scenarios and robotic

arms, making them suitable for various tasks. SBL also per-

formed well with appropriate range adjustment. EST, TRRT,

and STRIDE were generally less efficient. Franka had the most

comprehensive performance, while UR5 and Kuka’s perfor-

mance varied depending on the planner and range parameters.

C. Discussion

In conclusion, LBKPIECE, RRTConnect, and BKPIECE

consistently demonstrate time-efficient performance for all

three robot arms in the tested scenarios, featuring low mean

times, high success rates, and robust performance across

various range parameter values. EST, and SBL could also be

viable options, depending on the desired performance, but their

effectiveness may vary depending on specific range values

and environmental complexity. The influence of the range pa-

rameter on LBKPIECE, RRTConnect, and BKPIECE’s perfor-

mance is less pronounced in simpler cluttered environments,

where these planners can often find feasible paths quickly,

regardless of the range value. Conversely, for EST and SBL,

a smaller range value may slow the planning process due to

increased samples and connections, while a larger value could

accelerate the convergence of trees.

In Scenario 1’s open space, planners benefit from multiple

path options, resulting in high timeliness and success rates,

although obstacle configurations can still impact performance.

Scenarios 2 and 3 illustrate that workspace size significantly

affects robot arm motion planning. Restricted spaces con-

strain arm joint mobility, reducing both arm and planner

performance in cluttered environments, where obstacles also

impede computational efficiency. Nevertheless, fine-tuning the

range parameter in complex environments can enhance plan-



ning performance and enable planners to thrive in otherwise

challenging settings. Empirical studies suggest adjusting the

range parameter to optimize performance across different

environments, with a range of 0.25 to 0.5 typically yielding

good performance. However, in constrained and cluttered

environments like Scenario 3, increasing the parameter to 1.5

or higher has shown improved robustness and success rates.

This adjustment should account for the specific characteristics

and constraints of the environment. Further research is needed

to investigate the impact of range parameter adjustments on

performance in diverse environments.

Concerning the robot arms in Table 1, the Franka, with its 7

DOFs, is well-suited for researchers working on complex tasks

requiring precise positioning when paired with LBKPIECE,

RRTConnect, and BKPIECE. For those focusing on slightly

simpler experiments, the UR5 offers a user-friendly interface

and safety features, making it an excellent choice for beginners

and algorithm testing. In contrast, the Kuka is more appro-

priate for applications with higher technical requirements,

targeting industrial production and automation.

VI. CONCLUSIONS

In conclusion, this paper presents a comprehensive study

on the performance of various motion planners in cluttered

environments using three robotic arms: Franka, UR5, and

Kuka. The primary focus is to investigate time efficiency,

robustness, and parameter sensitivity.

Experimental results show that LBKPIECE, RRTConnect,

and BKPIECE consistently exhibit the best time efficiency and

robustness across all robotic arms. SBL is potential candidates

with reasonable performance, particularly for Franka and UR5

in challenging scenarios. The Franka, paired with LBKPIECE,

RRTConnect, and BKPIECE, is ideal for complex tasks and

precision. The UR5 suits simpler experiments, beginners,

and algorithm testing. Meanwhile, the Kuka targets industrial

production and automation.

In summary, our research contributes to the field of motion

planning by providing a thorough analysis of the performance

of various motion planners and robotic arms in cluttered

environments. The insights gained from this study can serve

as a valuable recommendation for researchers and practitioners

in selecting the most appropriate motion planners and robotic

arms for their specific tasks and applications. Future work may

explore various environment configurations, such as different

obstacle types, sizes and distributions, as well as the interac-

tion between static and dynamic obstacles.
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