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Movies S1–S3: Here, captions only. Access the movies via doi:10.15131/shef.data.21805803  5 

Please use https://figshare.com/s/79e62bdae0f84a2efa11 during the review stage. 

Figs. S1–S3 

 

 

Movie S1. Influence of the vein-water flow velocity w on the pattern of  in the ice–vein system and on the amount of excess 10 

diffusion at T = –32 C, for a signal with wavelength  = 0.02 m. These simulations show how the isotopic “shear layer” 

described in Sect. 3 evolves and transitions between the sheet regime and tail regime as w changes in small steps from –50 m 

yr– 1 to 50 m yr– 1 and back, for the model parameters a = 1 μm, b = 1 mm and = 1. (a) -variations at the vein (red curve) 

and in the grain interior at r = b (black curve). (b) Colour map of the pattern of  in the ice. (c) The corresponding decay-rate 

enhancement factor f (white dot), located on the surface of f(, w) in Fig. 7a.  15 

Movie S2. Influence of vein-water flow velocity w on the pattern of  in the ice–vein system and on the amount of excess 

diffusion at T = –32 C, for a signal with wavelength  = 0.08 m. The simulation scheme and layout of panels are the same as 

in Movie S1.  

Movie S3. Compressional scaling of the surfaces of (a) signal decay-rate enhancement factor f, (b) log10f and (c) signal 

migration velocity v, over the –w parameter space, as temperature decreases from –20 C to –60 C. Some axis ranges are 20 

updated at –35 C and –47 C to focus on relevant variations. 
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Figure S1. Computed curves of signal decay-rate enhancement factor f, log10f and signal migration velocity v versus signal 

wavelength , at (a–c) T = –32 C and (d–f) T = –52 C, for different vein-water flow velocities w (curve labels in m yr– 1) and 

assuming the deuterium–hydrogen fractionation coefficient, = 1.021. These curves differ negligibly from those in Fig. 6, 

where = 1 is assumed. Results based on the 18O–16O fractionation coefficient, = 1.0029, are still closer to those in Fig. 6.  30 
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Figure S2. Surfaces of the signal decay-rate enhancement factor f, log10f and signal migration velocity v over the –w 

parameter space, computed for (a–c) T = –32 C and (d–f) T = –52 C and assuming the deuterium–hydrogen fractionation 

coefficient, = 1.021. These surfaces differ negligibly from those in Fig. 7, where = 1 is assumed. Results based on the 

18O–16O fractionation coefficient, = 1.0029, are still closer to those in Fig. 7.  45 
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Figure S3. A study of the ice contribution to the differential diffusion length at the (a–c) GRIP and (d–f) EPICA ice-core sites, 

in model runs using constant grain radius b = 2 mm and different vein-water flow velocities w (curve labels in m yr– 1). Depth 55 

profiles of (a, d) the ice diffusion lengths ice(O) and ice(D), (b, e) the square differential ∆ice
2 =  ice

2(O) – ice
2(D), and (c, 

f) the differential ∆ice. 

 


