
This is a repository copy of Formally Verified Simulations of State-Rich Processes using
Interaction Trees in Isabelle/HOL.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200686/

Version: Published Version

Proceedings Paper:
Foster, Simon orcid.org/0000-0002-9889-9514, Hur, Chung-Kil and Woodcock, Jim
orcid.org/0000-0001-7955-2702 (2021) Formally Verified Simulations of State-Rich
Processes using Interaction Trees in Isabelle/HOL. In: International Conference on
Concurrency Theory (CONCUR 2021). LIPIcs . Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2021.20

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Formally Verified Simulations of State-Rich

Processes Using Interaction Trees in Isabelle/HOL

Simon Foster #

University of York, UK

Chung-Kil Hur #

Seoul National University, South Korea

Jim Woodcock #

University of York, UK

Abstract

Simulation and formal verification are important complementary techniques necessary in high
assurance model-based systems development. In order to support coherent results, it is necessary to
provide unifying semantics and automation for both activities. In this paper we apply Interaction
Trees in Isabelle/HOL to produce a verification and simulation framework for state-rich process
languages. We develop the core theory and verification techniques for Interaction Trees, use them to
give a semantics to the CSP and Circus languages, and formally link our new semantics with the
failures-divergences semantic model. We also show how the Isabelle code generator can be used to
generate verified executable simulations for reactive and concurrent programs.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Coinduction, Process Algebra, Theorem Proving, Simulation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.20

Related Version Previous Version: https://arxiv.org/abs/2105.05133

Supplementary Material Software (Source Code): https://github.com/isabelle-utp/

interaction-trees; archived at swh:1:dir:fe26a447f5611bbba15fbbc47253dba2075e1cf3

Funding Simon Foster : EPSRC EP/S001190/1 (CyPhyAssure).
Jim Woodcock: EPSRC EP/V026801/1 (TAS Verifiability), EP/M025756/1 (RoboCalc).

Acknowledgements We would like to thank the anonymous reviewers of our paper, whose helpful
and insightful comments have improved the content and presentation.

1 Introduction

Simulation is an important technique for prototyping system models, which is widely used in

several engineering domains, notably robotics and autonomous systems [9]. For such high

assurance systems, it is also necessary that controller software be formally verified, to ensure

absence of faults. In order for results from simulation and formal verification to be used

coherently, it is important that they are tied together using a unifying formal semantics.

Interaction trees (ITrees) have been introduced by Xia et al. [43] as a semantic technique

for reactive and concurrent programming, mechanised in the Coq theorem prover. They are

coinductive structures, and therefore can model infinite behaviours supported by a variety of

proof techniques. Moreover, ITrees are deterministic and executable structures and so they

can provide a route to both verified simulators and implementations.

Previously, we have demonstrated an Isabelle-based theory library and verification

tool for reactive systems [15, 16]. This supports verification and step-wise development

of nondeterministic and infinite state systems, based on the CSP [8, 21] and Circus [42]

process languages. This includes a specification mechanism, called reactive contracts, and

© Simon Foster, Chung-Kil Hur, and Jim Woodcock;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:simon.foster@york.ac.uk
https://orcid.org/0000-0002-9889-9514
mailto:gil.hur@sf.snu.ac.kr
mailto:jim.woodcock@york.ac.uk
https://orcid.org/0000-0001-7955-2702
https://doi.org/10.4230/LIPIcs.CONCUR.2021.20
https://arxiv.org/abs/2105.05133
https://github.com/isabelle-utp/interaction-trees
https://github.com/isabelle-utp/interaction-trees
https://archive.softwareheritage.org/swh:1:dir:fe26a447f5611bbba15fbbc47253dba2075e1cf3;origin=https://github.com/isabelle-utp/interaction-trees;visit=swh:1:snp:fd946433cf4bd738b80ae0aed2f6bade5d9ff347;anchor=swh:1:rev:f49012b38f3305c8f2a49855fd8020257472a996
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Formally Verified Simulations of State-Rich Processes Using Interaction Trees

calculational proof strategy. Extensions of our theory support reasoning about hybrid

dynamical systems, which make it ideal for verifying autonomous robots. Recently, the

set-based theory of CSP has also been mechanised [39]. However, such reactive specifications,

even if deterministic, are not executable and so there is a semantic gap with implementations.

In this paper, we demonstrate how ITrees can be used as a foundation for verification

and simulation of state-rich concurrent systems. For this, we present a novel mechanisation

of ITrees in Isabelle/HOL, which requires substantial adaptation from the original work.

The benefit is access to Isabelle’s powerful proof tools, notably the sledgehammer automated

theorem prover integration [5], but also the variety of other tools we have created in

Isabelle/UTP [14], such as Hoare logic and refinement calculus [1, 30]. Isabelle’s code

generator allows us to automatically produce ITree-based simulations, which allows a tight

development loop, where simulation and verification activities are intertwined. All our results

have been mechanised, and can be found in the accompanying repository1, and clickable icon

links next to each specific result, with for Isabelle code and for Haskell code.

The structure of our paper is as follows. In §2 we show how ITrees are mechanised in

Isabelle/HOL, including the core operators, and strong and weak bisimulation techniques.

In §3 we show how deterministic CSP and Circus processes can be semantically embedded

into ITrees, including operators like external choice and parallel composition. In §4 we link

ITrees with the standard failures-divergences semantic model for CSP, which justifies their

integration with other CSP-based techniques. In §5 we show how the code generator can be

used to generate simulations. In §6 we briefly consider related work, and in §7 we conclude.

2 Interaction Trees in Isabelle/HOL

Here, we introduce Interaction Trees (ITrees) and develop the main theory in Isabelle/HOL,

along with several novel results. ITrees were originally mechanised in Coq by Xia et al. [43].

Our mechanisation in Isabelle/HOL brings unique advantages, including a flexible frontend

syntax, an array of automated proof tools, and code generation to several languages.

ITrees are potentially infinite trees whose edges are decorated with events, representing

the interactions between a process and its environment. They are parametrised over two sorts

(types): E of events and R of return values (or states). There are three possible interactions:

(1) termination, returning a value in R; (2) an internal event (τ); or (3) a choice between

several visible events. In Isabelle/HOL, we encode ITrees using a codatatype [4, 7]:

▶ Definition 1 (Interaction Tree Codatatype).

codatatype (’e, ’r) itree =

Ret ’r | Sil "(’e, ’r) itree" | Vis "’e 7→ (’e, ’r) itree"

Type parameters ’e and ’r encode the sorts E and R. Constructor Ret represents a return

value, and Sil an internal event, which evolves to a further ITree. A visible event choice (Vis)

is represented by a partial function (A 7→ B) from events to ITrees, with a potentially infinite

domain. This representation is the main deviation from ITrees in Coq [43] (see §6). Here,

A 7→ B is isomorphic to A⇒ B option, where B option can take the value None or Some x

for x::B. We usually specify partial functions using λ x ∈ A • f (x), which restricts a function

f to the domain A. We write {7→} for an empty function, and adopt several operators from

the Z notation [38], such as dom, override (F ⊕G), and domain restriction (A◁F). With the

associated theorems, we can use Isabelle’s simplifier to equationally calculate the domain and

other properties of choice partial functions, which provides a high degree of proof automation.

1 https://github.com/isabelle-utp/interaction-trees

https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/Interaction_Trees.thy#L21
https://github.com/isabelle-utp/interaction-trees

S. Foster, C.-K. Hur, and J. Woodcock 20:3

We sometimes use ✓v to denote Ret v, τP to denote Sil P, and [] e ∈ E → P(e) to

denote Vis(λ e ∈ E • P(e)), which are more concise and suggestive of their process algebra

equivalents. We write e1 → P1 [] · · · [] en → Pn when E = {e1, · · · , en}. We use τnP for an

ITree prefixed by n ∈ N internal events. We define stop ≜ Vis {7→}, a deadlock situation

where no event is possible. An example is a → τ(✓x) [] b → stop, which can either perform

an a followed by a τ , and then terminate returning x, or perform a b and then deadlock.

We call an ITree unstable if it has the form τP, and stable otherwise. An ITree stabilises,

written P ⇓ , if it becomes stable after a finite sequence of τ events, that is ∃n P ′ • P =

τnP ′ ∧ stable(P ′). An ITree that does not stabilise is divergent, written P ⇑ ≜ ¬(P ⇓).

Using the operators mentioned so far, we can specify only ITrees of finite depth. Infinite

ITrees can be specified using primitive corecursion [4], as exemplified below.

primcorec div :: "(’e, ’s) itree" where "div = τ div"

primcorec run :: "’e set ⇒ (’e, ’s) itree" where

"run E = Vis (map_pfun (λ x. run E) (pId_on E))"

The primcorec command requires that every corecursive call on the right-hand side of an

equation is guarded by a constructor. ITree div represents the divergent ITree that does

not terminate, and only performs internal activity. It is divergent, div ⇑ , since it never

stabilises. Moreover, we can show that div is the unique fixed-point of τn+1 for any n ∈ N,

τn+1P = P ⇔ P = div , and consequently div is the only divergent ITree: P ⇑ ⇒ P = div .

ITree run E can repeatedly perform any e ∈ E without ceasing. It has the equivalent

definition of run E ≜ []e ∈ E → run E , and thus the special case run ∅ = stop. The formulation

above uses the function map pfun :: (’b⇒’c)⇒ (’a 7→’b)⇒ (’a 7→’c) which maps a total

function over every output of a partial function. Function pId on E is the identity partial

function with domain E. This formulation is required to satisfy the syntactic guardedness

requirements. For the sake of readability, we elide these details in the definitions that follow.

Corecursive definitions can have several equations ordered by priority, like a recursive

function. We specify a monadic bind operator for ITrees [43] using such a set of equations.

▶ Definition 2 (Interaction Tree Bind). We fix P,P ′ : (E ,R)itree, K : R⇒ (E , S)itree, r : R,

and F : E 7→ (E ,S)itree. Then, P >>= K is defined corecursively by the equations

✓r >>=K = K r τP ′>>=K = τ(P ′>>=K) Vis F >>=K = Vis (λ e ∈ dom(F) • F(x)>>=K)

The intuition of P >>= K is to execute P, and whenever it terminates (✓x), pass the given

value x on to the continuation K . We term K a Kleisli tree [43], or KTree, since it is a Klesli

lifting of an ITree. KTrees are of great importance for defining processes that depend on a

previous state. For this, we define the type synonym (E ,S)htree ≜ (S ⇒ (E ,S)itree) for a

homogeneous KTree. We define the Kleisli composition operator P # Q ≜ (λ x.Px >>= Q), so

symbolised because it is used as sequential composition. Bind satisfies several algebraic laws:

▶ Theorem 3 (Interaction Tree Bind Laws).

Ret x >>= K = K x

P >>= Ret = P

P >>= (λ x.(Q x >>= R)) = (P >>= Q)>>= R

div >>= K = div

Ret # K = K

K # Ret = K

K1 # (K2 # K3) = (K1 # K2) # K3

run E >>= K = run E

Bind satisfies the three monad laws: it has Ret as left and right units, and is essentially

associative. Moreover, both div and run are left annihilators for bind, since they do not

terminate. From the monad laws, we can show that (#,Ret) also forms a monoid.

The laws of Theorem 3 are proved by coinduction, using the following derivation rule.

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/ITree_Divergence.thy#L77
https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/Interaction_Trees.thy#L96
https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/Interaction_Trees.thy#L178

20:4 Formally Verified Simulations of State-Rich Processes Using Interaction Trees

▶ Theorem 4 (ITree Coinduction). We fix a relation R : (E ,R)itree↔ (E ,R)itree and then

given (P,Q) ∈ R we can deduce P = Q provided that the following conditions of R hold:

∀(P ′,Q′) ∈ R • is Ret(P ′) = is Ret(Q′) ∧ is Sil(P ′) = is Sil(Q′) ∧ is Vis(P ′) = is Vis(Q′);

∀(x, y) • (Ret x,Ret y) ∈ R ⇒ x = y;

∀(P ′,Q′) • (Sil P ′, Sil Q′) ∈ R ⇒ (P ′,Q′) ∈ R;

∀(F ,G) • (Vis F ,Vis G) ∈ R ⇒ (dom(F) = dom(G) ∧ (∀ e ∈ dom(F) • (F(e),G(e)) ∈ R))

To show P = Q, we need to construct a (strong) bisimulation R and show that (P,Q) ∈ R.

There are four provisos to show that R is a bisimulation. The first requires that only ITrees

of the same kind are related, where is Ret, is Sil , and is Vis distinguish the three cases.

The second proviso states that if (✓x ,✓y) ∈ R then x = y. The third proviso states that

internal events must yield bisimilar continuations: (τP, τQ) ∈ R ⇒ (P,Q) ∈ R. The final

proviso states that for two visible interactions the two functions must have the same domain

(dom(F) = dom(G)) and every event e ∈ dom(F) must lead to bisimilar continuations. The

majority of our ITree proofs in Isabelle apply this law, and then use a mixture of equational

simplification and automated reasoning with sledgehammer to discharge the resulting provisos.

Next, we define an operator for iterating ITrees:

corec while :: "(’s ⇒ bool) ⇒ (’e, ’s) htree ⇒ (’e, ’s) htree" where

"while b P s = (if (b s) then Sil (P s >>= while b P) else Ret s)"

This is not primitively corecursive, since the corecursive call uses >>=, and so we define it

using the corec command [6, 3] instead of primcorec. This requires us to show that >>= is a

“friendly” corecursive function [3]: it consumes at most one input constructor to produce one

output constructor. A while loop iterates whilst the condition b is satisfied by state s. In this

case, a τ event is followed by the loop body and the corecursive call. If the condition is false,

the current state is returned. We introduce the special cases loop F ≜ while (λ s • True)F and

iter P ≜ loop (λ s • P) (), which represent infinite loops with and without state, respectively.

We can show that iter (✓()) = div , since it never terminates and has no visible behaviour.

Though strong bisimulation is a useful equivalence, we often wish to abstract over τs.

We therefore also introduce weak bisimulation, P ≈ Q, as a coinductive-inductive predicate.

It requires us to construct a relation R such that whenever (P,Q) in R both stabilise, all

their visible event continuations are also related by R. For example, τm P ≈ τn Q whenever

P ≈ Q. We have proved that ≈ is an equivalence relation, and P ≈ div ⇒ P = div .

3 CSP and Circus

Here, we give an ITree semantics to deterministic fragments of the CSP [8, 21] and Circus [42,

32] languages. Our deterministic CSP fragment is consistent with the one identified by

Roscoe [36, Section 10.5]. The standard CSP denotational semantics is provided by the

failures-divergences model [8, 36], and we provide preliminary results on linking to this in §4.

3.1 CSP

CSP processes are parametrised by an event alphabet (Σ), which specifies the possible ways a

process communicates with its environment. For ITrees, Σ is provided by the type parameter

E . Whilst E is typically infinite, it is usually expressed in terms of a finite set of channels,

which can carry data of various types. Here, we characterise channels abstractly using

prisms [33], a concept well known in the functional programming world:

https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/Interaction_Trees.thy#L63
https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/ITree_Divergence.thy#L352
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_Weak_Bisim.thy

S. Foster, C.-K. Hur, and J. Woodcock 20:5

▶ Definition 5 (Prisms). A prism is a quadruple (V,Σ,match, build) where V and Σ are

non-empty sets. Functions match : Σ 7→ V and build : V ⇒ Σ satisfy the following laws:

match(build x) = x y ∈ dom(match)⇒ build (match y) = y

We write X : V
∆

−→E if X is a prism with ΣX = E and VX = V .

Intuitively, a prism abstractly characterises a datatype constructor, E , taking a value of

type V. Then, build is the constructor, and match is the destructor, which is partial due to

the possibility of several disjoint constructors. For CSP, each prism models a channel in E

carrying a value of type V. We have created a command chantype, which automates the

creation of prism-based event alphabets.

CSP processes typically do not return data, though their components may, and so they

are typically denoted as ITrees of type (E , ())itree, returning the unit type (). An example is

skip ≜ Ret (), which is a degenerate form of Ret. We now define the basic CSP operators.

▶ Definition 6 (Basic CSP Constructs).

inp :: (V
∆

−→E)⇒ V set⇒ (E ,V)itree

inp c A ≜ Vis (λ e ∈ dom(matchc) ∩ buildc(| A |) • Ret (matchc e))

outp :: (V
∆

−→E)⇒ V ⇒ (E , ())itree

outp c v ≜ Vis {buildc v 7→ Ret ()}

guard b :: B⇒ (E , ())itree

guard b ≜ (if b then skip else stop)

An input event (inp c A) permits any event over the channel c, that is e ∈ dom(matchc),

provided that its parameter is in A (e ∈ buildc(| A |)), and it returns the value received for

use by a continuation. It corresponds to the trigger construct in [43]. An output event

(outp c v) permits a single event, v on channel c, and returns a null value of type (). We also

define the special case sync e ≜ outp e () for a basic event e :: ()
∆

−→E . A guard b behaves as

skip if b = true and otherwise deadlocks. It corresponds to the guard in CSP, which can be

defined as b & P ≜ (guard b >>= (λ x • P)).

Using the monadic “do” notation, which boils down to applications of >>=, we can now

write simple reactive programs such as do{x ← inp c; outp d (2 · x); Ret x}, which inputs x

over channel c : N
∆

−→E , outputs 2 · x over channel d, and finally terminates, returning x.

Next, we define the external choice operator, P ✷ Q, where the environment resolves the

choice with an initial event of P or Q. In CSP, ✷ can also introduce nondeterminism, for

example (a → P) ✷ (a → Q) introduces an internal choice, since the a event can lead to

P or Q, and is equal to a → (P ⊓ Q). Since we explicitly wish to avoid introducing such

nondeterminism, we make a design choice to exclude this possibility by construction. There

are other possibilities for handling nondeterminism in ITrees, which we consider in §7. As

for >>=, we define external choice corecursively using a set of ordered equations.

▶ Definition 7 (External choice). P ✷ Q, is defined by the following set of equations:

(Vis F) ✷ (Vis G) = Vis (F ⊙G)

(Sil P ′) ✷ Q = Sil (P ′
✷ Q)

P ✷ (Sil Q′) = Sil (P ✷ Q′)

(Ret x) ✷ (Vis G) = Ret x

(Vis F) ✷ (Ret y) = Ret y

(Ret x) ✷ (Ret y) = (if x = y then (Ret x) else stop)

where F ⊙G ≜ (dom(G)−◁ F)⊕ (dom(F)−◁G)

An external choice between two functions F and G essentially combines all the choices

presented using F ⊙ G. The caveat is that if the domains of F and G overlap, then any

events in common are excluded. Thus, ⊙ restricts the domain of F to maplets e 7→ P

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/ITree_CSP.thy#L7
https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/ITree_CSP.thy#L75

20:6 Formally Verified Simulations of State-Rich Processes Using Interaction Trees

where e /∈ dom(G), and vice-versa. This has the effect that (a → P) ✷ (a → Q) = stop, for

example. In the special case that dom(F) ∩ dom(G) = ∅, P ⊙Q = P ⊕Q. We chose this

behaviour to ensure that ✷ is commutative, though we could alternatively bias one side.

Internal steps on either side of ✷ are greedily consumed. Due to the equation order, τ

events have the highest priority, following a maximal progress assumption [20]. Return events

also have priority over visible events. If two returns are present then they must agree on the

value, otherwise they deadlock. External choice satisfies several important properties:

▶ Theorem 8 (External Choice Properties).

P ✷ Q = Q ✷ P stop ✷ P = P div ✷ P = div P ✷ (τn Q) = (τn P) ✷ Q = τn(P ✷ Q)

(Vis F ✷ Vis G)>>= H = (Vis F >>= H) ✷ (Vis G >>= H)

External choice is commutative and has stop as a unit. It has div as an annihilator, because

the τ events means that no other activity is chosen. A finite number of τ events on either

the left or right can be extracted to the front. Finally, bind distributes from the left across a

visible event choice. We prove these properties using coinduction (Theorem 4), followed by

several invocations of sledgehammer to discharge the resulting provisos.

Using the operators defined so far, we can implement a simple buffer process:

chantype Chan = Input::integer Output::integer State::"integer list"

definition buffer :: "integer list ⇒ (Chan, integer list) itree" where

"buffer = loop (λ s.

do { i ← inp Input {0..}; Ret (s @ [i]) }

✷ do { guard(length s > 0); outp Output (hd s); Ret (tl s) }

✷ do { outp State s; Ret s })"

We first create a channel type Chan, which has channels (prisms) for inputs and outputs,

and to view the current buffer state. We define the buffer process as a simple loop with a

choice with three branches inside. The variable s::integer list denotes the state. The

first branch allows a value to be received over Input, and then returns s with the new value

added, and then iterates. The second branch is only active when the buffer is not empty. It

outputs the head on Output, and then returns the tail. The final branch simply outputs the

current state. In §5 we will see how such an example can be simulated.

Next, we tackle parallel composition. The objective is to define the usual CSP operator

P |[E]|Q, which requires that P and Q synchronise on the events in E and can otherwise

evolve independently. We first define an auxiliary operator for merging choice functions.

mergeE(F ,G) = (λ e ∈ dom(F) \ (dom(G) ∪ E) • Left(F(e)))

⊕ (λ e ∈ dom(G) \ (dom(F) ∪ E) • Right(G(e)))

⊕ (λ e ∈ dom(F) ∩ dom(G) ∩ E • Both(F(e),G(e))

Operator mergeE(F ,G) merges two event functions. Each event is tagged depending on

whether it occurs on the Left, Right, or Both sides of a parallel composition. An event in

dom(F) can occur independently when it is not in E , and also not in dom(G). The latter

proviso is required, like for ✷, to prevent nondeterminism by disallowing the same event

from occurring independently on both sides. An event in dom(G) can occur independently

through the symmetric case for dom(F). An event can synchronise provided it is in the

domain of both choice functions and the set E . We use this operator to define generalised

parallel composition. For the sake of presentation, we present partial functions as sets.

https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/ITree_CSP.thy#L231
https://github.com/isabelle-utp/interaction-trees/blob/7695143479e6f604209545c500db1c6ee6d25faa/examples/ITree_CSP_Examples.thy#L23

S. Foster, C.-K. Hur, and J. Woodcock 20:7

▶ Definition 9. P ∥E Q is defined corecursively by the following equations:

(Vis F) ∥E (Vis G) = Vis

{e 7→ (P ′ ∥E (Vis G)) | (e 7→ Left(P ′)) ∈ mergeA(F ,G)}

⊕{e 7→ ((Vis F) ∥E Q′) | (e 7→ Right(Q′)) ∈ mergeE(F ,G)}

⊕{e 7→ (P ′ ∥E Q′) | (e 7→ Both(P ′,Q′)) ∈ mergeE(F ,G)}

(Sil P ′) ∥E Q = Sil (P ′ ∥E Q) P ∥E (Sil Q′) = Sil (P ∥E Q′)

(Ret x) ∥E (Ret y) = Ret (x, y)

(Ret x) ∥E (Vis G) = Vis {e 7→ Ret x ∥E Q′ | (e 7→ Q′) ∈ G}

(Vis F) ∥E (Ret y) = Vis {e 7→ P ′ ∥E Ret y | (e 7→ P ′) ∈ F}

The most complex case is for Vis, which constructs a new choice function by merging F and

G. The three cases are again represented by three partial functions. The first two allow the

left and right to evolve independently to P ′ and Q′, respectively, using one of their enabled

events, leaving their opposing side, Vis G and Vis F respectively, unchanged. The third case

allows them both to evolve simultaneously on a synchronised event.

The Sil cases allow τ events to happen independently and with priority. If both sides can

return a value, x and y, respectively then the parallel composition returns a pair, which can

later be merged if desired. The final two cases show what happens when only one side has a

return value, and the other side has visible events. In this case, the Ret value is retained and

pushed through the parallel composition, until the other side also terminates.

We use ∥E to define two special cases for CSP: P |[E]|Q ≜ (P ∥E Q)>>= (λ(x, y) • Ret ())

and P ||| Q ≜ P |[∅]| Q. As usual in CSP, these operators do not return any values and

so P,Q :: (E , ())itree. The P |[E]| Q operator is similar to ∥E , except that if both sides

terminate any resultant values are discarded and a null value is returned. This is achieved

by binding to a simple merge function. P and Q do not return values, and so this has no

effect on the behaviour, just the typing. The interleaving operator P ||| Q, where there is no

synchronisation, is simply defined as P |[∅]|Q. We prove several algebraic laws:

(P ∥E Q) = (Q ∥E P)>>= (λ(x, y) • Ret (y, x)) div ∥E P = div

P |[E]|Q = Q |[E]| P P ||| Q = Q ||| P skip ||| P = P

Parallel composition is commutative, except that we must swap the outputs, and so |[E]| and

||| are commutative as well. Parallel has div as an annihilator for similar reasons to ✷. For |||,

skip is a unit since there is no possibility of communication and no values are returned.

The final operator we consider is hiding, P \ A, which turns the events in A into τs:

▶ Definition 10 (Hiding). P \ A is defined corecursively by the following equations:

Vis(F) \ A =

Sil (F(e) \ A) if A ∩ dom(F) = {e}

Vis {(e,P \ A) | (e,P) ∈ F} if A ∩ dom(F) = ∅

stop otherwise

Sil(P) \ A = Sil(P \ A) Ret x \ A = Ret x

We consider a restricted version of hiding where only one event can be hidden at a time, to

avoid nondeterminism. When hiding the events of A in the choice function F there are three

cases: (1) there is precisely one event e ∈ A enabled, in which case it is hidden; (2) no enabled

event is in A, in which case the event remains visible; (3) more than one e ∈ A is enabled,

and so we deadlock. We again impose maximal progress here, so that an enabled event to be

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/7695143479e6f604209545c500db1c6ee6d25faa/ITree_CSP.thy#L321
https://github.com/isabelle-utp/interaction-trees/blob/7695143479e6f604209545c500db1c6ee6d25faa/ITree_CSP.thy#L476
https://github.com/isabelle-utp/interaction-trees/blob/7695143479e6f604209545c500db1c6ee6d25faa/ITree_CSP.thy#L571

20:8 Formally Verified Simulations of State-Rich Processes Using Interaction Trees

hidden is prioritised over other visible events: (a → P [] b → Q) \ {a} = τP, for example.

In spite of the significant restrictions on hiding, it supports the common pattern where one

output event is matched with an input event. Moreover, a priority can be placed on the

order in which events are hidden, rather than deadlocking, by sequentially hiding events.

Hiding can introduce divergence, as the following theorem shows: (iter (sync e)) \ e = div .

3.2 Circus

Whilst CSP processes can be parametrised to allow modelling state, there is no support for

explicit state operators like assignment. The do notation somewhat allows variables, but

these are immutable and are not preserved across iterations. Circus [42, 32] is an extension

of CSP that allows state variables. Given a state variable buf::integer list, the buffer

example can be expressed in Circus as follows:

buf := [] # loop((Input?(i)→ buf := buf @ [i])

✷ ((length(buf) > 0) & Output!(hd buf)→ buf := tl buf)

✷ State!(buf)→ Skip)

We update the state with assignments, which are threaded through sequential composition.

In our work [15, 14, 16], each state variable is modelled as a lens [12], x :: V =⇒ S. This

is a pair of functions get :: V ⇒ S and put :: S ⇒ V ⇒ S, which query and update the

variables present in state S, and satisfy intuitive algebraic laws [14]. They allow an abstract

representation of state spaces, where no explicit model is required to support the laws of

programming [22]. Lenses can be designated as independent, x ▷◁ y, meaning they refer to

different regions of S. An expression on state variables is simply a function e :: S ⇒ V , where

V is the return type. We can check whether an expression e uses a lens x using unrestriction,

written x ♯ e. If x ♯ e, then e does not use x in its valuation, for example x ♯ (y + 1), when

x ▷◁ y. Updates to variables can be expressed using the notation [x1 ⇝ e1, x2 ⇝ e2, · · ·], with

xi :: Vi =⇒ S and ei :: S ⇒ Vi , which represents a function S ⇒ S.

We can characterise Circus through a Kleisli lifting of CSP processes that return values,

so that Circus actions are simply homogeneous KTrees. We define the core operators below:

▶ Definition 11 (Circus Operators).

⟨σ⟩ ≜ (λ s • Ret(σ(s)))

x := e ≜ ⟨[x ⇝ e]⟩

c?x:A→ F(x) ≜ (λ s • inp c A >>= (λ x • F(x) s))

c!e → P ≜ (λ s • outp c (e s)>>= (λ x • P s))

P ✷ Q ≜ (λ s • P(s) ✷ Q(s))

P |[ns1|E |ns2]|Q ≜ (λ s • (P(s) ∥E Q(s))>>= (λ(s1, s2) • s ◁ns1 s1 ◁ns2 s2))

Operator ⟨σ⟩ lifts a function σ : S ⇒ S to a KTree. It is principally used to represent

assignments, which can be constructed using our maplet notation, such that a single assign-

ment x := e is ⟨[x ⇝ e]⟩. Most of the remaining operators are defined by lifting of their

CSP equivalents. An output c!e → P carries an expression e, rather than a value, which

can depend on the state variables. The main complexity is the Circus parallel operator,

P |[ns1|E |ns2]|Q, which allows P and Q to act on disjoint portions of the state, characterised

by the name sets ns1 and ns2. We represent ns1 and ns2 as independent lenses, ns1 ▷◁ ns2,

though they can be thought of as sets of variables with ns1 ∩ ns2 = ∅. The definition of

https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/examples/ITree_Circus_Examples.thy#L9
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_Circus.thy#L7

S. Foster, C.-K. Hur, and J. Woodcock 20:9

the operator first lifts ∥E , and composes this with a merge function. The merge function

constructs a state that is composed of the ns1 region from the final state of P, the ns2 region

from Q, and the remainder coming from the initial state s. This is achieved using the lens

override operator s1 ◁X s2, which extracts the region described by X from s2 and overwrites

the corresponding region in s1, leaving the complement unchanged.

Our Circus operators satisfy many standard laws [32, 16], beyond the CSP laws:

⟨σ⟩ # ⟨ρ⟩ = ⟨ρ ◦ σ⟩

⟨σ⟩ # (P ✷ Q) = (⟨σ⟩ # P) ✷ (⟨σ⟩ # Q)

x := e # y := f = y := f # x := e if x ▷◁ y, x ♯ f , y ♯ e

P |[ns1|E |ns2]|Q = Q |[ns2|E |ns1]|P if ns1 ▷◁ ns2

Sequential composition of two state updates σ and ρ entails their functional composition.

State updates distribute through external choice from the left. Two variable assignments

commute provided their variables are independent (x ▷◁ y) and their respective expressions

do not depend on the adjacent variable. Circus parallel composition is commutative, provided

that we also switch the name sets.

4 Linking to Failures-Divergences Semantics

Next, we show how ITrees are related to the standard failures-divergences semantics of CSP [8].

The utility of this link is to both allow symbolic verification of ITrees and allow them to act

as a target of step-wise refinement. In this way, we can use existing the mechanisations of the

CSP set-based and relational semantics [39, 16] to capture and reason about nondeterministic

specifications, and use ITrees to provide executable implementations.

In the failures-divergences model, a process is characterised by two sets: F :: (E✓ list ×

E set) set and D :: P(E list), which are, respectively, the set of failures and divergences. A

failure is a trace of events plus a set of events that can be refused at the end of the interaction.

A divergence is a trace of events that leads to divergent behaviour. A distinguished event

✓ ∈ E is used as the final element of a trace to indicate that this is a terminating observation.

For example, consider the process a → c → skip ✷ b → div , which initially permits an a

or b event, and following a permits a c event. It exhibits the failure ([], {c}), since before

any events are performed, the event c is being refused. A second failure is ([a], {a, b}), since

after performing an a, only c is enabled and the other events are refused. A third failure

is ([a, c,✓], {a, b, c}), which represents successful termination, after which all events are

refused. This process also has a divergence trace [b], since after performing event b, the

process diverges. If a divergent state is unreachable then D is empty. Here, we show how to

extract F and D from any ITree, and thus processes constructed from the operators of §3.

We begin by giving a big-step operational semantics to ITrees, using an inductive predicate.

▶ Definition 12 (Big-Step Operational Semantics).

−

P
[]
−→ P

P
tr
−→ P ′

τP
tr
−→ P ′

e ∈ E F(e)
tr
−→ P ′

([] x ∈ E • F(x))
e#tr
−−−→ P ′

The relation P
tr
−→ Q means that P can perform the trace of visible events contained in the

list tr : E list and evolve to the ITree Q. This relation skips over τ events. The first rule

states that any ITree may perform an empty trace ([]) and remain at the same state. The

second rule states that if P can evolve to P ′ by performing tr , then so can τP. The final rule

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_Circus.thy#L44
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/Interaction_Trees.thy#L310

20:10 Formally Verified Simulations of State-Rich Processes Using Interaction Trees

states that if e is an enabled visible event, and P(e) can evolve to P ′ by doing tr , then the

event choice can evolve to P ′ via e#tr , which is tr with e inserted at the head. This inductive

predicate is different from the trace predicate (is trace of) in [43], since P
tr
−→ P ′ records

both the trace and the continuation ITree. It is therefore more general, and provides the

foundation for characterising both structural operational and denotational semantics. With

these laws, we can prove the usual operational laws for sequential composition as theorems:

▶ Theorem 13 (Sequential Operational Semantics).

−

skip→ ✓()

P
tr
−→ P ′

(P >>= Q)
tr
−→ (P ′ >>= Q)

P
tr1−−→ ✓x Q(x)

tr2−−→ Q′

(P >>= Q)
tr1 @ tr2−−−−−→ Q′

The skip process immediately terminates, returning (). If the left-hand side P of >>= can

evolve to P ′ performing the events in tr , then the overall bind evolves similarly. If P can

terminate after doing tr1, returning x, and the continuation Q(x) can evolve over tr2 to Q′

then the overall >>= can also evolve over the concatenation of tr1 and tr2, tr1 @ tr2, to Q′.

Often in CSP, one likes to show that there are no divergent states, a property called

divergence freedom. It is captured by the following inductive-coinductive definition:

▶ Definition 14 (Divergence Freedom).

−

✓x
⇒ R

P ⇒ R

τP ⇒ R

ran(F) ⊆ R

Vis F ⇒ R
div-free ≜

⋃

{R | R ⊆ {P | P ⇒ R}}

Predicate P ⇒ R is defined inductively. It requires that P stabilises to a Ret, or to a Vis

whose coninuations are all contained in R. Then, div-free is the largest set consisting of all

sets R = {P | P ⇒ R}, and is coinductively defined. If we can find an R such that for every

P ∈ R, it follows that P ⇒ R, that is R is closed under stabilisation, then any P ∈ R is

divergence free. Essentially, R needs to enumerate the symbolic post-stable states of an

ITree; for example R = {run E} satisfies the provisos and so run E is divergence free. We

have proved that P ∈ div-free ⇔ (∄s • P
s
−→ div), which gives the operational meaning.

With our transition relation, we can define Roscoe’s step relation, which is used to link

the operational and denotational semantics of CSP [36, Section 9.5]. The utility of this

definition, and the theorems that follow, is to permit symbolic verification of CSP processes

by calculating their set-based characterisation.

▶ Definition 15 (Roscoe’s Step Relation).

(P
s
=⇒ P ′) ≜ ((∃ t ∈ Σ list • s = t @ [✓x] ∧ P

t
−→ ✓x ∧ P ′ = stop) ∨ (set(s) ⊆ Σ ∧ P

s
−→ P ′))

Here, set(s) extracts the set of elements from a list. The step relation is similar to
s
−→, except

that the event type is adjoined with a special termination event ✓. We define the enlarged

set Σ✓ ≜ Σ ∪ {✓x | x ∈ S}, which adds a family of events parametrised by return values, as

in the semantics of Occam [34], which derives from CSP. A termination is signalled when the

transition relation reaches a Ret x in the ITree, in which case the trace is augmented with ✓x

and the successor state is set to stop. We often use a condition of the form set(s) ⊆ Σ to mean

that no ✓x event is in s. We can now define the sets of traces, failures, and divergences [36]:

https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/Interaction_Trees.thy#L420
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_Divergence.thy#L30
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_FDSem.thy#L46

S. Foster, C.-K. Hur, and J. Woodcock 20:11

▶ Definition 16 (Traces, Failures, and Divergences).

traces(P) ≜ {s | set(s) ⊆ Σ✓ ∧ (∃P ′ • P
s
=⇒ P ′)}

P ref E ≜ ((∃F • P = Vis F ∧ E ∩ dom(F) = ∅) ∨ (∃ x • P = Ret x ∧ ✓x /∈ E))

failures(P) ≜
{

(s,X) | set(s) ⊆ Σ✓ ∧ (∃Q • P
s
=⇒ Q ∧ Q ref X)

}

divergences(P) ≜ {s @ t | set(s) ⊆ Σ ∧ set(t) ⊆ Σ ∧ (∃Q • P
s
=⇒ Q ∧ Q⇑)}

The set traces(P) is the set of all possible event sequences that P can perform. For failures(P),

we need to determine the set of events that an ITree is refusing, P ref E . If P is a visible

event, Vis F , then any set of events E outside of dom(F) is refused. If P is a return event,

Ret x , then every event other than ✓x is refused. With this, we can implement Roscoe’s form

for the failures. Finally, the divergences is simply a trace s leading to a divergent state Q⇑ ,

followed by any trace t. We exemplify these definitions with two calculations of failures:

failures(inp c A) =
{([],E) | ∀ x ∈ A • c.x /∈ E} ∪ {([c.x],E) | x ∈ A ∧ ✓ /∈ E}

∪ {([c.x,✓()],E) | x ∈ A}

failures(P >>= Q) =
{(s,X) | set(s) ⊆ Σ ∧ (s,X ∪ {✓x | x ∈ S}) ∈ failures(P)}

∪ {(s @ t,X) | ∃ v • s @ [✓v] ∈ traces(P) ∧ (t,X) ∈ failures(Q(v))}

The failures of inp c A consists of (1) the empty trace, where no valid input on c is refused;

(2) the trace where an input event c.x occurred, and ✓() is not being refused; and (3) the

trace where both c.x and ✓() occurred, and every event is refused. The failures of P >>= Q

consist of (1) the failures of P that do not reach a return, and (2) the terminating traces

of P, ending in ✓v appended with a failure of Q(v), the continuation. With the help of

Isabelle’s simplifier, these equations can be used to automatically calculate the failures and

divergences, which can be easier to reason with than directly applying coinduction.

We conclude this section with some important properties of our semantic model:

▶ Theorem 17 (Semantic Model Properties).

(s,X) ∈ failures(P) ∧ (Y ∩ {x | s @ [x] ∈ traces(P)} = ∅)⇒ (s,X ∪Y) ∈ failures(P)

s ∈ divergences(P) ∧ set(t) ⊆ Σ⇒ s @ t ∈ divergences(P)

P ≈ Q ⇒ (failures(P) = failures(Q) ∧ divergences(P) = divergences(Q))

P ∈ div-free⇔ divergences(P) = ∅

P ∈ div-free⇒ (∀ s a • s @ [a] ∈ traces(P)⇒ (s, {a}) /∈ failures(P))

The first two are standard healthiness conditions of the failures-divergences model [36], called

F3 and D1, respectively. F3 states that if (s,X) is a failure of P then any event that cannot

subsequently occur after s, according to the traces, must also be refused. D1 states that

the set of divergences is extension closed. We have also proved that two weakly bisimilar

processes have the same set of divergences and failures. The next result links the coinductive

definition of divergence freedom and the set of divergences. The final result demonstrates

that ITrees satisfy Roscoe’s definition of determinism for CSP [36]: if an ITree P is divergence

free then there is no trace after which an event can be both accepted and also refused.

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_FDSem.thy#L77
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_FDSem.thy#L363

20:12 Formally Verified Simulations of State-Rich Processes Using Interaction Trees

5 Simulation by Code Generation

The Isabelle code generator [19, 18] can be used to extract code from (co)datatypes, functions,

and other constructs, to functional languages like SML, Haskell, and Scala. Although ITrees

can be infinite, this is not a problem for languages with lazy evaluation, and so we can step

through the behaviour of an ITree. Code generation then allows us to support generation of

verified simulators, and provides a potential route to correct implementations.

The main complexity is a computable representation of partial functions. Whilst A 7→ B

is partly computable, all that we can do is apply it to a value and see whether it yields an

output or not. For simulations and implementations, however, we typically want to determine

a menu of enabled events for the user to select from. Moreover, calculation of a semantics for

CSP operators like ✷ and ∥ requires us to compute with partial functions. For this, we need

a way of calculating values for functions dom, ◁, and ⊕, which is not possible for arbitrary

partial functions. Instead, we need a concrete implementation and a data refinement [18].

We choose associative lists as an implementation, A 7→ B ≈ (A × B) list, which limits

us to finite constructions. However, it has the benefit of being easily pretty printed and so

makes the simulator easier to implement. More sophisticated implementations are possible,

as the core theory of ITrees is separated from the code generation setup. To allow us to

represent partial functions by associative lists, we need to define a mapping function:

fun pfun_alist :: "(’a × ’b) list ⇒ (’a 7→ ’b)" where

"pfun_alist [] = {7→}" | "pfun_alist ((k,v) # f) = pfun_alist f ⊕ {k 7→ v}"

This recursive function converts an associative list to a partial function, by adding each pair

in the list as a maplet. We generally assume that associative lists preserve distinctness of

keys. However, for this function, keys which occur earlier take priority. With this function

we can then demonstrate how the different partial function operators can be computed. We

prove the following congruence equations as theorems in Isabelle/HOL.

(pfun alist f)⊕ (pfun alist g) = pfun alist (g @ f)

A◁ (pfun alist f) = pfun alist (AList.restrict A m)

(λ x ∈ (set xs) • f (x)) = pfun alist (map (λ k • (k, f k)) xs)

Override (⊕) is expressed by concatenating the associative lists in reverse order. Domain

restriction (◁) has an efficient implementation in Isabelle, AList.restrict, which we use. For a

partial λ-abstraction, we assume that the domain set is characterised by a list (set xs). Then,

a λ term can be computed by mapping the body function f over xs.

With these equations, we can set up the code generator. The idea is to designate certain

representations of abstract types as code datatypes in the target language, of which each

mapping function is a constructor. For sets, the following Haskell code datatype is produced:

data Set a = Set [a] | Coset [a] deriving (Read, Show);

A set is represented as a list of values using the constructor Set, which corresponds to the

function set. It is often the case that we wish to capture a complement of another set, and so

there is also the constructor Coset for a set whose elements are all those not in the given list.

Functions on sets are then computed by code equations, which provide the implementation

for each concrete representation. The membership function member is implemented like this:

member :: forall a. (Eq a) => a -> Set a -> Bool;

member x (Coset xs) = not (x ‘elem‘ xs); member x (Set xs) = xs ‘elem‘ x;

https://github.com/isabelle-utp/Z_Toolkit/blob/b51b75fa419fb69d33d542238238e6f692732c37/Partial_Fun.thy#L700

S. Foster, C.-K. Hur, and J. Woodcock 20:13

Figure 1 Simulating the CSP buffer in the Glasgow Haskell Interpreter.

Each case for the function corresponds to a code equation. The function elem is the Haskell

prelude function that checks whether a value is in a list. This kind of representation ensures

correctness of the generated code with respect to the Isabelle specifications. Similarly to

sets, we can code generate the following representation for partial functions:

data Pfun a b = Pfun_alist [(a, b)];

dom :: forall a b. Pfun a b -> Set a;

dom (Pfun_alist xs) = Set (map fst xs);

A partial function has a single constructor, although it is possible to augment this with

additional representations. Each code equation likewise becomes a case for the corresponding

recursive function, as illustrated by the domain function. Finally, we can code generate

interaction trees, which are represented by a very compact datatype:

data Itree a b = Ret b | Sil (Itree a b) | Vis (Pfun a (Itree a b));

Each semantic definition, including corecursive functions, are also automatically mapped to

Haskell functions. We illustrate the code generated for external choice below:

extchoice :: (Eq a, Eq b) => Itree a b -> Itree a b -> Itree a b;

extchoice p q = (case (p, q) of {

(Ret r, Ret y) -> (if r == y then Ret r else Vis zero_pfun);

(Ret _, Sil qa) -> Sil (extchoice p qa); (Ret r, Vis _) -> Ret r;

(Sil pa, _) -> Sil (extchoice pa q); (Vis _, Ret a) -> Ret a;

(Vis _, Sil qa) -> Sil (extchoice p qa);

(Vis f, Vis g) -> Vis (map_prod f g); });

The map_prod function corresponds to ⊙, and is defined in terms of the corresponding code

generated functions for partial functions. The external choice operator (✷) is simply defined

as an infinitely recursive function with each of the corresponding cases in Definition 7.

For constructs like inp (Definition 6), there is more work to support code generation,

since these can potentially produce an infinite number of events which cannot be captured

by an associative list. Consider, for example, inp c {0..}, for c : N
∆

−→E , which can produce

any event c.i for i ≥ 0. We can code generate this by limiting the value set to be finite, for

example {0..3}. Then, the code generator maps this to a list [0, 1, 2, 3], which is computable.

Thus, we can finally export code for concrete examples using the operator implementations.

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs#L36
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs#L40
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs#L173

20:14 Formally Verified Simulations of State-Rich Processes Using Interaction Trees

We can now implement a simple simulator, the code for which is shown below:

sim_cnt :: (Eq e, Show e, Read e, Show s) => Int -> Itree e s -> IO ();

sim_cnt n (Ret x) = putStrLn ("Terminated:␣" ++ show x);

sim_cnt n (Sil p) =

do { if (n == 0) then putStrLn "Internal␣Activity..." else return ();

if (n >= 20)

then do { putStr "Many␣steps␣(>␣20);␣Continue?"; q <- getLine;

if (q=="Y") then sim_cnt 0 p else putStrLn "Ended."; }

else sim_cnt (n + 1) p };

sim_cnt n (Vis (Pfun_alist [])) = putStrLn "Deadlocked.";

sim_cnt n t@(Vis (Pfun_alist m)) =

do { putStrLn ("Events:␣" ++ show (map fst m)); e <- getLine;

case (reads e) of

[] -> do { putStrLn "No␣parse"; sim_cnt n t }

[(v, _)] -> case (lookup v m) of

Nothing -> do { putStrLn "Rejected"; sim_cnt n t }

Just k -> sim_cnt 0 k };

simulate = sim_cnt 0;

The idea is to step through τs until we reach either a ✓x , in which case we terminate, or a Vis,

in which we case the user can choose an option. Since divergence is a possibility, we limit the

number of τs that the will be skipped. After 20 τ steps, the user can choose to continue or

abort the simulation. If an empty event choice is encountered, then the simulation terminates

due to deadlock. Otherwise, it displays a menu of events, allows the user to choose one,

and then recurses following the given continuation. The simulator currently depends on

associative lists to represent choices, but other implementations are possible.

In order to apply the simulator, we need only augment the generated code for a particular

ITree with the simulator code. Figure 1 shows a simulation of the CSP buffer in §3, with the

possible inputs limited to {0..3}. We provide an empty list as a parameter for the initial

state. The simulator tells us the events enabled, and allows us to pick one. If we try and

pick a value not enabled, the simulator rejects this. Since lenses and expressions can also be

code generated, we can also simulate the Circus version of the buffer, with the same output.

As a more sophisticated example, we have implemented a distributed ring buffer, which

is adopted from the original Circus paper [42]. The idea is to represent a buffer as a ring of

one-place cells, and a controller that manages the ring. It has the following form:

(Controller |[{rd.c,wrt.c | c ∈ N}]| (||| i ∈ {0..maxbuff } • Cell(i))) \ {rd.c,wrt.c | c ∈ N}

where rd.c and wrt.c are internal channels for the controller to communicate with the ring.

Each cell is a single place buffer with a state variable val, and has the form

Cell(i) ≜ wrt?c → val := v # loop(wrt?c → val := v ✷ rd!val → Skip)

The cells are arranged through indexed interleaving, and maxbuff is the buffer size. The

channels Input and Output are used for communicating with the overall buffer. Space will

not permit further details. The simulator can efficiently simulate this example, for a small

ring with 5 cells, with a similar output to Figure 1, which is a satisfying result.

We were also able to simulate the ring buffer with 100 cells, which requires about 3

seconds to compute the next step. With 1000 cells, the simulator takes more than a minute

to calculate the next transition. The highest number of cells we could reasonably simulate

is around 250. However, we have made no attempt to optimise the code, and several data

types could be replaced with efficient implementations to improve scalability. Thus, as an

approach to simulation and potentially implementation, this is very promising.

https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs#L222
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/RingBuffer.thy#L96
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/RingBuffer.hs

S. Foster, C.-K. Hur, and J. Woodcock 20:15

6 Related Work

Infinite trees are a ubiquitous model for concurrency [40]. In particular, ITrees can be seen

as a restricted encoding of Milner’s synchronisation trees [27, 41, 28]. In contrast to ITrees,

synchronisation trees allow multiple events from each node, including both visible and τ

events. They have seen several generalisations, most recently by Ferlez et al. [10], who

formalise Generalized Synchronisation Trees based on partial orders, define bisimulation

relations [11], and apply them to hybrid systems. Our work is different, because ITrees use

explicit coinduction and corecursion, but there are likely mutual insights to be gained.

ITrees naturally support deterministic interactions, which makes them ideal for imple-

mentations. Milner extensively discusses determinism in [28, chapter 11], a property which is

imposed by construction in our operators. Similarly, Hoare defines a deterministic choice

operator a → P | b → Q in [21, page 29], which is similar to ours except that Hoare’s

operator imposes determinism syntactically, where we introduce deadlock.

ITrees [43], and their mechanisation in Coq, have been applied in various projects as a

way of defining abstract yet executable semantics [23, 44, 26, 45, 46, 25, 37]. They have been

used to verify C programs [23] and a HTTP key-value server [25]. The Coq mechanisation

uses features not available in Isabelle, notably type constructor variables. Specifically, in

[43] the Vis constructor has two parameters, rather than one, for the enabled events (i.e.

channels) e : E A and k : A → itree E R, a total function, for the continuation. There, E is a

type constructor over A, the type of data. Our work avoids this, with no apparent loss of

generality, by fixing an event universe, E ; using partial functions to represent visible event

choices; and using prisms [33] to characterise channels. We can encode the two parameter

Vis e k as [] x∈dom(matche)→ k(matche(x)) with e : A
∆

−→E . The benefit of having a fixed

E is that ITrees become much simpler semantic objects. Traces can be represented as lists,

rather than the bespoke type used in [43]. These are amenable to first-order automated

proof [5], which has allowed us to develop our library quickly and with minimal effort.

7 Conclusions

In this paper we showed how Interaction Trees [43] can be used to develop verified simulations

for state-rich process languages with the help of Isabelle codatatypes [4] and the code

generator [19, 18]. Our early results indicate that the technique provides both tractable

verification, with the help of Isabelle’s proof automation [5] and efficient simulation. We

applied our technique to the CSP and Circus process languages, though it is applicable to a

variety of other process algebraic languages.

So far, we have focused primarily on deterministic processes, since these are easier to

implement. This is not, however, a limitation of the approach. There are at least three

approaches that we will investigate to handling nondeterminism in the future: (1) use of a

dedicated indexed nondeterminism event; (2) extension of ITrees to permit a computable

set of events following a τ ; (3) a further Kleisli lifting of ITrees into sets. Moreover, we will

formally link ITrees to our formalisation of reactive contracts [15, 16], which provides both a

denotational semantics for Circus and a refinement calculus for reactive systems, building on

our link with failures-divergences. We will implement the remaining CSP operators, such as

renaming and interruption. We will also further investigate the failures-divergence semantics

of our ITree process operators, and determine whether failures-divergences equivalence entails

weak bisimulation. Finally we will provide a more user friendly interface for our simulator as

found in animators like FDR4’s probe tool [17] and ProB [24] for Event-B.

CONCUR 2021

20:16 Formally Verified Simulations of State-Rich Processes Using Interaction Trees

Our work has many practical applications in production of verified simulations. We

intend to use it to mechanise a semantics for the RoboChart [29] and RoboSim [9] languages,

which are formal UML-like languages for modelling robots with denotational semantics based

in CSP. This will require us to consider discrete time, which we believe can be supported

using a dedicated time event in ITrees, similar to tock-CSP [35]. This will build on our

colleagues’ work with ✓-tock [2], a new semantics for tock-CSP. This will open up a pathway

from graphical models to verified implementations of autonomous robotic controllers. In

concert with this, we will also explore links to our other theories for hybrid systems [31, 13],

to allow verification of controllers in the presence of a continuously evolving environment.

References

1 R.-J. Back and J. Wright. Refinement Calculus: A Systematic Introduction. Springer, 1998.
2 J. Baxter, P. Ribeiro, and A. Cavalcanti. Sound reasoning in tock-CSP. Acta Informatica,

April 2021. doi:10.1007/s00236-020-00394-3.
3 J. C. Blanchette, A. Bouzy, A. Lochbihler, A. Popescu, and D. Traytel. Friends with Benefits:

Implementing Corecursion in Foundational Proof Assistants. In Programming Languages and

Systems, 26th European Symposium on Programming (ESOP), 2017.
4 J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel. Truly modular

(co)datatypes for Isabelle/HOL. In Gerwin Klein and Ruben Gamboa, editors, 5th Intl. Conf.

on Interactive Theorem Proving (ITP), volume 8558 of LNCS, pages 93–110. Springer, 2014.
5 J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED. Journal

of Formalized Reasoning, 9(1), 2016. doi:10.6092/issn.1972-5787/4593.
6 J. C. Blanchette, A. Popescu, and D. Traytel. Foundational extensible corecursion: a proof

assistant perspective. In 20th Intl. Conf. on Functional Programming (ICFP), pages 192–204.
ACM, August 2015. doi:10.1145/2858949.2784732.

7 J. C. Blanchette, A. Popescu, and D. Traytel. Soundness and completeness proofs by
coinductive methods. Journal of Automated Reasoning, 58:149–179, 2017. doi:10.1007/

s10817-016-9391-3.
8 S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential

processes. Journal of the ACM, 31(3):560–599, 1984. doi:10.1145/828.833.
9 A. Cavalcanti, A. Sampaio, A. Miyazawa, P. Ribeiro, M. Filho, A. Didier, W. Li, and

J. Timmis. Verified simulation for robotics. Science of Computer Programming, 174:1–37,
2019. doi:10.1016/j.scico.2019.01.004.

10 J. Ferlez, R. Cleaveland, and S. Marcus. Generalized synchronization trees. In Proc. 17th Intl.

Conf. on Foundations of Software Science and Computation Structures (FOSSACS), volume
8412 of LNCS, pages 304–319. Springer, 2014. doi:10.1007/978-3-642-54830-7_20.

11 J. Ferlez, R. Cleaveland, and S. I. Marcus. Bisimulation in behavioral dynamical systems and
generalized synchronization trees. In Proc. 2018 IEEE Conf. on Decision and Control (CDC),
pages 751–758. IEEE, 2018. doi:10.1109/CDC.2018.8619607.

12 J. Foster. Bidirectional programming languages. PhD thesis, University of Pennsylvania, 2009.
13 S. Foster. Hybrid relations in Isabelle/UTP. In 7th Intl. Symp. on Unifying Theories of

Programming (UTP), volume 11885 of LNCS, pages 130–153. Springer, 2019.
14 S. Foster, J. Baxter, A. Cavalcanti, J. Woodcock, and F. Zeyda. Unifying semantic foundations

for automated verification tools in Isabelle/UTP. Science of Computer Programming, 197,
October 2020. doi:10.1016/j.scico.2020.102510.

15 S. Foster, A. Cavalcanti, S. Canham, J. Woodcock, and F. Zeyda. Unifying theories of
reactive design contracts. Theoretical Computer Science, 802:105–140, January 2020. doi:

10.1016/j.tcs.2019.09.017.
16 S. Foster, K. Ye, A. Cavalcanti, and J. Woodcock. Automated verification of reactive and

concurrent programs by calculation. Journal of Logical and Algebraic Methods in Programming,
121, June 2021. doi:10.1016/j.jlamp.2021.100681.

https://doi.org/10.1007/s00236-020-00394-3
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1145/2858949.2784732
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1145/828.833
https://doi.org/10.1016/j.scico.2019.01.004
https://doi.org/10.1007/978-3-642-54830-7_20
https://doi.org/10.1109/CDC.2018.8619607
https://doi.org/10.1016/j.scico.2020.102510
https://doi.org/10.1016/j.tcs.2019.09.017
https://doi.org/10.1016/j.tcs.2019.09.017
https://doi.org/10.1016/j.jlamp.2021.100681

S. Foster, C.-K. Hur, and J. Woodcock 20:17

17 T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3 — A Modern
Refinement Checker for CSP. In Erika Ábrahám and Klaus Havelund, editors, Tools and

Algorithms for the Construction and Analysis of Systems, volume 8413 of LNCS, pages 187–201,
2014.

18 F. Haftmann, A. Krauss, O. Kuncar, and T. Nipkow. Data refinement in Isabelle/HOL. In
Proc. 4th Intl. Conf. on Interactive Theorem Proving (ITP), volume 7998 of LNCS, pages
100–115. Springer, 2013.

19 F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In 10th Intl.

Symp. on Functional and Logic Programming (FLOPS), volume 6009 of LNCS, pages 103–117.
Springer, 2010.

20 Matthew Hennessy and Tim Regan. A process algebra for timed systems. Information and

Computation, 117(2):221–239, 1995.
21 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
22 C. A. R. Hoare, I. Hayes, J. He, C. Morgan, A. Roscoe, J. Sanders, I. Sørensen, J. Spivey, and

B. Sufrin. The laws of programming. Communications of the ACM, 30(8):672–687, August
1987.

23 Nicolas Koh, Yao Li, Yishuai Li, Li yao Xia, Lennart Beringer, Wolf Honoré, William Mansky,
Benjamin C. Pierce, and Steve Zdancewic. From C to Interaction Trees: Specifying, Verifying,
and Testing a Networked Server. In Proc. 8th ACM SIGPLAN International Conference on

Certified Programs and Proofs (CPP), 2019. doi:10.1145/3293880.3294106.
24 M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method. Int J

Softw Tools Technol Transf, 10:185–203, 2008. doi:10.1007/s10009-007-0063-9.
25 Yishuai Li, Benjamin C. Pierce, and Steve Zdancewic. Model-based testing of networked

applications. In Proc. 30th ACM SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA), 2021.
26 William Mansky, Wolf Honoré, and Andrew W. Appel. Connecting higher-order separation

logic to a first-order outside world. In Proc. 29th European Symposium on Programming

(ESOP), 2020.
27 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer

Science. Springer, 1980.
28 Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
29 A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, and J. Woodcock. RoboChart:

modelling and verification of the functional behaviour of robotic applications. Software and

Systems Modelling, January 2019. doi:10.1007/s10270-018-00710-z.
30 C. Morgan. Programming from Specifications. Prentice-Hall, January 1996.
31 J. H. Y. Munive, G. Struth, and S. Foster. Differential Hoare logics and refinement calculi for

hybrid systems with Isabelle/HOL. In RAMiCS, volume 12062 of LNCS. Springer, April 2020.
doi:10.1007/978-3-030-43520-2_11.

32 M. Oliveira, A. Cavalcanti, and J. Woodcock. A UTP semantics for Circus. Formal Aspects of

Computing, 21:3–32, 2009. doi:10.1007/s00165-007-0052-5.
33 M. Pickering, J. Gibbons, and N. Wu. Profunctor optics: Modular data accessors. The Art,

Science, and Engineering of Programming, 1(2), 2017. doi:10.22152/programming-journal.

org/2017/1/7.
34 A. W. Roscoe. Denotational semantics for Occam. In Intl. Seminar on Concurrency, volume

197 of LNCS, pages 306–329. Springer, 1984.
35 A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 2005.
36 A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
37 Lucas Silver and Steve Zdancewic. Dijkstra monads forever: Termination-sensitive specifica-

tions for Interaction Trees. Proceedings of the ACM on Programming Languages, 5(POPL),
January 2021. doi:10.1145/3434307.

38 M. Spivey. The Z-Notation - A Reference Manual. Prentice Hall, Englewood Cliffs, N. J.,
1989.

CONCUR 2021

https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/s00165-007-0052-5
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.1145/3434307

20:18 Formally Verified Simulations of State-Rich Processes Using Interaction Trees

39 S. Taha, B. Wolff, and L. Ye. Philosophers may dine – definitively! In Proc. 16th Intl. Conf.

on Integrated Formal Methods, LNCS. Springer, 2020. doi:10.1007/978-3-030-63461-2_23.
40 R. J. van Glabbeek. Notes on the methodology of CCS and CSP. Theoretical Computer

Science, 1997.
41 G. Winskel. Synchronisation trees. Theoretical Computer Science, 34(1-2):33–82, 1984.
42 J. Woodcock and A. Cavalcanti. A concurrent language for refinement. In A. Butterfield,

G. Strong, and C. Pahl, editors, Proc. 5th Irish Workshop on Formal Methods (IWFM),
Workshops in Computing. BCS, July 2001.

43 L.-Y. Xia, Y. Zakowski, P. He, C.-K. Hur, G. Malecha, B. C. Pierce, and S. Zdancewic.
Interaction trees: Representing recursive and impure programs in Coq. In Proc. 47th ACM

SIGPLAN Symposium on Principles of Programming Languages (POPL). ACM, 2020. doi:

10.1145/3371119.
44 Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. An equational theory for

weak bisimulation via generalized parameterized coinduction. In Proc. 9th ACM SIGPLAN

International Conference on Certified Programs and Proofs (CPP), 2020. doi:10.1145/

3372885.3373813.
45 Vadim Zaliva, Ilia Zaichuk, and Franz Franchetti. Verified translation between purely functional

and imperative domain specific languages in HELIX. In Proc. 12th International Conference

on Verified Software: Theories, Tools, Experiments (VSTTE), 2020.
46 Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-Yao Xia, Lennart Beringer,

William Mansky, Benjamin C. Pierce, and Steve Zdancewic. Verifying an HTTP key-value
server with Interaction Trees and VST. In Proc. 12th International Conference on Interactive

Theorem Proving (ITP), 2021. doi:10.4230/LIPIcs.ITP.2021.32.

https://doi.org/10.1007/978-3-030-63461-2_23
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3372885.3373813
https://doi.org/10.1145/3372885.3373813
https://doi.org/10.4230/LIPIcs.ITP.2021.32

	1 Introduction
	2 Interaction Trees in Isabelle/HOL
	3 CSP and Circus
	3.1 CSP
	3.2 Circus

	4 Linking to Failures-Divergences Semantics
	5 Simulation by Code Generation
	6 Related Work
	7 Conclusions

