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Abstract—Speech separation remains an important area of
multi-speaker signal processing. Deep neural network (DNN)
models have attained the best performance on many speech
separation benchmarks. Some of these models can take significant
time to train and have high memory requirements. Previous work
has proposed shortening training examples to address these issues
but the impact of this on model performance is not yet well
understood. In this work, the impact of applying these training
signal length (TSL) limits is analysed for two speech separation
models: SepFormer, a transformer model, and Conv-TasNet, a
convolutional model. The WJS0-2Mix, WHAMR and Libri2Mix
datasets are analysed in terms of signal length distribution and
its impact on training efficiency. It is demonstrated that, for
specific distributions, applying specific TSL limits results in
better performance. This is shown to be mainly due to randomly
sampling the start index of the waveforms resulting in more
unique examples for training. A SepFormer model trained using
a TSL limit of 4.42s and dynamic mixing (DM) is shown to
match the best-performing SepFormer model trained with DM
and unlimited signal lengths. Furthermore, the 4.42s TSL limit
results in a 44% reduction in training time with WHAMR.

Index Terms—speech separation, context modelling, data sam-
pling, speech enhancement, transformer

I. INTRODUCTION

Speech separation models are used in a number of down-

stream speech processing tasks, from meeting transcription

to assistive hearing [1]–[4]. Often, speakers are at a far-

field distance from the microphone, which creates additional

challenges for speech separation due to interference from noise

and reverberation in the signal [5]–[7].

DNN separation models have led to significant improve-

ments on anechoic data but there is a performance gap when

these models are used for more distorted speech data [8]–

[10]. Many of these models use Transformer or bidirectional

long short term memory (BLSTM) layers [9]–[11] which

can consume large amounts of memory and have quadratic

time-complexity, i.e. for L input frames of data the model

performs at least L2 operations [12]. This is a particular

concern in training when memory requirements are higher due

to storing gradients for each operation required in the back-

propagation stage [13]. This increased computational load

also means longer training times. One way to compensate

for the memory requirements is to use a batch size of 1 [9]
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which leads to even longer training times as more parameter

updates are performed. Another approach that reduces memory

requirements and allows for larger batch sizes is to reduce the

mixture signal length [14]. This reduces the training time but

potentially at the expense of performance.

In this work, the first aim is to address if there are TSL limits

at which no additional performance gain can be attained on

DNN speech separation models. It is shown that, depending

on model and dataset selection, there is a TSL limit at which

not only can no additional performance gain be attained but

actually limiting the TSL to a specific value can lead to notably

improved performance. This effect is demonstrated to be due

to random sampling of the start index when using TSL limits.

Further evaluations show the benefit of having more unique

training examples than using the full signal lengths. Finally,

the application of TSL limits used with DM [15] is evaluated.

The remainder of this paper is structured as follows. In Sec-

tion II, the signal model is introduced. The separation networks

and datasets used are described in Section III, and Section IV,

respectively. Section V presents evaluations for varying TSL

limit for each separation network and dataset. Section VI

explores splitting signals to generate more train examples

and whether DM mitigates the effects gains found using TSL

limits. Final conclusions are provided in Section VII.

II. SIGNAL MODEL

The noisy reverberant speech separation problem is defined

as aiming to estimate C speech signals ŝc[i] for sample index

i and speaker number c ∈ {1, . . . , C} from the discrete time-

domain mixture

x[i] =
C∑

c=1

sc[i] ∗ hc[i] + ν[i] (1)

of length Lx. The ∗ operator denotes convolution, hc[i] is a

room impulse response (RIR) corresponding to speaker c and

ν[i] denotes additive background noise.

III. SEPARATION MODELS

The SepFormer [9] and Conv-TasNet [14] models are both

widely researched time-domain audio separation networks

(TasNets). The structure for these TasNets is to have a time-

domain neural encoder which encodes a mixture signal block

xℓ of size LBL to wℓ followed by a mask estimation network

which estimates a series of masks mℓ for each of C speak-

ers. These masks are used to separate the encoded features
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which are then decoded back in to a time domain signal

sℓ,c using a neural decoder. An example of the architecture

for C = 2 speakers can be seen in Figure 1. Both Conv-

Figure 1. Architecture of the SepFormer and Conv-TasNet models, exemplary
for C = 2 speakers. The ⊙ symbol denotes the Hadamard product.

TasNet and SepFormer are trained using the utterance-level

permutation-invariant scale-invariant signal-to-distortion ratio

(SISDR) objective function [9], [14], [16], [17]. Models are

trained according to the best performing models in each of

their original papers [9], [14] unless stated otherwise. Batch

sizes of 2 and 4 are used for SepFormer and Conv-TasNet

respectively except where otherwise stated.

A. SepFormer Network

The SepFormer model is briefly introduced in this section.

SepFormer is chosen because it is a large transformer model

that is among the state-of-the-art models on several speech

separation benchmarks [9], [18]. The SepFormer uses a 1D

convolutional layer for encoding the signal proceeded by a

rectified linear unit (ReLU) activation function. The decoder is

a single transposed 1D convolutional layer. The mask estima-

tion network uses a dual-path structure [11] whereby a series

of Transformer layers are stacked such that each alternating

layer computes a multihead attention layer on either the local

or global context of the sequence. The local processing is

achieved by first splitting the input signal into overlapping

chunks of a predetermined size K turning a batched 3D

tensor into a 4D tensor. The output of the local Transformer

layer is a 4D tensor which is then reshaped by swapping the

axes of encoded chunks and the number of chunks before

being fed into the global Transformer layer. The final stage

is to reconstruct a 3D tensor using the overlap-add method to

produce C sequences of masks. The encoded features are then

masked and decoded back into the time domain.

B. Conv-TasNet

The Conv-TasNet model contrasts the SepFormer in that it

is a much smaller model (25.8M vs. 3.5M parameters in the

implementations used here) and the only global information it

processes is the overall signal energy, whereas the SepFormer

model has global access to all information in the input

signal due to the transformer layers used. Conv-TasNet uses

a temporal convolutional network (TCN) sequence model for

the mask estimator in Figure 1. The encoder and decoder of

the network are the same as those used for the SepFormer

model but with a different number of output channels in

the configuration used in this paper. The mask estimation

network is composed of a 1D pointwise convolution (P-Conv)

bottleneck layer, a TCN and a 1D P-Conv projection layer with

a ReLU activation function to produce the sequence of masks.

The TCN is composed of a series of convolutional blocks

consisting of P-Conv and depthwise-separable convolution

(DS-Conv) layers with kernel size P . The convolutional blocks

are configured in stacks of X blocks with increasing dilation

factors f ∈ {20, 21, . . . , 2X−1}. Stack are repeated R times

with the dilation factor reset at the start of each stack.

IV. DATASETS

Three corpora of 2-speaker mixtures are analysed in this

work. The trends demonstrated later in Sections V and VI for

the 2-speaker scenario are assumed to generalize to higher C

values. For all corpora, the 8kHz min configuration is used.

The min configuration refers to mixtures being truncated to the

shortest utterance in a mixture as opposed to padding shorter

utterances to the longest utterances.

A. WSJ0-2Mix and WHAMR

WSJ0-2Mix and WHAMR are both simulated 2-speaker

corpora derived from the WSJ0 corpus [19], [20]. WSJ0-2Mix

takes speech samples from WSJ0 and overlaps them at speech-

to-speech ratios (SSRs) between 0 and 5 dB. WHAMR is a

noisy reverberant extension of WSJ0-2Mix with noise from

the WHAM [21] dataset mixed with the loudest speaker at

signal-to-noise ratios (SNRs) between −6 and 3 dB.

B. Libri2Mix

Libri2Mix is a simulated 2-speaker mixture corpus derived

from the LibriSpeech and WHAM corpora [22]. Speech sam-

ples come from the LibriSpeech corpus [23] and noise samples

come from the WHAM corpus. Instead of SSRs, LibriMix

uses loudness units relative to full scale (LUFS) measured in

dB to set the loudness of speakers and noise in the mixtures.

Speakers have a loudness between -25 and -33 LUFS and noise

has a loudness between −38 and −30 LUFS. For training, the

train-100 dataset was chosen as it has a very similar TSL

distribution to the alternate train-360 dataset but with less

examples, meaning shorter training times.

C. Signal Length Distributions

The distribution, density estimation (DE) and the mean and

standard deviation of the mixture signal length in the WHAMR

train tr and test tt sets can be seen in Figure 2. WSJ0-2Mix

and WHAMR have identical signal distributions as WHAMR

is derived from the former. These distributions are shown in

the left panel. The train and test sets in WHAMR have similar

distributions of signal length with mean values within 0.3s of

one another and standard deviations within 0.1s of one another.

This contrasts the distributions of the Libri2Mix dataset [22]

also shown in Figure 2 where the train-100 and test sets have

a difference in mean value of 6.2s and difference in standard

deviation of 1.79s.



Figure 2. Distributions of mixture signal lengths in WSJ0-2Mix/WHAMR
(left) and Libri2Mix (right) for both train (top) and test (bottom) sets. Density
estimation (DE) is shown by solid green lines, mean values are indicated by
dashed red lines and standard deviation values by dash-dotted blue lines.

V. TRAINING SIGNAL LENGTH ANALYSIS

Evaluations of varying the TSL limit are presented in this

section. For all evaluations, the improvement in SISDR over

the input mixture signal, denoted by ∆ SISDR, is used as the

evaluation metric. SISDR measures the energy of distortions in

the estimated speech signals and is one of the most common

metrics used in recent monaural speech separation literature

[9]–[11].

A. Initial TSL Limit Evaluations

As a first experiment, twelve SepFormer models are trained

and evaluated on WSJ0-2Mix, WHAMR and Libri2Mix, each

with a different TSL limit. Twelve logarithmically spaced

signal limits Tlim are selected between 0.5s and 10s:

Tlim ∈ {0.5, 0.66, 0.86, 1.13, 1.49, 1.95,

2.56, 3.36, 4.42, 5.8, 7.62, 10}s. (2)

The notation Llim is used for the respective discrete sample

index, i.e. Llim = Tlimfs for sampling rate fs. When cutting the

training signal lengths such that Lx ≤ Llim the starting sample

index of the signal is randomly selected from the uniform

distribution U (0, 1 +max (0, Lx − Llim)). Performance for

SepFormer models trained and evaluated on all three datasets

is compared in Figure 3. For the WHAMR corpus, an increase

in overall ∆ SISDR performance from the 0.5s to 1.95s

limit can be observed. The optimal TSL is at 3.36s. Between

3.36s and 10s performance decreases again by −1.4dB. This

may seem surprising as the general convention with training

DNNs is that more data normally results in improved overall

performance. A similar trend is observed for WSJ0-2Mix

where there is a notable increase between 0.5s and 3.36s and

then a drop in performance of 0.8dB between 4.4s and 10s.

For Libri2Mix, the performance saturates before a TSL limit

of 4.42s. There is no drop in performance as the TSL limit

approaches 10s which is likely due to the Libri2Mix training

set having a more uniform distribution below signal lengths of

10s than the WHAMR or WSJ0-2Mix datasets, cf. Figure 2.

Figure 3. SepFormer results for varying the TSL limit for the anechoic WSJ0-
2Mix (top), WHAMR (middle) and Libri2Mix (bottom) test sets.

The results for the WHAMR evaluation set are separated

into quartiles of mixture signal length for the following experi-

ment. ∆ SISDR results for each quartile are shown in Figure 4.

Comparing Q1 to Q4 shows that, with a sufficiently large

Figure 4. Training signal length (TSL) analysis of the 1st to 4th signal length
quartiles in the WHAMR evaluation set.

TSL (≥ 1.95s), the best separation performance in SISDR

is found on the longest signal lengths, regardless of TSL. A

loss in SISDR performance is still observed from 3.36s to 10s

regardless of which quartile is evaluated.

B. Training Time Evaluation

The average training epoch duration (ED) for the SepFormer

model on WHAMR and Libri2Mix training sets are shown

in Figure 5. Note the ED for WSJ0-2Mix is omitted for

brevity but is similar to WHAMR due to having the same TSL

distribution (cf. Figure 2). All models were trained on the same

hardware to control any impact this has on speed. The average

EDs for the WHAMR dataset have a sigmoidal shape due to

the majority of the signal lengths being concentrated around

the mean signal length of the training set (5.6s, cf. Figure 2).

Libri2Mix has a more linear relationship between TSL limit

and ED due to the more uniform shape of the signal length

distribution below 10s in the train-100 set, cf. Figure 2.

Reducing the TSL limit has more benefit in terms of ED for the

Libri2Mix dataset when iterating over all training examples.



Figure 5. Comparison of average epoch duration (in mins) for the SepFormer
model on the Libri2Mix and WHAMR training sets.

C. Fixed vs. Random Start Index

In Section V-A, the start index of each shortened signal

was randomly sampled from a uniform distribution. In this

section, this is compared to using a fixed start sample. A

start sample of 1999 (= 0.25s at 8kHz) was used for signals

where the original mixture signal length was larger than Llim,

else the entire signal length was used. The motivation for

this was that many training examples contain silence at the

beginning of clips. It was considered desirable to omit as much

silence to make for a fairer with the randomly sampled clips

comparison which are assumed to have a lower likelihood of

beginning with silence. Results in Figure 6 confirm that the

loss in performance from a TSL limit of 3.36s to 10s with

WHAMR is due to randomly sampling the start index. The

Figure 6. Comparison of TSL variation for the SepFormer model trained and
evaluated on the WHAMR datasets on a subset of TSL limits in the range
[1.95, 7.62]s.

performance saturates at a TSL limit of 5.8s when using a

fixed start index. This is similar to the performance saturation

point of Libri2Mix in Figure 3 demonstrating the performance

drop in higher TSLs seen before on WHAMR (cf. Figure 3) is

related to both a non-uniform TSL distribution and the random

sampling used.

D. Transformer vs. Convolutional Model

Results comparing the Conv-TasNet model (cf. Sec-

tion III-B) to the SepFormer model are shown in Figure 7.

The loss in performance above 3.36s is not observed for the

Conv-TasNet model. All SISDR results above Tlim = 1.95s

are within in 0.5dB of each other suggesting Conv-TasNet

is more invariant to the TSL limit if the limit is sufficiently

large. This is possibly due to the 1.53s receptive field of the

Conv-TasNet models being smaller than these particular TSLs

limits [24].

Figure 7. Comparison of SepFormer and Conv-TasNet across TSL limits
Tlim ∈ [4.42, 7.62] using the WHAMR corpus.

VI. SIGNAL SPLITTING AND DYNAMIC MIXING

Next, two sampling strategies are evaluated to (i) investigate

whether the performance gained by TSL with random sam-

pling on shorter sequences still holds when the same quantity

of audio data in terms of length in seconds is used and (ii)

whether using TSL limits still result in performance gains with

DM, i.e. simulating new speech mixtures for each epoch [15].

A. Signal Splitting

A signal splitting strategy was designed such that a batch of

inputs X ∈ R
M×Lx was reshaped to X

′ ∈ R
MD×

Lx

D for batch

size M . Signal length Lx is still limited such that Lx ≤ Llim.

The motivation of this method is to evaluate the importance

of training on the entire sequence length compared to the

raw data quantity used in seconds. Computational complexity

in training is also reduced. TSLs for Tlim ∈ [4.42, 10]s are

analysed for D = 2. Figure 8 shows that D = 2 improves

performance for shorter TSL limits (Tlim ≤ 5.8s) compared

to D = 1 (the original shape). However for Tlim ≥ 7.62s the

performance is similar to D = 1. As in Figure 3 this is likely

due to the TSL distribution of WHAMR.

Figure 8. Comparison of split signal and batch reshape training D = 2
against full signal training D = 1 for the SepFormer model.

B. Dynamic Mixing

DM was proposed to improve performance of various

speech separation models [15]. DM often results in a 1.0
to 1.5dB SISDR performance improvement dependant upon

the model and dataset [15], [25]. The random start index

sampling used in Section V is similar to DM in that it provides

the model with unique training examples each epoch but

without simulating new mixtures. In this section using DM

and TSL limits is compared against just using TSL limits to

see if further performance gains can be attained using both

approaches. The DM results for the WHAMR corpus are



shown in Figure 9. It can be seen that with DM the drop

in performance is less (at 7.62s) than without DM. The best

Figure 9. Comparison of SepFormer model training using TSL limits with
and without dynamic mixing being used as well on WHAMR evaluation set.

performing model Tlim = 4.4s is compared to the Sepformer

model with no TSL limit in Table I. The batch size reported

for the model with no TSL is the largest it was found possible

to train on a 32GB Nvidia V100 GPU. It can be seen that

using the TSL limited model is able to match its performance

with an average ED reduction of 44%, highlighting the benefit

of this approach.

Table I
COMPARISON OF BEST PERFORMING SEPFORMER MODELS ON WHAMR

WITH AND WITHOUT TSL LIMITS. M DENOTES BATCH SIZE AND THE

AVERAGE EPOCH DURATION (ED) IS REPORTED IN MINUTES.

Model M Tlim (s) ∆ SISDR (dB) ED (mins)

SepFormer + DM 1 − 14.0 85
SepFormer + DM 2 7.62 13.6 74
SepFormer + DM 2 4.42 14.0 59

VII. CONCLUSION

In this paper it was shown that TSL limits can affect

the overall performance for speech separation models in a

number ways. For WSJ0 derived speech separation bench-

marks, i.e. WSJ0-2Mix and WHAMR, it is optimal to use

shortened training examples randomly sampled from the orig-

inal examples due to the signal length distribution of these

corpora. For the Libri2Mix dataset, the same method led to

shorter training times with no notable loss in performance. The

SepFormer model was compared to the Conv-TasNet model

and it was shown that the Conv-TasNet performance has less

variation. Using dynamic mixing and TSL limits with random

sampling was shown to be able to match the performance of

the SepFormer model trained DM using full sequence lengths

on WHAMR with a 44% reduction in training time. With some

previous literature opting to limit TSLs [11], [14] and others

not [9], [10] on the same benchmarks, the results in this paper

suggest that this is not a fair comparison and that TSL limiting

is important to factor in when analysing results, particularly

for the WSJ0-2Mix and WHAMR benchmarks.

REFERENCES

[1] R. Haeb-Umbach, J. Heymann, L. Drude, S. Watanabe, M. Delcroix, and
T. Nakatani, “Far-Field Automatic Speech Recognition,” Proceedings of

the IEEE, vol. 109, no. 2, pp. 124–148, 2021.
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