
This is a repository copy of Testing causality in scientific modelling software.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200672/

Version: Accepted Version

Article:

Clark, A.G., Foster, M., Prifling, B. et al. (4 more authors) (2024) Testing causality in
scientific modelling software. ACM Transactions on Software Engineering and
Methodology, 33 (1). pp. 1-42. ISSN 1049-331X

https://doi.org/10.1145/3607184

© 2023 Copyright held by the owner/author(s). Except as otherwise noted, this author-
accepted version of a journal article published in ACM Transactions on Software
Engineering and Methodology is made available via the University of Sheffield Research
Publications and Copyright Policy under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution and
reproduction in any medium, provided the original work is properly cited. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Testing Causality in Scientific Modelling Software

ANDREW G. CLARK, Department of Computer Science, The University of Sheffield, United Kingdom

MICHAEL FOSTER, Department of Computer Science, The University of Sheffield, United Kingdom

BENEDIKT PRIFLING, Institute of Stochastics, Ulm University, Germany

NEIL WALKINSHAW, Department of Computer Science, The University of Sheffield, United Kingdom

ROBERT M. HIERONS, Department of Computer Science, The University of Sheffield, United Kingdom

VOLKER SCHMIDT, Institute of Stochastics, Ulm University, Germany

ROBERT D. TURNER, Department of Computer Science, The University of Sheffield, United Kingdom

From simulating galaxy formation to viral transmission in a pandemic, scientific models play a pivotal role in developing scientific

theories and supporting government policy decisions that affect us all. Given these critical applications, a poor modelling assumption

or bug could have far-reaching consequences. However, scientific models possess several properties that make them notoriously

difficult to test, including a complex input space, long execution times, and non-determinism, rendering existing testing techniques

impractical. In fields such as epidemiology, where researchers seek answers to challenging causal questions, a statistical methodology

known as Causal Inference has addressed similar problems, enabling the inference of causal conclusions from noisy, biased, and sparse

data instead of costly experiments. This paper introduces the Causal Testing Framework: a framework that uses Causal Inference

techniques to establish causal effects from existing data, enabling users to conduct software testing activities concerning the effect of a

change, such as Metamorphic Testing, a posteriori. We present three case studies covering real-world scientific models, demonstrating

how the Causal Testing Framework can infer metamorphic test outcomes from reused, confounded test data to provide an efficient

solution for testing scientific modelling software.

CCS Concepts: · Computing methodologies→Model verification and validation; Causal reasoning and diagnostics; · Software

and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Software Testing, Causal Inference, Causal Testing

ACM Reference Format:

Andrew G. Clark, Michael Foster, Benedikt Prifling, Neil Walkinshaw, Robert M. Hierons, Volker Schmidt, and Robert D. Turner. 2023.

Testing Causality in Scientific Modelling Software. 1, 1 (June 2023), 43 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Andrew G. Clark, agclark2@sheffield.ac.uk, Department of Computer Science, The University of Sheffield, Regent Court, 211

Portobello, S1 4DP, Sheffield, United Kingdom; Michael Foster, m.foster@sheffield.ac.uk, Department of Computer Science, The University of Sheffield,

Regent Court, 211 Portobello, S1 4DP, Sheffield, United Kingdom; Benedikt Prifling, benedikt.prifling@uni-ulm.de, Institute of Stochastics, Ulm University,

Helmholtzstraße 18 , 89081, Ulm, Germany; Neil Walkinshaw, n.walkinshaw@sheffield.ac.uk, Department of Computer Science, The University of

Sheffield, Regent Court, 211 Portobello, S1 4DP, Sheffield, United Kingdom; Robert M. Hierons, r.hierons@sheffield.ac.uk, Department of Computer

Science, The University of Sheffield, Regent Court, 211 Portobello, S1 4DP, Sheffield, United Kingdom; Volker Schmidt, volker.schmidt@uni-ulm.de,

Institute of Stochastics, Ulm University, Helmholtzstraße 18 , 89081, Ulm, Germany; Robert D. Turner, r.d.turner@sheffield.ac.uk, Department of

Computer Science, The University of Sheffield, Regent Court, 211 Portobello, S1 4DP, Sheffield, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Clark et al.

1 INTRODUCTION

The use of scientific modelling software to model, simulate, and understand complex phenomena has become com-

monplace. Such systems have played a pivotal role in improving our scientific understanding across a wide range of

phenomena and disciplines, and are increasingly used outside of academia. Governments, for example, make extensive

use of scientific modelling software to simulate and evaluate various policies and interventions [75]. Perhaps most

notably, this has included the use of epidemiological models to predict the impact of a number of COVID-19 mitigation

measures [56, 102].

Testing such models is particularly challenging [51]. They typically have vast input spaces comprising hundreds

of parameters, as well as complex output spaces. Executing large numbers of tests is often impossible, because each

execution can require a significant amount of time and resource to execute. Compounding this issue further, scientific

models are often non-deterministic, meaning developers must run each test case multiple times and observe the

distribution of outputs. Furthermore, these systems are often developed by scientists with a limited amount of training

as software engineers [53].

Collectively, these issues make it difficult (and sometimes impossible) to determine whether the output of a test

case or modelling scenario is correct or not. This is referred to as the test oracle problem [11]. Instead, to determine

whether a software system is fit for purpose, a tester generally corroborates evidence to investigate smaller, more

specific relationships between inputs and outputs. By making changes to particular input parameters and observing

changes to particular output variables, there is an implicit assumption that the input parameters in question somehow

influence the computation (i.e. have a ‘causal’ effect) of the outputs.

In this paper we are specifically concerned with this intrinsic challenge: How can we test the (implicitly causal)

input-output relationships in a system with a vast and complex input space, which may be non-deterministic and suffer

from the test oracle problem, without the ability to resort to large numbers of test executions?

The challenge of analysing causal relationships in limited, noisy data instead of running costly experiments is

well-established in the statistical context. In areas such as epidemiology, a powerful statistical methodology known

as causal inference (CI) has been employed to answer causal questions that cannot be answered experimentally due

to ethical concerns, such as Does smoking cause lung cancer? [28]. By incorporating domain knowledge about known

causal relationships between variables (or absence thereof), CI can produce estimands that isolate the causal quantity

of interest. That is, ‘recipes’ for analysing data in a causally-valid way. Conventional statistical methods can then be

employed to quantify the presence (or absence) of specific causal relationships, correcting for bias in the data, without

the need for experimental procedures.

This paper is motivated by the observation that CI and software testing share a common goal in many cases: to

establish precise and salient causal relationships. Moreover, by viewing software testing through a causal lens, we can

leverage well-established CI techniques that conceptually address several testing challenges presented by scientific

models for causality-driven testing activities, such as metamorphic testing.

To this end, we introduce a testing framework that incorporates an explicit model of causality into the testing

process, facilitating the direct application of CI techniques to software testing problems, such as metamorphic testing.

To achieve this, we take a model-based testing (MBT) perspective [65], in which testing is based on a model of the

expected behaviour of the system-under-test that typically either describes the allowed sequences of events or gives a

formal relation between the inputs and outputs [46, 105]. Traditionally, MBT has focused on models expressed using

state-based languages, such as finite state machines [60] and labelled transition systems [103], or models that define

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Testing Causality in Scientific Modelling Software 3

the allowed input-output relationships using languages, such as Z [45] and VDM [31]. However, given the focus on

causality in this paper, we require a model that specifies the expected causal relationships between system inputs and

outputs. Here, we assume that such causal information is represented by a causal directed acyclic graph (DAG) [44, 78].

Our decision to incorporate causal DAGs into the testing process is motivated by two main factors. First, testing

can be viewed as a causal activity in which the tester checks whether expected causal relationships hold; in order

to automate this process, we require the expected causal relationships to be expressed. Second, the causal DAG is a

lightweight and intuitive model that is widely used by domain experts in areas such as epidemiology and social sciences

to make causal assumptions actionable and transparent [40, 101].

In this paper, we make three contributions. First, we introduce a conceptual framework that approaches software

testing activities, such as metamorphic testing, as CI problems, and clarifies the components necessary to leverage state-

of-the-art CI techniques. While previous work [10] has shown that CI is, generally speaking, a universally applicable

technique, we believe we are the first to apply it to the software testing field in this way. Second, we provide a reference

implementation of the framework that can form the basis for future CI-driven tools for testing scientific modelling

software. Third, we conduct three case studies applying the proposed framework to real-world scientific models from

different domains, evaluating its ability to predict metamorphic test outcomes from observational data.

The remainder of this paper is structured as follows. Section 2 provides a motivating example and necessary

background. Section 3 introduces our conceptual framework that frames causality-driven testing activities as problems

of CI. Section 4 then introduces our reference implementation of this framework, before demonstrating its application

to three real-world scientific models in Section 5 and discussing the main findings and threats to validity in Section 6.

Section 7 reviews related work, and Section 8 concludes the paper.

2 BACKGROUND AND PRELIMINARIES

This section defines the scope of the paper and introduces the main challenges associated with testing scientific

modelling software, as outlined in Kanewala and Bieman’s survey on the same topic [51]. We present these challenges

in the context of a real-world, motivating example that is used as one of three case studies in Section 5. We then provide

a background on model-based testing and, in particular, metamorphic testing [20], a known solution to some of these

challenges. We conclude this section with a brief introduction to causal inference, the statistical methodology employed

by the framework presented in Section 3.

2.1 Black-Box Software Systems

In this paper, we view and test software from a black-box perspective [71], focusing on the relationships between its

inputs and outputs rather than its inner-workings and source code. More formally, in this paper, we conceptualise the

system-under-test (SUT) as follows:

Definition 2.1. A system-under-test (SUT) is a software system comprising a set of input variables, 𝐼 , and output

variables, 𝑂 , such that 𝐼 ∩𝑂 = ∅. We consider inputs to be parameters whose values are set prior to execution that

influence the resulting system behaviour. We consider outputs to be features of the system that can be measured at any

point during or after execution without inspecting or modifying the source code.

Given our focus on causality in this paper, we provide an informal definition of causality in Definition 2.2. This

follows from Pearl’s characterisation of causation, which states that “variables earn causal character through their

capacity to sense and respond to changes in other variablesž [81].

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Clark et al.

Definition 2.2. We say that a variable 𝑋 = 𝑥 causes a variable 𝑌 if there exists some value 𝑥 ′ such that, had the value

of 𝑋 been changed to 𝑥 ′, the value of 𝑌 would change in response.

Furthermore, we are primarily interested in scientific modelling software. Informally, we consider this to be any

form of software that has a significant computational component and simulates, models, or predicts the behaviour of

complex, uncertain phenomena to support policy and scientific decisions [51, 59]. We focus on this form of software as

it typically possesses a number of challenging characteristics that preclude the application of many conventional testing

techniques, but can be addressed by the framework introduced in Section 3. In the following section, we introduce a

motivating example to familiarise the reader with these challenging properties.

2.2 Motivating Example: Covasim

Covasim [35, 56] is an epidemiological agent-based model that has been used to inform COVID-19 policy decisions in

several countries [26, 55, 76, 92]. Given the critical applications of such scientific models, it is of paramount importance

that they are tested to the best of our abilities. However, Covasim has a number of characteristics that make testing

particularly challenging.

Covasim has a vast and complex input space, with 64 unique input parameters, 27 of which are complex objects

characterised by further parameters. Furthermore, the precise values for many of the inputs are unknown and are

instead described by a distribution, meaning that any given scenario can be simulated using a potentially intractable

number of input configurations.

Covasim also suffers from long execution times and high computational costs. Non-trivial runs of Covasim can

take hours and accumulate large amounts of data. To compound this issue further, the model is also non-deterministic:

running the same simulation parameters multiple times (with a different seed) will yield different results, meaning that

each modelling scenario must be simulated several times to observe a distribution of outcomes.

Additionally, Covasim encounters the oracle problem: for most modelling scenarios, the precise expected output

is unknown. This makes Covasim a traditionally “untestablež [110] system as it is difficult to determine whether the

output of a given test is correct.

Despite these challenges, Covasim features a mixture of unit, integration, and regression tests achieving 88% code

coverage1. However, many of these tests lack a test oracle and appear to rely on the user to determine correctness

instead. For example, the vaccine intervention has two tests [34] that instantiate and run the model with two different

vaccines and plot the resulting model outputs on a graph for manual inspection.

While the existing vaccination tests reveal the difference in outcome caused by changing from one vaccine to another,

the experimental approach employed would not scale well if the tester wanted to test more general properties that

cover larger value ranges. For example, tests covering multiple versions of vaccine (Pfizer, Moderna, etc.) and outcomes

(infections, hospitalisations, etc.). However, this is not a criticism of Covasim, but a statement that conventional testing

techniques are impractical for testing scientific modelling software. Hence, there is a clear need for testing techniques

more sympathetic to their challenging characteristics.

2.3 Model-Based Testing

An approach that is often used to test black-box systems is model-based testing [14]. The main principle behind model-

based testing is to provide a model that captures the expected behaviour of the SUT [104]. Such a model incorporates

1Code coverage obtained from commit 7da3bc4.

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Testing Causality in Scientific Modelling Software 5

invaluable domain expertise and can form the basis for test generation, with work in this area going back to the 1950s

[65]. In addition, if the model has formal semantics, testing can be represented as a process in which one compares the

behaviour of two models: the known specification model𝑀 and an unknown model 𝑁 that represents the behaviour of

the SUT. It is then possible to reason about the effectiveness of testing [36, 103]. Note that since a model describes the

expected behaviour of the SUT, it can also form the basis of a test oracle, and this is at least implicit in most MBT work

[36, 103].

For testing black-box systems (i.e. where the internal workings are unknown to the test developer), an appropriate

model will typically specify formal relations between the inputs and outputs of the SUT. For example, pre/post models

can be defined in various modelling languages, such as Z [96] and B [16], that model a system as a collection of variables

and captures the expected behaviour in terms of pairs of pre-conditions and post-conditions [104]. In this way, testers

use their domain expertise to specify how they expect the SUT to respond under different settings.

However, for complex software like Covasim that suffers from the test oracle problem [11], it is seldom possible

to specify the expected outputs or post-conditions corresponding to a particular set of inputs or pre-conditions. As

discussed in Section 2.2, this is partly due to the exploratory nature of Covasim that makes it difficult (if not impossible)

to establish what ‘correctness’ looks like. This is typically the case for any form of scientific software primarily used to

predict or simulate future events, such as meteorological software for predicting the weather. Under such circumstances,

the domain expertise needed to specify a model of the expected behaviour are fundamentally unattainable, preventing

the tester from capturing static input-output relations, such as pre/post models, a priori.

One solution that effectively avoids the oracle problem and has been advocated as a technique for testing scientific

software [51] is metamorphic testing [20]. The basic idea is to model the expected behaviour of the SUT as so-called

metamorphic relations that describe the expected change in output in response to a specific change in input. For example,

to test an implementation of sin, we may assert that ∀𝑥 . sin(𝑥) = sin(𝜋 − 𝑥). These relations provide a means of

generating test cases and validating the observed behaviour [93]. By stating the expected behaviour in terms of changes

to inputs and outputs, we can test the system without knowing the precise expected outcome corresponding to some

inputs.

Statistical metamorphic testing (SMT) [42] generalises this to non-deterministic systems, which produce different

outputs when run repeatedly under identical input configurations. Rather than comparing outputs directly, the SUT is

run multiple times for each input configuration and statistical tests are performed on the corresponding distributions

of outputs. However, the potentially high computational costs involved in this process are a major limitation to the

applicability of SMT to scientific models.

2.4 Causal Inference

The framework we present in Section 3 uses a family of statistical techniques, known as causal inference (CI), designed

to make claims about causal relationships between variables [52]. Our goal is to use this family of techniques to provide

an efficient method for testing scientific software. Here we provide a brief introduction to the essential notions of CI

used in this work. For a more comprehensive overview, we refer the reader to [44, 79].

2.4.1 Preliminaries. Causality is often presented in terms of the “ladder of causalityž [82], which groups different

tasks into three ‘rungs’: Rung one is observation and association as per traditional statistical methods; Rung two is

intervention, which imagines the effects of taking particular actions: “What if I do...?ž, and rung three is counterfactual,

which imagines the effects of retrospective actions: “What if I had done...?ž.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Clark et al.

Traditional statistical approaches are limited to rung one. By simply observing the association between variables (in

our case input and output variables), without systematically controlling the selection of values or resorting to additional

domain knowledge, it is impossible to answer fundamentally causal questions [79]. This problem is commonly captured

by the adage: “correlation does not imply causationž.

CI enables us to estimate and quantify causal effects in order to make claims about causal relationships [52]. Informally,

the causal effect of a treatment 𝑇 on an outcome 𝑌 is the change in 𝑌 that is caused by a specific change in 𝑇 [82]. In

this context, a treatment is a variable that represents a particular action or intervention, such as changing a line of code,

and an outcome is an observable feature or event, such as the occurrence of a fault.

One of the main challenges underlying CI is the design of experiments or statistical procedures that mitigate sources

of bias to isolate and measure causality (rungs two and three) as opposed to association (rung one). In fields such

as medicine, randomised control trials (RCTs) are often considered as the gold standard approach for CI [17]. RCTs

mitigate sources of bias by randomly assigning subjects to either the treatment or control group [54]. However, there

are many situations in which RCTs cannot be performed due to ethical or practical reasons [2].

Where RCTs cannot be performed, researchers often turn to observational data and statistical models as means for

conducting CI. At a high level, this observational approach to CI can be broken down into two tasks: identification and

estimation. Identification involves identifying sources of bias that must be adjusted for statistically in order to obtain a

causal estimate. Estimation is the process of using statistical estimators, adjusted for the identified biasing variables, to

estimate the causal effect.

2.4.2 Metrics. Several metrics can be used to measure causal effects. Perhaps the most desirable is the individual

treatment effect (ITE), which describes the effect of a given treatment on a particular individual. In the majority of cases,

however, individual-level inferences are unattainable due to the fundamental problem of causal inference [47]; namely

that, for a given individual, it is usually only possible to observe the outcome of a single version of treatment (e.g. an

individual either takes an aspirin for their headache or does not).

To address this, researchers typically turn to population-level causal metrics, such as the Average Treatment Effect

(ATE) [44]:

ATE =

∑︁

𝑧∈𝑍

E[𝑌 | 𝑋 = 𝑥𝑡 , 𝑍 = 𝑧]𝑃 (𝑍 = 𝑧) −
∑︁

𝑧∈𝑍

E[𝑌 | 𝑋 = 𝑥𝑐 , 𝑍 = 𝑧]𝑃 (𝑍 = 𝑧)

The ATE quantifies the average additive change in outcome we expect to observe in response to changing some

treatment variable 𝑋 from the control value 𝑥𝑐 to the treatment value 𝑥𝑡 , while adjusting for all biasing variables 𝑍 .

However, in some instances, it is desirable to refine our inferences to specific sub-populations defined by some notable

characteristic. To this end, the conditional ATE (CATE) can be obtained by applying the ATE to specific sub-populations

of interest [1].

An alternative causal metric is the Risk Ratio (RR) [44]:

RR =

∑
𝑧∈𝑍 E[𝑌 | 𝑋 = 𝑥𝑡 , 𝑍 = 𝑧]𝑃 (𝑍 = 𝑧)∑
𝑧∈𝑍 E[𝑌 | 𝑋 = 𝑥𝑐 , 𝑍 = 𝑧]𝑃 (𝑍 = 𝑧)

The RR captures the multiplicative change in an outcome 𝑌 caused by changing the treatment variable 𝑋 from the

control value 𝑥𝑐 to the treatment value 𝑥𝑡 while adjusting for all biasing variables 𝑍 .

Other effect metrics such as the odds ratio (OR) and the effect of treatment on the treated (ATT) also exist but fall

outside the scope of this paper. Furthermore, to quantify uncertainty, effect measures are typically accompanied by 95%

confidence intervals that quantify the interval within which we are 95% confident the true estimate lies [74].

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Testing Causality in Scientific Modelling Software 7

2.5 Causal DAGs

CI generally depends on domain expertise and causal assumptions that cannot be tested in practice [89]. Given that

different domain experts may make different assumptions about the same problem and that these may lead to different

results, it is essential that all assumptions are made transparent. To this end, causal DAGs provide an intuitive graphical

method for communicating the causal assumptions necessary to solve CI problems [78]. Formally, a causal DAG is

defined as follows [44]:

Definition 2.3. A causal DAG 𝐺 is a directed acyclic graph (DAG) 𝐺 = (𝑉 , 𝐸) comprising a set of nodes representing

random variables, 𝑉 , and a series of edges, 𝐸, representing causality between these variables, where:

(1) The presence/absence of an edge 𝑉𝑖 → 𝑉𝑗 represents the presence/absence of a direct causal effect of 𝑉𝑖 on 𝑉𝑗 .

(2) All common causes of any pair of variables on the graph are themselves present on the graph.

In Figure 1, X , Y , and Z are nodes representing random variables, which, in this context, are variables that can

take different values for different individuals (e.g. people or software executions). We say that X is a direct cause of Y

because there is an edge from X directly into Y. We refer to Y as a descendant of Z and X because there is a sequence of

edges, known as a path, such that, if you follow the direction of those edges, you can reach Y from Z. That is, Z→ X→ Y.

X Y

Z

Fig. 1. An example causal DAG for the causal effect of X on Y confounded by Z.

As mentioned in the previous section, in order to estimate the causal effect of X on Y, we need to identify and adjust

for all variables that bias the relationship X→ Y. Using a causal DAG, we can achieve this automatically by applying a

pair of graphical tests, the back-door criterion and d-separation, which are formally defined as follows:

Definition 2.4. A path 𝑝 is blocked or d-separated by a set of variables 𝑍 if and only if at least one of the following

conditions hold [80]:

(1) 𝑝 contains a chain 𝑖 → 𝑘 → 𝑗 or a fork 𝑖 ← 𝑘 → 𝑗 where 𝑘 ∈ 𝑍 .

(2) 𝑝 contains a collider 𝑖 → 𝑘 ← 𝑗 where 𝑘 ∉ 𝑍 and for all descendants 𝑘 ′ of 𝑘 , 𝑘 ′ ∉ 𝑍 .

Definition 2.5. A set of variables 𝑍 is said to satisfy the back-door criterion relative to an ordered pair of variables

(𝑋,𝑌) if both of the following conditions hold [80]:

(1) No variable in 𝑍 is a descendant of 𝑋 .

(2) Z blocks every path between 𝑋 and 𝑌 that contains an arrow into 𝑋 .

A set of variables 𝑍 is said to be a sufficient adjustment set relative to a pair of variables (𝑋 , 𝑌) if adjusting for 𝑍

blocks all back-door paths between 𝑋 and 𝑌 . Conceptually, this corresponds to a set of variables that, once adjusted for,

mitigate all known sources of bias and that is therefore capable of isolating the causal effect of interest. For example,

in Figure 1, Z satisfies the back-door criterion relative to (X, Y) because Z blocks every path between X and Y with an

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Clark et al.

arrow into X. Therefore, we can endow the ATE of X on Y with a causal interpretation and estimate its value directly

using the following closed-form statistical expression:
∑︁

z∈Z

E[Y | X = 1, Z = z]𝑃 (Z = z) −
∑︁

z∈Z

E[Y | X = 0, Z = z]𝑃 (Z = z)

Overall, causal DAGs provide a principled and automated approach for designing statistical ‘recipes’ capable of

measuring causal relationships and endowing statistical measures with causal interpretations. In the following section,

we introduce a framework that facilitates the application of this approach to the testing of scientific modelling software.

Furthermore, we opt to use graphical CI over other CI frameworks, such as potential outcomes [90] or structural

equation modelling [58], as it provides a transparent and intuitive way to both specify and test causal relationships,

without necessarily requiring users to know their precise functional form.

3 CAUSAL TESTING FRAMEWORK

This section introduces the Causal Testing Framework (CTF): a conceptual framework that approaches causality-driven

testing activities as CI problems. That is, testing activities that intend to establish the (inherently causal) relationship

between inputs and outputs, such as metamorphic testing. By framing testing activities in this way, it is possible to

leverage CI techniques to make strong claims about causal relationships between inputs and outputs, and to do so in an

efficient manner by exploiting data from previous test executions.

In the remainder of this section, we define four key components of our causal testing framework: specifications,

programs, tests, and oracles [97], giving an example using Covasim (see Section 2) for each component. We also provide

informal guidance for constructing causal DAGs and examine the relationship between the CTF and metamorphic

testing.

3.1 Causal Specification

In the CTF, our primary aim is to test scientific models in terms of the effects of interventions. Given the diverse range

of possible scenarios that a typical scientific model can simulate, we further focus on testing individual modelling

scenarios. We define a modelling scenario as a series of constraints placed over a subset of the SUT’s (see Definition 2.1)

input variables that characterise the scenario of interest. Therefore, in the causal testing framework, the set of programs

are programs that implement modelling scenariosM (Definition 3.1).

Definition 3.1. A modelling scenarioM is a pair (𝑋,𝐶) where 𝑋 is a non-strict subset of the model’s input variables

and 𝐶 is a set of constraints over realisations of 𝑋 , which may be empty.

The expected behaviour of scientific modelling software in a given scenario depends on a series of underlying

modelling assumptions. It is therefore essential that such modelling assumptions are made transparent and readily

available, particularly for the purposes of testing. Indeed, past investigations into modelling failures have highlighted

the importance of transparency and accountability [75]. In the same vein, causal testing requires an explicit record

of causal assumptions to enable the transparent and reproducible application of graphical CI techniques. To this end,

we use a causal DAG that captures causality amongst a subset of the SUT’s input and outputs. Therefore, we define a

causal specification (Definition 3.2) as a pair comprising a modelling scenario (M) and a causal DAG (G).

Definition 3.2. A causal specification is a pair S = (M,G) comprising a modelling scenarioM and a causal DAG G

capturing the causal relationships amongst the inputs and outputs of the SUT that are central to the modelling scenario.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Testing Causality in Scientific Modelling Software 9

Example 3.3. Consider a scenario in Covasimwhere wewant to test the effect of prioritising the elderly for vaccination

𝑉 on the total vaccine doses administered 𝑁𝐷 , total vaccinated agents 𝑁𝑉 , maximum number of doses per agent𝑀𝐷 ,

and cumulative infections 𝐼 . Further, let us restrict our simulation length to 50 days, the initial number of infected agents

to 1000, and the population size to 50,000. Our modelling scenario is then characterised by the constraints {days =

50, pop_size = 50000, pop_infected = 1000}, and the causal DAG is the set of edges {𝑉 → 𝑁𝑉 ,𝑉 → 𝑁𝐷 ,𝑉 → 𝐼 }.

Note the absence of edge 𝑉 → 𝑀𝐷 . Here we are asserting that 𝑉 may cause a change in 𝑁𝑉 , 𝑁𝐷 , and 𝐼 , but should

cause no change to𝑀𝐷 . This is because at most two doses of the vaccine are administered to each at agent so changing

the target population should not affect this.

3.2 Constructing Causal DAGs

In the testing context, causal DAGs offer a flexible, lightweight means by which to capture potential causal relationships

between inputs and outputs. Here we present a set of guidelines for constructing the graph (informed by our experience

with the case studies).

We start by constructing a complete directed graph over the set of inputs and output: 𝐼 ∪𝑂 . Then, to simplify this

structure, we apply the following assumption:

Assumption 1. Outputs cannot cause inputs.

Assumption 1 follows from temporal precedence (that a cause must precede its effect) [83] and the observation that,

in a given test execution, outputs temporally succeed inputs. This enables us to delete all edges from outputs to inputs.

Then, in many cases, we can also apply the following assumption to remove all edges from inputs to inputs:

Assumption 2. Inputs cannot cause changes to the values of other inputs and, therefore, cannot share causal relationships.

As stated in Definition 2.1, in this paper, we assume that all inputs are assigned their values prior to execution. Under

this characterisation, changes to the value of one input cannot physically affect another input’s value and, therefore,

inputs cannot share causal relationships. Of course, there are caveats to this; if a system has input validation, for

example, the assignment of one input’s value may physically restrict which values can be selected for a second input.

Note that, in such cases, our framework is still applicable, but the user would have to consider more edges manually to

construct their DAG.

This leaves us with the following forms of potential causal relationships to consider: 𝐼 → 𝑂 and 𝑂 → 𝑂 (and 𝐼 → 𝐼

if Assumption 2 cannot be applied). Output to output causality may occur in software where an earlier output is used

in the computation of a later output. For example, in a weather forecasting model, a prediction of the weather in three

days time is affected by the weather predicted for one and two days time.

This is the point at which the tester’s domain knowledge is fed into the model, by pruning edges where they are

certain that there is no causal relationship (see Definition 2.2 for an informal definition of causality). We recommend

following this approach of pruning edges from a complete directed graph over adding edges to an initially empty graph,

as the absence of an edge carries a stronger assumption than the presence of one [101]. This follows from the fact that

the presence of an edge states that there exists some causal relationship, whereas the absence of an edge states that

there is precisely no causal relationship.

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Clark et al.

3.3 Causal Testing

Causal testing draws its main inspiration from CI, which focuses on the effects of interventions on outcomes. In this

context, an intervention manipulates an input configuration in a way that is expected to cause a specific outcome

to change. Here, we refer to the pre-intervention input configuration as a control and the post-intervention input

configuration as a treatment. A causal test case then specifies the expected change in outcome caused by this intervention

(i.e. the expected causal effect). When phrased this way, causal tests bear a remarkable similarity to metamorphic tests,

highlighting the fact that, at its core, metamorphic testing can be viewed as an inherently a causal activity. We explain

this relationship further in Section 3.4.

Definition 3.4. An intervention Δ : X → X′ is a function which manipulates the values of a subset of input realisations.

Definition 3.5. A causal test case T is a 4-tuple (M,X,Δ,Y) that captures the expected causal effect, Y, of an

intervention, Δ, made to an input valuation, X, on some model outcome in the context of modelling scenarioM. The

expected causal effectY is an informal expression of some change in outcome that is expected to be caused by executing

T . We refer to the input realisation X as the control input configuration.

Example 3.6. Continuing with our vaccination example, suppose we want to create a causal test case that investigates

the effect of switching vaccine from Pfizer to an age-restricted version (Pfizer′) on only themaximum number of doses

per agent𝑀𝐷 . We can start by using the modelling scenario outlined in the previous example and then specify our control

input configuration as the input realisation X = {vaccine = Pfizer}. We then define an intervention that takes the

control input configuration and replaces the vaccine with the age-restricted version: Δ(X) = X[vaccine := Pfizer′].

We complete our causal test case by specifying the expected causal effect, Y: the intervention should cause no change

to𝑀𝐷 and we therefore expect that the ATE will be zero.

Finally, we must consider the test oracle: the procedure used to determine whether the outcome of a causal test case

(T) is correct (i.e. whether it realises the expected causal effect Y). In the context of causal testing, the oracle must

ascertain the correctness of causal estimates relative to a modelling scenario (M). Therefore, we refer to our oracle as a

causal test oracle (Definition 3.4).

Definition 3.7. A causal test oracle O is a procedure, such as an assertion, that determines whether the outcome of a

causal test case T is correct or incorrect. This procedure checks whether the application of the intervention Δ to the

control input configuration X has caused the expected causal effect Y in the context of modelling scenarioM.

Example 3.8. Continuing with our Covasim example, for the causal test case T defined in the previous example, our

causal test oracle must check whether applying the intervention (i.e. replacing the Pfizer vaccine with an age-restricted

version Pfizer′) has no effect on𝑀𝐷 , as specified by the expected causal effect Y. We can implement this test oracle

as the following assertion: ATEMD = 0. This checks whether the change in𝑀𝐷 caused by the intervention (𝐴𝑇𝐸𝑀𝐷) is

zero, as expected.

Notice the subtle difference between the expected causal effect, Y, of the causal test case, T , and the causal test

oracle, O: the former is a statement of the expected test outcome while the latter is the actual procedure used to check

whether the anticipated outcome holds. We make this distinction with the transparency of the causal testing process in

mind, avoiding situations where two testers may implement the procedure to ascertain the validity of a given causal test

case in different ways, potentially leading to different test outcomes. In other words, the CTF considers the expected

outcome (Y) and the procedure used to check this has been realised (O) as separate entities that carry equal importance.

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Testing Causality in Scientific Modelling Software 11

Any discrepancy between the test result and the expected outcome revealed by the test oracle implies one of two

problems: (i) the implementation contains a bug or an error, or (ii) the underlying causal knowledge is incorrect. It

follows that causal testing lends itself to an iterative testing process [68], whereby the user inspects the source code

to explain any identified discrepancies and, if no bugs are found, reviews the causal DAG to check if the underlying

science is correct.

Collectively, the components of the CTF enable the application of graphical CI techniques to testing activities that

concern the causal effect of some intervention. In theory, the CTF should therefore provide the following advantages

over existing solutions:

(1) The ability to derive test outcomes experimentally2 (by strategic model executions that isolate a particular

cause-effect relationship by design) and observationally (by applying CI techniques to past execution data).

(2) The ability to identify and adjust for confounding bias in observational data using a causal DAG. From a testing

perspective, this effectively relaxes the experimental conditions ordinarily required to reach causal conclusions.

Namely, the need for carefully controlled, unbiased test data.

(3) The ability to derive counterfactual test outcomes using appropriate statistical models. This would enable testers

to infer how the model would likely behave, had it been run under a different parameterisation. Therefore, where

practical constraints preclude further executions of the SUT, counterfactual inference can offer a cost-effective

alternative.

In Section 5, we apply the CTF to a series of real-world scientific models to understand how a modeller can leverage

these advantages in a testing context to improve the efficiency and applicability of metamorphic testing; a state-of-the-art

approach for testing scientific modelling software.

3.4 Relationship to Metamorphic Testing

At a high level, the CTF and metamorphic testing share the same objective: to evaluate the effect caused by making a

change to some input.

Metamorphic testing provides a means of generating “follow-up test casesž using metamorphic relations which

should hold over a number of different parameter values [11, 93]. In contrast to typical program invariants, which must

hold for every execution of a given program, metamorphic relations hold between different executions. In other words,

they investigate the effect of a change (or intervention in causal language) on an input. This is a key similarity between

causal testing and metamorphic testing.

In this sense, metamorphic tests can be thought of as quasi-experiments3 designed to answer causal questions about

the SUT. For example, a metamorphic test for our property of the sin function in Section 2 that ∀𝑥 . sin(𝑥) = sin(𝜋 − 𝑥)

can be thought of as a quasi-experiment that confirms whether changing the input from 𝑋 = 𝑥 to 𝑋 = 𝜋 − 𝑥 causes no

change to the output. That is, there should be no causal effect. This synergism suggests that metamorphic testing can

be re-framed and solved as a problem of CI and, therefore, benefit from its advantages. To this end, in Section 5, we

demonstrate how the CTF can conduct metamorphic testing using CI techniques.

One advantage of causal testing over traditional metamorphic testing is that causal testing does not necessarily

require dedicated test runs of the system to be performed if sufficient test data already exists. Even (and especially)

if this data is biased, CI can account for this, meaning that testing can be performed on systems which cannot be

2We use the term ‘experimental’ loosely here; the CTF performs a quasi-experiment in which the SUT is executed with a pair of input configurations that
isolate the causal effect of the intervention on the output. Specifically, the SUT is executed twice: once using the pre-intervention configuration and once
using the post-intervention configuration. This is repeated multiple times for non-deterministic systems.
3We liken metamorphic tests to quasi-experiments rather than controlled experiments as they lack an explicit randomisation mechanism.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Clark et al.

tested for reasons of practicality. Furthermore, systems can be tested retroactively, enabling concerns about a model’s

correctness to be investigated even after the model has been run. This is potentially advantageous in the context of

scientific models, where their integrity and correctness can be called into question years after policies based on their

output have already been made. In such situations, the DAG makes clear the assumptions made about the functionality

of the model so adds weight to any conclusions made.

4 CTF REFERENCE IMPLEMENTATION

This section provides an overview of our open-source Python reference implementation of the Causal Testing Framework

(CTF)4, comprising over 4000 lines of Python code, and outlines four stages of the CTF workflow: Specification, Test

Cases, Data Collection, and Testing.

4.1 Causal Specification

To begin causal testing, we form a causal specification (Definition 3.2), comprising two components: a modelling

scenario and a causal DAG. We form the modelling scenario by specifying a set of constraints over the inputs that

characterise the scenario-under-test, such as 𝑥1 < 𝑥2. Next, we specify our causal DAG using the DOT language [32], in

which graphs are expressed as a series of edges, such as 𝑥1 → 𝑥2, following the guidelines outlined in Section 3.2.

4.2 Causal Test Case

Now that we have a causal specification, we define a causal test case that describes the intervention whose effect we

wish to test. In our reference implementation, a causal test case is an object that requires us to specify a control input

configuration, a treatment input configuration, and the expected causal effect. In the following steps, this information

will enable us to collect appropriate test data (Data Collection), design quasi-experiments isolating the causal effect of

interest within this data, and define test oracles that ascertain whether the expected causal effect is observed (Causal

Testing).

4.3 Data Collection

After creating a causal specification and causal test case, the next step is to collect data corresponding to the modelling

scenario. We can achieve this either (quasi-)experimentally (in situations where we are able to directly execute the

SUT) or observationally (in situations were we are not able to execute the SUT, but are instead able to draw upon prior

execution data).

4.3.1 Experimental Data Collection. Experimental data collection executes the model directly under both the control and

treatment input configuration to isolate the causal effect of the intervention. To this end, our reference implementation

provides an abstract experimental data collector class, requiring us to implement one method that executes our model

with a given input configuration. This method enables the CTF to run the model under the conditions necessary to

isolate causality directly.

4.3.2 Observational Data Collection. Since it is often infeasible to run models a statistically significant number of times,

we also provide the option to use observational, existing test data. This data may not meet the experimental conditions

necessary to isolate the causal effect and thus may contain biases that lead purely statistical techniques astray. However,

4https://github.com/CITCOM-project/CausalTestingFramework

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Testing Causality in Scientific Modelling Software 13

by employing graphical CI techniques, the CTF can identify and mitigate bias in the data, providing an efficient method

for testing scientific models a posteriori.

There are two caveats to this. First, the causal DAG must be correctly specified. While this is not generally verifiable,

several techniques exist that can quantify the sensitivity of casual estimates to unobserved confounding, including the

robustness value [25] and the e-value [106]. These techniques could be employed to justify that the DAG-informed

adjustment set yields causal estimates that are robust to missing confounders. Second, the observational data must

be consistent with the constraints of the causal specification. To this end, our reference implementation includes an

observational data collector class that takes a CSV file of existing test data as input and uses the Z3 theorem prover [29]

to identify and remove any executions of the SUT that violate constraints. By execution, we refer to an individual run

of the SUT with some set of inputs that produces some set of outputs. We assume the CSV file comprises a row for each

such execution, with a column for each input and output value. Next, we describe how the CTF infers test outcomes

from this data.

4.4 Causal Testing

Given a causal test case, testing is carried out in two stages: causal inference (CI) and applying the test oracle.

4.4.1 Causal Inference. To infer the causal effect of interest, our reference implementation applies the two steps of CI

outlined in Section 2: identification and estimation. For identification, the CTF algorithmically identifies an adjustment

set (see Section 2.4) for the causal effect of interest. Then, for estimation, we design an appropriate estimator that adjusts

for the identified adjustment set, and apply the estimator to our data to estimate the desired causal metric (e.g. ATE or

RR, see Section 2). To this end, our reference implementation provides regression and causal forest [108] estimators

which can be customised to add additional features such as squared and inverse terms to change the shape of the model.

In addition, the CTF includes an abstract estimator class that enables users to define their own estimators. This step

outputs a causal test result containing the inferred causal estimate for the desired causal metric (e.g. ATE or RR, see

Section 2.4) and 95% confidence intervals. The user is, of course, free to relax their confidence intervals should they

wish to obtain a more precise estimate with a higher level of associated risk, or vice versa.

4.4.2 Test Oracle. After applying CI, all that remains is the test oracle procedure. That is, to check whether the causal

test results match our expectations. For this purpose, our reference implementation provides several test oracles that

check for positive, negative, zero, and exact effects. Alternatively, to handle more complex outputs, a user can specify a

custom oracle that ascertains whether a causal test result should pass or fail.

Now that we have discussed the workflow of our CTF reference implementation, in the following section, we

demonstrate its application to three vastly different real-world scientific models.

5 CASE STUDIES

This section applies the Causal Testing Framework (CTF) to four testing scenarios covering three real-world scientific

models from different domains, approaching (statistical) metamorphic testing as a CI problem. Our goal here is to

conduct a series of evaluative case studies [86] that appraise the CTF with respect to three attributes: accuracy, efficiency,

and practicality. Here, we do not aim to make generalisable conclusions, but to evaluate the CTF with respect to each of

these attributes within the context of each subject system. To this end, across our case studies, we corroborate evidence

to collectively answer the following research questions:

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Clark et al.

RQ1 (Accuracy): Can we reproduce the results of a conventional MT/SMT approach by applying the CTF to

observational data? As mentioned in Section 1, CI is a generally applicable technique [10] promising the ability to

infer test outcomes from existing data that is potentially confounded. In the context of testing scientific software, this

approach has the potential to reduce the overhead associated with SMT by enabling the inference of metamorphic test

outcomes from existing execution data. This is in contrast to a conventional approach which may require numerous

potentially costly executions.

In this research question, we consider whether the CTF is able to predict metamorphic test outcomes from obser-

vational data with sufficient accuracy to make actionable inferences. By actionable inferences, we refer to predicted

outcomes that provide a truthful and meaningful insight into the actual behaviour of the SUT.

RQ2 (Efficiency): In terms of the amount of data required, is the CTF more cost effective than a conventional

MT/SMT approach? In practice, the utility and applicability of the CTF depends on the amount of observational data

required to make actionable inferences. Hence, for the CTF to be considered a useful tool and a viable alternative to

conventional MT and SMT approaches, it must be capable of making actionable inferences using no more data than is

required by a conventional approach.

To this end, in order to understand the efficiency and therefore utility of the proposed approach, this research

question investigates the relationship between the amount of observational data and the accuracy of insights provided

by the inferred metamorphic test outcomes.

RQ3 (Practicality): What practical effort is required from the tester to conduct MT/SMT using the CTF?. The

CTF requires causal knowledge and domain expertise that, in turn, depend on human effort. This human effort cannot

be overlooked. Hence, in order to determine whether the technique can be considered practical and applicable, it is

necessary to investigate the trade-off between the human cost and the benefits offered by the CTF.

In this research question, we provide a qualitative account of the human effort involved in applying the CTF to each

case study.

In the remainder of this section, we cover each of the three case studies in accordance to the following high-level

structure. First, we describe the characteristics of the subject system and our justification for selecting it. We then

provide a brief overview of the testing activity (the broad testing objective) and the process of acquiring data for analysis.

Following this, we describe the application of the CTF and analyse the generated data. We conclude by analysing the

outcomes and answering the relevant research questions. The contribution of each case study to the research questions

will be highlighted throughout the case studies and the collective findings will be discussed in Section 6.

5.1 Poisson Line Tessellation Model

In this case study, we use the CTF to conduct statistical metamorphic testing (SMT) on a Poisson Line Tessellation (PLT)

model. This model is of particular significance as it formed the case study of the paper that introduced the concept

of SMT [42]. As such it provides an ideal basis upon which to compare and contrast our CI-led approach against the

conventional SMT approach. In particular, we show how the CTF can infer the same metamorphic test outcomes as the

traditional SMT approach but from significantly fewer model executions. The code for this case study can be found in

our open source repository5.

5https://github.com/CITCOM-project/CausalTestingFramework/tree/683e6c55/examples/poisson-line-process

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Testing Causality in Scientific Modelling Software 15

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

1

2 3

4

Fig. 2. A tessellation generated by the PLT model with a width (𝑊), height (𝐻), and intensity (𝐼) of 1. There are two lines which

intersect the sampling window (𝐿𝑡 , highlighted in grey). The intersection of these lines forms four polygons in total (𝑃𝑡).

5.1.1 Subject System. The PLT model uses a Poisson process to generate a series of lines that are positioned and

oriented at random within a given sampling window to form a tessellation. While the behaviour of this model is

predominantly random by design, it can be configured using three numerical input parameters to produce tessellations

with predictable properties. In order to test these properties, we extract four numerical outputs from the resulting

tessellation.

We selected this model because it has been the subject of prior research on SMT [42] and has a number of well-

characterised input-output relationships. In addition, Poisson process models are commonly used to model random

processes for a range of important applications, including simulating road networks [21, 66] and modelling photon

arrival in 3D imaging [94]. It is the stochastic yet predictable behaviour of Poisson process models that make them an

interesting but difficult subject to test.

We now describe the behaviour of the PLT model, referring to the example tessellation in Figure 2. The PLT model

has three positive floating point input parameters: the width𝑊 and height 𝐻 of a sampling window (shaded in grey in

Figure 2), and the intensity 𝐼 of the Poisson process. Informally, the intensity parameter controls the average rate at

which lines are placed. Given these inputs, the model generates a set of straight lines that intersect the origin-centred

sampling window by drawing from a Poisson process on [0,∞)× [0, 2𝜋)6, where the orientation is uniformly distributed

on [0, 𝜋]. The model then outputs the total number of lines intersecting the sampling window, 𝐿𝑡 , and the number of

polygons formed by the intersecting lines, 𝑃𝑡 .

In Figure 2, for example, the inputs𝑊 = 𝐻 = 𝐼 = 1 produce a tessellation in which there are two lines intersecting

the sampling window (𝐿𝑡 = 2) that form four polygons (𝑃𝑡 = 4). Then, by dividing 𝐿𝑡 and 𝑃𝑡 by the sampling window

6The interval [0,∞) corresponds to the random distance of the lines to the origin, and the interval [0, 2𝜋) corresponds to the random angle of the point
on the line that is closest to the origin. In the case of the orientation distribution, the upper interval bound is 𝜋 since rotating a line by an angle of 𝜋 (i.e.
180 degrees) leads to the same orientation.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Clark et al.

area (i.e.𝑊 ×𝐻), we obtain two further outputs corresponding to the number of lines and polygons per unit area (𝐿𝑢

and 𝑃𝑢 , respectively). Since𝑊 = 𝐻 = 1 in Figure 2, it follows that 𝐿𝑢 = 𝐿𝑡 = 2 and 𝑃𝑢 = 𝑃𝑡 = 4.

5.1.2 Testing Activity. In this case study, we replicate the SMT approach followed by Guderlei et al. in their seminal

SMT paper [42] to explore whether the CTF can achieve comparable results to traditional SMT approaches. Here we

investigate whether the CTF can do so without the need for a large number of model executions (as is usually the case

with SMT) and with a practically feasible amount of input from the tester.

As in the original paper, we expect the following two metamorphic relations to hold for the PLT model:

(1) Doubling 𝐼 should cause 𝑃𝑢 to increase by a factor of 4.

(2) 𝑃𝑢 should be independent of𝑊 and 𝐻 .

5.1.3 Data Generation. We generated two sets of execution data. First, to obtain a “gold standardž, we replicate the SMT

approach followed in the original study [42]. Specifically, we sampled 50 input configurations, with the bounds for width

and height incremented together over the interval {𝑛 ∈ N|1 ≤ 𝑛 ≤ 10} (i.e.𝑊 = 𝐻 = 1,𝑊 = 𝐻 = 2, . . . ,𝑊 = 𝐻 = 10),

such that the sampling window is always square, and the control and treatment values for intensity are powers of 2 up

to 16. We then executed each configuration 100 times to account for non-determinism, resulting in 5000 model runs.

Second, to explore how the CTF enables us to re-use past execution data to infer the outcome of metamorphic test

cases, we simulated an observational data set comprising 1000 executions of the PLT model. To produce this data

set, we generated 1000 random input configurations using Latin hypercube sampling [30, 67] over the distributions

𝑊,𝐻 ∼ U(0, 10) and 𝐼 ∼ U(0, 16). This sampling method provides even coverage of the input space and thus reduces

our dependence on a statistical model to fill gaps in the data.

5.1.4 Causal Testing. To begin causal testing, we specify our modelling scenario and causal DAG. In line with the data

generation process, our modelling scenario for this case study constrains the window to be a square with a maximum

width (and height) of 10 and places an upper limit of 16 on the intensity parameter:

{0 <𝑊 ≤ 10, 0 < 𝐼 ≤ 16,𝑊 = 𝐻 }

We then construct the causal DAG shown in Figure 3 to model the following assumptions. First, we add the causes of 𝐿𝑡

and 𝑃𝑡 based on the theoretical approximations 𝐿𝑡 ≈ 2𝑖 (𝑤 +ℎ) and 𝑃𝑡 ≈ 𝜋𝑖
2𝑤ℎ [22]. We do not, however, include a direct

edge from 𝐼 to 𝑃𝑡 as the intensity (𝐼) affects the number of polygons (𝑃𝑡) indirectly through the number of intersecting

lines (𝐿𝑡). We then add the edge 𝐿𝑡 → 𝑃𝑡 since the number of polygons (𝑃𝑡) is determined by the intersection of lines

(𝐿𝑡). Finally, we add edges from𝑊 and 𝐻 to 𝐿𝑢 and 𝑃𝑢 since these quantities depend on the window area.

𝑊

𝐼

𝐻

𝐿𝑡 𝑃𝑡

𝐿𝑢

𝑃𝑢

Fig. 3. A causal DAG for the PLT model.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Testing Causality in Scientific Modelling Software 17

Having created our causal specification, we now perform a series of causal tests to investigate the two metamorphic

relations mentioned above: (1) whether doubling 𝐼 causes 𝑃𝑢 to increase by a factor of 4, and (2) whether the sample

window size has a causal effect on 𝑃𝑢 .

Effect of 𝐼 on 𝑃𝑢 . First, we test whether doubling 𝐼 causes 𝑃𝑢 to increase by a factor of 4 for 𝐼 ∈ {1, . . . , 16} and

𝑊,𝐻 ∈ {1, . . . , 10}. Since we are interested in the multiplicative effect of 𝐼 on 𝑃𝑢 , we use the risk ratio (RR, see Section 2),

which quantifies the factor by which the intervention (doubling 𝐼) causes the outcome change:

RR =
E[𝑃𝑢 | 𝐼 = 𝑖𝑡]

E[𝑃𝑢 | 𝐼 = 𝑖𝑐]
(1)

To estimate the RR using the CTF and observational data, we need to consider whether there is confounding bias in the

data and design a regression model accordingly. To achieve this, we perform identification on the causal DAG shown in

Figure 3, revealing that there is no confounding over the effect of 𝐼 on 𝑃𝑢 in this scenario. Therefore, we do not need to

include additional terms for confounders in our regression model. However, because we expect 𝑃𝑢 to vary quadratically

with 𝐼 , we opt to include the term 𝐼2. This assumption is informed by domain expertise [42] but can be validated by

varying 𝐼 and observing changes to 𝑃𝑢 . This process yields a regression model of the following form:

𝑃𝑢 ∼ 𝑥1𝐼 + 𝑥2𝐼
2 (2)

We then apply the regression model to our observational data to obtain a causal estimate of the RR (Equation (1)).

Effect of𝑊 on 𝑃𝑢 . Second, we test whether the sample window size𝑊 has a causal effect on 𝑃𝑢 . Since we are only

interested in whether there is some effect, we use the average treatment effect (ATE, see Section 2), which quantifies the

additive change in outcome caused by the intervention (increasing𝑊):

ATE = E[𝑃𝑢 |𝑊 = 𝑤𝑡] −E[𝑃𝑢 |𝑊 = 𝑤𝑐] (3)

Ordinarily, to investigate whether𝑊 affects 𝑃𝑢 using SMT, we would need to execute a fresh, customised set of test

cases, this time fixing the value of 𝐼 and varying𝑊 . In the CTF, however, we can infer this effect from the same 1000

model runs (i.e. re-using data from previous test executions to predict new test outcomes).

To achieve this, we start by performing identification on the causal DAG (Figure 3) for the effect of𝑊 on 𝑃𝑢 , once

again revealing the absence of confounding. We then modify the regression model shown in Equation (3) to include

terms for𝑊 and𝑊 −1, reflecting the hypotheses that𝑊 does affect 𝑃𝑢 and that they share an inverse relationship (this

can be validated by varying𝑊 and observing 𝑃𝑢). Although 𝐼 is not a confounder here, we retain the 𝐼 and 𝐼2 terms to

increase the accuracy of the model. The DAG in Figure 3 allows us to show that this does not bias our predictions. This

process yields the following regression model:

𝑃𝑢 ∼ 𝑥1𝑊 + 𝑥2𝑊
−1 + 𝑥2𝐼 + 𝑥2𝐼

2 (4)

We then apply this model to the original data to obtain a causal estimate for the ATE (Equation (3)). The effect of 𝐻

could be investigated similarly, but we omit this due to space constraints.

5.1.5 Results. Table 1 shows the results for our investigation into the effect of 𝐼 on 𝑃𝑢 using Equation (2). The first

10 rows show the RRs obtained via the conventional SMT approach for various values of𝑊 and 𝐻 , and the final row

shows the RRs estimated using the CTF and observational data. The discrepancy between the regression estimations

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Clark et al.

Table 1. RR of doubling 𝐼 under different values of𝑊 and 𝐻 . The bottom row gives the value estimated using regression. Bold values

round to 3, violating the expected behaviour.

𝑊 𝐻
E[𝑃𝑢 |𝐼=2]
E[𝑃𝑢 |𝐼=1]

E[𝑃𝑢 |𝐼=4]
E[𝑃𝑢 |𝐼=2]

E[𝑃𝑢 |𝐼=8]
E[𝑃𝑢 |𝐼=4]

E[𝑃𝑢 |𝐼=16]
E[𝑃𝑢 |𝐼=8]

1 1 2.5888 3.4461 3.6178 3.6187
2 2 3.0359 3.5410 3.6003 3.7264
3 3 3.5025 3.5945 4.0191 3.6545
4 4 3.1138 3.5285 4.1562 3.7290
5 5 3.6686 3.7686 3.9408 3.8751
6 6 3.6933 3.6988 3.9219 3.9707
7 7 3.7127 3.6271 3.9862 3.9370
8 8 3.4957 3.8300 3.8861 4.0110
9 9 3.5633 4.0009 3.9342 3.9338
10 10 3.8275 3.7525 4.0128 4.0181

CTF Estimate 2.8280 3.1711 3.4772 3.6993

and the SMT results are likely due to Equation (2) not including𝑊 and 𝐻 terms, which the SMT results explicitly

control for. However, this does not represent a biased result as Figure 3 shows there is no confounding.

These results show that both approaches identify an inconsistency between the metamorphic relations and imple-

mentation from the original study [42]: for lower values of𝑊 , 𝐻 , and 𝐼 , doubling 𝐼 causes 𝑃𝑢 to increase by a factor

that is closer to three than four, meaning our metamorphic relation is not satisfied. This is a particularly interesting

result since 𝑃𝑢 should be independent of𝑊 and 𝐻 .

Furthermore, these results show that the CTF was able to identify the same discrepancy as conventional SMT, but

using a fifth of the data. This highlights the potential of CI-led approaches to offer economical alternatives to testing

techniques that depend on repeated potentially costly executions of the SUT.

Table 2 shows the results of our investigation into the effect of𝑊 on 𝑃𝑢 using Equation (4) and the same random

1000 data points as for the last row of Table 1. Here, each row shows how 𝑃𝑢 changes when𝑊 is increased from𝑊𝑐 to

𝑊𝑡 with the intensity fixed to 𝐼 = 1. According to the original study [42], changes to𝑊 should not cause a change to 𝑃𝑢 .

Our results show that this property holds for all but the first row because these rows have confidence intervals that

contain zero, meaning there is no statistically significant causal effect. However, the 95% confidence intervals for the

first row of Table 2 show that, when𝑊 is increased from𝑊 = 1 to𝑊 = 2, there is a statistically significant causal effect

on 𝑃𝑢 of −7.3786. Although they are wide, indicating that the causal effect is variable, the fact that they do not contain

zero indicates that the effect is statistically significant.

Table 2. Estimated ATE of increasing W from Wc to Wt on 𝑃𝑢 with 𝐼 = 1 in the PLT model with 95% confidence intervals.

Wc Wt ATE 95% CIs

1 2 -7.3786 [-13.9182, -0.8390]
2 3 -2.7097 [-9.8029, 4.3836]
3 4 -1.5424 [-11.1209, 8.0361]
4 5 -1.0755 [-13.7084, 11.5574]
5 6 -0.8421 [-16.7413, 15.0572]
6 7 -0.7087 [-19.9729, 18.5556]
7 8 -0.6253 [-23.3084, 22.0578]
8 9 -0.5697 [-26.7043, 25.5649]
9 10 -0.5308 [-30.1383, 29.0767]

This conflicting result indicates a problem with either the program or the metamorphic property. In this case, we

believe that the problem stems from basic geometry: lines are less likely to intersect a smaller sample window. As

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Testing Causality in Scientific Modelling Software 19

the sample window becomes larger, there is more area to average over so 𝑃𝑢 becomes more reliable. Therefore, the

metamorphic relations should ideally specify a minimum window size to which they apply.

Overall, this case study has provided evidence related to all three research questions.

RQ1. In this case study, we demonstrated the CTF’s ability to reproduce published SMT results from [42] using

a sample of randomly generated test data. First, we estimated the risk ratio of doubling 𝐼 . Table 1 shows that our

regression model was able to give sufficiently accurate results to discover an inconsistency that was also revealed by

SMT, even though it did not explicitly control for𝑊 and 𝐻 like SMT did. In the second part of the case study, we

investigated this inconsistency further, and estimated the ATE of increasing𝑊 on 𝑃𝑢 . While we expected this to be zero,

Table 2 shows that there is actually a statistically significant negative relationship when we increase𝑊 from 1 to 2.

RQ2. This case study demonstrated the CTF’s ability to find the same bugs as SMT using only a fraction of the data.

Furthermore, the second part of this case study involved using the same data as for the first part to test a different

relationship after having discovered a potential bug in the system. By contrast, the traditional SMT approach would

need to perform additional controlled runs of the system, which vary𝑊 while holding 𝐼 constant, to test this new

property.

RQ3. The DAG for this case study, shown in Figure 3, required minimal effort to construct. There are no internal

variables here, and the relationship between the inputs and outputs is well documented in [42]. The main drawback is

the requirement for the domain expert to have an approximate idea of the “shapež of the relationships between different

variables, for example that 𝑃𝑢 varies with 𝐼2 rather than just 𝐼 , in order to obtain accurate estimates.

This case study has shown that not only can we conduct SMT using the CTF, but we can do so using previous execution

data and less data than a traditional SMT method. Furthermore, we demonstrated how this approach allowed us to

refine our metamorphic relations and find faults without running the SUT additional times.

5.2 Cardiac Action Potential Model

In this case study, we use the CTF to conduct sensitivity analysis on the Luo-Rudy 1991 ventricular cardiac action

potential model [62] (LR91) in a straightforward and efficient way. Sensitivity analysis is commonly used to validate and

verify scientific models, with a specific focus on identifying which inputs have the greatest impact on model outputs

[57, 91]. Here, we take a CI-led approach and measure the ATE of several input parameters on one output, quantifying

the extent to which this output is affected by changes to the inputs. As test oracles, we construct a series of metamorphic

relations that capture the expected magnitude and direction of each ATE.

Throughout this case study, we follow part of an existing study [19] that conducts uncertainty and sensitivity analysis

on LR91 using a Gaussian Process Emulator (GPE) [87] trained on runs of the model. This work provides an invaluable

source of domain expertise that precisely quantifies several cause-effect relationships between the inputs and outputs

of LR91 that we use as the basis for constructing our metamorphic relations. However, in contrast to the data-driven

approach employed in the original study, we employ causal knowledge and domain expertise to justify and hand-craft a

simple regression model that reaches the same conclusions. The code for reproducing this case study can be found in

our open source repository7.

7https://github.com/CITCOM-project/CausalTestingFramework/tree/683e6c55/examples/lr91

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Clark et al.

5.2.1 Subject System. The Luo-Rudy 1991 ventricular cardiac action potential model [62] (LR91) is a mathematical

model comprising a system of differential equations that describe the rapid rise and fall in the voltage across the

membrane of a mammalian ventricular cell. This characteristic rise and fall in voltage is referred to as an action potential.

The behaviour of this model is controlled by 24 constants, 8 rate variables, 8 state variables, and 25 algebraic variables.

We selected LR91 as a case study as it follows a different modelling paradigm to our other subject systems and has

supported extensive and important research into cardiovascular physiology. Furthermore, amongst its vast and largely

uncertain input space, LR91 has several well-characterised input-output relationships suitable for causal analysis.

8000 8200 8400 8600 8800
Time (ms)

−80

−60

−40

−20

0

20

40
V
ol
ta
ge

(m
V
)

APD90

Fig. 4. An example action potential produced by the Luo-Rudy 1991 model, simulating the rise and fall of voltage across a mammalian

ventricular cell, and the output of interest: 𝐴𝑃𝐷90.

An example action potential produced by LR91 is shown in Figure 4, demonstrating the rapid rise (known as

depolarisation) and corresponding fall (repolarisation) of the voltage over time. In this case study, we quantify the effect

of six conductance-related input parameters on one attribute of the action potential: action potential duration to 90%

of repolarisation (𝐴𝑃𝐷90). That is, the amount of time taken for the action potential to repolarise by 90%. This output

concerns the falling phase of the action potential in which the cell returns to its resting voltage [41] and is shown in

Figure 4.

5.2.2 Testing Activity. In this case study, we replicate part of an existing study [19] that conducts a sensitivity analysis

on LR91 using a Gaussian Process Emulator (GPE) [87]. In short, the approach in [19] trained a GPE on 200 runs of

LR91, with input configurations sampled via Latin Hyper Cube Sampling [98] from a series of normalised uniform

design distributions to ensure even coverage of the input space. The GPE was then used to calculate the expectation of

a given output, conditional on an input of interest, to quantify the effect of varying each of the six inputs on the eight

output parameters, over the range of the design distribution.

From a CI perspective, we can obtain similar information by computing the ATE of each input on each output

over the range of the design distribution. Specifically, we can set our control value to the mean value of the design

distribution and uniformly increment our treatment value from the minimum to the maximum value of the design

distribution. This yields a series of ATEs that quantify the expected change in output caused by changing the input

parameters by specific amounts above and below their mean, revealing the magnitude of each input’s effect on the

outputs.

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Testing Causality in Scientific Modelling Software 21

Due to space limitations, we limit our analysis to the effect of the six inputs on one output, 𝐴𝑃𝐷90. We have selected

this output because the original paper uses it to illustrate the approach. Based on the results reported in [19], we expect

the following metamorphic properties to hold:

(1) Increasing the parameters 𝐺𝐾 , 𝐺𝑏 , and 𝐺𝐾1 should cause 𝐴𝑃𝐷90 to decrease.

(2) Increasing the parameter 𝐺𝑠𝑖 should cause 𝐴𝑃𝐷90 to increase.

(3) Increasing the parameters 𝐺𝑁𝑎 and 𝐺𝐾𝑝 should have no significant effect on 𝐴𝑃𝐷90.

(4) The following monotonic relationship should hold over the (absolute) magnitude of the parameters’ effects:

|𝐴𝑃𝐷
𝐺𝑠𝑖
90
| > |𝐴𝑃𝐷

𝐺𝐾
90
| > |𝐴𝑃𝐷

𝐺𝑏
90
| > |𝐴𝑃𝐷

𝐺𝐾1

90
|

5.2.3 Data Generation. To gather data from LR91, we followed the same approach as [19], where the 200 input

configurations were sampled from the design distributions using Latin Hyper Cube sampling and then normalised. We

then executed each of these input configurations on an auto-generated Python implementation of LR91 from the cellML

modelling library [18]. We extended this implementation to enable us to sample the input values via Latin Hyper Cube

sampling and automatically extract the outputs8.

5.2.4 Causal Testing. To approach sensitivity analysis as a CI problem, we first specify our modelling scenario and

causal DAG. For this set of tests, the modelling scenario constrains each input to the range of its uniform design

distribution (as specified in the original paper [19]):

{17.250 ≤ 𝐺𝑁𝑎 ≤ 28.750, 0.0675 ≤ 𝐺𝑠𝑖 ≤ 0.1125, 0.2115 ≤ 𝐺𝐾 ≤ 0.3525,

0.4535 ≤ 𝐺𝐾1 ≤ 0.7559, 0.0137 ≤ 𝐺𝐾𝑝 ≤ 0.0229, 0.0294 ≤ 𝐺𝑏 ≤ 0.0490}

As in the original study, these input values were then normalised to the range [0, 1].

We then specify the expected cause-effect relationships (and absence thereof) as the causal DAG shown in Figure 5.

While not essential, we include the isolated nodes 𝐺𝑁𝑎 and 𝐺𝐾𝑝 in our DAG to make our expectation for the absence

of a causal effect explicitly clear. For each relationship, we then create a suite of causal test cases covering a series of

interventions that incrementally increase/decrease the value of the inputs over the range of the design distribution.

For each input, this is achieved by setting the control value to 0.5 (the mean) and uniformly sampling 10 treatment

values over the range [0, 1]. This produces a total of 10 test cases per input that vary its value from 0.5 to each of

the treatment values: [0, 0.1, 0.2, ... 1.0]. Using the CTF, we then perform identification and estimation. Here, the

cause-effect relationships are straightforward and there is no confounding to adjust for, enabling us to fit a regression

model 𝐴𝑃𝐷90 ∼ 𝑥0 + 𝑥1𝐺𝑧 for each input 𝑧 ∈ {𝑠𝑖, 𝐾, 𝑁𝑎, 𝐾𝑝, 𝐾1, 𝑏}. Using these models, we then predict the ATE and

95% confidence intervals for each test.

5.2.5 Results. The results, as summarised in Figure 6, show that all expected metamorphic relationships pass with

statistical significance (95% confidence intervals do not contain 0) and are visually similar to Figure 5 in the original study

[19]. Specifically, the first metamorphic relation holds as 𝐺𝐾 , 𝐺𝐾1, 𝐺𝑏 have negative effects, the second metamorphic

relationship holds because 𝐺𝑠𝑖 has a positive effect, and the third metamorphic relation holds as 𝐺𝑁𝑎 and 𝐺𝐾𝑝 have no

significant effect. Furthermore, the fourth metamorphic relation holds as the gradients corresponding to these effects

reveal that the effect sizes follow the expected monotonic relationship: |𝐴𝑃𝐷𝐺𝑠𝑖
90
| > |𝐴𝑃𝐷

𝐺𝐾
90
| > |𝐴𝑃𝐷

𝐺𝑏
90
| > |𝐴𝑃𝐷

𝐺𝐾1

90
|.

8Our LR91 model is available at: https://github.com/AndrewC19/LR91/tree/769e7ff

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Clark et al.

𝐺𝑠𝑖 𝐺𝐾 𝐺𝑁𝑎 𝐺𝐾𝑝 𝐺𝐾1 𝐺𝑏

𝐴𝑃𝐷90

Fig. 5. LR91 modelling scenario’s Causal DAG, where the sensitivity of 𝐴𝑃𝐷90 to each conductance input is computed as the causal

effect (ATE).

0.0 0.2 0.4 0.6 0.8 1.0

Treatment value

−80

−60

−40

−20

0

20

40

60

80

A
T
E
:C

h
an
g
e
in

A
P
D

9
0
(m

s
)

Input (95% CIs)

GK

Gb

GK1

Gsi

GNa

GKp

Fig. 6. Sensitivity of 𝐴𝑃𝐷90 in response to changes to the mean value of input parameters in LR91.

This case study has provided insights into RQ1 and RQ3. As a result of following the data generation approach of

the original paper, however, this case study did not afford us the opportunity to evaluate the efficiency of the CTF.

RQ1 Accuracy. In this case study, we used the CTF to conduct a sensitivity analysis on the LR91 model, achieving

visually similar results to an existing approach that employed a GPE [19]. However, we achieved this using a significantly

simpler statistical model whose design was informed by causal reasoning as opposed to associations within the data.

This contrast between a model-based and black-box approach to reasoning about system behaviour raises an interesting

discussion around explainability that we return to in Section 6.

RQ3 Practicality. In this case study, the process of specifying the causal DAG was straightforward and required

minimal domain expertise that were easily gleaned from the original study [19]. Since the resulting DAG contained no

confounding (Figure 5), the regression model for each causal test simply regressed the input-under-test against against

𝐴𝑃𝐷90. By contrast, Gaussian Processes (as used in the original study) have several practical limitations, including the

need to specify an appropriate kernel function for the problem at hand [70], and a complexity of𝑂 (𝑛3) that hinders the

feasibility of the approach when dealing with large amounts of data [88].

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Testing Causality in Scientific Modelling Software 23

Overall, in this case study, we have shown that the CTF reaches the same conclusions as the original study. However,

the CTF achieves this by using a simpler, more practical statistical model guided by causality instead of associations

within the data.

5.3 Covasim: Experimental Casual Testing

In this case study, we demonstrate the ability of the CTF to conduct statistical metamorphic testing (SMT) of Covasim

[56] using the experimental mode of the CTF (Section 4.3). That is, isolating the causal effect of interest via strategic

executions of the SUT, rather than applying graphical CI to observational data. Our aim here is to provide evidence

to support our claim that metamorphic testing is a fundamentally causal activity that can be framed and solved as a

problem of CI. The code for this case study can be found in our open source repository9.

5.3.1 Subject System. Covasim is the epidemiological agent-based model that was introduced as a motivating example

in Section 2. As a brief reminder, it is a complex, real-world scientific model that is primarily used to simulate detailed

COVID-19 scenarios in order to evaluate the impact of various interventions, such as vaccination and contact tracing

[56], in specific demographics. These scenarios are configured via 64 input parameters and described by 56 time-series

outputs. It has been used to inform a number of important policy decisions across a range of countries, including the

UK, US, and Australia [55, 76, 77, 100],

We cover two testing scenarios using Covasim. In this section, we elaborate upon our example from Section 2 and

use the experimental mode of the CTF to test the effect of prioritising the vaccination of elderly people on several

vaccine-related outcomes, revealing an interesting bug in the process. Then, in Section 5.4 we test the effect of increasing

the 𝛽 parameter (transmissibility) on cumulative infections using execution data from other tests (i.e. data that has not

been customised to explore this specific effect).

5.3.2 Testing Activity. Revisiting our example from Section 3, our aim is to determine the effect of prioritising vaccination

for the elderly on the following outputs: cumulative infections, number of doses given, maximum number of doses per

agent, and number of agents vaccinated.

Our expectation here is that prioritising the elderly should lead to an increase in infections. This is because we are

less likely to vaccinate agents in the model with a greater propensity for spreading the virus (e.g. younger individuals

who attend a school or workplace). We also expect the number of vaccines and doses administered to decrease as there

are fewer elderly agents in the model. In contrast, the maximum number of doses should not change, as the vaccine is

set to be administered at most two times per agent.

5.3.3 Data Generation. We executed the model under two input configurations 30 times each using an experimental

data collector (see Section 4.3) for every test. For both input configurations, we used the default Covasim parameters,

but fixed the simulation length to 50 days, initial infected agents to 1000, population size to 50,000, and made the default

Pfizer vaccine available from day seven. However, for the second configuration, we also sub-targeted (prioritised)

vaccination to the elderly using the vaccinate_by_age method from the Covasim vaccination tutorial10.

5.3.4 Causal Testing. Although we provide a causal DAG (Example 3.3) as an illustrative example for this scenario in

Section 3, it is not necessary to perform identification since, under the experimental mode of operation (Section 4.3), we

explicitly control for potential biases. Consequently, there is no confounding to adjust for in the resulting data, enabling

9https://github.com/CITCOM-project/CausalTestingFramework/tree/683e6c55/examples/covasim_/vaccinating_elderly
10https://github.com/InstituteforDiseaseModeling/covasim/blob/master/examples/t05_vaccine_subtargeting.py

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Clark et al.

us to calculate the ATE directly by contrasting the average cumulative infections produced by the control (vaccinate

everyone) and treatment executions (prioritise the elderly).

5.3.5 Results. As expected, prioritising the elderly causes the cumulative infections to increase (ATE: 2399.7, 95% CIs:

[2323.7, 2475.8]) and causes no change to the maximum doses (ATE: 8.9×10−16, 95% CIs: [3.7×10−17, 4.1×10−16]).

However, when we examine the number of doses given (which, as stated in Example 3.3, we would expect to remain

fixed), the tests in fact show that the SUT erroneously causes the number of doses administered and the number of

people vaccinated to increase sharply by 481351 (95% CIs: [480550, 482152]) and 483506 (95% CIs: [482646, 484367]),

respectively. This is an obvious and potentially problematic bug, as it reveals that more agents have been vaccinated

than there are agents in the simulation (by a factor of 9.7).

We raised an issue11 on Covasim’s GitHub repository to report this bug in September 2021 and the Covasim developers

replied in November confirming that the bug had been fixed for version 3.1. Although the developers did not explain

the cause of the bug nor how it was fixed, the change log for version 3.1 stated the following: Rescaling now does not

reset vaccination status; previously, dynamic rescaling erased it.

This testing scenario has provided insights related to RQ2 and RQ3. Due to employing the experimental mode of

the CTF (Section 4.3), we have not inferred test outcomes from observational data and therefore this case study does

not offer any insights into the accuracy associated with the observational approach.

RQ2 (Efficiency). We used the experimental mode of the CTF to quantify the effect of introducing a vaccination

policy on a number of variables, essentially conducting SMT in the conventional way. We repeated both the source and

follow-up test cases for each metamorphic relation 30 times for each test (of which there were four), requiring a total of

30× 2× 4 = 240 executions of Covasim. We show how, under the experimental mode of operation, the CTF can conduct

SMT in the conventional way and demonstrate that, in situations where observational data is unavailable, the CTF can

match the efficiency of conventional SMT.

RQ3 (Effort). The amount of human effort required to apply the CTF was low. We did not need to provide a DAG

and we did not need to specify a regression model. Instead, the main expenditure of human effort in this case study

lies in the process of implementing the test harness for experimental data collection; a step that is required for most

model-based testing techniques.

Overall, this case study has demonstrated how the CTF can also be employed under the experimental mode of

operation to essentially conduct a conventional SMT approach. This revealed a problematic bug related to vaccination,

highlighting the importance of applying metamorphic testing in the scientific context.

5.4 Covasim: Observational Causal Testing

We now consider the effect of increasing transmissibility (𝛽) on cumulative infections, but this time applying the CTF

to simulated confounded observational data. Here we compare the outcomes inferred by the CTF to the same outcomes

achieved using a conventional SMT approach. Our goal here is to understand whether the CTF can operate accurately

and efficiently within the challenging context presented by Covasim.

This case study presents a significant testing challenge. There are 156 distinct locations that can be simulated in

Covasim that will lead to differing rates of transmission. This is because different locations are modelled with different

11https://github.com/InstituteforDiseaseModeling/covasim/issues/370

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Testing Causality in Scientific Modelling Software 25

age distributions and household contact patterns, leading to differences in key attributes of the population, such as

susceptibility, that also affect infection dynamics.

Furthermore, Covasim is non-deterministic. Each metamorphic test requires multiple repeats of the source and

follow-up tests, making conventional SMT extremely costly in this context. For example, if we repeat both the source

and follow-up test cases 30 times for each location, we would need to run 30× 2× 156 = 9360 simulations. Although we

do not provide precise timing measurements, on a moderate specification machine12 each of these runs takes between 1

and 2 minutes to complete, requiring between 156 and 312 hours to run all simulations (without parallelisation). The

code for this case study can be found in our open source repository13.

5.4.1 Data Generation. When reasoning about transmissibility and the spread of COVID-19 using Covasim, there are

several parameters that can affect the output. These include the variant of the virus and population characteristics such

as age and household size, with older populations being more susceptible to infection and higher household contacts

leading to quicker viral spread. These population characteristics cannot be specified directly, but can be indirectly

altered by selecting a geographical location.

For this case study, we generate two sets of data. First, we directly apply a conventional SMT approach to Covasim in

which we execute the model 30 times with 𝛽 = 0.016 and 𝛽 = 0.02672 for each location, before averaging and contrasting

their respective cumulative infections. We select these values of 𝛽 as they correspond to the 𝛽 values for the Beta and

Alpha variants of COVID-19 available in Covasim.

Second, we simulate (uncontrolled) observational data. To achieve this, we assign a different dominant variant

(Alpha, Beta, Delta, Gamma) to each location at random, each of which has its own specific 𝛽 value (𝛽𝛼 = 0.02672, 𝛽𝛽 =

0.016, 𝛽𝛿 = 0.0352, 𝛽𝛾 = 0.0328). For each location, we then create a normal distribution centred around the location-

specific 𝛽 value and a standard deviation of 0.002. We select this standard deviation to give some variance in the exact

value of 𝛽 used for each run of the location, without introducing too much overlap with other variants. We then run 30

simulations for each location, sampling a fresh 𝛽 value from its distribution on each run. For all simulations, we use a

population size of 1 million individuals, 1000 initially infectious individuals, and a duration of 200 days. This results in a

data set comprising 4680 simulations (30 per location).

5.4.2 Causal Testing. To begin causal testing, we form our causal specification by specifying a modelling scenario

and the causal DAG shown in Figure 7. Our modelling scenario uses the default Covasim parameters apart from 𝛽 (the

input-under-study) and the location. We also fixed the duration, population size, and initial infected agents as follows:

{days = 200, pop_size = 1000000, pop_infected = 1000}

Next, we consider the adjustment sets implied by the causal DAG in Figure 7. While there are many possible

adjustment sets for this causal DAG, there are three notable choices to discuss.

First, we could use the smallest adjustment set {𝐿}. This has the advantage of conditioning on the least variables, but

restricts estimation to using location-specific data only (i.e. not borrowing data from similar locations). Second, we

could use {𝐴,𝐶𝐻 }. This would enable us to additionally borrow information from locations that have similar average

ages and household contacts. From an information theoretic standpoint, however, this is not a sensible choice as the

average age is not a good measure for the shape of the age distribution (two populations with a similar average age

may have vastly different age distributions). To this end, we can consider a third adjustment set {𝑆,𝐶𝑆 ,𝐶𝑊 ,𝐶𝐻 }. Here,

12MacBook Pro, Core i7, 16GB 2133 MHz LPDDR3 RAM
13https://github.com/AndrewC19/covasim_case_study/tree/65bc40a

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Clark et al.

𝐿

𝛽 𝐼

𝐴

𝐶𝐻

𝑆

𝐶𝑆

𝐶𝑊

Fig. 7. A causal DAG for the Covasim modelling scenario where the causal effect of 𝛽 on 𝐼 is confounded. Here, 𝐿 denotes the location;

𝐴 denotes the average age of the population; 𝛽 denotes the transmissibility of the virus;𝐶𝐻 ,𝐶𝑆 ,𝐶𝑊 denote household, school, and

workplace contacts; 𝑆 denotes average susceptibility of the population; and 𝐼 denotes the total cumulative infections.

we replace 𝐴 with the variables related to age that directly affect cumulative infections: the number of school and

workplace contacts (assignment to these environments is determined by age) and susceptibility (which varies with age).

For this case study, we select this third adjustment set on the basis that it most accurately captures the key causal

measures while allowing us to borrow data from other locations that are similar with respect to these attributes. This

yields the following closed-form statistical expression that is capable of directly estimating the causal effect (CATE) of

interest:

𝐶𝐴𝑇𝐸 = E[𝐼 | 𝛽 = 0.02672, 𝑆,𝐶𝑆 ,𝐶𝑊 ,𝐶𝐻] − E[𝐼 | 𝛽 = 0.016, 𝑆,𝐶𝑆 ,𝐶𝑊 ,𝐶𝐻]

Then, to estimate the value of this estimand, we implement a regression model of the following form, where 𝑍 is our

adjustment set {𝑆,𝐶𝑆 ,𝐶𝑊 ,𝐶𝐻 } and each variable in this adjustment set has three coefficients: 𝑥𝑧
1
, 𝑥𝑧

2
, 𝑥𝑧

3
:

𝐼 ∼ 𝑥0 + 𝑥1𝑙𝑛(𝛽) +
∑︁

𝑧∈𝑍

𝑥𝑧
1
𝑙𝑛(𝑧) + 𝑥𝑧

2
𝑙𝑛(𝑧)2 + 𝑥𝑧

3
𝑙𝑛(𝑧)𝑙𝑛(𝛽)

This regression model encodes three key assumptions. First, due to the exponential nature of viral infection, we apply a

log transformation to the variables on the right-hand-side of the equation [12, 99]. Second, we add a quadratic term for

each of our adjusted variables. This captures the possibility of curvilinear relationships between 𝐼 and the parameters.

Third, we include an interaction term between 𝛽 and each of our adjusted parameters. This captures our expectation

that the effect of 𝛽 on cumulative infections is moderated by the number of contacts and susceptibility of the population,

and enables the model to make location-specific estimates i.e. conditional ATEs (CATEs; see Section 2.4)14.

At this point, we have specified a causally-valid statistical model that is capable of directly estimating the causal

effect of 𝛽 on cumulative infections for each location separately. We can therefore compute the average values for

the variables 𝑆 , 𝐶𝑆 , 𝐶𝑊 , and 𝐶𝐻 for each location using our observational data, and substitute these into the model

alongside the values 𝛽 = 𝑙𝑛(0.016) and 𝛽 = 𝑙𝑛(0.2672)15. By contrasting the respective estimates for 𝐼 , we obtain an

estimate of the causal effect for each location in Covasim.

5.4.3 Results. Figure 8 summarises the results of applying the CTF to Covasim to predict the effect of increasing

transmissibility (𝛽) on cumulative infections across all locations. These results show three values for each location:

14We formed these assumptions by varying each parameter in isolation and observing the change in cumulative infections. An epidemiologist, however,
may know more precise characterisations of these relationships a priori.
15We take logarithms of the treatment and control values here to maintain the interpretability of our estimate.

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Testing Causality in Scientific Modelling Software 27

O
m
a
n

M
a
ld
iv
e
s

S
e
n
e
g
a
l

Ir
a
q

A
fg
h
a
n
is
ta
n

P
a
k
is
ta
n

G
a
m
b
ia

S
a
m
o
a

M
o
ro
c
c
o

U
z
b
e
k
is
ta
n

A
z
e
rb

a
ij
a
n

Y
e
m
e
n

M
a
la
y
si
a

S
in
g
a
p
o
re

T
h
a
il
a
n
d

In
d
ia

N
ic
a
ra
g
u
a

T
a
ji
k
is
ta
n

B
a
n
g
la
d
e
sh

M
a
u
ri
ti
u
s

M
y
a
n
m
a
r

P
a
p
u
a
n
e
w

g
u
in
e
a

T
u
rk
e
y

P
a
ra
g
u
a
y

F
ij
i

V
e
n
e
z
u
e
la

C
h
il
e

C
h
in
a

V
ie
tn

a
m

S
ie
rr
a
le
o
n
e

C
a
m
b
o
d
ia

S
e
y
ch

e
ll
e
s

A
rm

e
n
ia

A
lb
a
n
ia

J
o
rd

a
n

C
u
b
a

G
u
in
e
a

S
o
u
th

su
d
a
n

H
o
n
d
u
ra
s

S
ta
te

o
f
p
a
le
st
in
e

P
a
le
st
in
e

E
l
sa
lv
a
d
o
r

T
im

o
r-
le
st
e

N
e
p
a
l

G
u
a
te
m
a
la

C
o
st
a
ri
c
a

S
u
ri
n
a
m
e

S
u
d
a
n

C
o
lo
m
b
ia

P
e
ru

B
a
h
a
m
a
s

In
d
o
n
e
si
a

M
o
n
te
n
e
g
ro

T
ri
n
id
a
d
a
n
d
to
b
a
g
o

P
h
il
ip
p
in
e
s

C
o
m
o
ro
s

R
e
p
u
b
li
c
o
f
m
o
ld
o
v
a

G
e
o
rg
ia

M
o
ld
o
v
a

M
o
n
g
o
li
a

B
ra
z
il

M
e
x
ic
o

R
o
m
a
n
ia

S
e
rb

ia

B
u
rk
in
a
fa
so

Ir
a
n

B
u
rk
in
a

P
o
la
n
d

H
a
it
i

E
c
u
a
d
o
r

M
a
lt
a

A
ru

b
a

S
lo
v
a
k
ia

C
ro
a
ti
a

G
u
y
a
n
a

P
a
n
a
m
a

K
o
re
a

R
e
p
u
b
li
c
o
f
k
o
re
a

S
o
u
th

k
o
re
a

K
y
rg
y
z
st
a
n

S
p
a
in

P
o
rt
u
g
a
l

C
y
p
ru

s

M
a
d
a
g
a
sc
a
r

H
u
n
g
a
ry

P
u
e
rt
o
ri
c
o

B
e
n
in

L
ib
e
ri
a

D
o
m
in
ic
a
n
re
p
u
b
li
c

A
rg
e
n
ti
n
a

M
a
li

C
h
a
d

E
g
y
p
t

J
a
m
a
ic
a

K
a
z
a
k
h
st
a
n

C
a
m
e
ro
o
n

G
re
e
c
e

N
a
m
ib
ia

It
a
ly

S
lo
v
e
n
ia

U
k
ra
in
e

S
o
u
th

a
fr
ic
a

L
a
tv
ia

L
u
x
e
m
b
o
u
rg

Z
a
m
b
ia

Ir
e
la
n
d

E
th

io
p
ia

U
ru

g
u
a
y

R
u
ss
ia
n
fe
d
e
ra
ti
o
n

R
u
ss
ia

C
a
n
a
d
a

B
o
li
v
ia

B
e
la
ru

s

N
e
w

z
e
a
la
n
d

C
e
n
tr
a
l
a
fr
ic
a
n
re
p
u
b
li
c

N
ig
e
r

T
o
g
o

C
z
e
ch

ia
B
u
lg
a
ri
a

N
ig
e
ri
a

G
a
b
o
n

T
a
n
z
a
n
ia

U
n
it
e
d
re
p
u
b
li
c
o
f
ta
n
z
a
n
ia

J
a
p
a
n

U
sa

R
w
a
n
d
a

A
u
st
ri
a

A
u
st
ra
li
a

F
re
n
ch

g
u
ia
n
a

M
a
y
o
tt
e

L
it
h
u
a
n
ia

B
o
ts
w
a
n
a

Is
ra
e
l

B
e
lg
iu
m

R
é
u
n
io
n

S
w
it
z
e
rl
a
n
d

C
o
n
g
o

M
a
la
w
i

E
st
o
n
ia

B
u
ru

n
d
i

M
a
rt
in
iq
u
e

L
e
so
th

o

N
e
th

e
rl
a
n
d
s

A
n
g
o
la

U
n
it
e
d
k
in
g
d
o
m

N
o
rw

a
y

G
u
a
d
e
lo
u
p
e

G
e
rm

a
n
y

Z
im

b
a
b
w
e

M
o
z
a
m
b
iq
u
e

K
e
n
y
a

F
ra
n
c
e

U
g
a
n
d
a

G
h
a
n
a

F
in
la
n
d

S
a
o
to
m
e
a
n
d
p
ri
n
c
ip
e

40000

60000

80000

100000

120000

140000

C
h
an

ge
in

C
u
m
u
la
ti
ve

In
fe
ct
io
n
s

Results using 4680 data points

Gold Standard

Standard Regression

Causal Testing Framework

Fig. 8. A comparison of the metamorphic test outcomes predicted by the CTF and a naive regression model. The metamorphic test in

question increases the value of 𝛽 from 0.016 to 0.02672.

(i) the gold standard achieved by applying an SMT approach, (ii) a naive estimate with the simple regression model

𝐼 ∼ 𝑥0 + 𝑥1𝑙𝑛(𝛽) + 𝑥2𝑙𝑛(𝛽)
2 (i.e. without employing causal knowledge), and (iii) a causal estimate achieved using the

CTF and the approach outlined in this section.

By comparing the CTF results to the gold standard shown in Figure 8, we can see that the CTF is able to estimate the

effect of increasing 𝛽 from 0.016 to 0.02672 for each location with reasonable accuracy. Specifically, across the location

specific estimates, the CTF has a root mean square percentage error (𝑅𝑀𝑆𝑃𝐸) of 0.055. This outperforms the naive

regression model which provides a uniform prediction that is moderately accurate for ‘average’ locations, but extremely

inaccurate for more ‘extreme’ locations (𝑅𝑀𝑆𝑃𝐸 = 0.2).

While these results suggest that the CTF generally overestimates the effect by an average of roughly 5.5% cumulative

infections, the overall ordering of the predicted effect sizes is generally consistent with that of the gold standard. We

tested this preservation of ordering by calculating the Kendall rank correlation between the (ascending) ordering of the

CTF results and the gold standard, returning a value of 0.944 (𝑝 < 0.005).

By contrast, Figure 9 shows the results achieved using the smallest adjustment set, 𝐿, and regression model 𝐼 ∼

𝑥0 + 𝑥1𝑙𝑛(𝛽) + 𝑥2𝑙𝑛(𝛽)
2 + 𝑙𝑛(𝑥3)𝛽𝐿. This approach makes location-specific estimates using only the data available for

the location in question and is essentially an attempt to apply SMT to incomplete, confounded data. Because each

location-specific stratum contains only 30 executions that cover a narrow range of 𝛽 values, the regression model has

to make inaccurate extrapolations, leading to significant over- and under-estimates of the true effect (𝑅𝑀𝑆𝑃𝐸 = 0.515)

and poor rank preservation, as indicated by a Kendall’s rank correlation of 0.228 (𝑝 < 0.005). This stark contrast in

performance highlights the value of employing causal knowledge and domain expertise to use data more efficiently.

While Figure 8 demonstrates the accuracy with which the CTF can predict SMT outcomes from confounded

observational data, these results used the full data set comprising 4680 simulations. Although this is half of the 9360

executions that would typically be required for a conventional SMT approach, this is still a significant amount of data

that may not be available in practice. To investigate how much is necessary in practice, we repeatedly applied the CTF

to randomly sampled subsets of the data of decreasing size and calculated the RMSPE and Kendall’s rank correlation. We

repeated this process 30 times to obtain a distribution of outcomes and report 95% confidence intervals to demonstrate

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Clark et al.

O
m
a
n

M
a
ld
iv
e
s

S
e
n
e
g
a
l

Ir
a
q

A
fg
h
a
n
is
ta
n

P
a
k
is
ta
n

G
a
m
b
ia

S
a
m
o
a

M
o
ro
c
c
o

U
z
b
e
k
is
ta
n

A
z
e
rb

a
ij
a
n

Y
e
m
e
n

M
a
la
y
si
a

S
in
g
a
p
o
re

T
h
a
il
a
n
d

In
d
ia

N
ic
a
ra
g
u
a

T
a
ji
k
is
ta
n

B
a
n
g
la
d
e
sh

M
a
u
ri
ti
u
s

M
y
a
n
m
a
r

P
a
p
u
a
n
e
w

g
u
in
e
a

T
u
rk
e
y

P
a
ra
g
u
a
y

F
ij
i

V
e
n
e
z
u
e
la

C
h
il
e

C
h
in
a

V
ie
tn

a
m

S
ie
rr
a
le
o
n
e

C
a
m
b
o
d
ia

S
e
y
ch

e
ll
e
s

A
rm

e
n
ia

A
lb
a
n
ia

J
o
rd

a
n

C
u
b
a

G
u
in
e
a

S
o
u
th

su
d
a
n

H
o
n
d
u
ra
s

S
ta
te

o
f
p
a
le
st
in
e

P
a
le
st
in
e

E
l
sa
lv
a
d
o
r

T
im

o
r-
le
st
e

N
e
p
a
l

G
u
a
te
m
a
la

C
o
st
a
ri
c
a

S
u
ri
n
a
m
e

S
u
d
a
n

C
o
lo
m
b
ia

P
e
ru

B
a
h
a
m
a
s

In
d
o
n
e
si
a

M
o
n
te
n
e
g
ro

T
ri
n
id
a
d
a
n
d
to
b
a
g
o

P
h
il
ip
p
in
e
s

C
o
m
o
ro
s

R
e
p
u
b
li
c
o
f
m
o
ld
o
v
a

G
e
o
rg
ia

M
o
ld
o
v
a

M
o
n
g
o
li
a

B
ra
z
il

M
e
x
ic
o

R
o
m
a
n
ia

S
e
rb

ia

B
u
rk
in
a
fa
so

Ir
a
n

B
u
rk
in
a

P
o
la
n
d

H
a
it
i

E
c
u
a
d
o
r

M
a
lt
a

A
ru

b
a

S
lo
v
a
k
ia

C
ro
a
ti
a

G
u
y
a
n
a

P
a
n
a
m
a

K
o
re
a

R
e
p
u
b
li
c
o
f
k
o
re
a

S
o
u
th

k
o
re
a

K
y
rg
y
z
st
a
n

S
p
a
in

P
o
rt
u
g
a
l

C
y
p
ru

s

M
a
d
a
g
a
sc
a
r

H
u
n
g
a
ry

P
u
e
rt
o
ri
c
o

B
e
n
in

L
ib
e
ri
a

D
o
m
in
ic
a
n
re
p
u
b
li
c

A
rg
e
n
ti
n
a

M
a
li

C
h
a
d

E
g
y
p
t

J
a
m
a
ic
a

K
a
z
a
k
h
st
a
n

C
a
m
e
ro
o
n

G
re
e
c
e

N
a
m
ib
ia

It
a
ly

S
lo
v
e
n
ia

U
k
ra
in
e

S
o
u
th

a
fr
ic
a

L
a
tv
ia

L
u
x
e
m
b
o
u
rg

Z
a
m
b
ia

Ir
e
la
n
d

E
th

io
p
ia

U
ru

g
u
a
y

R
u
ss
ia
n
fe
d
e
ra
ti
o
n

R
u
ss
ia

C
a
n
a
d
a

B
o
li
v
ia

B
e
la
ru

s

N
e
w

z
e
a
la
n
d

C
e
n
tr
a
l
a
fr
ic
a
n
re
p
u
b
li
c

N
ig
e
r

T
o
g
o

C
z
e
ch

ia
B
u
lg
a
ri
a

N
ig
e
ri
a

G
a
b
o
n

T
a
n
z
a
n
ia

U
n
it
e
d
re
p
u
b
li
c
o
f
ta
n
z
a
n
ia

J
a
p
a
n

U
sa

R
w
a
n
d
a

A
u
st
ri
a

A
u
st
ra
li
a

F
re
n
ch

g
u
ia
n
a

M
a
y
o
tt
e

L
it
h
u
a
n
ia

B
o
ts
w
a
n
a

Is
ra
e
l

B
e
lg
iu
m

R
é
u
n
io
n

S
w
it
z
e
rl
a
n
d

C
o
n
g
o

M
a
la
w
i

E
st
o
n
ia

B
u
ru

n
d
i

M
a
rt
in
iq
u
e

L
e
so
th

o

N
e
th

e
rl
a
n
d
s

A
n
g
o
la

U
n
it
e
d
k
in
g
d
o
m

N
o
rw

a
y

G
u
a
d
e
lo
u
p
e

G
e
rm

a
n
y

Z
im

b
a
b
w
e

M
o
z
a
m
b
iq
u
e

K
e
n
y
a

F
ra
n
c
e

U
g
a
n
d
a

G
h
a
n
a

F
in
la
n
d

S
a
o
to
m
e
a
n
d
p
ri
n
c
ip
e

50000

75000

100000

125000

150000

175000

200000

C
h
an

ge
in

C
u
m
u
la
ti
ve

In
fe
ct
io
n
s

Gold Standard

Standard Regression

Location Regression

Fig. 9. A comparison of the metamorphic test outcomes predicted by a naive regression model and the same model with an interaction

between location and 𝛽 .

101 102 103

Data Points

0.05

0.10

0.15

0.20

0.25

R
M
S
P
E

Fig. 10. Relationship between root mean square percentage error (RMSPE) of CTF predictions and amount of data used (log scale)

with 95% confidence intervals.

the error. Figure 10 and Figure 11 show the results of these experiments. We use a logarithmic scale on the x-axis for

these figures as the accuracy changes most significantly between 1 and 200 data points.

Figure 10 shows that the RMSPE is greatest with small amounts of data (tens of data points) and quickly reduces to a

stable RMSPE of roughly 0.06 by around 200 data points. Similarly, Figure 11 shows that the Kendall’s rank correlation

is initially low (between 0.2 and 0.4) but rapidly increases to a stable value of around 0.9 when 100 to 200 data points

are available. This plateau in absolute and comparative error reduction indicates that SMT outcomes can be accurately

predicted using only small amounts of data and that larger amounts of data provide negligible gains in accuracy.

This testing scenario has provided evidence for all research questions.

RQ1 (Accuracy). Figure 8 shows the accuracy with which the CTF can infer a series of 156 SMT outcomes from

confounded observational data a posteriori. Although the majority of estimates miss the true effect by around 5.5%, the

ordering of the effect sizes is largely consistent with the gold standard. This finding suggests that, in this case study, the

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Testing Causality in Scientific Modelling Software 29

101 102 103

Data Points

0.0

0.2

0.4

0.6

0.8

1.0

K
en
d
al
l’
s
τ

Fig. 11. Relationship between Kendall’s rank correlation (𝜏) of CTF predictions and amount of data used (log scale) with 95%

confidence intervals.

CTF is better suited to drawing comparative conclusions about the effect sizes, such as łOman is affected significantly

less than Finlandž than absolute conclusions, such as łFinland observes an increase in cumulative infections of 135829ž.

RQ2 (Efficiency). As shown in Figures 10 and 11, after 200 data points, there is negligible improvement to the

absolute and comparative accuracy of the estimator. This suggests that, in this case study, the CTF is significantly more

efficient than a conventional SMT approach which would require 9360 executions of the SUT (assuming the source and

follow-up tests are repeated 30 times each), with each execution requiring roughly one to two minutes on a moderate

specification machine, as noted in earlier in this case study.

RQ3 (Practicality). In this case study, we leveraged our limited domain expertise to specify a causal DAG and

regression model that facilitates efficient and accurate inference of test outcomes. Most notably, to borrow data from

similar locations, we leveraged our knowledge of viral transmission in Covasim to add terms to our regression model for

the attributes that influence the effect of transmissibility on cumulative infections, such as contacts and susceptibility.

We achieved this using a relatively small DAG containing only eight nodes and employing commonplace regression

modelling techniques, such as quadratic, logarithmic, and interaction terms.

Overall the findings of this case study highlight the potential offered by a CI-led approach to SMT: whereas a

conventional SMT approach would require thousands of carefully controlled executions to test 156 metamorphic

relations, the CTF can accurately infer these outcomes from only 200 data points. Furthermore, the CTF enables a tester

to infer these outcomes a posteriori from potentially confounded data instead of executing the SUT further times. This

approach essentially relaxes the constraints ordinarily placed on data used for SMT, facilitating the re-use of existing

data while maintaining the ability to draw causal conclusions.

6 DISCUSSION

In this section, we discuss the findings of our three research questions outlined in Section 5, pertaining to the accuracy,

efficiency, and practicality of the proposed approach. We also discuss notable additional findings that fall outside the

scope of our research questions, including a pair of bugs identified in the case studies.

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Clark et al.

6.1 RQ1 (Accuracy): Can we reproduce the results of a conventional MT/SMT approach by applying the

CTF to observational data?

Throughout our case studies, we applied the CTF to a number of different subject systems from different domains to

predict MT and SMT outcomes from observational data. That is, data that had not been collected specifically for the

testing task in question.

In Section 5.1, for example, we were able to predict the outcome of two statistical metamorphic tests for a tessellation

model with sufficient accuracy to reveal a faulty metamorphic relation. We then confirmed this using a conventional

SMT approach. Similarly, in Section 5.2, we predicted several metamorphic test outcomes for a cardiac action potential

model, reproducing the results of an existing study. In Section 5.4, we then showed how observational data could be

re-used to predict multiple different statistical metamorphic test outcomes for an epidemiological model with high

comparative accuracy.

The CTF is able to accurately reproduce the results of both MT and SMT across a range of scientific modelling

software.

This finding suggests that, by leveraging CI, the CTF can offer an alternative approach to SMT that does not rely on

many potentially costly executions of the SUT. Instead, the CTF can be employed retrospectively to infer test outcomes

from existing, potentially confounded test data, effectively relaxing the constraints ordinarily imposed on the data used

for SMT. In this way, the CTF makes it possible to apply SMT where conventional approaches are currently prohibitively

expensive, thereby mitigating the problem of long execution times, as discussed in Section 2.2 and Kanewala and

Bieman’s survey [51].

While our case studies show that the CTF can infer SMT outcomes with good accuracy for a range of systems, there

are more advanced estimation techniques that could be employed to further increase the accuracy. To illustrate this

point, in Appendix we demonstrate how a more advanced form of regression modelling known as spline regression

can more accurately capture the theoretical shape of the cause-effect relationship between 𝛽 (transmissibility) and

cumulative infections (originally discussed in Section 5.4). In future work we will compare the performance and usability

of more advanced statistical models, such as spline regression [64] and causal forests [4].

6.2 RQ2 (Efficiency): In terms of the amount of data required, is the CTF more cost-effective than a

conventional MT/SMT approach?

In Section 5.1 (PLT model) and Section 5.4 (Covasim), we used the CTF to conduct SMT using less data than would be

required by a conventional SMT approach. In the case of PLT, we were able to reproduce the results of a conventional

SMT approach using a fifth of the data, uncovering a failed metamorphic relation in the process. Similarly, in Section 5.4

we used the CTF to infer the outcomes of 156 distinct metamorphic relations, as shown in Figure 8, using roughly half

the amount of data required by a conventional SMT approach. We then incrementally reduced the amount of data

and repeated our analysis to understand how the accuracy of the approach varies with respect to the amount of data,

finding that near-identical results could be achieved using only 200 data points.

Furthermore, although we have not obtained precise timing measurements, we note that the CTF takes roughly

a minute to produce all 156 of the location-specific effect estimates shown in Figure 8 on a moderate specification

machine. On the other hand, an individual run of Covasim with the settings used in this case study took between

one and two minutes on the same machine, and 9360 executions would be required to test these 156 effects using

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Testing Causality in Scientific Modelling Software 31

conventional SMT (with 30 repeats per source and follow-up test case). This would amount to between 156 and 312

hours without parallelisation.

The CTF is capable of reproducing the results of SMT using significantly less time and data than is required by a

conventional SMT approach.

These findings demonstrate the potential of the CTF to infer the outcomes ofmetamorphic test cases using significantly

less time and data than is required by a conventional SMT approach. Therefore, in conjunction with our findings forRQ1,

our answer to RQ2 suggests that the CTF can offer an efficient alternative to conventional MT and SMT approaches

that is more compatible with the notoriously demanding properties of scientific software, such as non-deterministic

behaviour and long execution times, as described in Section 2.2.

An open question surrounding the efficiency of the CTF is how the quality and diversity of the available data affects

also the accuracy and scope of inferences. To this end, an interesting avenue for future work would be to investigate

how existing test generation and selection strategies can be combined with the CTF to generate and prioritise test

cases that, once executed, produce execution data with the greatest inferential potential. In a similar vein, Bareinboim

and Pearl [10] have proposed general-purpose methods to combine different data sources generated under different

conditions to maximise what can be learned from the data. Future work could also investigate how these data fusion

techniques can be leveraged in a software testing context to further the inferential power of available data sources.

6.3 RQ3 (Practicality): What practical effort is required from the tester to conduct MT/SMT using the CTF?

Across our case studies, we primarily drew the causal knowledge necessary to elicit the causal DAGs and regression

models from existing studies in which the anticipated cause-effect relationships are well-defined. For example, in

Section 5.2, we used the results of an existing study [19] to specify the causal DAG for the cardiac action potential model

(see Figure 5). Similarly, in Section 5.1 (PLT), we based the shape of our regression models on theoretical results that

were also used as the basis of statistical metamorphic relations in the seminal paper on SMT [42]. The main expenditure

of human effort here was gathering the domain expertise for each system; converting these into causal DAGs was

straightforward and required little time. It stands to reason that this would be less time-consuming for a scientific

modeller (for example), who would already have a reasonably strong understanding of the underlying subject matter.

As with any model-based testing technique, time and effort are necessary to obtain knowledge and turn it into

a domain model. In addition, this process often assumes familiarity with software-specific notions, such as how to

characterise a state in a state machine [24], or what events should (or should not) be possible at any given point.

Furthermore, the resulting models tend to contain implementation-specific details likely to be unfamiliar to most

scientific software users [51]. By contrast, the CTF relies on an intuitive, domain-agnostic model (i.e. a causal DAG)

that makes essential assumptions transparent and requires a basic understanding of regression modelling. This set of

requirements poses a lower barrier to entry for a typical user of scientific software.

More generally, from specification to testing, the components of the CTF outlined in Section 3 assume no prior

knowledge of the implementation of the SUT. Instead, the CTF requires the user to specify domain-specific details that

are independent of the implementation. This shifts the nature of the burden placed on scientific software testers from

being software-specific to domain-specific. In doing so, the CTF facilitates the application of state-of-the-art testing

techniques, such as metamorphic testing, to scientific modelling software without the user even necessarily knowing

what a metamorphic relation or test is. This has been demonstrated throughout the case studies.

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Clark et al.

The main expenditure of effort in applying the CTF is the gathering of domain expertise; the task of expressing

knowledge in a causal DAG and regression model is comparatively straightforward and involves limited effort.

Furthermore, compared to other model-based testing techniques, the barrier to entry for the CTF is better suited

to the typical skill set of scientific model users.

Our work is based on the contention that the effort required to employ the CTF is not unreasonable and that, relative

to most model-based testing techniques, the necessary expertise are more familiar to a typical scientific model user [51].

Namely, the ability to elicit anticipated cause-effect relations in a causal DAG and familiarity with basic regression

modelling techniques. However, to precisely quantify and empirically evaluate the feasibility and practicality of the

approach, future work will look to conduct a human study in which various scientific developers apply the CTF to a

range of scientific software.

6.4 Summary

Collectively, our answers to RQ1 and RQ2 suggest that the CTF offers an accurate and efficient approach that addresses

several of the challenges associated with the testing of scientific software outlined by Kanewala and Bieman [51].

Most notably, through the ability to infer metamorphic test outcomes from small amounts of existing observational

data, the CTF mitigates the prohibitively long execution times that typically prevent adequate testing of scientific

software. Consequently, the CTF also increases the applicability of metamorphic testing to scientific software, helping

to indirectly alleviate the test oracle problem [11]

Of course, the accuracy and efficiency offered by the CTF come at a cost. Our answer to RQ3 suggests that the

CTF presents a trade-off between practical effort and accuracy/efficiency: by leveraging causal knowledge and domain

expertise, the CTF can apply SMT in situations where it is currently impractical. However, these domain expertise can

be difficult to obtain for non-domain experts. In the case studies, we found the main expenditure of human effort to be

in collecting the domain expertise necessary to apply the techniques; the process of converting these into a DAG and

regression model required considerably less effort.

6.5 Additional Findings

Throughout our case studies, we also identified a number of additional findings that warrant discussion. First, we discuss

the need for explainability and how causal DAGs help to address this. Second, we discuss a pair of bugs identified in the

case studies using the CTF.

Explainability. When testing scientific software, the reasoning behind a particular test passing or failing (i.e. the

test oracle procedure) is rarely made explicit. For example, modellers often use regression testing to check whether

changes to the SUT have affected model predictions or results. Any deviations are then typically validated by a domain

expert. This form of ad-hoc validation lacks transparency and, as such, cannot be easily interrogated by prospective

users of the SUT. For applications such as infectious disease modelling, where software outputs may inform important

policy decisions, there is a need for accountable and explainable test results. Explainability is also a topic of growing

concern in fields such as healthcare [48] that are increasingly using black-box machine learning techniques but require

transparent, accountable, and interpretable decision making [15].

Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Testing Causality in Scientific Modelling Software 33

To this end, the CTF incorporates explainability into the testing process. Specifically, by utilising causal DAGs for CI,

the CTF includes a lightweight and transparent artefact that partially explains the reasoning behind reaching a particular

test outcome (i.e. why a specific adjustment set, and therefore statistical model, yields a causal estimate). Furthermore,

the causal test case (Definition 3.5) includes an explicit test oracle (Definition 3.7) that captures ‘correctness’ in terms

of some causal metric, such as the 𝐴𝑇𝐸 or 𝑅𝑅. Both assets can be easily accessed and interrogated, increasing the

explainability and reputability of tests.

With this built-in notion of explainability, we posit that the CTF also has the potential to complement existing

techniques in the scientific modelling context that often rely on implicit domain expertise for testing, such as regression

testing. However, the causal DAG and test oracle do not communicate all assumptions with the potential to influence

test results and their interpretation. For example, the anticipated functional form of a particular cause-effect relationship

will influence the design of the regression model and its resulting predictions. A potential avenue for future work would

be to investigate methods for improving the explainability of the CTF. For example, one could look into more expressive

graphical models of causality that capture the expected functional form.

Bugs Found. Our case studies also revealed two interesting, previously undiscovered bugs in two of the studied

scientific models: the Poisson Line Tessellation model and Covasim.

First, in Section 5.1, we found that the relationship between intensity and number of polygons per unit area described

in [42] was more fragile at smaller window sizes. This suggested that the window size (width and/or height) has a

causal effect on the number of polygons per unit area, while [42] stated that these variables should be independent.

We then designed a causal test case to confirm that increasing the window width from 1 to 2 whilst holding intensity

constant caused a significant change in the number of polygons per unit area.

Second, in Section 5.3, we found a bug in Covasim’s vaccine implementation where, upon prioritising the elderly for

vaccination, the number of vaccinated individuals grew to nearly ten times the number of individuals in the simulation.

While this does not appear to significantly affect the key outputs of the model, it is not difficult to imagine how such a

bug could lead to an overestimation of the effects of interventions.

6.6 Threats to Validity

Our evaluative case studies in Section 5 do not claim to make generalisable conclusions regarding the accuracy, efficiency,

and effort associated with the CTF. Instead, these case studies serve as proofs of concept that show - for the studied

subject systems - how formulating metamorphic testing as a CI problem makes it possible to apply the approach in

situations where conventional metamorphic testing methods are impractical. Nonetheless, there are some threats to

validity worth considering here.

6.6.1 External Validity. In this work, the main threat to external validity is that our case studies only cover three

subject systems involving a moderate number of input and output variables. As graphical CI requires domain expertise

for the data-generating mechanism in the form of a causal DAG, a significant amount of time was spent familiarising

ourselves with the subject systems and understanding their constituent cause-effect relationships. As a result, this

limited our ability to systematically collect and analyse large numbers of varied subject systems.

Furthermore, our subject systems were all implemented in Python. Therefore, our findings do not necessarily

generalise to scientific modelling software implemented in other languages. However, the CTF only requires execution

data in CSV format to perform causal testing observationally and can thus be applied, in theory, to tabular data produced

by any scientific model.

Manuscript submitted to ACM

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Clark et al.

As a consequence of the aforementioned threats to external validity, we acknowledge that our results may not

generalise to all forms of scientific modelling software. However, we attempt to mitigate the aforementioned threats

to external validity by selecting models that differ in their complexity, subject matter, and modelling paradigm. In

addition, as discussed in Section 5, the selected systems have important but vastly different applications across a variety

of domains, and have all been the subject of prior research.

6.6.2 Internal Validity. In this paper, the main threat to internal validity is that we did not optimise the estimators

and configuration parameters thereof for our case studies. While this avoids the problem of over-fitting, it means

there may exist statistical models that are more suitable for modelling and inferring the behaviour of the input-output

relationships under study.

In the same vein, we specified regression equations that capture the expected functional form of various input-output

relationships. For example, when testing Covasim in Section 5.4, we specified a regression model which captures our

broad understanding of how cumulative infections vary with various causally relevant parameters. We called upon our

experience with the models and subject area to specify these equations. However, different domain experts may have

different opinions about the correct functional forms of the input-out relationships and may therefore have specified

these relationships differently or more accurately.

As a consequence of the above threats to internal validity, we acknowledge that there alternative statistical models

may achieve more precise causal inferences for the subject systems. However, we partially mitigate the above threats

to internal validity by manually inspecting the functional forms of the relationships between inputs and outputs of

interest in the SUT. We achieve this by varying one parameter at a time and observing how the output in question

changes in response (in a similar way to our sensitivity analysis case study in Section 5.2). We also include a more

advanced regression model in Appendix that more accurately captures the relationship between transmissibility (𝛽)

and the number of cumulative infections in Covasim.

7 RELATEDWORK

In this section, we provide a brief review of work related to the two main topics concerning our paper: approaches

for testing scientific software and causality in software testing. Additionally, we summarise automatic approaches to

generating causal DAGs and highlight a number of open research challenges.

7.1 Testing Techniques for Scientific Software

As stated in Kanewala and Bieman’s survey [51], scientific models are seldom tested using systematic approaches.

Instead, techniques such as sensitivity [73] and uncertainty analysis [33] are often employed to analyse and appraise

scientific models. However, these approaches generally require many costly executions that make them prohibitively

expensive at scale [27]. To address this issue, modellers have turned to emulator approaches [27, 87], where a surrogate

model is developed to approximate the behaviour of the simulation and provide an efficient way to validate behaviour

[19, 107]. However, these emulators are driven by statistical associations and are unable to draw causal inferences from

existing test data.

Another issue that precludes the testing of scientific modelling software is the oracle problem [11]; the lack of a

mechanism that can be used to ascertain whether the outcome of a test case is correct or not. Kanewala and Bieman’s

survey [51] identifies several approaches followed by scientific modellers to overcome the oracle problem, including:

pseudo oracles, comparison to analytical solutions or experimental results, and expert judgement. In addition to these

Manuscript submitted to ACM

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Testing Causality in Scientific Modelling Software 35

solutions, modellers have also turned to metamorphic testing (see Section 2) to overcome the lack of oracle. This

approach relies on the scientists being able to specify metamorphic relations capable of revealing faults. However, these

relationships are notoriously challenging to identify [93].

To assist with the identification of metamorphic relations, Kanewala and Bieman developed a machine learning

approach for predicting metamorphic relations for numerical software [50]. This is achieved by representing numerical

functions as a statement-level control flow graph and extracting features from this graph to train a classifier. In recent

years, several new approaches for automatically predicting metamorphic relations for a specific form of software

have been proposed, including for cyber-physical systems [5, 6] and matrix calculation programs [85]. However, the

generation of metamorphic relations remains a difficult problem with automatic solutions available for only a few

specific forms of software.

7.2 Causality in Software Testing

In more conventional settings, CI techniques have been applied to the software testing problem of fault localisation (FL).

Informally, FL concerns identifying locations of faults in a program [113] and often involves computing a “suspiciousness

metricž for software components, such as program statements. However, these metrics are often confounded by other

software components. To address this, Baah et al. [7] translated FL to a CI problem, using program dependence graphs

as a model of causality to estimate the causal effects of program statements on the occurrence of faults. Subsequent

papers build on this to handle additional sources of bias [8]; leverage more advanced statistical models [8, 84]; and

adapt to different software components [9, 39, 84, 95].

More recently, Lee et al. have introduced the Causal Program Dependence Analysis Framework and applied it to

FL. This is a CI-driven framework that measures the strength of dependence between program elements by modelling

their causal structure [61]. Unlike previous CI-based FL techniques, this framework does not use static analysis to

construct its underlying model of causality, and instead approximates the causal structure by observing the effects of

interventions. In a series of experiments, the framework has been shown to outperform slicing-based and search-based

FL techniques, and help developers focus on key dependencies. Furthermore, due to its focus on dependence relations

instead of coverage, it is less susceptible to coincidental correctness (executions that pass but cover faulty components).

In a similar vein, software testing often involves understanding why a particular outcome occurs, such as a program

failure. To this end, Johnson et al. [49], developed a tool that explains the root cause of faulty software behaviour. This

tool creates “causal experimentsž by mutating an existing test to form a suite of minimally different tests that, contrary

to the original, are not fault-causing. The passing and failing tests can then be compared to understand why a fault

occurred. Similarly, Chockler et al. [23] developed a tool to explain the decisions of deep neural network (DNN) image

classifiers. Following the actual causes framework [43], this tool offers explanations in the form of minimal subsets of

pixels sufficient for the DNN to classify an image.

Another software testing technique concerning causality is cause-effect graphing, a black-box approach adapted

from hardware testing. Here, input-output relationships are expressed in a variant of a combinatorial logic network,

known as a cause-effect graph, created by manually extracting causes, effects, and boolean constraints from natural

language specifications [69, 72]. Unlike the previous techniques, this approach does not use CI.

Recent work presented in [37] frames software testing in terms of causal reasoning. The authors conceptualise

an iterative approach for test case generation in which test cases and the causal DAG are generated together and

used to improve each other. However, the work is still at a preliminary stage, and the important link between CI and

metamorphic testing is not discussed.

Manuscript submitted to ACM

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Clark et al.

7.3 Automatic Generation of Causal DAGs

In this paper, we have assumed that all causal DAGs are specified manually by a domain expert. While this is an intuitive

and widely accepted approach for conducting CI in fields such as epidemiology and social sciences, there are two

potential methods that could, in theory, (partially) automate this process.

First, under certain strict assumptions and with large quantities of data, it is possible to predict the structure of causal

DAGs from observational data. Wheremodel inference provides a source of models for traditional MBT techniques [105],

the field of causal discovery (CD) [63] provides methods to infer causal structures from data by exploiting asymmetries

that distinguish association from causation [38]. However, due to the need for large amounts of data and their strict

assumptions, we have had limited success in applying CD algorithms to model execution data. We plan to investigate

this route further in future work.

Second, causal DAGs can be generated via static analysis of source code. DAGs derived in this way have already

been used for FL [61, 84]. However, this approach relies on source code being openly available and produces a detailed,

low-level model of causality for the SUT. While this level of granularity is ideal for the purpose of FL, the resulting

causal DAG would be less suitable for a typical scientific modeller.

In addition to the aforementioned challenges, there is a fundamental barrier to using automatically generated

models of causality for testing: inferred models represent the implemented system rather than the true specification.

In other words, even if we could perfectly recover the DAG of the implementation, this would contain any bugs the

implementation may have. We would, in effect, be testing the system against itself, so it would trivially look correct.

Hence, the correctness of any inferred DAGs must be verified by a domain expert.

7.4 Machine Learning-Inferred Models of Tested Behaviour

In this work, we employ causality-informed linear regression models to infer metamorphic test outcomes. This aspect of

our work relates to a significant body of work on machine learning approaches for inferring models from test executions.

While Weyuker started this line of research 40 years ago [111], it has become particularly active in the last decade.

Most testing approaches that incorporate machine learning do so in the context of regression testing, where the

inferred model represents the correct behaviour that can be used to identify any faults arising in subsequent software

versions. Such approaches often use off-the-shelf machine learning and regression algorithms, chosen to fit the

characteristics of the software behaviour in question. These have included standard linear regression [3], state machine

inference [109], and decision trees [13] amongst others.

Such approaches are applicable to situations where (a) there is an established, reasonably correct system in place

to derive tests from, and (b) there is a sufficiently large and diverse amount of execution data available. In our case,

neither of these conditions holds. The computational models we analyse are exploratory in nature, and would not

serve as a reliable oracle in their own right. Instead, we depend on causal properties provided by the developer in the

DAG. Furthermore, computational models are subject to the various restrictions described in Section 2.2 - namely, high

execution times, large and complex input spaces, and high computational costs. These restrictions prevent us from

collecting a set of executions that is sufficiently large and diverse to accurately characterise the underlying behaviour.

8 CONCLUSION AND FUTUREWORK

In this paper, we presented the Causal Testing Framework (CTF): a conceptual framework that facilitates the application

of causal inference (CI) techniques to software testing problems. This framework follows a model-based testing approach

Manuscript submitted to ACM

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Testing Causality in Scientific Modelling Software 37

to incorporate an explicit model of causality into the software testing process in the form of a causal DAG, enabling the

direct application of graphical CI methods to software testing activities. Due to its fundamentally causal nature, we

took a particular focus on metamorphic testing in this work.

A key contribution of the CTF is its ability to infer metamorphic test outcomes from previous execution data, despite

the presence of confounding, providing an efficient method for testing scientific models in situations where it is currently

impractical or infeasible. To demonstrate this, we applied our open source reference implementation of the CTF to three

real-world scientific models of varying size and complexity, including a Poisson line tessellation model, a cardiac action

potential model, and an epidemiological agent-based model. The results of these case studies suggest that, through the

use of CI, the CTF can accurately infer metamorphic test outcomes from existing test data using significantly less data

than is required by a conventional statistical metamorphic testing approach.

Software testing is an inherently causal process, and the field of CI holds much-untapped potential. To this end,

the CTF lays the foundation for a new line of causality-driven software testing techniques. In one line of future work,

we plan to apply the CTF to more causality-led testing activities, such as regression testing and A/B testing, to better

understand how CI can support different testing activities. A separate direction of research would be to establish a

(semi-)automatic, reliable process for the discovery of causal DAGs representing software systems. Such an artefact

could be used as a starting point for a causal specification, reducing the amount of human effort required to apply the

CTF and thus lower the barrier to entry.

ACKNOWLEDGMENTS

Foster, Walkinshaw, and Hierons are funded by the EPSRC CITCoM grant EP/T030526/1. For the purpose of open access,

the author has applied a Creative Commons Attribution (CC BY)16 licence to any Author Accepted Manuscript version

arising.

REFERENCES

[1] Jason Abrevaya, Yu-Chin Hsu, and Robert P Lieli. 2015. Estimating conditional average treatment effects. Journal of Business & Economic Statistics

33, 4 (2015), 485ś505.

[2] Clement Adebamowo, Oumou Bah-Sow, Fred Binka, Roberto Bruzzone, Arthur Caplan, Jean-François Delfraissy, David Heymann, Peter Horby,

Pontiano Kaleebu, Jean-Jacques Muyembe Tamfum, et al. 2014. Randomised controlled trials for Ebola: practical and ethical issues. The Lancet 384,

9952 (2014), 1423ś1424.

[3] Aitor Arrieta, Jon Ayerdi, Miren Illarramendi, Aitor Agirre, Goiuria Sagardui, and Maite Arratibel. 2021. Using machine learning to build test

oracles: an industrial case study on elevators dispatching algorithms. In 2021 IEEE/ACM International Conference on Automation of Software Test

(AST). IEEE, 30ś39.

[4] Susan Athey and Stefan Wager. 2019. Estimating treatment effects with causal forests: An application. Observational Studies 5, 2 (2019), 37ś51.

[5] Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagardui, and Maite Arratibel. 2021. Generating Metamorphic Relations for

Cyber-Physical Systems with Genetic Programming: An Industrial Case Study. In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing

Machinery, New York, NY, USA, 1264ś1274. https://doi.org/10.1145/3468264.3473920

[6] Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagardui, and Maite Arratibel. 2022. Evolutionary Generation of Metamorphic

Relations for Cyber-Physical Systems. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (Boston, Massachusetts)

(GECCO ’22). Association for Computing Machinery, New York, NY, USA, 15ś16. https://doi.org/10.1145/3520304.3534077

[7] George K. Baah, Andy Podgurski, and Mary Jean Harrold. 2010. Causal Inference for Statistical Fault Localization. In Proceedings of the 19th

International Symposium on Software Testing and Analysis (Trento, Italy) (ISSTA ’10). Association for Computing Machinery, New York, NY, USA,

73ś84. https://doi.org/10.1145/1831708.1831717

16Where permitted by UKRI a CC-BY-ND licence may be stated instead.

Manuscript submitted to ACM

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Clark et al.

[8] George K. Baah, Andy Podgurski, and Mary Jean Harrold. 2011. Mitigating the Confounding Effects of Program Dependences for Effective Fault

Localization. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering (Szeged,

Hungary) (ESEC/FSE ’11). Association for Computing Machinery, New York, NY, USA, 146ś156. https://doi.org/10.1145/2025113.2025136

[9] Zhuofu Bai, Gang Shu, and Andy Podgurski. 2015. NUMFL: Localizing Faults in Numerical Software Using a Value-Based Causal Model. In 2015

IEEE 8th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 1ś10. https://doi.org/10.1109/ICST.2015.7102597

[10] Elias Bareinboim and Judea Pearl. 2016. Causal inference and the data-fusion problem. Proceedings of the National Academy of Sciences of the

United States of America 113, 27 (2016), 7345ś7352. https://www.jstor.org/stable/26470690

[11] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015. The Oracle Problem in Software Testing: A Survey. IEEE

Transactions on Software Engineering 41, 5 (2015), 507ś525. https://doi.org/10.1109/TSE.2014.2372785

[12] Kenneth Benoit. 2011. Linear regression models with logarithmic transformations. London School of Economics, London 22, 1 (2011), 23ś36.

[13] Lionel C Briand, Yvan Labiche, Zaheer Bawar, and Nadia Traldi Spido. 2009. Using machine learning to refine category-partition test specifications

and test suites. Information and Software Technology 51, 11 (2009), 1551ś1564.

[14] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner (Eds.). 2005. Model-Based Testing of Reactive Systems,

Advanced Lectures [The volume is the outcome of a research seminar that was held in Schloss Dagstuhl in January 2004]. Lecture Notes in Computer

Science, Vol. 3472. Springer. https://doi.org/10.1007/b137241

[15] Nadia Burkart and Marco F Huber. 2021. A survey on the explainability of supervised machine learning. Journal of Artificial Intelligence Research

70 (2021), 245ś317.

[16] Michael J. Butler, Philipp Körner, Sebastian Krings, Thierry Lecomte, Michael Leuschel, Luis-Fernando Mejia, and Laurent Voisin. 2020. The First

Twenty-Five Years of Industrial Use of the B-Method. In Formal Methods for Industrial Critical Systems - 25th International Conference, FMICS 2020,

Vienna, Austria, September 2-3, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12327), Maurice H. ter Beek and Dejan Nickovic (Eds.).

Springer, 189ś209.

[17] Nancy Cartwright and Eileen Munro. 2010. The limitations of randomized controlled trials in predicting effectiveness. Journal of evaluation in

clinical practice 16 2 (2010), 260ś6.

[18] cellML. 2022. cellML: Luo-Rudy 1991. https://models.cellml.org/exposure/456b07d6a7a5b45ed71caad0ea2c0b9d.

[19] Eugene TY Chang, Mark Strong, and Richard H Clayton. 2015. Bayesian sensitivity analysis of a cardiac cell model using a Gaussian process

emulator. PloS one 10, 6 (2015), e0130252.

[20] Tsong Y. Chen, Shing C. Cheung, and Shiu Ming Yiu. 1998. Metamorphic testing: A new approach for generating next test cases. Technical Report

HKUST-CS98-01. The Hong Kong University of Science and Technology.

[21] Vishnu Vardhan Chetlur and Harpreet S. Dhillon. 2018. Coverage Analysis of a Vehicular Network Modeled as Cox Process Driven by Poisson

Line Process. IEEE Transactions on Wireless Communications 17, 7 (2018), 4401ś4416. https://doi.org/10.1109/TWC.2018.2824832

[22] Sung Nok Chiu, Dietrich Stoyan, W. S. Kendall, and Joseph Mecke. 2013. Stochastic Geometry and its Applications (3rd ed.). John Wiley & Sons Inc,

Chichester, West Sussex, United Kingdom.

[23] Hana Chockler, Daniel Kroening, and Youcheng Sun. 2021. Explanations for Occluded Images. https://doi.org/10.48550/ARXIV.2103.03622

[24] Tsun S. Chow. 1978. Testing software design modeled by finite-state machines. IEEE transactions on software engineering 3 (1978), 178ś187.

[25] Carlos Cinelli and Chad Hazlett. 2020. Making sense of sensitivity: Extending omitted variable bias. Journal of the Royal Statistical Society Series

B-Statistical Methodology 82, 1 (2020), 39ś67.

[26] Jamie A. Cohen, Dina Mistry, Cliff C. Kerr, and Daniel J. Klein. 2020. Schools are not islands: Balancing COVID-19 risk and educational benefits

using structural and temporal countermeasures. https://doi.org/10.1101/2020.09.08.20190942

[27] Stefano Conti and Anthony O’Hagan. 2010. Bayesian emulation of complex multi-output and dynamic computer models. Journal of statistical

planning and inference 140, 3 (2010), 640ś651.

[28] Jerome Cornfield, William Haenszel, E. Cuyler Hammond, Abraham M. Lilienfeld, Michael B. Shimkin, and Ernst L. Wynder. 1959. Smoking

and Lung Cancer: Recent Evidence and a Discussion of Some Questions. JNCI: Journal of the National Cancer Institute 22, 1 (01 1959), 173ś203.

https://doi.org/10.1093/jnci/22.1.173 arXiv:https://academic.oup.com/jnci/article-pdf/22/1/173/2704718/22-1-173.pdf

[29] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems,

C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337ś340.

[30] Jared L. Deutsch and Clayton V. Deutsch. 2012. Latin hypercube sampling with multidimensional uniformity. Journal of Statistical Planning and

Inference 142, 3 (2012), 763ś772. https://doi.org/10.1016/j.jspi.2011.09.016

[31] J. Dick and A. Faivre. 1993. Automating the generation and sequencing of test cases from model-based specifications. In FME ’93, First International

Symposium on Formal Methods in Europe. Springer-Verlag, Lecture Notes in Computer Science 670, Odense, Denmark, 268ś284.

[32] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C. North, and Gordon Woodhull. 2002. GraphvizÐ Open Source Graph Drawing Tools.

In Graph Drawing, Petra Mutzel, Michael Jünger, and Sebastian Leipert (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 483ś484.

[33] Ismail Farajpour and Sez Atamturktur. 2013. Error and uncertainty analysis of inexact and imprecise computer models. Journal of Computing in

Civil Engineering 27, 4 (2013), 407ś418.

[34] Institute for Disease Modeling. 2022. Covasim: Vaccine Tests. https://github.com/InstituteforDiseaseModeling/covasim/blob/master/tests/

test_interventions.py.

[35] Institute for Disease Modelling. 2022. Covasim. https://github.com/InstituteforDiseaseModeling/covasim.

Manuscript submitted to ACM

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

Testing Causality in Scientific Modelling Software 39

[36] Marie-Claude Gaudel. 1995. Testing can be formal Too. In 6th International Joint Conference CAAP/FASE Theory and Practice of Software Development

(TAPSOFT’95) (Lecture Notes in Computer Science, Vol. 915). Springer, 82ś96.

[37] Luca Giamattei, Roberto Pietrantuono, and Stefano Russo. 2023. Reasoning-Based Software Testing. https://doi.org/10.48550/ARXIV.2303.01302

[38] Clark Glymour, Kun Zhang, and Peter Spirtes. 2019. Review of causal discovery methods based on graphical models. Frontiers in genetics 10 (2019),

524.

[39] Ross Gore and Paul F. Reynolds. 2012. Reducing confounding bias in predicate-level statistical debugging metrics. In 2012 34th International

Conference on Software Engineering (ICSE). IEEE, 463ś473. https://doi.org/10.1109/ICSE.2012.6227169

[40] S Greenland, J Pearl, and J M Robins. 1999. Causal diagrams for epidemiologic research. Epidemiology 10, 1 (Jan. 1999), 37ś48.

[41] Michael H Grider, Rishita Jessu, and Rian Kabir. 2019. Physiology, action potential. (2019).

[42] Ralph Guderlei and Johannes Mayer. 2007. Statistical Metamorphic Testing Testing Programs with Random Output by Means of Statistical

Hypothesis Tests and Metamorphic Testing. In Seventh International Conference on Quality Software (QSIC 2007). IEEE, 404ś409. https://doi.org/

10.1109/QSIC.2007.4385527

[43] Joseph Y Halpern and Judea Pearl. 2005. Causes and explanations: A structural-model approach. Part I: Causes. The British Journal for the

Philosophy of Science 56, 4 (2005), 843ś887.

[44] Miguel A Hernán and James M Robins. 2020. Causal Inference: what if. Chapman & Hall/CRC, Boca Raton.

[45] R. M. Hierons. 1997. Testing from a Z specification. The Journal of Software Testing, Verification and Reliability 7, 1 (1997), 19ś33.

[46] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh

Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy A. Vilkomir, Martin R. Woodward, and Hussein Zedan. 2009. Using formal

specifications to support testing. Comput. Surveys 41, 2 (2009), 9:1ś9:76.

[47] Paul W Holland. 1986. Statistics and causal inference. Journal of the American statistical Association 81, 396 (1986), 945ś960.

[48] Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal, and Heimo Müller. 2019. Causability and explainability of artificial intelligence in

medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9, 4 (2019), e1312.

[49] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal testing: understanding defects’ root causes. In Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering. IEEE, 87ś99.

[50] Upulee Kanewala and James M Bieman. 2013. Using machine learning techniques to detect metamorphic relations for programs without test

oracles. In 2013 IEEE 24th International Symposium on Software Reliability Engineering (ISSRE). IEEE, IEEE, 1ś10.

[51] Upulee Kanewala and James M. Bieman. 2014. Testing scientific software: A systematic literature review. Information and Software Technology 56,

10 (2014), 1219ś1232. https://doi.org/10.1016/j.infsof .2014.05.006

[52] Luke Keele. 2015. The Statistics of Causal Inference: A View from Political Methodology. Political Analysis 23, 3 (2015), 313ś335. https:

//doi.org/10.1093/pan/mpv007

[53] Diane Kelly and Rebecca Sanders. 2008. The challenge of testing scientific software. , 30ś36 pages.

[54] John Kendall. 2003. Designing a research project: randomised controlled trials and their principles. Emergency medicine journal: EMJ 20, 2 (2003),

164.

[55] Cliff C Kerr, Dina Mistry, Robyn M Stuart, Katherine Rosenfeld, Gregory R Hart, Rafael C Núñez, Jamie A Cohen, Prashanth Selvaraj, Romesh G

Abeysuriya, Michałl Jastrzębski, et al. 2021. Controlling COVID-19 via test-trace-quarantine. Nature Communications 12, 1 (2021), 1ś12.

[56] Cliff C Kerr, Robyn M Stuart, Dina Mistry, Romesh G Abeysuriya, Katherine Rosenfeld, Gregory R Hart, Rafael C Núñez, Jamie A Cohen, Prashanth

Selvaraj, Brittany Hagedorn, et al. 2021. Covasim: an agent-based model of COVID-19 dynamics and interventions. PLOS Computational Biology

17, 7 (2021), e1009149.

[57] Jack PC Kleijnen. 1995. Verification and validation of simulation models. European journal of operational research 82, 1 (1995), 145ś162.

[58] Rex B Kline. 2015. Principles and practice of structural equation modeling. Guilford publications.

[59] Konstantin Kreyman, David Lorge Parnas, and Sanzheng Qiao. 1999. Inspection procedures for critical programs that model physical phenomena.

[60] David Lee and Mihalis Yannakakis. 1996. Principles and Methods of Testing Finite-State Machines - A Survey. Proc. IEEE 84, 8 (1996), 1089ś1123.

[61] Seongmin Lee, Dave Binkley, Robert Feldt, Nicolas Gold, and Shin Yoo. 2021. Causal program dependence analysis.

[62] Ching-Hsing Luo and Yoram Rudy. 1991. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction.

Circulation Research 68, 6 (1991), 1501ś1526.

[63] Daniel Malinsky and David Danks. 2018. Causal discovery algorithms: A practical guide. Philosophy Compass 13, 1 (2018), e12470.

[64] Lawrence C Marsh and David R Cormier. 2001. Spline regression models. Number 137. Sage.

[65] E. F. Moore. 1956. Gedanken-Experiments. In Automata Studies, C. Shannon and J. McCarthy (Eds.). Princeton University Press.

[66] Frédéric Morlot. 2012. A population model based on a Poisson line tessellation. In 2012 10th International Symposium on Modeling and Optimization

in Mobile, Ad Hoc and Wireless Networks (WiOpt). IEEE, 337ś342.

[67] Sahil Moza. 2020. sahilm89/lhsmdu: Latin Hypercube Sampling with Multi-Dimensional Uniformity (LHSMDU): Speed Boost minor compatibility

fixes. https://doi.org/10.5281/zenodo.3929531

[68] Gail C Murphy, David Notkin, and Kevin Sullivan. 1995. Software reflexion models: Bridging the gap between source and high-level models. In

Proceedings of the 3rd ACM SIGSOFT symposium on Foundations of software engineering. IEEE, 18ś28.

[69] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. 2004. The Art of Software Testing. Vol. 2. Wiley Online Library.

Manuscript submitted to ACM

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

40 Clark et al.

[70] Josh W Nevin, FJ Vaquero-Caballero, David J Ives, and Seb J Savory. 2021. Physics-informed Gaussian process regression for optical fiber

communication systems. Journal of Lightwave Technology 39, 21 (2021), 6833ś6844.

[71] Srinivas Nidhra and Jagruthi Dondeti. 2012. Black box and white box testing techniques-a literature review. International Journal of Embedded

Systems and Applications (IJESA) 2, 2 (2012), 29ś50.

[72] Khenaidoo Nursimulu and Robert L. Probert. 1995. Cause-Effect Graphing Analysis and Validation of Requirements. In Proceedings of the 1995

Conference of the Centre for Advanced Studies on Collaborative Research (Toronto, Ontario, Canada) (CASCON ’95). IBM Press, 46.

[73] Jeremy E Oakley and Anthony O’Hagan. 2004. Probabilistic sensitivity analysis of complex models: a Bayesian approach. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 66, 3 (2004), 751ś769.

[74] Sheila F O’Brien and Qi Long Yi. 2016. How do I interpret a confidence interval? Transfusion 56, 7 (2016), 1680ś1683.

[75] Marie Oldfield and Ella Haig. 2021. Analytical modelling and UK Government policy. AI and Ethics 2, 3 (jul 2021), 389ś404. https://doi.org/

10.1007/s43681-021-00078-9

[76] Jasmina Panovska-Griffiths, Cliff C Kerr, Robyn M Stuart, Dina Mistry, Daniel J Klein, Russell M Viner, and Chris Bonell. 2020. Determining the

optimal strategy for reopening schools, the impact of test and trace interventions, and the risk of occurrence of a second COVID-19 epidemic wave

in the UK: a modelling study. The Lancet Child & Adolescent Health 4, 11 (2020), 817ś827.

[77] Jasmina Panovska-Griffiths, Cliff C Kerr, William Waites, Robyn Margaret Stuart, Dina Mistry, Derek Foster, Daniel J Klein, Russell M Viner, and

Chris Bonell. 2020. The potential contribution of face coverings to the control of SARS-CoV-2 transmission in schools and broader society in the

UK: a modelling study.

[78] Judea Pearl. 1995. Causal diagrams for empirical research. Biometrika 82, 4 (12 1995), 669ś688. https://doi.org/10.1093/biomet/82.4.669

arXiv:https://academic.oup.com/biomet/article-pdf/82/4/669/698263/82-4-669.pdf

[79] Judea Pearl. 2009. Causal inference in statistics: An overview. Statistics Surveys 3 (2009), 96ś146. https://doi.org/10.1214/09-SS057

[80] Judea Pearl. 2009. Causality. Cambridge university press, Cambridge.

[81] Judea Pearl. 2018. Does Obesity Shorten Life? Or is it the Soda? On Non-manipulable Causes. Journal of Causal Inference 6, 2 (2018), 20182001.

https://doi.org/10.1515/jci-2018-2001

[82] Judea Pearl and Dana Mackenzie. 2018. The Book of Why. Allen Lane.

[83] Judea Pearl and Thomas S Verma. 1995. A theory of inferred causation. In Studies in Logic and the Foundations of Mathematics. Vol. 134. Elsevier,

789ś811.

[84] Andy Podgurski and Yiğit Küçük. 2020. CounterFault: Value-Based Fault Localization by Modeling and Predicting Counterfactual Outcomes. In

2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 382ś393.

[85] Karishma Rahman and Upulee Kanewala. 2018. Predicting Metamorphic Relations for Matrix Calculation Programs. In 2018 IEEE/ACM 3rd

International Workshop on Metamorphic Testing (MET). IEEE, 10ś13.

[86] Paul Ralph. 2021. ACM SIGSOFT Empirical Standards Released. SIGSOFT Softw. Eng. Notes 46, 1 (feb 2021), 19. https://doi.org/10.1145/

3437479.3437483

[87] Carl Edward Rasmussen. 2004. Gaussian Processes in Machine Learning. In Advanced Lectures on Machine Learning: ML Summer Schools 2003,

Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lectures, Olivier Bousquet, Ulrike von Luxburg, and

Gunnar Rätsch (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 63ś71. https://doi.org/10.1007/978-3-540-28650-9_4

[88] Carl Edward Rasmussen, Christopher KI Williams, et al. 2006. Gaussian processes for machine learning. Vol. 1. Springer.

[89] Kenneth J Rothman and Sander Greenland. 2005. Causation and causal inference in epidemiology. American journal of public health 95, S1 (2005),

S144śS150.

[90] Donald B Rubin. 2005. Causal inference using potential outcomes: Design, modeling, decisions. J. Amer. Statist. Assoc. 100, 469 (2005), 322ś331.

[91] Fanny Sarrazin, Francesca Pianosi, and Thorsten Wagener. 2016. Global Sensitivity Analysis of environmental models: Convergence and validation.

Environmental Modelling & Software 79 (2016), 135ś152.

[92] Nick Scott, Anna Palmer, Dominic Delport, Romesh Abeysuriya, Robyn Stuart, Cliff C Kerr, Dina Mistry, Daniel J Klein, Rachel Sacks-Davis, Katie

Heath, et al. 2020. Modelling the impact of reducing control measures on the COVID-19 pandemic in a low transmission setting. Med J Aust 214, 2

(2020), 79ś83.

[93] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A survey on metamorphic testing. IEEE Transactions on software

engineering 42, 9 (2016), 805ś824.

[94] Dongeek Shin, Ahmed Kirmani, Andrea Colaço, and Vivek K Goyal. 2013. Parametric Poisson process imaging. In 2013 IEEE Global Conference on

Signal and Information Processing. IEEE, IEEE, 1053ś1056.

[95] Gang Shu, Boya Sun, Andy Podgurski, and Feng Cao. 2013. Mfl: Method-level fault localization with causal inference. In 2013 IEEE Sixth International

Conference on Software Testing, Verification and Validation. IEEE, IEEE, 124ś133.

[96] J. M. Spivey. 1992. The Z Notation: A Reference Manual (2nd ed.). Prentice-Hall.

[97] Matt Staats, Michael W Whalen, and Mats PE Heimdahl. 2011. Programs, tests, and oracles: the foundations of testing revisited. In 2011 33rd

international conference on software engineering (ICSE). IEEE, IEEE, 391ś400.

[98] Michael Stein. 1987. Large sample properties of simulations using Latin hypercube sampling. Technometrics 29, 2 (1987), 143ś151.

[99] James H Stock, Mark WWatson, et al. 2003. Introduction to econometrics. Vol. 104. Addison Wesley Boston.

Manuscript submitted to ACM

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

Testing Causality in Scientific Modelling Software 41

[100] Robyn M Stuart, Romesh G Abeysuriya, Cliff C Kerr, Dina Mistry, Daniel J Klein, Richard Gray, Margaret Hellard, and Nick Scott. 2020. The role of

masks in reducing the risk of new waves of COVID-19 in low transmission settings: a modeling study.

[101] Peter WG Tennant, Eleanor J Murray, Kellyn F Arnold, Laurie Berrie, Matthew P Fox, Sarah C Gadd, Wendy J Harrison, Claire Keeble, Lynsie R

Ranker, Johannes Textor, et al. 2021. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and

recommendations. International Journal of Epidemiology 50, 2 (2021), 620ś632.

[102] Robin N Thompson. 2020. Epidemiological models are important tools for guiding COVID-19 interventions. BMC medicine 18, 1 (2020), 1ś4.

[103] Jan Tretmans. 2008. Model Based Testing with Labelled Transition Systems. In Formal Methods and Testing (Lecture Notes in Computer Science,

Vol. 4949). Springer, 1ś38.

[104] Mark Utting and Bruno Legeard. 2010. Practical model-based testing: a tools approach. Elsevier.

[105] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A taxonomy of model-based testing approaches. Software Testing, Verification and

Reliability 22, 5 (2012), 297ś312.

[106] Tyler J VanderWeele and Peng Ding. 2017. Sensitivity analysis in observational research: introducing the E-value. Annals of internal medicine 167,

4 (2017), 268ś274.

[107] Ian Vernon, Michael Goldstein, and Richard Bower. 2014. Galaxy Formation: Bayesian History Matching for the Observable Universe. Statist. Sci.

29, 1 (2014), 81 ś 90. https://doi.org/10.1214/12-STS412

[108] Stefan Wager and Susan Athey. 2018. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. J. Amer. Statist. Assoc.

113, 523 (2018), 1228ś1242. https://doi.org/10.1080/01621459.2017.1319839

[109] Neil Walkinshaw, Ramsay Taylor, and John Derrick. 2016. Inferring extended finite state machine models from software executions. Empirical

Software Engineering 21 (2016), 811ś853.

[110] Elaine Weyuker. 1982. On Testing Non-Testable Programs. Computer Journal 25 (11 1982). https://doi.org/10.1093/comjnl/25.4.465

[111] Elaine J Weyuker. 1983. Assessing test data adequacy through program inference. ACM Transactions on Programming Languages and Systems

(TOPLAS) 5, 4 (1983), 641ś655.

[112] Christof Wolf and Henning Best. 2013. The SAGE handbook of regression analysis and causal inference. The SAGE Handbook of Regression Analysis

and Causal Inference (2013), 1ś424.

[113] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A survey on software fault localization. IEEE Transactions on Software

Engineering 42, 8 (2016), 707ś740.

Manuscript submitted to ACM

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

42 Clark et al.

APPENDIX

A more advanced regression model for Covasim

In Section 5.4, we designed a regression model that broadly captures the expected relationship between cumulative

infections and various causally relevant parameters, such as transmissibility 𝛽 and household contacts 𝐶𝐻 . This

regression model uses conventional regression modelling techniques to specify the relationships of interest. Namely,

quadratic terms, log transformations, and effect modifiers.

However, this model does not capture the relationship between 𝛽 and cumulative infections perfectly because the

relationship follows a sigmoid function (i.e. a characteristic S-shaped curve). Informally, we can explain this relationship

as follows. Initially, when 𝛽 is low, there are few infections because the rate of viral transmission is low. Then, as 𝛽

increases past some critical threshold, an exponential growth in the transmission rate occurs. Eventually, enough of the

population becomes infected and gains immunity or dies, rapidly reducing the rate of viral transmission. This sudden

reduction causes cumulative infections to level off, completing the characteristic S shape.

One of the weaknesses of polynomial regression is its unpredictable tail behaviour [112]. This limitation is particularly

problematic for modelling sigmoid relationships, where the tails are necessarily flat. To address this limitation, we

employed a more advanced form of regression known as spline regression [64].

In short, spline regression involves constructing a piece-wise polynomial over contiguous regions of the data. Within

each region, a separate polynomial function of degree 𝑛 is fit to the subset of data. This approach to regression essentially

breaks the problem into discrete stages and is an effective technique for capturing non-linear relationships. In many

cases, a third-degree polynomial is used to model each region, in which case the resulting splines are referred to as

cubic splines.

Based on our limited domain expertise, to capture the sigmoid relationship between 𝛽 and cumulative infections, we

used cubic splines with two (internal) knots. With this approach, our aim was to separate the data into three regions

corresponding to the three distinct phases of the sigmoid function described above (initial slow growth in infections,

exponential growth, and plateau in infections).

O
m
a
n

M
a
ld
iv
e
s

S
e
n
e
g
a
l

Ir
a
q

A
fg
h
a
n
is
ta
n

P
a
k
is
ta
n

G
a
m
b
ia

S
a
m
o
a

M
o
ro
c
c
o

U
z
b
e
k
is
ta
n

A
z
e
rb

a
ij
a
n

Y
e
m
e
n

M
a
la
y
si
a

S
in
g
a
p
o
re

T
h
a
il
a
n
d

In
d
ia

N
ic
a
ra
g
u
a

T
a
ji
k
is
ta
n

B
a
n
g
la
d
e
sh

M
a
u
ri
ti
u
s

M
y
a
n
m
a
r

P
a
p
u
a
n
e
w

g
u
in
e
a

T
u
rk
e
y

P
a
ra
g
u
a
y

F
ij
i

V
e
n
e
z
u
e
la

C
h
il
e

C
h
in
a

V
ie
tn

a
m

S
ie
rr
a
le
o
n
e

C
a
m
b
o
d
ia

S
e
y
ch

e
ll
e
s

A
rm

e
n
ia

A
lb
a
n
ia

J
o
rd

a
n

C
u
b
a

G
u
in
e
a

S
o
u
th

su
d
a
n

H
o
n
d
u
ra
s

S
ta
te

o
f
p
a
le
st
in
e

P
a
le
st
in
e

E
l
sa
lv
a
d
o
r

T
im

o
r-
le
st
e

N
e
p
a
l

G
u
a
te
m
a
la

C
o
st
a
ri
c
a

S
u
ri
n
a
m
e

S
u
d
a
n

C
o
lo
m
b
ia

P
e
ru

B
a
h
a
m
a
s

In
d
o
n
e
si
a

M
o
n
te
n
e
g
ro

T
ri
n
id
a
d
a
n
d
to
b
a
g
o

P
h
il
ip
p
in
e
s

C
o
m
o
ro
s

R
e
p
u
b
li
c
o
f
m
o
ld
o
v
a

G
e
o
rg
ia

M
o
ld
o
v
a

M
o
n
g
o
li
a

B
ra
z
il

M
e
x
ic
o

R
o
m
a
n
ia

S
e
rb

ia

B
u
rk
in
a
fa
so

Ir
a
n

B
u
rk
in
a

P
o
la
n
d

H
a
it
i

E
c
u
a
d
o
r

M
a
lt
a

A
ru

b
a

S
lo
v
a
k
ia

C
ro
a
ti
a

G
u
y
a
n
a

P
a
n
a
m
a

K
o
re
a

R
e
p
u
b
li
c
o
f
k
o
re
a

S
o
u
th

k
o
re
a

K
y
rg
y
z
st
a
n

S
p
a
in

P
o
rt
u
g
a
l

C
y
p
ru

s

M
a
d
a
g
a
sc
a
r

H
u
n
g
a
ry

P
u
e
rt
o
ri
c
o

B
e
n
in

L
ib
e
ri
a

D
o
m
in
ic
a
n
re
p
u
b
li
c

A
rg
e
n
ti
n
a

M
a
li

C
h
a
d

E
g
y
p
t

J
a
m
a
ic
a

K
a
z
a
k
h
st
a
n

C
a
m
e
ro
o
n

G
re
e
c
e

N
a
m
ib
ia

It
a
ly

S
lo
v
e
n
ia

U
k
ra
in
e

S
o
u
th

a
fr
ic
a

L
a
tv
ia

L
u
x
e
m
b
o
u
rg

Z
a
m
b
ia

Ir
e
la
n
d

E
th

io
p
ia

U
ru

g
u
a
y

R
u
ss
ia
n
fe
d
e
ra
ti
o
n

R
u
ss
ia

C
a
n
a
d
a

B
o
li
v
ia

B
e
la
ru

s

N
e
w

z
e
a
la
n
d

C
e
n
tr
a
l
a
fr
ic
a
n
re
p
u
b
li
c

N
ig
e
r

T
o
g
o

C
z
e
ch

ia
B
u
lg
a
ri
a

N
ig
e
ri
a

G
a
b
o
n

T
a
n
z
a
n
ia

U
n
it
e
d
re
p
u
b
li
c
o
f
ta
n
z
a
n
ia

J
a
p
a
n

U
sa

R
w
a
n
d
a

A
u
st
ri
a

A
u
st
ra
li
a

F
re
n
ch

g
u
ia
n
a

M
a
y
o
tt
e

L
it
h
u
a
n
ia

B
o
ts
w
a
n
a

Is
ra
e
l

B
e
lg
iu
m

R
é
u
n
io
n

S
w
it
z
e
rl
a
n
d

C
o
n
g
o

M
a
la
w
i

E
st
o
n
ia

B
u
ru

n
d
i

M
a
rt
in
iq
u
e

L
e
so
th

o

N
e
th

e
rl
a
n
d
s

A
n
g
o
la

U
n
it
e
d
k
in
g
d
o
m

N
o
rw

a
y

G
u
a
d
e
lo
u
p
e

G
e
rm

a
n
y

Z
im

b
a
b
w
e

M
o
z
a
m
b
iq
u
e

K
e
n
y
a

F
ra
n
c
e

U
g
a
n
d
a

G
h
a
n
a

F
in
la
n
d

S
a
o
to
m
e
a
n
d
p
ri
n
c
ip
e

40000

60000

80000

100000

120000

140000

160000

C
h
an

ge
in

C
u
m
u
la
ti
ve

In
fe
ct
io
n
s

Results using 4680 data points

Gold Standard

Standard Regression

Spline Regression

Fig. 12. A comparison of the metamorphic test outcomes predicted by a cubic spline regression with two knots and the naive

regression.

Manuscript submitted to ACM

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

Testing Causality in Scientific Modelling Software 43

Figure 12 shows the metamorphic test outcomes predicted using cubic spline regression. From an informal visual

inspection, it is clear that the majority of estimates are more accurate than the previous regression model, which

generally overestimated the effects and had a root mean square percentage error (𝑅𝑀𝑆𝑃𝐸 of 0.055) and a Kendall’s

rank correlation of 0.944 (𝑝 < 0.005). By contrast, the cubic spline approach had an 𝑅𝑀𝑃𝑆𝐸 of 0.032 and a Kendall’s

rank correlation of 0.915 (𝑝 < 0.005). Therefore, the spline regression technique provided better absolute accuracy

(indicated by 𝑅𝑀𝑆𝑃𝐸), but worse comparative accuracy (indicated by Kendall’s rank correlation). The performance of

both approaches could likely be improved by a domain expert who may have a more precise characterisation of the

anticipated relationships.

We decided not to include the cubic splines approach in the case studies, as it requires more advanced statistical

modelling knowledge that is unlikely to be commonplace to prospective users. However, it is worth including as an

appendix because it introduces a potentially valuable trade-off. Namely, more advanced, semi-parametric statistical

estimators can be employed with arguably less domain knowledge to learn intricate shapes from the available data.

However, this introduces an additional burden: the need for expertise in such modelling techniques.

Overall, in this example, we were able to configure the spline regression model in a logical way that is justified by

domain expertise (i.e. splitting the relationship into three key regions, each of which can be modelled with a cubic

polynomial). This shows how more advanced statistical means can be employed to achieve better results. In future

work, we will investigate the application of other semi- and non-parametric statistical models within the Causal Testing

Framework.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Black-Box Software Systems
	2.2 Motivating Example: Covasim
	2.3 Model-Based Testing
	2.4 Causal Inference
	2.5 Causal DAGs

	3 Causal Testing Framework
	3.1 Causal Specification
	3.2 Constructing Causal DAGs
	3.3 Causal Testing
	3.4 Relationship to Metamorphic Testing

	4 CTF Reference Implementation
	4.1 Causal Specification
	4.2 Causal Test Case
	4.3 Data Collection
	4.4 Causal Testing

	5 Case Studies
	5.1 Poisson Line Tessellation Model
	5.2 Cardiac Action Potential Model
	5.3 Covasim: Experimental Casual Testing
	5.4 Covasim: Observational Causal Testing

	6 Discussion
	6.1 RQ1 (Accuracy): Can we reproduce the results of a conventional MT/SMT approach by applying the CTF to observational data?
	6.2 RQ2 (Efficiency): In terms of the amount of data required, is the CTF more cost-effective than a conventional MT/SMT approach?
	6.3 RQ3 (Practicality): What practical effort is required from the tester to conduct MT/SMT using the CTF?
	6.4 Summary
	6.5 Additional Findings
	6.6 Threats to Validity

	7 Related Work
	7.1 Testing Techniques for Scientific Software
	7.2 Causality in Software Testing
	7.3 Automatic Generation of Causal DAGs
	7.4 Machine Learning-Inferred Models of Tested Behaviour

	8 Conclusion and Future Work
	Acknowledgments
	References

