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Abstract

We consider the problem of spread of information among mobile agents on the torus. The agents

are initially distributed as a Poisson point process on the torus, and move as independent simple

random walks. Two agents can share information whenever they are at the same vertex of the

torus. We study the so-called flooding time: the amount of time it takes for information to be

known by all agents. We establish a tight upper bound on the flooding time, and introduce a

technique which we believe can be applicable to analyze other processes involving mobile agents.
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1 Introduction

We consider the problem of spread of information between mobile agents on a d-dimensional

torus of side-length n. We will denote by N = nd the number of vertices on the torus, and

will refer to the agents as particles. At time 0, the particles are distributed on the vertices

of the torus as a Poisson point process of intensity λ. Then, particles move by performing

independent continuous-time simple random walks on the torus; that is, at rate 1 a particle

chooses a neighboring vertex uniformly at random and jumps there. It is not difficult to check

that this system of particles is in stationarity. Thus, at any given time t, the location of the

particles is a Poisson point process of intensity λ on the torus. However, the configuration of

particles at time t is not independent of the configuration of particles at time 0, and as we

will explain below, it is this dependence that makes this model challenging to analyze.

Assume that at time 0 there is a particle at the origin with a piece of information that

has to be distributed to all other particles. Then, any uninformed particle (a particle that

does not know the information) receives the information whenever it is at the same vertex as

an informed particle (a particle that knows the information). We study the time it takes the

information to reach all the particles, which is commonly referred to as the flooding time.

1 Supported by a Marie Curie Career Integration Grant PCIG13-GA-2013-618588 DSRELIS, and an
EPSRC Early Career Fellowship.
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39:2 Percolation of Lipschitz Surface and the Spread of Information Among Mobile Agents

A big challenge in analyzing this model is due to the heavily dependent structure of the

particles. In fact, though particles move independently of one another, dependences do arise

over time. For example, if a ball of radius R centered at some vertex x of the torus turns

out to have no particles at time 0, then the ball B(x,R/2) of radius R/2 centered at x will

continue to be empty of particles up to time R2, with positive probability. This means that

the probability that the (d + 1)-dimensional, space-time cylinder B(x,R/2) × [0, R2] has

no particle is at least exp{−cRd} for some constant c. This is just a stretched exponential

on the volume of the cylinder, which prevents us from applying classical methods based

on comparison with independent percolation [10], since those require exponential decay

of correlations. In addition to this, whenever one finds such a ball of radius R empty of

particles at time 0, this affects regions of the torus in the vicinity of this ball. In particular,

during a time interval of length R2, the density of particle in the vicinity of the ball will be

smaller than the expected density λ. In this work we develop a framework to control such

dependences.

When the transmission radius is large (in the sense that information can be transmitted

between particles at distance O(log1/d(n)) of each other) or the jump range is large (in

the sense that a particle can jump a distance of order O(log1/d n) in one step), then the

dependences can be more easily controlled. These cases where analyzed in [4, 5], where

tight bounds on the flooding time (up to constant factors) were established2. Having a large

transmission radius or jump range helps the analysis because of the following. Tessellate the

torus into boxes of side-length Θ(log1/d(n)), and tessellate time into intervals of constant

length. Then, since the system of particles is in stationary and boxes are so large, we can

apply a Chernoff bound for Poisson random variables to show that, for any given box and

time interval, with probability 1 − n−C , there is a large enough number of particles inside

the box during that time interval (when this happen, call the cell of the tessellation good).

Then a union bound can be used to show that all cells of the tessellation are good. Then, if

the transmission radius is large enough to allow particles from neighboring boxes to exchange

information, one can establish a tight bound on the flooding time. If it is the jump range

that is large enough, then one can use the fact that, after a time interval of order 1, the

configuration of particles inside any given box is close to stationarity. In other words, the

system of particles has a small mixing time. This washes away the dependences of the system,

and allowed a tight bound (up to constant factors) to be derived.

An important open problem has been to analyze the case where both the transmission

radius and the jump range are of order 1, which is our setting here. This was studied in [9],

where it was shown that, with high probability, the flooding time is at most Θ̃(n), where

the notation Θ̃(·) means that poly-logarithmic factors are neglected3. This bound is tight

up to poly-logarithmic factors since, for a transmission radius and jump range of order 1,

the flooding time is Ω(n) in all dimensions. We note that, when neglecting poly-logarithmic

factors, one can still work with the above tessellation — of cells of side-length Θ(log1/d(n))

— for which all cells of the tessellation are good. This is because one can do some suboptimal

estimates to allow information to spread inside a cell (thereby losing only a poly-logarithmic

factor), and then use the fact that cells are good, and full of particles, to let the information

spread from one cell to the next. Getting a bound that is tight up to constant factors, on

2 In fact, [4] studies the flooding time for a larger class of dynamic graphs. However, due to space
limitations, we restrict our discussion to results on the specific model of spread of information among
random walk particles.

3 We remark that [9] considers also the case where the number of particles can be of order much smaller
than N , and [12, 11] analyze a variant of this model, but these settings are out of the scope of this work.
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the other hand, involves a rather delicate issue, since one is forced to consider tessellations of

constant side-length, which will naturally contain a positive density of bad cells, forcing a

more careful control of the dependences of the system.

Turning back to our setting, where particles can jump only across neighboring vertices

and information can be transmitted only between particles located at the same vertex, [8]

analyzes the process in the whole of Zd and shows that the information spreads with positive

speed. To prove this, the authors developed a complicated multi-scale framework to control

the dependences of the system, where tessellations of different side-lengths were considered

and controlled. This multi-scale technique is quite powerful, and has been employed in the

mathematics literature to solve other processes with slow decay of correlations [13, 15, 3].

However, this technique is usually very difficult to implement, and has to be tailored to each

specific model and question being studied. The goal of our work is to develop a robust and

flexible multi-scale framework that can be more easily applied to answer questions involving

systems of random walk particles, and we illustrate its usefulness by deriving tight bounds

on the flooding time.

1.1 Our results

We start considering a more general setup. Let Td be the d-dimensional integer torus of

side length n. Let G = (Td, E) be the nearest neighbor graph on Td. Let {µx,y}(x,y)∈E be

a collection of i.i.d. symmetric weights, which we call conductances. We assume that the

conductances are uniformly elliptic; that is,

there exists a constant CM > 0, such that µx,y ∈ [C−1
M , CM ] for all (x, y) ∈ E. (1)

We say x ∼ y if (x, y) ∈ E and define µx =
∑

y∼x µx,y. At time 0, consider a Poisson

point process of particles on Td, with intensity measure λ(x) = λ0µx for some constant

λ0 > 0 and all x ∈ Td. That is, for each x ∈ Td, the number of particles at x at time 0

is an independent Poisson random variable of mean λ0µx. Then, let the particles perform

independent continuous-time simple random walks on the weighted graph so that a particle

at x ∈ Td jumps to a neighbor y ∼ x at rate
µx,y

µx
. It follows from the thinning property of

Poisson random variables that the system of particles is in stationarity.

Assume that at time 0 there is an informed particle at the origin, and all other particles

are uninformed. One of the main results of this paper is the following.

◮ Theorem 1. If d ≥ 2 and the conductances satisfy (1), then with probability 1 − n−ω(1)

the flooding time is Θ(n).

Another main contribution of this paper is the framework we develop to establish

Theorem 1, which we believe gives a robust and more easy to apply framework to address

problems involving systems of moving particles. The idea is as follows. We tessellate space

and time into cells of constant length. Then, for each cell we are given a local event, and

call the cell good if the event of that cell holds. Then, if for any given cell, we have that

the probability that the cell is good is close enough to 1, then we can find a subset of good

cells that form what we call a Lipschitz surface and a Lipschitz net. These Lipschitz surface

and Lipschitz net have some percolative and geometric features that allow the good event to

propagate through space and time. For example, for the problem of spread of information,

the local event we use is to say that a given cell is good if the following two things happen:

(i) the cell contains sufficiently many particles, and (ii) if there is an informed particle inside

the cell, then that particle is able to inform a large number of other particles that will move

APPROX/RANDOM 2018



39:4 Percolation of Lipschitz Surface and the Spread of Information Among Mobile Agents

to neighboring cells. With this definition and the existence of the Lipschitz surface and net,

we obtain that once the information enters a cell of the Lipschitz surface, we guarantee that

the information can propagate throughout the surface, from one cell of the surface to the

next. We believe our approach is flexible enough to allow other processes on moving particles

to be analyzed. The main task reduces to defining a suitable local event.

Since this framework is quite involved, we will give its construction and all main technical

theorems in Section 2. Then, in Section 3, we use this framework to analyze the spread of

information. Due to space limitations, we will not be able to give full proofs of the above

framework, for which we refer to the full version [6]. This extended abstract has yet one

additional result with respect to [6], which is the construction and proof of the Lipschitz net,

which is adapted to analyzing processes on finite graphs.

2 Lipschitz net framework

For the remainder of this paper, we assume d ≥ 2. Fix ℓ > 0 and tessellate Td into cubes of

side length ℓ ∈ R, indexed by i ∈ Zd. To simplify the notation, assume that n/ℓ is an integer.

Next, tessellate time into intervals of length β, indexed by τ ∈ Z. With this we denote by the

space-time cell (i, τ) ∈ Zd+1 the region
∏d

j=1[ijℓ, (ij + 1)ℓ] × [τβ, (τ + 1)β]. In the following,

β and ℓ are constants such that the ratio β/ℓ2 is fixed first to be some small value, and then

later ℓ is made large enough. We will also need to consider overlapping space-time cells. Let

η ≥ 1 be an integer which will represent the amount of overlap between cells. For each cube

i = (i1, . . . , id) and time interval τ , define the super cube i as
∏d

j=1[(ij − η)ℓ, (ij + η + 1)ℓ]

and the super interval τ as [τβ, (τ + η)β]. We define the super cell (i, τ) as the Cartesian

product of the super cube i and the super interval τ .

For any time s, let Πs be the set of particles at time s, seen as a collection of vertices

of G with multiplicity when there is more than one particle at a vertex. We say an event

E is increasing for (Πs)s≥0 if the fact that E holds for (Πs)s≥0 implies that it holds for all

(Π′
s)s≥0 for which Π′

s ⊇ Πs for all s ≥ 0. We need the following definitions.

◮ Definition 2. We say an event E is restricted to a region X ⊂ Td and a time interval

[t0, t1] if it is measurable with respect to the σ-field generated by all the particles that are

inside X at time t0 and their positions from time t0 to t1.

◮ Definition 3. We say a particle has displacement inside X ′ during a time interval [t0, t0+t1],

if the location of the particle at all times during [t0, t0 + t1] is inside x+X ′, where x is the

location of the particle at time t0.

◮ Definition 4. νE is called the probability associated to an increasing event E that is

restricted to X and a time interval [0, t] if, for an intensity measure ζ and a region X ′ ∈ Td,

νE(ζ,X,X ′, t) is the probability that E happens given that, at time 0, the particles in X

are distributed as a Poisson point process of intensity ζ and their motions from 0 to t are

independent continuous time random walks on the weighted graph (G,µ), where the particles

are conditioned to have displacement inside X ′ during [0, t].

For each (i, τ) ∈ Td ×Z, let Est(i, τ) be an increasing event restricted to the super cube i

and the super interval τ . Here the subscript st refers to space-time. We say that a cell (i, τ)

is bad if Est(i, τ) does not hold; otherwise, (i, τ) is called good.

Our framework will establish that if for any given (i, τ), the event Est(i, τ) occurs with

large enough probability, then not only do the good cells percolate but the good cells form a

particularly useful geometry, which we will call the Lipschitz net.
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Figure 1 A realization of the two-sided Lipschitz surface for the case d = 2.

Before defining the Lipschitz net, we need to introduce a different way to index space-time

cells, which we refer to as the base-height index. In the base-height index, we pick one of the

d+ 1 space-time dimensions and denote it as height, using index h ∈ Z, while the remaining

d space-time dimensions will form the base, which will be indexed by b ∈ Zd. In this way,

for each space-time cell (i, τ) there will be (b, h) ∈ Zd+1 such that the base-height cell (b, h)

corresponds to the space-time cell (i, τ). With this, we set Ebh(b, h) = Est(i, τ). (Here

the subscript bh refers to base-height.) It might be tempting to choose time as the height

dimension, however it turns out that selecting one of the spatial dimensions to act as height

is a better choice, as will be shown below. With this choice, note that b ∈ Td−1 × Z and

h ∈ T; thus, for notation purpose, we define Td
∗ = Td−1 × Z and Td+1

∗ = Td−1 × Z × T.

2.1 Two-sided Lipschitz surface

◮ Definition 5. A function F : Td
∗ → T is called a Lipschitz function if |F (x) − F (y)| ≤ 1

whenever ‖x− y‖1 = 1.

◮ Definition 6. A two-sided Lipschitz surface F is a set of base-height cells (b, h) ∈ Td+1
∗

such that for all b ∈ Td
∗ there are exactly two (possibly equal) integer values F+(b) ≥ 0

and F−(b) ≤ 0 for which (b, F+(b)), (b, F−(b)) ∈ F and, moreover, F+ and F− are Lipschitz

functions.

We say a space-time cell (i, τ) belongs to F if its corresponding base-height cell (b, h)

belongs to F . For a positive integer D, we say a two-sided Lipschitz surface surrounds

a cell (b′, h′) at distance D if any path (b′, h′) = (b0, h0), (b1, h1), . . . , (bm, hm) for which

‖(bi, hi) − (bi−1, hi−1)‖1 = 1 for all i ∈ {1, . . .m} and ‖(bm, hm) − (b0, h0)‖1 > D, intersects

with F .

For any z ∈ Z+, define the cube Qz = [−z/2, z/2]d. The following theorem establishes

the existence of the Lipschitz surface. Due to space limitations, the proof is given in [6].

◮ Theorem 7. Consider the graph (G,µ) satisfying (1), and the tessellation defined above.

There exist positive constants c1, c2, c3, c4 and c5 such that, if β/ℓ2 ≤ c5, then the following

holds. Let Est(i, τ) be any increasing event restricted to the space-time super cell (i, τ). Fix

ǫ ∈ (0, 1) and fix w ≥
√

ηβ
c2ℓ2 log

(

8c1

ǫ

)

. Then, there exists a positive number α0 that depends

APPROX/RANDOM 2018
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on ǫ, η and the ratio β/ℓ2 so that if

min

{

C−1
M ǫ2λ0ℓ

d, log

(

1

1 − νEst
((1 − ǫ)λ,Q(2η+1)ℓ, Qwℓ, β)

)}

≥ α0, (2)

a two-sided Lipschitz surface F where Est(i, τ) holds for all (i, τ) ∈ F exists almost surely,

and the probability that F does not surround the origin at distance r is at most

∑

s≥r s
d exp

{

−c3λ0
ℓs

logc4 (ℓs)

}

, for d = 2
∑

s≥r s
d exp {−c3λ0ℓs} , for d ≥ 3.

◮ Remark. The proofs in [6] give the existence of the two-sided Lipschitz surface on the

whole of Zd, but the very same proof works for the torus.

◮ Remark. Theorem 7 is key to our framework. We now briefly explain how it can be used.

The event Est can be any local event, where in νEst
, Q(2η+1)ℓ gives the region on which the

event is measurable. To control dependences, we consider the larger cube Qwℓ, inside which

the particles that start from Q(2η+1)ℓ are conditioned to stay during the time interval β.

Then w has to be large enough, as specified in the theorem, so that this conditioning is likely

to happen. Then, νEst gives the probability that the event happens given that the initial

configuration of particle is a Poisson point process of intensity measure (1 − ǫ)λ, just slightly

smaller than the intensity measure λ we started with. We disregard an “ǫ-fraction of the

particles” because naturally, in any given space-time cell, some particles move atypically

and will not be organized exactly as a Poisson point process; but those particles can be

neglected using the assumption that Est is increasing. Thus (2) requires that νEst
is at least

1 − exp(−α0) for a Poisson point process of intensity (1 − ǫ)λ. This is usually achievable

by properly defining the event Est to be such that its occurrence increases with ℓ (the size

of the tessellation). Then, (2) also requires that C−1
M ǫ2λ0ℓ

d ≥ α0. After fixing ǫ, this can

be satisfied either by setting ℓ large enough or by assuming that the constant λ0 governing

the density of particles is large enough. This condition is natural in applications: one either

requires the size of cells to be large (which will be the case in our application for the flooding

time) or the tessellation is more restricted (for example, limited to the transmission radius of

the particles) and one requires the density of particles to be large enough, as in [14].

2.2 Lipschitz net

We are now ready to define the Lipschitz net on the torus Td that we will use to prove Theorem

1. The Lipschitz net, roughly speaking, will be an interlacement of Lipschitz surfaces, where

we will take each spatial coordinate as being height in the base-height index, and for each

of them we will have a pile of surfaces. More formally, let k ∈
{

0, 1, . . . ,
⌊

n
ℓ log3(n/ℓ)

⌋}

and

q ∈ {1, 2, . . . , d}. For any i ∈ Td, let i = (i1, i2, . . . , id). Define L
q
k to be the d-dimensional

hyperplane on the space-time tessellation that is orthogonal to the q-th spatial coordinate,

with distance from the origin of k
⌈

log3(n/ℓ)
⌉

, i.e.

L
q
k =

{

(i, τ) ∈ Td × Z : iq = k⌈log3(n/ℓ)⌉
}

.

We define F q
k to be the Lipschitz surface corresponding to L

q
k, i.e. F q

k is the two-sided Lipschitz

surface for which h in the base-height index corresponds to iq in the space-time index, and

for which the Lipschitz functions satisfy F+(b) ≥ k⌈log3(n/ℓ)⌉ and F−(b) ≤ k⌈log3(n/ℓ)⌉.

We define the height of the surface F q
k at b ∈ Zd to be

max
h:(b,h)∈F q

k

∣

∣k⌈log3(n/ℓ)⌉ − h
∣

∣ .
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Let C0 > 0 be an integer constant of our choosing. From now on we assume that F q
k

is a Lipschitz surface for which the height is at most log3(n/ℓ)
2 for all (i, τ) ∈ F q

k satisfying

τ ∈ {0, 1, . . . , C0n/ℓ}.

◮ Definition 8. The Lipschitz net Fnet with constant C0 is the set of space-time cells

(i, τ) ∈ Td × Z contained in the union of all F q
k ; i.e, Fnet =

⋃d
q=1

⋃

⌊

n
ℓ log3(n/ℓ)

⌋

k=0 F q
k . Moreover,

we say that Fnet surrounds the origin at distance D if F q
0 surrounds the origin of L

q
0 at

distance D for all q ∈ {1, 2, . . . , d}.

Note that we have for all (i, τ) ∈ Fnet that the event Est(i, τ) holds, which follows directly

from the fact that every space-time cell in Fnet belongs to at least one Lipschitz surface F q
k

for some k and some q.

◮ Theorem 9. For any constant C0, there exist a constant C1 > 0 such that, for any

δ > 0 and any ℓ = O(n1−δ) with ℓ ≥ C1, the Lipschitz net Fnet with constant C0 exists and

surrounds the origin at distance O(log2 n) with probability 1 − n−ω(1).

Proof. Start by considering the plane L1
0 and its corresponding Lipschitz surface F 1

0 . If

the height of F 1
0 at the origin is more than log3(n/ℓ)

2 , then the Lipschitz surface cannot

surround the origin at a distance log3(n/ℓ)
2 . Therefore, since ℓ and log3(n/ℓ) are both assumed

sufficiently large, we have by Theorem 7 that the probability that a two-sided Lipschitz

surface around the origin with height at most log3(n/ℓ)
2 does not exists is at most

∑

s≥log3(n/ℓ)/2
sd exp

{

−Cλ0
ℓs

logc(ℓs)

}

≤ exp
(

−ω(log2 n)
)

.

Using this and a uniform bound across all space-time cells for which τ ∈ {0, 1, . . . , C0n/ℓ},

we have that the probability that F 1
0 has height at most log3(n/ℓ)

2 for all (i, τ) ∈ F q
k satisfying

τ ∈ {0, 1, . . . , C0n/ℓ}, is at least 1 − exp
(

−ω(log2 n)
)

.

Next, consider the planes L
q
k. Since the probability space is translation invariant due to

the weights µx,y being i.i.d., this bound holds for any k and any q. Therefore, by applying

a uniform bound across k ∈
{

0, 1, . . . ,
⌊

n
ℓ log3(n/ℓ)

⌋}

and q ∈ {1, 2, . . . , d} we obtain that

the probability that F q
k has maximum height at most log3(n/ℓ)

2 for all k and q is at least

1 − exp
(

−ω(log2 n)
)

. Under this assumption, for any given q and two distinct k, k′, the

surfaces F q
k and F q

k′ do not intersect, producing the Lipschitz net. ◭

The usefulness of the Lipschitz net is that, once we know it exists for any local event Est

that is likely enough, then one just needs to find a suitable choice for the event Est and use

the Lipschitz net to show that this event propagates throughout the torus. For the case of

spread of information, we will use the Lipschitz net to show that once an informed particle

enters a cell that is part of the Lipschitz net, then information spreads evenly across the torus

resulting in a density of informed particles. For this, we will use a specific increasing event

Est to obtain that the information spreads with positive speed on each individual surface of

Fnet. Then, in order to show that the information also moves across different surfaces of the

net, we will need the following geometric property.

◮ Lemma 10. Let Fnet be the Lipschitz net with constant C0 and let F q
k and F q′

k′ be any two

given Lipschitz surfaces that are part of Fnet, where q 6= q′ and k, k′ ∈
{

0, 1, . . . ,
⌊

n
ℓ log3(n/ℓ)

⌋}

.

For any τ ∈ {0, 1, . . . , C0n/ℓ} there exist space-time cells (i, τ) ∈ F q
k and (i′, τ) ∈ F q′

k′ such

that ‖(i′, τ) − (i, τ)‖1 ≤ 1.

APPROX/RANDOM 2018



39:8 Percolation of Lipschitz Surface and the Spread of Information Among Mobile Agents

Proof. Let q = 1 and q′ = 2; the proof for other combinations of parameters q and q′ goes

similarly. We want to show that for any τ ∈ {0, 1, . . . , C0n/ℓ} there exist a space-time

cell (i1, . . . , id, τ) ∈ F 1
k and a space-time cell (j1, . . . , jd, τ) ∈ F 2

k′ such that ‖(i1, . . . , id) −
(j1, . . . , jd)‖1 ≤ 1. Fix τ ∈ {0, 1, . . . , C0n/ℓ} and set the components (i3, . . . , id) to be the

same as (j3, . . . , jd).

Let F 1 be either of the two Lipschitz functions (see Definition 6) corresponding to F 1
k ,

and let F 2 be either of the Lipschitz functions corresponding to F 2
k′ . Since (i3, . . . , id) =

(j3, . . . , jd), to simplify notation we write F 1(y) := F 1(y, i3, . . . , id, τ) ∈ T and F 2(y) :=

F 2(y, i3, . . . , id, τ) ∈ T. Therefore it remains to show that there exists x, y ∈ T such that

|(F 1(x), x) − (y, F 2(y))| ≤ 1. Assume, by contradiction, that this is not the case.

Let m2 = k′⌈log3(n/ℓ)⌉, which is the height of L2
k′ , that is, (0,m2, 0, 0, . . . , 0) ∈ L2

k′ .

Next, if F 2 is the Lipschitz function corresponding to F+ of F 2
k′ (refer to Definition 6) then

set h2 = m2 + log3(n/ℓ)
2 + 1; otherwise, set h2 = m2 − log3(n/ℓ)

2 − 1. So for all y ∈ T, we have

|F 2(y) −m2| ≤ |F 2(y) − h2|.
For any point (x, y) ∈ T2 we say that it is under F 2 if |y−m2| ≤ |F 2(x) −m2|; otherwise

we say it is above F 2. Note that (F 1(m2),m2) is “under” the surface F 2, and (F 1(h2), h2) is

above F 2. Therefore, we take the shortest sequence x1, x2, . . . , xι from m2 to h2 there must

exist a point xr such that (F 1(xr), xr) is under F 2 but (F 1(xr+1), xr+1) is above F 2. Since

F 1 is Lipschitz, this implies that one of these two points is within distance 1 from F 2. ◭

3 Spread of information using the Lipschitz net

We proceed to showing how the information spreads on Fnet. We do this by applying Theorem

9 with an event that results in the information spreading with positive speed along each

individual Lipschitz surface of Fnet. More precisely, from now on let the increasing event

Est(i, τ) be defined as below in Definition 11.

◮ Definition 11 (Increasing event Est(i, τ)). Take any (i, τ) ∈ Td ×Z. Let Υ be the collection

of particles located inside
∏d

j=1[(ij − η)ℓ, (ij + η + 1)ℓ] at time τβ. Consider a distinguished

particle x0 located inside
∏d

j=1[ijℓ, (ij + 1)ℓ] at time τβ. Define Est(i, τ) to be the event

that at time (τ + 1)β, for all i′ ∈ Td with ‖i− i′‖∞ ≤ η, there is at least one particle from Υ

in
∏d

j=1[i′jℓ, (i
′
j + 1)ℓ] that collided with x0 during [τβ, (τ + 1)β].

For Est(i, τ) defined as above, we have the following result. The proof of this result uses a

few heat-kernel estimates for random walks on Zd with i.i.d. conductances, and is given in

Section A.

◮ Lemma 12. Fix any ǫ, η and the ratio β/ℓ2. Let w satisfy the condition in Theorem 7.

Then, if ℓ is sufficiently large, then there exists a positive constant C such that for Est(i, τ) as

defined in Definition 11 and for any (i, τ) ∈ Td ×Z, we have νEst
((1−ǫ)λ,Q(2η+1)ℓ, Qwℓ, β) ≥

1 − exp{−C(1 − ǫ)λ0ℓ
1/3}.

Lemma 12 implies that for ℓ large enough, by setting η to be a large enough constant,

and defining the increasing event Est as in Definition 11, the information spreads among

neighboring cells. Since the Lipschitz net surrounds the origin at distance O(log2 n), we have

that in at most poly-logarithmic time, the initially informed particle will enter some cell
∏d

j=1[ijℓ, (ij + 1)ℓ] for which (i, τ) is in some Lipschitz surface F of Fnet. Once that holds,

we know that the event Est(i, τ) occurs. By the definition of Est(i, τ), we obtain that the

initially informed particle in (i, τ) informs other particles causing the information to spread

to each (i′, τ + 1) for which ‖i′ − i‖∞ ≤ η.
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Let (b, h) be the base-height index of the cell (i, τ) ∈ F . Recall that h is one of the spatial

dimensions. We will also select one of the d − 1 spatial dimensions from b and denote it

b1. Let b′ ∈ Td
∗ be obtained from b by increasing the time dimension from τ to τ + 1, and

by increasing the chosen spatial dimension from b1 to b1 + 1. Since ‖b − b′‖1 = 2, we can

choose h′ ∈ T such that (b′, h′) ∈ F and |h− h′| ≤ 2, where the latter holds by the Lipschitz

property of F . Therefore, there must exists i′ ∈ Td such that (i′, τ + 1) is the space-time cell

corresponding to (b′, h′) and ‖i− i′‖∞ ≤ 4. Hence, at time (τ + 1)β, there is an informed

particle in the cube indexed by i′ if η is at least 4 and Est(i, τ) holds.

Using this mechanism, we can show that after some time of order n, the information has

spread along the surfaces across the entire torus.

◮ Lemma 13. Let Fnet be the Lipschitz net with constant C0 which surrounds the origin

at distance O(log2 n). There exists a constant CT > 0, independent of C0, such that for

every (i, τ) ∈ Fnet for which τβ ≥ CTn, there is at least one informed particle inside the cube
∏d

j=1[(ij − η + 1)ℓ, (ij + η)ℓ] for all times in [τβ, (τ + 1)β].

Proof. Let Est(i, τ) be defined as in Lemma 12 and let Fnet be the Lipschitz net with

constant C0, corresponding to the event Est(i, τ). We have by the fact that Fnet surrounds

the origin at a distance O(log2 n) and that each cell represents a time interval of length β,

that it takes at most O(β log2 n) time for the information to enter Fnet. Once the informed

particle is in a space-time cell of some surface F q
k of Fnet, we have by the definition of

Est(i, τ) with η = d, that it takes at most 2n
ℓ steps for the information to spread across the

surface (moving between neighboring cells), so that all space-time cells (i, τ) ∈ F q
k for which

τ = 2n
ℓ +O(log2 n) contain an informed particle.

Next, for any q′, k′ with q′ 6= q, we know by Lemma 10 that for any τ there are neighboring

cells (i, τ) ∈ F q
k and (i′, τ) ∈ F q′

k′ . Therefore, it takes at most β time for the information

to enter any surface F q′

k′ with q′ 6= q, and another 2n
ℓ β amount of time to spread to all

cells in those surfaces, so that all cells (i, τ) ∈ F q′

k′ for which τ = 4n
ℓ + 1 + O(log2 n)

contains an informed particle. It still remains to spread the information to the surfaces

F q
k′ with k′ 6= k. Again, this takes at most 2n

ℓ β + β time by the same argument above.

Putting everything toghether, we obtain that for any k, any q, and all (i, τ) ∈ F q
k for which

τβ ≥ CTn ≥ ( 6n
ℓ + 2 +O(log2 n))β, where we set CT large enough for the second inequality

to hold, there is at least one informed particle in the cube
∏d

j=1[(ij − η + 1)ℓ, (ij + η)ℓ] for

all times in [τβ, (τ + 1)β]. ◭

Using Lemma 13 and the geometric properties of the Lipschitz net, we can show that

there is a density of informed particles everywhere on the torus for an interval of time of

order n.

◮ Theorem 14. There exists constants Cβ ≥ 1 and Cℓ > 0 such that the following holds.

Let CT be the constant from Lemma 13. Tessellate Td into cubes (Qm)m of side length

Cℓ log3(n). Then, for all times t ∈ [CTn, (CT +Cβ)n], there is at least one informed particle

in each subcube Qm with probability at least 1 − n−ω(1).

Proof. Fix ℓ sufficiently large for Lemma 12 and Theorem 7 to hold and recall that the

ratio β/ℓ2 is fixed. Let also n ≫ ℓ. Then, there exists a constant CT so that, for any

large enough choice of C0, Lemma 13 gives that for every space-time cell (i, τ) of the

Lipschitz net Fnet that satisfies τβ ≥ CTn, there is at least one informed particle in

the region
∏d

j=1[(ij − η + 1)ℓ, (ij + η)ℓ] at all times in [τβ, (τ + 1)β]. We can, without

loss of generality, assume CT is such that CTn = βτ∗ for some τ∗ ∈ N. Then, we only

APPROX/RANDOM 2018
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have to show that for all cubes Qm of side length Cℓ log3(n), there exist space-time cells

(i, τ) such that the region
∏d

j=1[(ij − η + 1)ℓ, (ij + η)ℓ] is contained in Qm and such that

[CTn, (CT + Cβ)n] ⊆
⋃

τ [τβ, (τ + 1)β], where Cβ is a constant greater or equal to 1.

Let Cβ = k∗β where k∗ is the smallest integer for which k∗β ≥ 1 and fix the Lipschitz

net constant C0 to be greater or equal to (CT + Cβ)ℓ/β. Then, we have from Theorem 9

that the Lipschitz net with constant C0 exists with probability at least 1 − n−ω(1).

We now show that if this Lipschitz net exists, the lemma holds. Let F q
s and F q

s+1 be any

two consecutive two-sided surfaces of the Lipschitz net and let (b, h) ∈ F q
s and (b, h′) ∈ F q

s+1

be two base-height cells with the same base. By definition of the Lipschitz net, we have that

the height of each Lipschitz surface in the net is at most log3(n/ℓ)
2 for all space-time cells that

satisfy τ ∈ {0, 1, . . . , C0n/ℓ}. Since the base-height cells (b, h) and (b, h′) might belong to

opposite sides of the two-sided Lipschitz surfaces, we therefore have that |h−h′| ≤ 2 log3(n/ℓ)

for all base-height cells for which τβ < (CT + Cβ)n ≤ C0βn/ℓ. Note that this holds for all

q ∈ {1, . . . , d} and recall that by Lemma 13 there is an informed particle inside the region
∏d

j=1[(ij − η+ 1)ℓ, (ij + η− 1)ℓ] throughout the entire time interval [τβ, (τ + 1)β]. Therefore,

for every cube of side length at least 2ℓ log3(n/ℓ) + 2ηℓ on the torus and throughout every

time interval of the form above, there is at least one informed particle inside the cube. By

repeating this argument for all τ that satisfy τβ ∈ [CTn, (CT + Cβ)n), we have that this

holds for the entire time interval [CTn, (CT + Cβ)n]. ◭

Before turning to the proof of Theorem 1, we state a theorem that gives that if we start

with a density of particles on a cube, regardless of how they are placed inside some subcubes,

we can couple their positions after some time with a Poisson point process that is independent

of their initial locations. This gives a type of local mixing property for random walks on Td

with i.i.d. conductances. For the proof of this technical result, refer to [7, Theorem 3.1].

◮ Theorem 15. Let G be a uniformly elliptic graph with edge weights µx,y. There exist

constants c0, c1, C > 0 such that the following holds. Fix K > ℓ > 0 and ǫ ∈ (0, 1). Consider

the cube QK tessellated into subcubes (Ti)i of side length ℓ and assume that ℓ is large enough.

Let (xj)j ⊂ QK be the locations at time 0 of a collection of particles, such that each subcube

Ti contains at least
∑

y∈Ti
βµy particles for some β > 0. Let ∆ ≥ c0ℓ

2ǫ−4/Θ where Θ is a

constant that depends on the weight bounds. For each j denote by Yj the location of the j-th

particle at time ∆. Fix K ′ > 0 such that K −K ′ ≥
√

∆c1ǫ
−1/d. Then there exists a coupling

Q of an independent Poisson point process ψ with intensity measure ζ(y) = β(1 − ǫ)µy,

y ∈ C∞, and (Yj)j such that within QK′ ⊂ QK , ψ is a subset of (Yj)j with probability at least

1 −
∑

y∈QK′

exp
{

−Cβµyǫ
2∆d/2

}

.

3.1 Proof of Theorem 1

Proof. Let CT be the constant from Lemma 13 and let Cβ and Cℓ be the constants from

Theorem 14. We want to bound the probability that at time (CT + Cβ)n there is at least

one particle on Td that is not informed. By using that the particles on Td form a Poisson

point process with intensity λ(y) = λ0µy, we have that this probability can be bounded

from above by λ0pn

∑

y∈Td µy,where pn is an upper bound for the probability that a single

particle is not informed by time (CT + Cβ)n on the torus of side length n, uniformly on the

initial location of the particle. We now proceed to find the bound pn.

Let F be the event that a particle located somewhere on the torus does not become

informed during [CTn, (CT + Cβ)n]. Note that the probability that a particle does not
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get informed by time (CT + Cβ)n is smaller than the probability of F , so pn ≤ P[F ]. Let

t ∈ (0, Cβn) be a time step we will fix later and consider the time interval [CTn, (CT +Cβ)n]

split into subintervals of length t, i.e. let the interval be split into subintervals of the form

[CTn+ kt, CTn+ (k + 1)t] for k ∈ {0, 1, . . . , ⌊Cβn/t⌋ − 1}. Let Fk denote the event that a

particle located somewhere on the torus does not become informed during the time interval

[CTn+ kt, CTn+ (k + 1)t]. We then have that

P[F ] ≤ P[F0 ∩ F1 ∩ · · · ∩ F⌊Cβn/t⌋−1].

Tessellate Td into cubes (Qi)i of side length Cℓ log3(n), indexed by i. Let Dk be the

event that time CTn+ kt there is at least one informed particle in every cube Qi. We can

then write

P[F0 ∩ F1 ∩ · · · ∩ F⌊Cβn/t⌋−1] ≤ P





⌊Cβn/t⌋−1
⋂

k=0

(Fk ∩Dk)



+ P





⌊Cβn/t⌋−1
⋃

k=0

Dc

k



 . (3)

To bound the second term, we apply Theorem 14, which gives that there is at least

one informed particle in every cube Qi of side length Cℓ log3(n) for all times during t ∈
[CTn, (CT + Cβ)n] with high probability. Therefore, it holds that

P





⌊Cβn/t⌋−1
⋃

k=0

Dc

k



 = n−ω(1). (4)

We now focus on the first term of (3). By rearranging the expression inside the probability

and using the chain rule, we have that

P









⌊Cβn/t⌋−1
⋂

k=0

Fk



 ∩





⌊Cβn/t⌋−1
⋂

k=0

Dk







 ≤ P[F0∩D0]

⌊Cβn/t⌋−1
∏

k=1

P



Fk ∩Dk

∣

∣

∣

⋂

j<k

Fj ∩Dj



 .

In order to bound the terms P

[

Fk ∩Dk

∣

∣

∣

⋂

j<k Fj ∩Dj

]

, first note that

P



Fk ∩Dk

∣

∣

∣

⋂

j<k

Fj ∩Dj



 ≤ P



Fk

∣

∣

∣ Dk ∩
⋂

j<k

Fj ∩Dj



P



Dk

∣

∣

∣

⋂

j<k

Fj ∩Dj





≤ P



Fk

∣

∣

∣ Dk ∩
⋂

j<k

Fj ∩Dj



 ,

and similarly, P[F0 ∩D0] = P[F0 | D0]P[D0] ≤ P[F0 | D0].

Next, we show a bound for P

[

Fk

∣

∣

∣
Dk ∩⋂j<k Fj ∩Dj

]

that holds uniformly on all

configurations for which Dk holds. We do this by applying Theorem 15 to find a uniform

bound on the probability of a particle remaining uninformed, given there is a density of

informed particles on the torus Td at the beginning of the time interval we consider. More

precisely, we set the terms of Theorem 15 as follows, where we mark them with a bar to help

distinguish them from other terms in this proof. Let K̄ = n, ℓ̄ = Cℓ log3(n), and ǭ = 1
2 . Let

∆̄ = CΘ log8(n), where CΘ is a constant sufficiently large for ∆̄ to satisfy the conditions of

Theorem 15 for all n. We fix the time step t to be equal to ∆̄ and let K̄ ′ = n−Cǭ

√

∆̄, where

Cǭ = c1ǭ
−1/d. We now have by the definition of Dk for every k ∈ {0, 1, . . . , ⌊Cβn/∆̄⌋ − 1}

APPROX/RANDOM 2018



39:12 Percolation of Lipschitz Surface and the Spread of Information Among Mobile Agents

that at time CTn+ kt there is at least one informed particle in every subcube Qi, so there

are at least

1

CMdCd
ℓ log3d(n)

∑

y∈Qi

µy

informed particles in every cube. We set the parameter β̄ from Theorem 15 to be β̄ =
1

CM dCd
ℓ

log3d(n)
and apply the theorem. This gives us that after the informed particles

move around for time ∆̄, they stochastically dominate a Poisson point process of intensity

ζ̄(y) = 1
2

1
CM dCd

ℓ
log3d(n)

µy inside the cube of side length K̄ ′. Using (1), we have that this

coupling fails with probability at most

∑

y∈QK′

exp

{

−C 1

4

1

CMdCd
ℓ log3d(n)

C
d/2
Θ log4d(n)µy

}

≤ nd exp{−C1 logd(n)}, (5)

where C is the constant from Theorem 15 and C1 is some constant that depends on d. Note

that this bound only depends on the size of QK′ and as such is independent of the site the

cube is centered around.

Next, if Dk holds and the coupling succeeds, the number of informed particles at a given

site y of the torus at time CTn+ (k+ 1)t stochastically dominates a Poisson random variable

of intensity 1
2CM dCd

ℓ
log3d(n)

µy. Since the probability that a particle is not informed during

the interval [CTn + kt, CTn + (k + 1)t] is smaller than the probability of not getting the

information only at the end of the interval, we have that P[Fk | {coupling succeeds} ∩Dk]

can be bound by the probability that at the end of the time interval, there are no informed

particles at the location of the particle we are considering. Using (1) to bound µy, we have

for some constant C2 that P[Fk | {coupling succeeds} ∩Dk] is at most the probability that a

Poisson random variable with intensity C2

log3d(n)
is 0, i.e.

P[Fk | {coupling succeeds} ∩Dk] ≤ exp

{

− C2

log3d(n)

}

. (6)

This bound holds uniformly across all sites of the torus where the particle might be located

and across all configurations of particles for which Dk holds. Combining (5) and (6) we

therefore have for all k ∈ {0, 1, . . . , ⌊Cβn/t⌋ − 1} that

P



Fk

∣

∣

∣ Dk ∩
⋂

j<k

Fj ∩Dj



 ≤ nd exp{−C1 logd(n)} + exp
{

− C2

log3d(n)

}

.

Using the definition of t, the bound from (4) and applying the above bound for all

k ∈ {0, 1, . . . , ⌊Cβn/t⌋ − 1}, we have that P[F0 ∩ F1 ∩ · · · ∩ F⌊Cβn/t⌋−1] from (3) is smaller

than

(

nd exp{−C1 logd(n)}
)Cβn/(CΘ log8(n))

+ exp
{

− C2Cβn

CΘ log3d+8(n)

}

+ n−ω(1).

Using that pn ≤ P[F0 ∩ F1 ∩ · · · ∩ F⌊Cβn/t⌋−1] and µy ≤ CMd by (1), we get that the

probability that there exists a particle that has not been informed by time (CT + Cβ)n is at

most

CMdλ0n
d

(

(

nd exp{−C1 logd(n)}
)Cβn/(CΘ log8(n))

+ exp
{

− C2Cβn

CΘ log3d+8(n)

}

+ n−ω(1)

)

.

Since the above is n−ω(1), the proof is completed. ◭
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4 Conclusion

We have established a tight bound on the flooding time (up to constant factors) for the

spread of information between random walk particles on the discrete torus of size n, equipped

with i.i.d., uniformly elliptic conductances. To prove this, we develop a framework to control

dependences, which given any increasing, local event that is likely enough, one can find a

Lipschitz surface and a Lipschitz net through space-time where this event holds. We believe

this result can be applicable to analyze other processes and algorithms on systems of random

walk particles. We also believe that this framework can be adapted to work with different

types of particle systems, for example, when the particles do not move independently of one

another, but nonetheless obey some local mixing.
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A Appendix: Proof of Lemma 2

Let T = ℓ5/3. Since β/ℓ2 is fixed, we can set ℓ a large enough constant so that T ≪ β

(i.e., T is much smaller than the length of the time interval in the tessellation). Define

Q∗ :=
∏d

j=1[(ij − η)ℓ, (ij + η + 1)ℓ] and assume that at time τβ, for all sites x ∈ Q∗, the

number of particles at x is a Poisson random variable with mean (1 − ǫ)λ0µx.

We start by stating two two claims and using them to prove the lemma. Then, we give

the proof of the claims.

◮ Claim 16. If the distinguished particle x0 is inside
∏d

j=1[ijℓ, (ij + 1)ℓ] at time τβ and x0

follows a fixed path (ρ(t))τβ≤t≤τβ+T , then by time τβ + T the number of particles that have

collided with x0 during [τβ, τβ + T ], but were not at the same site as x0 at time τβ, is a

Poisson random variable with intensity at least C1(1 − ǫ)λ0ℓ
1/3 for some positive constant

C1, independent of ρ(t).

◮ Claim 17. Given that there are N particles inside of Q∗ at time τβ + T , the probability

that at least one of these particles is inside Q∗∗ :=
∏d

j=1[(i′j)ℓ, (i′j + 1)ℓ] for any i′ for which

|i− i′| ≤ η is at least 1 − exp{−Ncp}, where cp is a positive constant that is bounded away

from 0 and depends only on d, η and the ratio β/ℓ2.

Now we use the above claims to prove the lemma. Note that by Definition 11, Est(i, τ) is

restricted to the super cube Q∗ and time interval [τβ, (τ + 1)β]. We now define the following

3 events.

F1: The distinguished particle x0 never leaves
∏d

j=1[(ij − η + 1)ℓ, (ij + η − 1)ℓ] during

[τβ, τβ + T ].

F2: Let C1 be the constant from Claim 16. During the time interval [τβ, τβ + T ] the

distinguished particle x0 collides with at least C1λ0ℓ1/3

2 different particles from Υ that are

in the super cube Q∗ at time τβ + T .

F3: Out of the C1λ0ℓ1/3

2 or more particles from F2, at least one of them is in the cube Q∗∗

at time (τ + 1)β, for all Q∗∗ for which Q∗∗ ⊂ Q∗.

By definition of the events, we clearly have that P[Est(i, τ)] ≥ P[F1 ∩F2 ∩F3]. Also note that

F1, F2 and F3 are clearly restricted to the super cube Q∗ and the time interval [τβ, (τ + 1)β]

and are all increasing events.

Using the exit probability bound from [1, Proposition 3.7] we have

P[F1] ≥ 1 − C2 exp{−C3ℓ
2/T} = 1 − C2 exp{−C3ℓ

1/3} (7)

for some positive constants C2 and C3.

For the event F2, we apply the result of Claim 16. Note that the bound from Claim 16 is

uniform across all paths ρ(·) and in particular holds for any path the distinguished particle

from the event F1 might follow. This gives that the intensity of the Poisson point process

of particles that are in Q∗ at time τβ and collide with x0 during [τβ, τβ + T ] is at least

(1 − ǫ)λ0C1ℓ
1/3 for some positive constant C1. Since every particle that collides with x0

enters
∏d

j=1[(ij − η+ 1)ℓ, (ij + η)ℓ] during [τβ, τβ+T ], we can again use the exit probability

bound from [1, Proposition 3.7] to bound the probability that the particle is outside of Q∗ at

time τβ + T from below by

1 − Ca exp

{

−Cbℓ
2

T

}

= 1 − Ca exp{−Cbℓ
1/3},

for some positive constants Ca and Cb. This term can be made as close to 1 as possible by

having ℓ sufficiently large. We assume ℓ is large enough so that this term is larger than 2/3.



P. Gracar and A. Stauffer 39:15

This gives that the intensity of the process of particles from Υ that collided with x0 during

[τβ, τβ + T ] and are in Q∗ at time τβ + T is at least

2(1 − ǫ)λ0C1ℓ
1/3

3
.

Using Chernoff’s bound (see Lemma 18) we have that

P[F2] ≥ 1 − exp{−(2/3)2C1(1 − ǫ)λ0ℓ
1/3}. (8)

We now turn to F3. Using the result of Claim 17, and a uniform bound across the number

of cubes inside a super cube, we have that

P[F3] ≥ 1 − (2η + 1)d exp

{

−C1(1 − ǫ)λ0ℓ
1/3

2
cp

}

, (9)

where cp is a small but positive constant. Taking the product of the probability bounds in

(7), (8) and (9), we see that the probability that Est(i, τ) holds is at least

1 − exp{−C(1 − ǫ)λ0ℓ
1/3}

for some constant C and all large enough ℓ, which proves the claim.

Proof of Claim 16. For each time t ∈ [τβ, τβ + T ], let Ψt be the Poisson point process on

Td giving the locations at time t of the particles that belong to Υ, excluding all particles

located at ρ(τβ) at time τβ. Since the particles that start in Q∗ move around and can leave

Q∗, we need to find a lower bound for the intensity of Ψt for times in [τβ, τβ + T ]. Note

that the distinguished particle x0 we are tracking is not part of Ψ, since Ψ does not include

particles located at ρ(τβ) at time τβ.

We will need to apply heat kernel bounds from [2, Theorem 2.2] to the particles in Q∗,

so we need to ensure that the time intervals we consider are large enough for the bounds

to hold. We will only consider times t ∈ [ℓ4/3, T ] so that for large enough ℓ, we have

t ≥ supx∈Q∗

y∈Q∗

‖x− y‖1 and so the heat kernel bounds from [2, Theorem 2.2] hold. Then, we

have that for all sites x ∈ Q∗ that are at least ℓ away from the boundary of Q∗ and at any

such time t the intensity of Ψτβ+t at vertex x ∈ Td is at least

Ψτβ+t(x) ≥
∑

y∈Q∗

y 6=ρ(τβ)

(1 − ǫ)λ0µy · Py[Yt = x] = (1 − ǫ)λ0µx

∑

y∈Q∗

y 6=ρ(τβ)

Px[Yt = y],

where Yt stands for the location of a simple random walk at time t, and Py is the measure

induced by a simple random walk starting from y. In the last step above, we used that

the simple random walk is reversible with respect to the measure µ. We now use the exit

probability bound from [1, Proposition 3.7] to get that

∑

y∈Q∗

Px[Yt = y] ≥ 1 − c3 exp{−c4ℓ
2/t}.

Next, we use [2, Theorem 2.2] to account for the particles at ρ(τβ), yielding

∑

y∈Q∗

y 6=ρ(τβ)

Px[Yt = y] ≥ 1 − c3 exp
{

−c4ℓ
2/t
}

− CMc5t
−d/2.

APPROX/RANDOM 2018



39:16 Percolation of Lipschitz Surface and the Spread of Information Among Mobile Agents

This gives that for any t ∈ [ℓ4/3, T ], the intensity of Ψτβ+t is at least

Ψτβ+t(x) ≥ (1 − ǫ)λ0µx(1 − c3 exp{−c4ℓ
2/T} − CMc5ℓ

−2d/3).

Let [τβ, τβ+T ] be divided into subintervals of length W ∈ (0, T ], where we set W = ℓ4/3

so that it is large enough to allow the use of the heat kernel bounds from [2, Theorem 2.2].

Let J = {1, . . . , ⌊T/W ⌋} and tj := τβ+ jW . Then the intensity of particles that share a site

with the distinguished particle x0 at least once among times {t1, t2, . . . , t⌊T/W ⌋} is at least

∑

j∈J

Ψtj (ρ(tj))Pρ(tj )[Yr−tj 6= ρ(r) ∀r ∈ {tj+1, . . . , t⌊T/W ⌋}]

≥ (1 − ǫ)λ0C−1
M (1 − c3 exp{−c4ℓ2/T } − CM c5ℓ−2d/3)

∑

j∈J

(

1 −
∑

z>j

Pρ(tj )[Ytz−tj = ρ(tz)]

)

.

We want to make all of the terms of the sum over J positive, so we consider the term
∑

z>j Pρ(tj)[Xtz−tj
= ρ(tz)] and show that it is smaller than 1

2 for large enough ℓ. To do

this, we use [2, Theorem 2.2], which hold when W ≥ ℓ4/3 and ℓ is large enough, to bound it

from above by
∑

z>j

Pρ(tj)[Ytz−tj
= ρ(tz)] ≤

∑

z>j

CMCHK(tz − tj)−d/2

≤ CMCHKW
−d/2

T/W −j
∑

z=1

z−d/2 (10)

where CHK is a constant coming from [2, Theorem 2.2]. Then, (10) can be bounded from

above by

CMCHKW
−d/2



2 +

T/W −j
∑

z=3

z−d/2



 ≤ CMCHKW
−d/2

(

2 +

∫ T/W

2

z−d/2dz

)

. (11)

Let C be a constant that can depend on CHK , CM and d. Then for d = 2, (11) is smaller

than CW−1 log(T/W ), and for d ≥ 3 the expression in (11) is smaller than CW−d/2. Thus,

setting ℓ large enough, both terms are smaller than 1
2 .

Then, as a sum of Poisson random variables, we get that Υ′ is a Poisson random variable

with a mean at least

(1 − ǫ)λ0C
−1
M (1 − c3 exp{−2c4ℓ

2/T} − CMc5ℓ
−2d/3) T

2W .

Using that T = ℓ5/3 and setting ℓ large enough establishes the claim, with C1 being any

constant satisfying C1 <
C−1

M

2 . ◭

Proof of Claim 17. We now prove that for large enough ℓ, if there are N particles inside of

Q∗ at time τβ + T , there is at least one of them inside Q∗∗ at time (τ + 1)β with probability

at least 1 − exp{−Ncp}.
For t2/3 ≥ sup x∈Q∗

y∈Q∗∗

‖x− y‖1, define pt := infx∈Q∗

∑

y∈Q∗∗ Px[Yt = y]. Then, if we define

bin(N, pt) to be a binomial random variable with parameters N ∈ N and pt ∈ [0, 1], it directly

follows that we can bound probability of one of the N particles from Q∗ being inside Q∗∗ at

time (τ + 1)β from below by

P[bin(N, pt) ≥ 1] ≥ 1 − exp{−Npt}.
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It remains to show that for t = β − T , we have that pt ≥ cp > 0 for some constant cp.

We will again use the heat kernel bounds from [2, Theorem 2.2] for the pair x, y, which hold

if ‖x− y‖3/2
1 ≤ β − T for all x ∈ Q∗, y ∈ Q∗∗. Given the ratio β/ℓ2, d and η, this is satisfied

if ℓ is large enough. Then we have that

pβ−T = inf
x∈Q∗

∑

y∈Q∗∗

Px[Yβ−T = y] ≥ inf
x∈Q∗

C−1
M

∑

y∈Q∗∗

c1β
−d/2 exp

{

−c2
‖x− y‖2

1

β − T

}

.

Now we use that x and y can be at most cηℓ apart where cη is a constant depending on d

and η only, and that β − T ≥ β/2 for ℓ large enough. Hence,

pβ−T ≥ inf
x∈Q∗

C−1
M

∑

y∈Q∗∗

c1β
−d/2 exp

{

−c2
2(cηℓ)

2

β

}

= C−1
M c1ℓ

d

(

1

β

)d/2

exp

{

−c2
2(cηℓ)

2

β

}

≥ cp. ◭

B Standard large deviation results

◮ Lemma 18 (Chernoff bound for Poisson). Let P be a Poisson random variable with mean

λ. Then, for any 0 < ǫ < 1,

P[P < (1 − ǫ)λ] < exp{−λǫ2/2} and P[P > (1 + ǫ)λ] < exp{−λǫ2/4}.
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