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Consider the graph induced by Zd , equipped with uniformly elliptic ran-

dom conductances. At time 0, place a Poisson point process of particles on

Zd and let them perform independent simple random walks. Tessellate the

graph into cubes indexed by i ∈ Zd and tessellate time into intervals indexed

by τ . Given a local event E(i, τ ) that depends only on the particles inside the

space time region given by the cube i and the time interval τ , we prove the

existence of a Lipschitz connected surface of cells (i, τ ) that separates the ori-

gin from infinity on which E(i, τ ) holds. This gives a directly applicable and

robust framework for proving results in this setting that need a multi-scale

argument. For example, this allows us to prove that an infection spreads with

positive speed among the particles.
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1. Introduction. Let G = (Zd ,E) be the d-dimensional square lattice with

edges between nearest neighbors: (x, y) ∈ E iff ‖x − y‖1 = 1. Start with a col-

lection of particles given by a Poisson point process on Zd of intensity λ, and let

the particles move over time as independent continuous time simple random walks

on G. We refer to this system of particles as Poisson random walks.

Assume that at time 0 there is an infected particle at the origin, and that all other

particles are uninfected. As particles move, an uninfected particle gets infected

as soon as it shares a site with an infected particle. Kesten and Sidoravicius [7]

showed that for all λ > 0 the infection spreads with positive speed; that is, for all

large enough t , at time t there is an infected particle at distance of order t from the

origin. A main challenge in establishing this result is that, as the infection spreads,

it finds empty regions (i.e., regions without particles) of arbitrarily large sizes. An

empty region A ⊂ Zd not only delays the spread of the infection locally, but also

causes a decrease in the density of particles in a neighborhood around A as time

goes on. A key part of the analysis in [7] is to control how often empty regions arise

and how big an impact (in space and time) they cause. An additional challenge

is that long-range dependences do arise. For example, if at some time the ball

B(x, r) of radius r centered at x ∈ Zd is empty, then B(x, r/2) is likely to remain

empty for a time of order r2. Thus, the probability that the space–time region

B(x, r/2)×[0, r2] is empty of particles is at least exponential in rd , which is only

a stretched exponential with respect to the volume of the space–time region. In [7],

the effect of empty regions was controlled via an intricate multi-scale argument.

The problem of spread of infection among Poisson random walks is just one

example where long-range dependences give rise to serious mathematical chal-

lenges, and where multi-scale arguments have been applied to great success. In

fact, multi-scale arguments have proved to be very useful in the analysis of several

models, including the solution of several important questions regarding Poisson

random walks [7–9, 13], activated random walks [12], random interlacements [11,

14], multi-particle diffusion limited aggregation [10] and more general dependent

percolation [3, 15].

However, the main problem in developing a multi-scale analysis is that the ar-

gument is quite involved and can become very technical. Also, in each of the ex-

amples above, the involved multi-scale argument had to be developed from scratch

and be tailored to the specific question being analyzed. Our main goal in this paper

is to develop a more robust and systematic framework that can be applied to solve

questions in the model of Poisson random walks without the need of carrying out

a whole multi-scale argument each time. We do this by showing that given a local

event which is translation invariant and whose probability of occurrence is large

enough, we can find a special percolating structure in space–time where this event

holds.

We now explain our idea in a high-level way, deferring precise statements and

definitions to Section 2. We tesselate space into cubes, indexed by i ∈ Zd , and

tessellate time into intervals indexed by τ ∈ Z. Thus (i, τ ) denotes the space–time
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cell of the tessellation consisting of the cube i and the time interval τ . Given any

increasing, translation invariant event E(i, τ ) that is local (i.e., measurable with

respect to the particles that get within some fixed distance to the space–time cell

(i, τ )), if the marginal distribution P(E(i, τ )) is large enough, our main result gives

the existence of a two-sided Lipschitz surface of space–time cells where E(i, τ )

holds for all cells in the surface.

Once we obtain such a Lipschitz surface, instead of having to carry out a whole

multi-scale analysis from scratch to analyze some question involving Poisson ran-

dom walks, one is left with the much easier task of just coming up with a suit-

able choice of E(i, τ ). For example, for the case of spread of infection mentioned

above, a natural choice is to define E(i, τ ) as the event that an infected particle in

the cube i infects several other particles which then move to all cubes neighboring

i by the end of the time interval τ . Then the existence of the Lipschitz surface

and its Lipschitz property ensures that, once the infection enters the surface, it is

guaranteed to propagate through the surface.

We further illustrate the applicability of our Lipschitz surface technique in [5],

where we apply the Lipschitz surface to study the spread of infection in the random

conductance model.

2. Setting and precise statement of the results. Poisson random walks. We

consider the graph (Zd ,E) with conductances {μx,y}(x,y)∈E , which are i.i.d. non-

negative weights on the edges of G. In this paper, edges will always be undirected,

so μx,y = μy,x for all (x, y) ∈ E. We also assume that the conductances are uni-

formly elliptic, that is,

there exists deterministic CM > 0, such that

μx,y ∈
[

C−1
M ,CM

]

for all (x, y) ∈ E,P-a.s.
(1)

We say x ∼ y if (x, y) ∈ E and define μx =∑y∼x μx,y . At time 0, consider a

Poisson point process of particles on Zd , with intensity measure λ(x) = λ0μx for

some constant λ0 > 0 and all x ∈ Zd . That is, for each x ∈ Zd , the number of

particles at x at time 0 is an independent Poisson random variable of mean λ0μx .

Then let the particles perform independent continuous-time simple random walks

on the weighted graph; that is, a particle at x ∈ Zd jumps to a neighbor y ∼ x

at rate
μx,y

μx
. It follows from the thinning property of Poisson random variables

that the system of particles is in stationarity; that is, at any time t , the particles are

distributed according to a Poisson point process with intensity measure λ. We refer

to this system of particles as Poisson random walks on (G,μ) with intensity λ0.

Tessellation. We now tesselate the graph G = (Zd ,E) into d-dimensional

cubes of side length ℓ > 0. We index the cubes of the tessellation by integer

vectors i ∈ Zd such that the cube i = (i1, i2, . . . , id) corresponds to the region

(
∏d

j=1[ijℓ, (ij + 1)ℓ]) ∩ Zd . Tessellate time into subintervals of length β . We in-

dex the subintervals by τ ∈ Z, representing the time interval [τβ, (τ + 1)β]. We
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refer to the pair (i, τ ), representing
∏d

j=1[ijℓ, (ij + 1)ℓ] × [τβ, (τ + 1)β], as a

space–time cell and define the region of a cell as R1(i, τ ) =∏d
j=1[ijℓ, (ij +1)ℓ]×

[τβ, (τ + 1)β].
We will need to consider larger space–time cells as well. Let η ≥ 1 be an in-

teger. For each cube i = (i1, . . . , id) and time interval τ , define the super-cube i

as
∏d

j=1[(ij − η)ℓ, (ij + η + 1)ℓ] and the super-interval τ as [τβ, (τ + η)β]. We

define the super-cell (i, τ ) as the Cartesian product of the super-cube i and the

super-interval τ .

Definitions for events. We define a particle system on Zd as a countable family

of not necessarily unique elements of Zd , indexed by some countable set I , repre-

senting the locations of the particles belonging to the particle system. Let (�s)s≥0

be a sequence of particle systems on Zd , with �s representing the locations of the

particles at time s. We say a particle system �s is distributed according to a Pois-

son random measure of intensity ζ , if for every A ⊂ Zd , N(A) is a Poisson random

variable with intensity ζ(A), where N(A) is the number of particles belonging to

�s that lie in A. We say an event E is increasing for (�s)s≥0 if the fact that E

holds for (�s)s≥0 implies that it holds for all (�′
s)s≥0 for which �′

s ⊇ �s for all

s ≥ 0. We need the following definitions.

DEFINITION 2.1. We say an event E is restricted to a region X ⊂ Zd and a

time interval [t0, t1] if it is measurable with respect to the σ -field generated by all

the particles that are inside X at time t0 and their positions from time t0 to t1.

DEFINITION 2.2. We say a particle has displacement inside X′ during a time

interval [t0, t0 + t1], if the location of the particle at all times during [t0, t0 + t1] is

inside x + X′, where x is the location of the particle at time t0.

For an increasing event E that is restricted to a region X and time interval [0, t],
we have the following definition.

DEFINITION 2.3. νE is called the probability associated to an increasing

event E that is restricted to X and a time interval [0, t] if, for an intensity mea-

sure ζ and a region X′ ∈ Zd , νE(ζ,X,X′, t) is the probability that E happens

given that, at time 0, the particles in X are a particle system distributed according

to the Poisson random measure of intensity ζ and their motions from 0 to t are

independent continuous time random walks on the weighted graph (G,μ), where

the particles are conditioned to have displacement inside X′ during [0, t].

For each (i, τ ) ∈ Zd+1, let Est(i, τ ) be an increasing event restricted to the

super-cube i and the super-interval τ . We will assume that Est(i, τ ) is invariant

under space–time translations. We say that a cell (i, τ ) is good if Est(i, τ ) holds

and bad otherwise.
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FIG. 1. A two-sided Lipschitz surface for the case of Z3 .

The base-height index. We will need a different way to index space–time cells,

which we refer to as the base-height index. In the base-height index, we pick one

of the d spatial dimensions and denote it as height, using index h ∈ Z, while the

other d space–time dimensions form the base, which will be indexed by b ∈ Zd .

Then, a base-height cell will be indexed by (b,h) ∈ Zd+1. We will use the base-

height index in order to define the two-sided Lipschitz surface so that it, as the

name implies, satisfies the Lipschitz property. More precisely, we will define the

two-sided Lipschitz surface to be a collection of space–time cells such that when

considering the height of each cell as a mapping of its base, this mapping is Lips-

chitz continuous.

Analogously to space–time, we define the base-height super-cell (b,h) to be

the space–time super-cell (i, τ ), for which the base-height cell (b,h) corresponds

to the space–time cell (i, τ ). Similarly, we define Ebh(b,h), the increasing event

restricted to the super-cell (b,h), to be the same as the event Est(i, τ ) for the

space–time cell (i, τ ) that corresponds to the base-height cell (b,h).

Two-sided Lipschitz surface. Let a function F : Zd → Z be called a Lipschitz

function if |F(x) − F(y)| ≤ 1 whenever ‖x − y‖1 = 1.

DEFINITION 2.4. A two-sided Lipschitz surface F is a set of base-height cells

(b,h) ∈ Zd+1 such that for all b ∈ Zd there are exactly two (possibly equal) inte-

ger values F+(b) ≥ 0 and F−(b) ≤ 0 for which (b,F+(b)), (b,F−(b)) ∈ F and,

moreover, F+ and F− are Lipschitz functions.

An illustration of F for d = 2 is given in Figure 1. We say a space–time

cell (i, τ ) belongs to F if the corresponding base-height cell (b,h) belongs to

F . We say a two-sided Lipschitz surface F exists, if for all b ∈ Zd , we have

F+(b) < ∞ and F−(b) > −∞. For any positive integer D, we say a two-sided

Lipschitz surface surrounds a cell (b′, h′) at distance D if any path (b′, h′) =
(b0, h0), (b1, h1), . . . , (bn, hn) for which ‖(bi, hi) − (bi−1, hi−1)‖1 = 1 for all

i ∈ {1, . . . , n} and ‖(bn, hn) − (b0, h0)‖1 > D, intersects with F .
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Results. For any z ∈ Z+, let Qz = [−z/2, z/2]d . The following theorem estab-

lishes the existence of the Lipschitz surface.

THEOREM 2.1. Let (G,μ) be a uniformly elliptic conductance graph on the

lattice Zd for d ≥ 2. There exist positive constants c0, c1 and c2 such that the fol-

lowing holds. Tessellate G in space–time cells and super-cells as described above

for some ℓ,β, η > 0 such that the ratio β/ℓ2 < c0. Let Est(i, τ ) be an increasing

event, restricted to the space–time super-cell (i, τ ). Fix ε ∈ (0,1) and fix w such

that

w ≥
√

ηβ

c2ℓ2
log

(

8c1

ε

)

.

Then there exists a positive number α0 that depends on ε, η, w and the ratio β/ℓ2

so that if

(2) min

{

C−1
M ε2λ0ℓ

d , log

(

1

1 − νEst((1 − ε)λ,Q(2η+1)ℓ,Qwℓ, β)

)}

≥ α0,

a two-sided Lipschitz surface F where Est(i, τ ) holds for all (i, τ ) ∈ F almost

surely exists.

We now briefly explain the main conditions for the establishment of the above

theorem. We usually fix β/ℓ2 to be an arbitrary, but small constant. The value

of η defines the super-cubes, which just model how much overlap we need be-

tween the cells of the tessellation (usually to allow information to propagate from

one cell to its neighbors). Once these two parameters are fixed, we need to sat-

isfy (2). First we need C−1
M ε2λ0ℓ

d ≥ α0. After fixing ε, this can be satisfied either

by setting ℓ large enough (which makes the cells of the tessellation large), or by

assuming that the density of particles λ0 is large enough. Then we still need to

make νEst((1 − ε)λ,Q(2η+1)ℓ,Qwℓ, β) ≥ 1 − exp(−α0). Usually Est is a local

event that becomes more and more likely by setting ℓ larger and larger; so hav-

ing ℓ large enough suffices to satisfy this condition as well. The value of ε > 0 is

introduced so that in νEst we can consider a Poisson point process of particles of

intensity measure (1 − ε)λ, slightly smaller than the actual intensity of particles.

This slack is needed to restrict our attention to the particles that “behave well.”

Then the lower bound on w is to guarantee that, as particles move in Q(2η+1)ℓ

for time β , with high probability they do not leave Q(2η+1)ℓ+wℓ, allowing a better

control of dependences between neighboring cells of the tessellation. The proof of

Theorem 2.1 is given in Section 7. With some additional work, which we do in

Section 8, we can establish the following property of F .
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THEOREM 2.2. Assume the conditions of Theorem 2.1 are satisfied. There

exist positive constants c and C such that, for any sufficiently large r > 0, we have

P
[

F does not surround

the origin at distance r

]

≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

s≥r

sd exp

{

−Cλ0
ℓs

(logℓs)c

}

for d = 2,

∑

s≥r

sd exp{−Cλ0ℓs} for d ≥ 3.

The way Theorem 2.2 is proved also gives that the parts of the two-sided Lips-

chitz surface where the two sides F+ and F− intersect not only almost surely sep-

arate the origin from infinity within the “zero-height hyperplane” L = Zd × {0},
but they even percolate within L. We say that the two-sided Lipschitz surface per-

colates within L if the set L \ F contains only finite connected components.

THEOREM 2.3. Assume the conditions of Theorem 2.1 are satisfied. If in ad-

dition we have that ℓ is sufficiently large and P[Est(0,0)] is sufficiently large, then

the zero-height cluster F ∩L of the two-sided Lipschitz surface F percolates within

L almost surely.

REMARK 2.1. In the definition of the base-height index, we fixed height to

correspond to one of the spatial dimensions. This is the natural setting for the

application of this Lipschitz surface technique to all problems we have in mind,

for example, the ones in [5]. However, in the definition of the surface we could

have let height correspond to the time dimension. Then Theorems 2.1, 2.2 and 2.3

hold for d ≥ 3, but they no longer hold for d = 2. See Remark 5.2 in Section 5 for

details.

The remainder of this paper is structured as follows. In Section 3, we give a

construction of the two-sided Lipschitz surface for site percolation. Section 4 in-

troduces multiple scales of the tessellation and Section 5 generalizes the paths

defined in the construction from Section 3 to this multi-scale framework. Sec-

tion 6 ties together the results from the previous sections, which is then applied in

Section 7 to prove Theorem 2.1. Section 8 extends the results to a larger class of

paths, which let us control areas where the two sides of the Lipschitz surface have

nonzero height, in order to prove Theorems 2.2 and 2.3.

3. Two-sided Lipschitz surface in percolation. In this section, we show how

to construct the Lipschitz surface F given a realization of the events Ebh(b,h),

(b,h) ∈ Zd+1, from Section 2. For this, we regard (Ebh(b,h))(b,h)∈Zd+1 as a site

percolation process on Zd+1 so that a site (b,h) ∈ Zd+1 is considered to be open

iff Ebh(b,h) holds and closed otherwise. We assume that the Ebh(b,h) are trans-

lation invariant. The concept of Lipschitz percolation for independent Bernoulli

percolation was introduced and studied in [4, 6]. We modify their approach as we

need several additional properties from the surface, such as the surface being two
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sided (i.e., composed of two sheets), the surface being close enough to the zero-

height hyperplane L = Zd × {0}, and the two sides of the surface intersecting in

several points in L.

The construction of F is based on the definition of a special type of paths, which

we call d-paths. The definition of d-paths is based on a few rules. The first is that

d-paths only start from closed sites at height 0 (i.e., closed sites of L). For x ∈ Z,

define the set Sign(x) as {+1} if x > 0, {−1} if x < 0, and {−1,+1} if x = 0. A d-

path from a closed site u ∈ L to a not necessarily closed site v ∈ Zd+1 is any finite

sequence of distinct sites u = (b0,0), (b1, h1), . . . , (bk, hk) = v of Zd+1 such that

for each i = 1,2, . . . , k we have that either (3) or (4) below hold:

(3) bi = bi−1, hi − hi−1 ∈ Sign(hi−1) and (bi, hi) is a closed site,

or

(4) ‖bi − bi−1‖1 = 1, hi−1 − hi ∈ Sign(hi−1) and hi−1 = 0.

We say the ith move of a d-path is vertical if it is like (3), otherwise we say the

ith move is diagonal. Note that in a vertical move, the path moves away from L,

while in a diagonal move it moves towards L. Moreover, unlike a vertical move,

a diagonal move is not required to go into a closed site and cannot be performed

from a site of L.

In order to avoid issues of parity, we define for (b,h) ∈ Zd+1 the set of all sites

that have the same base as (b,h), but are further away from L,

(̂b, h) :=
{

(

b,h′) ∈ Zd+1 : h′

h
≥ 1

}

.

For u ∈ L and v ∈ Zd+1, we denote by u d v the event that there is a d-path

from u to at least one site of v̂. We say v is reachable from u when this event

holds.2

We now define several sets of sites and some corresponding values, which will

let us construct the desired two-sided Lipschitz surface.

DEFINITION 3.1. The hill around u ∈ L is the set of all sites that are reachable

from u,

Hu :=
{

v ∈ Zd+1 : ud v
}

.

The mountain around v ∈ L is the union of all hills that contain v,

Mv =
⋃

u:v∈Hu

Hu.

2It would be natural to allow ‖bi − bi−1‖1 ≤ 1 in (4). However, similar to [6], this is equivalent to

the case when ‖bi − bi−1‖1 = 1 if a d-path can be extended by vertical steps towards L.
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FIG. 2. Examples of Hu and Mu of a chosen site u for site percolation on Z2. Open sites are white

and closed sites are black.

Note that the sets Hu and Mv can be empty; in particular, Hu = ∅ if u is an

open site. We define the positive and negative depths of a set S ⊂ Zd+1 at site

u = (b,h) ∈ Zd+1 as

l+u (S) = sup
{

k : (b,h + k) ∈ S
}

and

l−u (S) = sup
{

k : (b,h − k) ∈ S
}

.

Define also the radius of a set S ⊂ Zd+1 around u as

radu(S) = sup
{

‖v − u‖1 : v ∈ S
}

.

We are now ready to define our two-sided Lipschitz surface F ; see Figure 2 for an

illustration of Hu, Mu and F , and Figure 1 for an example of F in three dimen-

sions.
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DEFINITION 3.2. For u ∈ L define

F+(u) =
{

1 + l+u (Mu) if Mu =∅,

0 if Mu =∅

and

F−(u) =
{

−1 − l−u (Mu) if Mu = ∅,

0 if Mu = ∅.

DEFINITION 3.3. The two-sided Lipschitz surface F is defined as the set of

sites
⋃

b∈Zd

(

b,F−(b)
)

∪
(

b,F+(b)
)

.

Note that the Lipschitz surface “envelops” the union of mountains
⋃

u∈L Mu.

By definition, if l±u (Mu) is infinite for some u, then it is infinite for all u (because

of the diagonal moves of d-paths). Thus it is sufficient to show that l±0 (M0) is

finite almost surely in order to guarantee the existence of F . The theorem below

establishes that F is finite almost surely; its proof follows along the lines of [6],

Theorem 1.

THEOREM 3.1. For any d ≥ 1, if (Ebh(b,h))(b,h)∈Zd+1 is translation invariant

and

(5)
∑

r≥1

rdP
[

rad0(H0) > r
]

< ∞,

then there exist almost surely a two sided Lipschitz surface F as in Definition 3.3.

Moreover, the functions F+ and F− from Definition 3.2 satisfy:

1. For each u = (b,0) ∈ L, the sites (b,F+(u)) and (b,F−(u)) are open.

2. For any u,u′ ∈ L with ‖u − u′‖1 = 1, we have |F+(u) − F+(u′)| ≤ 1 and

|F−(u) − F−(u′)| ≤ 1.

PROOF. We start by showing item 1. First, suppose that M0 = ∅, and assume

the opposite, that is, that the site (b,F+(u)) is closed. By the definition of the

function l+u , the site (b, l+u (Mu)) belongs to Mu. Then, since F+(u) = 1 + l+u (Mu)

and Mu = ∅, we can extend the d-path reaching the site (b, l+u (Mu)) with a vertical

move into the closed site (b,F+(u)). This gives that (b,F+(u)) ∈ Mu, which is

in contradiction with the construction of F+. When Mu = ∅, we have Hu = ∅
and the site (b,F+(u)) = (b,0) is open by definition. The proof for (b,F−(u)) is

similar.

Next, we establish item 2. Let u,u′ ∈ L with ‖u − u′‖1 = 1. To show that

|F+(u) − F+(u′)| ≤ 1, it is enough to show that F+(u′) − F+(u) ≥ −1 since
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the roles of u and u′ are symmetric. Assume the converse, that is, that F+(u) ≥
F+(u′) + 2. Write u = (b,0) and u′ = (b′,0). We have by Definition 3.2 that

(b,F+(u) − 1) ∈ Mu, so the site (b,F+(u) − 1) can be reached by some d-

path from L. Extending this path by a diagonal move, we have that the site

(b′,F+(u) − 2) ∈ Mu. Since (b′,F+(u) − 2) ∈ ̂(b′,F+(u′)) by our assumption,

we obtain that (b′,F+(u′)) ∈ Mu, contradicting the construction of F+. The proof

for F− is similar.

Finally, we prove the almost sure existence of F+, that is, that l+0 (M0) is almost

surely finite. Because of the diagonal moves we have that l0(M0) ≤ rad0(M0), so

we only need to show that rad0(M0) < ∞. By translation invariance, we have

P
[

rad0(M0) ≥ r
]

≤
∑

v∈L
P
[

0 ∈ Hv, radv(Hv) ≥ r − ‖v‖1

]

=
∑

v∈L
P
[

v ∈ H0, rad0(H0) ≥ r − ‖v‖1

]

.

The last sum can be split into two sums depending on whether or not ‖v‖1 ≤
r/2. In the first case, the sum is no larger than crdP[rad0(H0) ≥ r/2] for some con-

stant c, and by (5) this term goes to 0 as r increases. Since {v ∈ H0} ⊆ {rad0(H0) ≥
‖v‖1}, we can bound the sum for which ‖v‖1 > r/2 by

∑

v∈L
‖v‖1≥r/2

P[v ∈ H0] ≤
∑

s≥r/2

CsdP
[

rad0(H0) ≥ s
]

,

where C > 0 is a constant that depends only on d . By (5), this term also goes to 0

as r increases, which concludes the proof. �

4. Multi-scale setup. In light of Theorem 3.1, the key in establishing the ex-

istence of the Lipschitz surface is to control the radius of H0. To do this, we look at

all paths starting from 0 and the probability that they are a d-path. The challenge is

that the event that a given cell (b,h) is bad is not independent of other space–time

cells. To solve this problem, we resort to a multi-scale approach. After defining

the multi-scale tessellation, we will also state a result regarding local mixing of

particles, which we will use to link cells from one scale to the next.

4.1. Tessellation. We start by tessellating space at multiple scales. Let m >

0 be a sufficiently large integrand let ε ∈ (0,1). For each scale k ≥ 1, we will

tessellate the graph G = (Zd ,E) into cubes of length ℓk such that

ℓ1 = ℓ and ℓk = mkaℓk−1 = mk−1(k!)aℓ,

where a is a large integer we will set later. Set also ℓ0 = ℓ/m.
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We index the cubes by integer vectors i ∈ Zd and denote them by Sk(i). Then,

for i = (i1, i2, . . . , id) we have

Sk(i) =
d
∏

j=1

[

ijℓk, (ij + 1)ℓk

]

.

This makes Sk(i) the union of (mka)d cubes of scale k − 1. Next, we introduce

the following hierarchy. For k, j ≥ 0 and i ∈ Zd , we define

π
(j)
k (i) = i ′ iff Sk(i) ⊆ Sk+j

(

i ′
)

.

We say (k + 1, i′) is the parent of (k, i) if π
(1)
k (i) = i′ and in this case also say

(k, i) is a child of (k + 1, i ′). We define the set of descendants of (k, i) as (k, i)

and the union of all the descendants of the children of (k, i) or as only (k, i) in the

case (k, i) has no children.

Let w be a “sufficiently large,” but otherwise arbitrary positive value; We will

later require w to satisfy the inequality from Theorem 2.1. For now, we can think

of w as a large constant. We introduce a new variable n that satisfies

(6) nd = m

7η
and n ≥ 1

2
+ w

2η
,

where we impose the requirement on m to be large enough to yield n > 1 and to

satisfy the inequality in (6). We also assume m is specified in such a way that n is

an integer. Recall that η is the parameter introduced in the definition of super-cells

in the tessellation of Section 2, and that η ≥ 1 is an integer.

We define some larger cubes based on Sk(i). For k ≥ 0 define the base and the

area of influence of Sk(i) as, respectively,

Sbase
k (i) =

⋃

i′:‖i−i′‖∞≤ηmn(k+1)a

Sk

(

i ′
)

and Sinf
k (i) =

⋃

i′:‖i−i′‖∞≤2ηmn(k+1)a

Sk

(

i ′
)

.

For k ≥ 1, we also define the extended cube

Sext
k (i) =

⋃

i′:π (1)
k−1(i

′)=i

Sbase
k−1

(

i ′
)

.

See Figure 3 for an illustration of how these sets relate to one another. Observe

that Sext
k (i) is the union of the bases of the children of (k, i), which are the (k −1)-

cubes contained in Sk(i). We can see that Sk(i) ⊂ Sbase
k (i) ⊂ Sinf

k (i) and

(7) Sext
k+1

(

π
(1)
k (i)
)

=
⋃

i′:π (1)
k (i′)=π

(1)
k (i)

Sbase
k

(

i ′
)

⊃ Sbase
k (i).
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FIG. 3. Illustration of the tessellation of Rd . Different scales are represented by the thickness of

the lines; for example, S2(π
(1)
1 (i)) is the square with thick borders that contains S1(i), which is the

black square. Note that S1(i) is at the same position in both the left and the right pictures above,

illustrating that Sbase
1 (i) ⊂ Sext

2 (π
(1)
1 (i)) as given in (7).

REMARK 4.1. An important property derived from these definitions is that an

extended cube of scale 1 has side length ℓ + 2ηmnℓ0 = (1 + 2ηn)ℓ. Therefore,

for any i ∈ Zd , the extended cube Sext
1 (i) contains the super-cube i defined in the

tessellation of Section 2. By the inequality in (6), we also have that the extended

cube Sext
1 (i) has enough “slack” that this remains true even if we extend the super-

cube i by an additional factor of 1 + w in all directions.

Now we define the multi-scale tessellation of time. Let

ε1 = ε and εk = εk−1 − ε

k2
for all k ≥ 2.

Define also ε0 = 2ε for consistency. Let

(8) βk = Cmix

ℓ2
k−1

(εk−1 − εk)4/�
= Cmix

ℓ2
k−1k

8/�

ε4/�
for all k ≥ 1,

where Cmix ≥ 24/�c0, and c0, � are constants that will be given existence by

Theorem 4.1 below. To simplify the notation, we assume that 1
�

is an integer; oth-

erwise, we could work with ⌈ 1
�

⌉ instead. For k = 1, we set β = β1 = Cmix
(ℓ/m)2

ε4/� .

Given β/ℓ2 and ε, m can be set sufficiently large so that Cmix ≥ 24/�c0. Observe

that

(9)
βk+1

βk

= ℓ2
k(k + 1)8/�

ℓ2
k−1k

8/�
= m2k2a−8/�(k + 1)8/� for all k ≥ 1.
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FIG. 4. Time scale. The horizontal axis represents time and the vertical axis represents the scale.

Note that γ
(1)
1 (τ ) = γ

(1)
1 (τ + 1) = γ

(1)
1 (τ + 2).

Now, for scale k ≥ 1, we tessellate time into intervals of length βk . We index the

time intervals by τ ∈ Z and denote them by Tk(τ ), where

Tk(τ ) =
[

τβk, (τ + 1)βk

)

.

We allow time to be negative and note that βk+1/βk is always an integer by (9) if a

is chosen larger than 4/�, which gives that a time interval of scale k is contained

in a time interval of scale k + 1. We therefore assume from now on that a is an

integer and sufficiently large for

(10) 2a − 8/� > 1

to hold.

Let (k, τ ) refer to the time interval Tk(τ ). We also introduce a hierarchy over

time, but which is different than the one defined for the cubes. For all k and τ , let

γ
(0)
k (τ ) = τ , and for j ≥ 1, define

γ
(j)
k (τ ) = τ ′ if γ

(j−1)
k (τ )βk+j−1 ∈ Tk+j

(

τ ′ + 1
)

.

For the time tessellation, if τ ′ = γ
(1)
k (τ ), then the interval at scale k + 1 that

contains Tk(τ ) is Tk+1(τ
′ + 1); see Figure 4 for an example. For any j ′ ≤ j , we

have γ
(j)
k = γ

(j−j ′)
k+j ′ (γ

(j ′)
k ). Thus, for τ, τ ′ ∈ Z and k ≥ 1 we say that (k + 1, τ ′) is

the parent of (k, τ ), if γ
(1)
k (τ ) = τ ′; in this case we also say that (k, τ ) is a child of

(k + 1, τ ′). We also define the set of descendants of (k, τ ) as (k, τ ) and the union

of the descendants of the children of (k, τ ) or only (k, τ ) in the case (k, τ ) has no

children.

Now, for any i ∈ Zd , k ≥ 1, τ ∈ Z, we define the space–time parallelogram

Rk(i, τ ) = Sk(i) × Tk(τ ),

and note that these parallelograms are a tessellation of space and time. For k = 1,

this is the same R1 defined in the tessellation of Section 2.

We extend π and γ to a hierarchy of space and time. Then, letting (k, i, τ ) refer

to the space–time cell Sk(i) × Tk(τ ), we define the descendants of (k, i, τ ) as the
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cells (k′, i ′, τ ′) so that (k′, i ′) is a descendant of (k, i) and (k′, τ ′) is a descendant of

(k, τ ). We also say (k, i, τ ) is an ancestor of (k′, i ′, τ ′) if (k′, i ′, τ ′) is a descendant

of (k, i, τ ).

4.2. A fractal percolation process. We now define the percolation process we

will analyze. For the remainder of the paper, let E(i, τ ) := 1Est(i,τ ) be the indicator

random variable of the increasing event Est(i, τ ). For k ≥ 1, define Sk(i) to be k-

dense at some time t if all ( ℓk

ℓk−1
)d = (mka)d cubes Sk−1(i

′) ⊂ Sk(i) contain at

least (1 − εk)λ0
∑

y∈Sk−1(i
′) μy particles at time t . For a cell (k, i, τ ), let Dk(i, τ )

be the indicator random variable such that

Dk(i, τ ) = 1 iff Sk(i) is k-dense at time τβk.

We also define a more restrictive indicator random variable:

Dext
k (i, τ ) = 1 iff, at time τβk , all cubes Sk−1(i

′) of scale k − 1

contained in Sext
k (i) have at least (1 − εk)λ0

∑

y∈Sk−1(i
′) μy particles

whose displacement throughout [τβk, (τ + 2)βk] is in Qηmnkaℓk−1
.

Recall the definition of the displacement of a particle from Definition 2.2. Then

Dext
k (i, τ ) ≤ Dk(i, τ ) for all cells (k, i, τ ).

REMARK 4.2. An important property of this definition is that, when Dext
k (i,

τ ) = 1, if (k − 1, i′, τ ′) is a child of (k, i, τ ), then we know that there are enough

particles in Sbase
k−1(i ′) at time τβk and these particles never leave the cube Sinf

k−1(i
′)

during the interval [τβk, τ
′βk−1]. This will let us apply Theorem 4.1 to show that

if Dext
k (i, τ ) = 1, then Dext

k−1(i
′, τ ′) is likely to be 1.

Define

Dbase
k (i, τ ) = 1 iff, at time γ

(1)
k (τ )βk+1, all cubes Sk(i

′) of scale

k inside Sbase
k (i) contain at least (1 − εk+1)λ0

∑

y∈Sk(i
′) μy par-

ticles whose displacement throughout [γ (1)
k (τ )βk+1, τβk] is in

Qηmn(k+1)aℓk
.

Note that if Dext
k+1(π

(1)
k (i), γ

(1)
k (τ )) = 1 then Dbase

k (i, τ ) = 1. This gives that

(11) Dbase
k (i, τ ) ≥ Dext

k+1

(

π
(1)
k (i), γ

(1)
k (τ )

)

for all (k, i, τ ).

We next fix a scale κ as being the largest scale we will consider, and define

Aκ(i, τ ) = Dext
κ (i, τ ).

For k satisfying 2 ≤ k ≤ κ − 1, we set

Ak(i, τ ) = max
{

Dext
k (i, τ ),1 − Dbase

k (i, τ )
}

.
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For scale 1, we set

A1(i, τ ) = max
{

E(i, τ ),1 − Dbase
1 (i, τ )

}

.

Finally, define

(12) A(i, τ ) =
κ
∏

k=1

Ak

(

π
(k−1)
1 (i), γ

(k−1)
1 (τ )

)

.

Intuitively, a cell (k, i, τ ) will be “well behaved” if Ak(i, τ ) = 1. More pre-

cisely, it follows from (11) that if Ak+1(i
′, τ ′) = 1 and (k, i, τ ) is a descendent

of (k + 1, i ′, τ ′), then Ak(i, τ ) = 0 if and only if Dext
k (i, τ ) = 0 [or E(i, τ ) = 0

if k = 1]. On the other hand, Ak+1(i
′, τ ′) = 0 implies that Dext

k+1(i
′, τ ′) = 0 and

by (11) we have that Dbase
k (i, τ ) ≥ 0, so that Ak(i, τ ) = 1 if either Dbase

k (i, τ ) = 0

or Dext
k (i, τ ) = 1 [or E(i, τ ) = 1 if k = 1]. Therefore, Ak(i, τ ) can be seen as the

indicator of the event that the particles are “well behaved” in the cell (k, i, τ ),

given that they were well behaved in the ancestor cell of (k, i, τ ). Finally, when-

ever Ak(i, τ ) = 0, it follows from (12) that all descendants (1, i ′, τ ′) of (k, i, τ ) at

scale 1 have A(i ′, τ ′) = 0.

4.3. D-paths and bad clusters. Consider two distinct cells (i, τ ), (i′, τ ′) of

scale 1. We say that (i, τ ) is adjacent to (i′, τ ′) if ‖i − i ′‖∞ ≤ 1 and |τ − τ ′| ≤ 1.

Also, we say that (i, τ ) is diagonally connected to (i ′, τ ′) if there exists a sequence

of cells (i, τ ) = (b0, h0), (b1, h1), . . . , (bn, hn) = (î, τ̂ ), where the indices (bj , hj )

refer to the base-height index, such that all the following hold:

• for all j ∈ {1, . . . , n}, ‖bj − bj−1‖1 = 1 and hj−1 − hj ∈ Sign(hj−1),

• hihj ≥ 0 for all i, j ∈ {0, . . . , n},
• (î, τ̂ ) is adjacent to (i ′, τ ′) or (î, τ̂ ) = (i′, τ ′).

The definition of diagonally connected is in line with the definition of d-paths

from Section 3, where paths can move diagonally towards L regardless of the

status (open or closed) of the cells. We then define a D-path as a sequence of scale

1 cells where each cell is either adjacent or diagonally connected to the next cell

in the sequence.

Recall also that a cell (i, τ ) of scale 1 is denoted bad if Est(i, τ ) does not hold.

Given a cell (i, τ ) of scale 1, we define the bad cluster K(i, τ ) as the set of cells

(i ′, τ ′) of scale 1 that are bad and to which there exists a D-path from (i, τ ) where

all cells in the D-path are bad. We say that a cell (i, τ ) of scale 1 has a bad ancestry

if A(i, τ ) = 0 and in this case we define the cluster of bad ancestries as

K ′(i, τ ) =
{(

i′, τ ′) ∈ Zd+1 : A
(

i ′, τ ′)= 0 and ∃ a D-path from

(i, τ ) to
(

i ′, τ ′) where each cell

of the path has a bad ancestry
}

.
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LEMMA 4.1. For each cell (i, τ ) of scale 1, we have that E(i, τ ) ≥ A(i, τ ).

This implies that K(i, τ ) ⊆ K ′(i, τ ).

PROOF. Fix (i, τ ) ∈ Zd+1. Then, for k = 1, define X1 = E(i, τ ) and, for k ≥
2, define Xk = Dext

k (π
(k−1)
1 (i), γ

(k−1)
1 (τ )). Let Yk = Dbase

k (π
(k−1)
1 (i), γ

(k−1)
1 (τ )).

Therefore, by the definition of A in (12), we have

A(i, τ ) =
(

κ−1
∏

k=1

max{Xk,1 − Yk}
)

Xκ .

We now have Yk ≥ Xk+1 for all k. Therefore, for any k ≤ κ − 1, we have

max{Xk,1 − Yk}Xk+1 ≤ max{Xk,1 − Xk+1}Xk+1 = XkXk+1.

Applying this repeatedly, we have

A(i, τ ) ≤
(

κ−2
∏

k=1

max{Xk,1 − Yk}
)

Xκ−1Xκ ≤
κ
∏

k=1

Xk ≤ X1 = E(i, τ ).
�

4.4. Local mixing. Let G = (Zd ,E) be the d-dimensional square lattice

equipped with conductances (μx,y)(x,y)∈E satisfying (1). The next theorem shows

that if particles are dense enough inside a large cube QK = [−K/2,K/2]d , then

after particles move for some time, their distribution inside QK (but away from

QK ’s boundary) dominates an independent Poisson point process.

THEOREM 4.1 ([5], Theorem 4.1). Let μx,y satisfy (1) for some constant CM

and c > 0 be an arbitrary constant. There exist positive constants c0, c1, C and �

such that the following holds. Fix K > ℓ > 0 and ε ∈ (0,1). Consider the cube QK

tessellated into subcubes (Ti)i of side length ℓ. Suppose that at time 0 there is a col-

lection of particles in QK with each subcube Ti containing at least
∑

y∈Ti
βμy > c

particles for some β > 0 and that ℓ is sufficiently large for this to be possible. Let

� ≥ c0ℓ
2ε−4/�. Fix K ′ > 0 such that K − K ′ ≥ c1

√
� log�. For each j , denote

by Yj the location of the j th particle of the collection at time �, conditioned on

having displacement in QK−K ′ during [0,�]. Then there exists a coupling Q of an

independent Poisson point process ψ with intensity measure ζ(y) = β(1 − ε)μy ,

y ∈ QK ′ and (Yj )j such that ψ is a subset of (Yj )j with probability at least

1 −
∑

y∈QK′

exp
{

−Cβμyε
2�d/2}.

4.5. High-level overview. Here, we explain the intuition behind the definitions

from Sections 4.1 to 4.4 and give a high-level overview of how Theorem 4.1 is

applied.

The main idea is an adaptation of fractal percolation, so we begin by presenting

this more intuitive idea first. Take the d-dimensional unit cube and partition it into
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FIG. 5. Illustration of a fractal percolation process with r = 3 and its 1-cubes (a), 2-cubes (b) and

3-cubes (c). Black squares represent closed cubes and white squares represent open cubes.

rd subcubes of side length 1
r
, where r ∈ Z. We refer to the cubes of this first tes-

sellation as 1-cubes, and let each of them independently be open with probability

p ∈ (0,1) and closed otherwise. We now repeat this tessellating process for each

open 1-cube, splitting it into rd subcubes of side length 1
r2 which we call 2-cubes.

We again independently declare each of the 2-cubes open with probability p. The

1-cubes that are closed are not partitioned again, and the entire region spanned by

these cubes is considered to be closed (see Figure 5). We repeat this procedure

until we obtain z-cubes of side length 1
rz .

We now present the intuition behind our definitions and the connection with

fractal percolation. Begin at scale κ . We tessellate space and time into very large

cells. These are the cells indexed by the tuples (κ, i, τ ) and each cell represents a

cube in space and a time interval. Then, for each cell (i, τ ) at scale κ , we check

whether the cell contains sufficiently many particles at the beginning of its time in-

terval, that is, we check whether Aκ(i, τ ) = Dext
κ (i, τ ) = 1. If Aκ(i, τ ) = 1, we do a

finer tessellation of the cell in both space and time. In terms of fractal percolation,

this corresponds to the event that a large cube is open and then is subdivided into

smaller cubes. On the other hand, if Aκ(i, τ ) = 0, we skip that cell and tessellate it

no further, similar to what happens to cubes that are closed in a fractal percolation

process. We iterate this procedure until we obtain cells of volume βℓd (i.e., cells of

scale 1). The main reason for employing this idea instead of analyzing the events

Dk(i, τ ) directly is that the Dk(i, τ ) are highly dependent.

In the analysis, we start with the variables Ak(i, τ ) of the scale k = κ , where

the cells are so large that we can easily obtain Aκ = 1 for all (i, τ ). Then we move

from scale k + 1 to k. Let (i, τ ) be a cell of scale κ . In order to analyze Ak(i, τ ),

we need to observe Ak+1(i
′, τ ′) such that π

(1)
k (i) = i ′ and γ

(1)
k (τ ) = τ ′, that is,

(k + 1, i ′, τ ′) is the parent of (k, i, τ ) with respect to the hierarchies π and γ . If

Ak+1(i
′, τ ′) = 0, then we do not need to observe Ak(i, τ ) since we will not do

the finer tessellation of Rk+1(i
′, τ ′) that produces the cell (k, i, τ ). In this case,

we will consider all descendants at scale 1 of the cell (k + 1, i ′, τ ′) as “bad,” and

hence we will not need to observe any other descendant of (k + 1, i ′, τ ′) such as

(k, i, τ ). On the other hand, if Ak+1(i
′, τ ′) = 1, we know that there is a sufficiently
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large density of particles in the region Sbase
k (i) ⊂ Sext

k+1(i
′) that surrounds Sk(i) at

time τ ′βk+1. Then, by allowing these particles to move from τ ′βk+1 to τβk , we

obtain by Theorem 4.1 that many of these particles move inside Sk(i), giving that

the probability that Ak(i, τ ) = 0, which corresponds to the event Dbase
k (i, τ ) = 1

and Dext
k (i, τ ) = 0, is small. We then apply this reasoning for all (k, i, τ ). The key

fact is that a dense cell at scale k makes the children of this cell likely to be dense

as well.

We now give the intuition behind the different types of cubes. Let (k, i, τ ) be

a space–time cell of scale k and assume (k + 1, i′, τ ′) is the parent of (k, i, τ ).

We consider the extended cube Sext
k+1(i

′) instead of just Sk+1(i
′, τ ′) to assure that,

when Dext
k+1(i

′, τ ′) = 1, then there is a large density of particles around Sk(i)

at time τ ′βk+1 even if Sk(i) lies near the boundary of Sk+1(i
′); this happens

since {Dext
k+1(i

′, τ ′) = 1} guarantees that there are sufficiently many particles in

Sbase
k (i) ⊂ Sext

k+1(i
′). We then let the particles move for time τβk − τ ′βk+1 ≥ βk+1,

thereby allowing them to mix in Sbase
k (i) and move inside Sk(i). While these par-

ticles move in the interval [τ ′βk+1, τβk), they never leave the area of influence

Sinf
k (i). This allows us to argue that cells that are sufficiently far apart in space are

“roughly independent” since we only observe particles that stay inside the are of

influence of their cells.

Now we give a brief sketch of the proof. We want to give an upper bound for the

probability that K(0,0) is not contained in the region [−t, t]d × [0, t]. When that

is the case, then there exists a very large D-path of bad cells of scale 1. A natural

strategy is to consider a fixed D-path from the cell (0,0) to a cell outside of the

region [−t, t]d × [0, t] and show that the probability that all cells in this are bad is

exponentially small, and then take the union bound over all such paths. However,

this strategy seems challenging due to the dependencies among the events that the

cells of a given path are bad and the fact that there is a large number of ways for

two sequential cells of a D-path to be diagonally connected. We use two ideas to

solve this problem: paths of cells of varying scales and well separated cells.

We start with cells of scale κ , which are so large that we can show that, with

very large probability, Aκ(i, τ ) = 1 for the cells (i, τ ) of scale κ that are relevant

for the existence of a D-path within [−t, t]d × [0, t]. Therefore, if a cell (i, τ )

of scale 1 has A1(i, τ ) = 0, we know that there exists an ancestor (k′, i ′, τ ′) of

(1, i, τ ) such that (k′, i ′, τ ′) is bad but its parents is good (i.e., Ak′(i ′, τ ′) = 0).

With this, we have that if a D-path of bad cells of scale 1 exists, then there is a

D-path of bad cells of varying scales. This D-path must contain sufficiently many

cells because it must connect the cell (0,0) to a cell outside of [−t, t]d ×[0, t]. We

take any fixed D-path of cells of varying scale and show that, given that this path

contains sufficiently many cells, we can obtain a subset of the cells of the path so

that these cells are “well separated” in space and time. We then use the fact that

the Ak(i, τ ) are “roughly independent” for well separated cells which implies that

the probability that all cells in this subset are bad is very small. Then, by applying
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the union bound with a careful counting argument over all sets of well separated

cells that can be obtained from a D-path of cells of varying scales, we establish

Theorem 2.1. In order to better define and count paths involving cells of multiple

scales, we will introduce the notions of the support of a cell and the extended

support of a cell.

4.6. The support of a cell. We define the time of influence T inf
k (τ ) of (k, τ ) as

T inf
1 (τ ) =

[

γ
(1)
1 (τ )β2,

(

τ + max{η,2}
)

β1

]

and

T inf
k (τ ) =

[

γ
(1)
k (τ )βk+1, (τ + 2)βk

]

for k ≥ 2,

and set the region of influence as

Rinf
k (i, τ ) = Sinf

k (i) × T inf
k (τ ).

We assume m is sufficiently large with respect to η so that max{η,2}β ≤ β2 =
m228/�β , which gives that

(13) T inf
k (τ ) ⊆ Tk+1

(

γ
(1)
k (τ )

)

∪ Tk+1

(

γ
(1)
k (τ ) + 1

)

∪ Tk+1

(

γ
(1)
k (τ ) + 2

)

.

We define the time support as

T
sup
k (τ ) =

8
⋃

i=0

Tk+1

(

γ
(1)
k (τ ) − 3 + i

)

and the spatial support as

S
sup
k (i) =

⋃

i′:‖i′−π
(1)
k (i)‖∞≤m

Sk+1

(

i ′
)

,

and, for any cell (k, i, τ ), we define

R
sup
k (i, τ ) = S

sup
k (i) × T

sup
k (τ ).

LEMMA 4.2. For any sufficiently large m the following is true. For any

cells (k, i, τ ), (k′, i ′, τ ′), with k ≥ k′, if Rinf
k′ (i ′, τ ′) � R

sup
k (i, τ ) then Rinf

k′ (i ′, τ ′) ∩
Rinf

k (i, τ ) = ∅.

PROOF. Note that, if Rinf
k′ (i ′, τ ′) � R

sup
k (i, τ ), then either T inf

k′ (τ ′) � T
sup
k (τ )

or Sinf
k′ (i ′) � S

sup
k (i). We start with the case that T inf

k′ (τ ′) � T
sup
k (τ ) and show that

this implies

T inf
k′
(

τ ′)∩ T inf
k (τ ) = ∅,

which gives that Rinf
k′ (i ′, τ ′) ∩ Rinf

k (i, τ ) = ∅.
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Note that the interval T inf
k′ (τ ′) has length at most 3βk′+1 by (13). Then, since

T inf
k′ (τ ′)� T

sup
k (τ ),

(14) T inf
k′
(

τ ′)∩
[(

γ
(1)
k (τ ) − 3

)

βk+1 + 3βk′+1,
(

γ
(1)
k (τ ) + 6

)

βk+1 − 3βk′+1

]

= ∅.

Using that βk′ ≤ βk , we get

[(

γ
(1)
k (τ ) − 3

)

βk+1 + 3βk′+1,
(

γ
(1)
k (τ ) + 6

)

βk+1 − 3βk′+1

]

⊇
[

γ
(1)
k (τ )βk+1,

(

γ
(1)
k (τ ) + 3

)

βk+1

]

= Tk+1

(

γ
(1)
k (τ )

)

∪ Tk+1

(

γ
(1)
k (τ ) + 1

)

∪ Tk+1

(

γ
(1)
k (τ ) + 2

)

⊇ T inf
k (τ ),

where the last step follows from (13). This, together with (14), implies that

T inf
k′ (τ ′) ∩ T inf

k (τ ) =∅.

For the spatial component, consider the case Sinf
k′ (i ′) � S

sup
k (i), for which we

want to show that

Sinf
k′
(

i ′
)

∩ Sinf
k (i) = ∅.

Let x1, x2, . . . , xd be defined so that Sk(i) =∏d
j=1[xj , xj +ℓk]. Then we can write

(15) Sinf
k (i) =

d
∏

j=1

[

xj − 2ηmn(k + 1)aℓk, xj + ℓk + 2ηmn(k + 1)aℓk

]

.

Next, let y1, y2, . . . , yd be defined so that S
sup
k (i) =∏d

j=1[yj , yj + (2m+ 1)ℓk+1].
Since Sinf

k′ (i ′) is a cube of side length (1 + 4ηmn(k′ + 1)a)ℓk′ ≤ (1 + 4ηmn(k +
1)a)ℓk and Sinf

k′ (i ′) is not contained in S
sup
k (i), we have that

Sinf
k′
(

i ′
)

∩
d
∏

j=1

[

yj +
(

1 + 4ηmn(k + 1)a
)

ℓk, yj

(16)
+ (2m + 1)ℓk+1 − (1 + 4ηmn(k + 1)aℓk

]

= ∅.

Now we use the fact that mℓk+1 ≤ xj − yj ≤ (m + 1)ℓk+1 − ℓk for all j =
1,2, . . . , d . This and (15) give

Sinf
k (i) ⊆

d
∏

j=1

[

yj + mℓk+1 − 2ηmn(k + 1)aℓk, yj

(17)
+ (m + 1)ℓk+1 + 2ηmn(k + 1)aℓk

]

.

Now, using the relation between m and n in (6), we have that

(18) mℓk+1 = m2(k + 1)aℓk = 7ηmnd(k + 1)aℓk ≥
(

1 + 6ηmn(k + 1)a
)

ℓk.
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FIG. 6. The scaling of R
sup
k (i, τ ) relative to Rinf

k (i, τ ) is such that Lemma 4.2 holds for all k and

k′ ≤ k when m is large enough. The figure shows the case when k = k′; when k′ < k the proof of the

lemma becomes easier.

Using this result in (16), we get that Sinf
k′ (i ′) does not intersect

(19)

d
∏

j=1

[

yj +
(

1 + 4ηmn(k + 1)a
)

ℓk, yj + (m + 1)ℓk+1 + 2ηmn(k + 1)aℓk

]

.

Similarly, plugging (18) into (17) we see that Sinf
k (i) is contained in the space–time

region given by (19). These two facts establish the lemma. �

The intuition behind Lemma 4.2 can be seen in Figure 6. Another important

property concerns the fact that the support of a cell contains all its descendants.

LEMMA 4.3. Assume m ≥ 3. For any cell (k, i, τ ), if (k′, i ′, τ ′) is a descendant

of (k, i, τ ) then

Rk′
(

i ′, τ ′)⊆ R
sup
k (i, τ ).

Moreover, R
sup
k (i, τ ) contains all the neighbors of (k′, i ′, τ ′).

PROOF. Fix i ′′, τ ′′ such that (k′, i ′′, τ ′′) is adjacent to (k′, i ′, τ ′) and assume

that the ancestor of (k′, i ′′, τ ′′) of scale k is not (k, i, τ ); otherwise, the second part

of the lemma follows from the first part. We prove this lemma first for space and
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then for time. For space, since (k′, i ′, τ ′) is a descendant of (k, i, τ ) we have that

Sk′(i ′) ⊆ Sk(i) ⊆ S
sup
k (i). Also, (k′, i ′′) is adjacent to (k′, i ′) which implies that the

ancestor of (k′, i ′′) of scale k is adjacent to (k, i). Since S
sup
k (i) contains all cells

of scale k that are adjacent to (k, i), it also contains Sk′(i ′′).
We now prove the lemma for the time dimension. The first part corresponds to

showing that Tk′(τ ′) ⊆ T
sup
k (τ ). Recall that Tk′(τ ′) = [τ ′βk′, (τ ′ + 1)βk′], which

is contained in [τβk, (τ
′ + 1)βk′] since (k′, i ′, τ ′) is a descendant of (k, i, τ ). Now

note that

τβk = γ
(k−k′)
k′

(

τ ′)βk ≥ γ
(k−k′−1)
k′

(

τ ′)βk−1 − 2βk ≥ τ ′βk′ − 2

k
∑

i=k′+1

βi .

Then, since k′ ≥ 1, we can use the bound

k
∑

i=2

βi = Cmix

k
∑

i=2

ℓ2
i−1i

8/�

ε4/�
= Cmixε

−4/�
k
∑

i=2

ℓ2
i−1

(

i4/�)2

≤ Cmixε
−4/�2

(

k4/�)2ℓ2
k−1 = 2βk,

where the last inequality can be proven by induction on k. Then we have that

(20) τβk ≥ τ ′βk′ − 4βk.

Since k > k′ ≥ 1, we have k > 1 and

4βk + βk′ ≤ 5βk = 5
βk+1

m2k2a−8/�(k + 1)8/�
≤ βk+1.

This combined with (20) gives

Tk′
(

τ ′)⊆ [τβk, τβk + 4βk + βk′] ⊆ [τβk, τβk + βk+1] ⊆ T
sup
k (τ ).

This proves the first part of the lemma. To prove the second part, we use the fact

that (k′, τ ′′) is adjacent to (k′, τ ′) and the result above, which gives

Tk′
(

τ ′′)⊆ [τβk − βk′, τβk + βk+1 + βk′] ⊆ T
sup
k (τ ). �

5. Multi-scale analysis of D-paths. In order to prove our theorems, we need

to control the existence of D-paths of scale 1 whose cells have a bad ancestry (cf.

Lemma 4.1). We will do this via a multi-scale analysis of such paths. In Section 4,

we defined the multi-scale tessellation we need. Here, we will use this framework

to consider a multi-scale version of D-paths.

We start by defining the extended support of a cell. Given a cell (k, i, τ ), define

T
2sup
k (τ ) =

26
⋃

i=0

Tk+1

(

γ
(1)
k (τ ) − 12 + i

)
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and

S
2sup
k (i) =

⋃

i′:‖i′−π
(1)
k (i)‖∞≤3m+1

Sk+1

(

i ′
)

.

Then, as before, we set R
2sup
k (i, τ ) = S

2sup
k (i) × T

2sup
k (τ ).

REMARK 5.1. The extended support is defined in a way so that if the supports

of two cells intersect, the smaller of the supports is completely contained in the

extended support of the bigger of the cells.

We now extend the definition of a bad cell to multiple scales. We say that a cell

(k, i, τ ) is multi-scale bad if Ak(i, τ ) = 0. Note that for k = 1, this definition is

stricter than that of a bad cell, that is, since E(i, τ ) ≤ A1(i, τ ) it follows that if

a cell of scale 1 is multi-scale bad, it is also bad but not the other way around.

Intuitively, a super-cell of scale 1 is bad whenever the increasing event Est(i, τ )

does not hold whereas it is multi-scale bad when the increasing event does not

hold and Dbase
1 (i, τ ) = 1.

Recall that two cells (k, i, τ ) and (k, i ′, τ ′) of the same scale are said to be ad-

jacent if ‖i − i′‖∞ ≤ 1 and |τ − τ ′| ≤ 1. Let (k1, i1, τ1), (k2, i2, τ2) be two cells

with k1 > k2. We say (k1, i1, τ1) and (k2, i2, τ2) are adjacent if (k1, i1, τ1) is ad-

jacent to (k1, π
(k1−k2)
k2

(i2), γ
(k1−k2)
k2

(τ2)). We say (k, i, τ ) is diagonally connected

to (k′, i ′, τ ′) if there exists a cell (1, î, τ̂ ) that is a descendant of (k, i, τ ) and a

cell (1, i′′, τ ′′) that is a descendant of (k′, i ′, τ ′), such that (1, î, τ̂ ) is diagonally

connected to (1, i ′′, τ ′′).
We extend the definition of D-paths to cells of arbitrary scale by referring to a

D-path as a sequence of distinct cells for which any two consecutive cells in the

sequence are either adjacent or the first of the two cells is diagonally connected to

the second. For any two cells (k1, i1, τ1) and (k2, i2, τ2), we say that they are well

separated if Rk1
(i1, τ1) � R

sup
k2

(i2, τ2) and Rk2
(i2, τ2) � R

sup
k1

(i1, τ1). In order to

ensure the cells we will look at are well separated but still not too far apart, we say

that any two cells (k1, i1, τ1) and (k2, i2, τ2) are support adjacent if R
2sup
k1

(i1, τ1)∩
R

2sup
k2

(i2, τ2) = ∅. We say a cell (k1, i1, τ1) is support connected with diagonals

to (k2, i2, τ2) if there exists a scale 1 cell contained in R
2sup
k1

(i1, τ1) and a scale 1

cell contained in R
2sup
k2

(i2, τ2), such that the former is diagonally connected to the

latter.

Finally, define a sequence of cells P = ((k1, i1, τ1), (k2, i2, τ2), . . . , (kz, iz, τz))

to be a support connected D-path if the cells in P are mutually well separated and,

for each j = 1,2, . . . , z − 1, (kj , ij , τj ) is support adjacent or support connected

with diagonals to (kj+1, ij+1, τj+1).

For any t , define �t to be the set of all D-paths of cells of scale 1 so that the first

cell of the path is (0,0) and the last cell of the path is the only cell not contained in
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the space–time region [−t, t]d × [−t, t]. Also, define �
sup
κ,t as the set of all support

connected D-paths of cells of scale at most κ so that the extended support of the

first cell of the path contains R1(0,0) and the last cell of the path is the only cell

whose extended support is not contained in [−t, t]d × [−t, t]. Then the lemma

below shows that we can focus on support connected D-paths instead of D-paths

with bad ancestry.

LEMMA 5.1. We have that

P[∃P ∈ �t s.t. all cells of P have a bad ancestry]

≤ P
[

∃P ∈ �
sup
κ,t s.t. all cells of P are multi-scale bad

]

.

PROOF. We complete the proof in two stages. First, we show that if there

exists a D-path P ∈ �t , such that each cell of P has bad ancestry, then there exists

a D-path of multi-scale bad cells of arbitrary scales up to κ . Next, we show that,

given the existence of such a path of multi-scale bad cells of arbitrary scales up to

κ , there exists a support connected D-path of �
sup
κ,t such that all cells of the path

are multi-scale bad. To help with the intuition, we provide an example of these

steps in Figure 7.

Step 1: Let �κ,t be the set of all D-paths of cells of scale at most κ such that the

first cell of the path is an ancestor of (0,0) and the last cell of the path is the only

cell whose support is not contained in [−t, t]d × [−t, t]. We now establish that

P[∃P ∈ �t s.t. all cells of P have a bad ancestry]
≤ P[∃P ∈ �κ,t s.t. all cells of P are multi-scale bad].

Let P = ((1, i1, τ1), (1, i2, τ2), . . . , (1, iz, τz)) ∈ �t be a D-path of cells with

bad ancestries; therefore, (i1, τ1) = (0,0) and R1(iz, τz) is not contained in

[−t, t]d × [−t, t]. For each j , since A(ij , τj ) = 0, we know by definition of A in

(12) that there exists a k′
j such that, if we set i ′j = π

(k′
j−1)

1 (ij ) and τ ′
j = γ

(k′
j−1)

1 (τj ),

we obtain Ak′
j
(i ′j , τ

′
j ) = 0. Now construct J ⊆ {1,2, . . . , z}, starting with J =

{1,2, . . . , z} and removing elements from J iteratively as we go from scale k = κ

down to scale k = 1 using the following rule: if there exists j ∈ J such that k′
j = k

and Ak′
j
(i ′j , τ

′
j ) = 0, then remove from J all descendants of (k′

j , i
′
j , τ

′
j ), except for

the first one; that is, keep in J only the smallest j ′ for which i′j = π
(k′

j−1)

1 (ij ′)

and τ ′
j = γ

(k′
j−1)

1 (τj ′). Put differently, J contains only distinct elements of the set

{(k′
j , i

′
j , τ

′
j ) : j = 1,2, . . . , z} which have no ancestor within J . With this set, we

define

P̃ =
{(

k′
j , i

′
j , τ

′
j

)

: j ∈ J
}

,
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FIG. 7. An example of the procedure that establishes Lemma 5.1. Starting with a D-path for which

all cells have bad ancestries (a), we produce a D-path of multi-scale bad cells of arbitrary scales

(b) in Step 1. Then, in Step 2 we produce a support connected D-path (c).

and show that P̃ is a D-path. This gives us the existence of a D-path of multi-

scale bad cells of arbitrary scales starting from an ancestor of (1, i1, τ1) and such

that the last cell (k′, i ′, τ ′) ∈ P̃ is an ancestor of (1, iz, τz), which is not con-

tained in [−t, t]d × [−t, t]. Lemma 4.3 then gives us that R1(iz, τz) is contained

in R
sup

k′ (i ′, τ ′) so that the union of the supports of the cells in P̃ is not contained in

[−t, t]d × [−t, t]. We note that it is possible that the support of some other cell of

P̃ is also not contained in [−t, t]d ×[−t, t]. In this case, we modify P̃ and remove
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from it all j ′ ∈ J for which j ′ > j , where (kj , ij , τj ) is the first cell of P̃ for which

R
sup
kj

(ij , τj ) is not contained in [−t, t]d × [−t, t]. Furthermore, it is possible that

P̃ might contain loops. This does not cause any issues; in fact, the procedure in

step 2 will remove any loops should they exist.

Now it remains to verify that P̃ satisfies the adjacency properties of a D-path.

By construction, each cell of P has exactly one ancestor in P̃ . If we take two

adjacent cells (1, ij , τj ), (1, ij+1, τj+1) of P , they either have the same ancestor

in P̃ or their ancestors are adjacent. This follows from the fact that two nonadja-

cent cells cannot have descendants of scale 1 that are adjacent. Now assume that

(1, ij , τj ) ∈ P is diagonally connected to (1, ij+1, τj+1) ∈ P . In this case, the two

cells either have the same ancestor in P̃ , have ancestors that are adjacent or the

ancestor of (1, ij , τj ) is diagonally connected to the ancestor of (1, ij+1, τj+1).

Step 2: Here, we establish that

P[∃P ∈ �κ,t s.t. all cells of P are multi-scale bad]

≤ P
[

∃P ∈ �
sup
κ,t s.t. all cells of P are multi-scale bad

]

.

Let P = ((k1, i1, τ1), (k2, i2, τ2), . . . , (kz, iz, τz)) ∈ �κ,t be a D-path of multi-scale

bad cells. We will now show the existence of a support connected D-path P ′ of

multi-scale bad cells. First, we order the cells of P in the following way. If two

cells have the same scale, we order them by taking in the same order as they have

in P . For two cells of different scales, we say the cell with the larger scale comes

before the other cell. This gives us a total order of the cells of P . Next, let L be the

list of cells of P following this order. We construct P ′ step-by-step, by adding the

first element of L to P ′ and removing some elements from L, repeating this until

L is empty. While doing this, we associate each cell of P to a cell of P ′, which

we will later use to show that using the ordering inherited from P , P ′ is a support

connected D-path. Assuming (k′, i ′, τ ′) is the current first element of L, the steps

taken to construct P ′ are as follows:

1. Add (k′, i ′, τ ′) to P ′ and remove it from L. Associate (k′, i ′, τ ′) in P with

itself in P ′.
2. Remove from L all cells (k′′, i ′′, τ ′′) that are not well separated from

(k′, i ′, τ ′) and associate them to (k′, i ′, τ ′).

We repeat these steps until L is empty. We highlight that by construction P ′ con-

tains only mutually well separated cells. Let (k∗, i∗, τ ∗) be the cell that (k1, i1, τ1)

is associated to. Note that the extended support of this cell contains R1(0,0), be-

cause R
sup
k1

(i1, τ1) contains R1(0,0) and is itself contained in the extended support

of (k∗, i∗, τ ∗). We also obtain that

⋃

(k′,i′,τ ′)∈P ′
R

2sup

k′
(

i ′, τ ′)� [−t, t]d × [−t, t].
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This can be argued similarly as above, noting that the support of a cell in P

was not contained in [−t, t]d × [−t, t], so the extended support of the cell it is

associated to cannot be contained either. Let the cell it is associated to be (k′, i ′, τ ′).
Now it remains to show that there exists a subset of cells P ′′ ⊆ P ′ which is

a support connected D-path with diagonals and contains both (k∗, i∗, τ ∗) and

(k′, i ′, τ ′). To see this, we will add some cells from P ′ to P ′′, starting with

(k′, i ′, τ ′). Let (kj , ij , τj ) be the first cell of P that is associated to (k′, i ′, τ ′).
If j = 1 then (k∗, i∗, τ ∗) = (k′, i ′, τ ′) and P ′′ is just this cell. Otherwise, let

(k′′, i ′′, τ ′′) be the cell (kj−1, ij−1, τj−1) is associated to and add it to P ′′. We

will show later that

(

k′′, i ′′, τ ′′) is support adjacent or support connected
(21)

with diagonals to
(

k′, i ′, τ ′).

Now we iterate the procedure above; that is, we take the first cell (kι, iι, τι) of

P that is associated to (k′′, i ′′, τ ′′) and either finish the construction of P ′′ if ι = 1

or continue by taking the cell that (kι−1, iι−1, τι−1) is associated to and adding

it to P ′′. Note that ι < j , which guarantees that this procedure will eventually

add (k∗, i∗, τ ∗) to P ′′, thus completing the construction. It is possible that the

extended support of some cell of P ′′ other than (k′, i ′, τ ′) to not be contained in

[−t, t]d × [−t, t]. As in step 1, we simply remove from P ′′ all cells (kj , ij , τj )

that come after the first such cell.

It remains to show (21) holds. Assume for the following that kj−1 ≥ kj , the

converse can be argued the same way, and recall that in P , two consecutive cells

(kj−1, ij−1, τj−1) and (kj , ij , τj ) are either adjacent or the first cell is diagonally

connected to the second cell. Since kj−1 ≥ kj , we have a cell (k̂, î, τ̂ ) at scale

k̂ = kj−1 that is an ancestor of (kj , ij , τj ), to which (kj−1, ij−1, τj−1) is either

adjacent or diagonally connected. In the first case, we have by Lemma 4.3 that

R
sup

k̂
(î, τ̂ ) contains both Rkj−1

(ij−1, τj−1) and Rkj
(ij , τj ). Since k̂ = kj−1 and

(kj−1, ij−1, τj−1) is associated to (k′′, i ′′, τ ′′), we have that k̂ ≤ k′′. Then, by Re-

mark 5.1, we have that R
sup

k̂
(î, τ̂ ) ⊆ R

2sup

k′′ (i ′′, τ ′′), which gives that R
2sup

k′′ (i ′′, τ ′′)

intersects R
2sup

k′ (i ′, τ ′). Alternatively, (kj−1, ij−1, τj−1) is diagonally connected

to (kj , ij , τj ). This gives that (k′′, i ′′, τ ′′) is support connected with diagonals to

(k′, i ′, τ ′) with the same diagonal steps that make (kj−1, ij−1, τj−1) diagonally

connected to (kj , ij , τj ). �

The next lemma is a technical result bounding the probability that a random

walk on a weighted graph remains inside a cube.

LEMMA 5.2. Let � > 0 and, for any z > 0, define F�(z) to be the event that

a random walk on (G,μ) starting from the origin stays inside Qz throughout the
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time interval [0,�]. Then, on a uniformly elliptic graph, there exist constants c, c1

and c2 such that if � > cz, we have

P
[

F�(z)
]

≥ 1 − c1 exp
{

−c2z
2/�
}

.

PROOF. The result is a reformulation of the exit time result for random walks

on weighted graphs from [1] and [2] by taking a ball with radius z/2 that is con-

tained in Qz and using that the weights μx,y are uniformly elliptic. �

We now give a lemma that will be used to control the dependencies involv-

ing well separated cells. Let Fk(i, τ ) be the σ -field generated by all Ak′(i ′, τ ′)
for which T inf

k′ (τ ′) does not intersect [γ (1)
k (τ )βk+1,∞) or both τ ′βk′ ≤ τβk and

Sinf
k (i) ∩ Sinf

k′ (i ′) = ∅. Furthermore, recall the value w from (6), which has until

now been assume to be an arbitrary positive value. We define the following two

quantities:

ψ1 = min

{

ε2λ0ℓ
dC−1

M , log

(

1

1 − νEst((1 − ε)λ,Q(2η+1)ℓ,Qwℓ, ηβ)

)}

,

(22)

ψk =
ε2λ0ℓ

d
k−1

(k + 1)4
= ε2λ0ℓ

dmd(k−2)((k − 1)!)ad

(k + 1)4
for k ≥ 2.

We now give a short intuitive explanation behind ψ1 and ψk . Note that ψk is in-

creasing in k; this can easily be verified by observing that in the right-most expres-

sion for ψk , ad > 4 for all d ≥ 2. Intuitively, one can think of ψk as the “weight”

of a space–time super-cell of scale k. Furthermore, across all k ≥ 2, we can in-

crease how much the super-cells “weigh” by increasing the size of the tessellation

(by making ℓ larger) or by increasing the density of particles (by increasing λ0).

This holds also for super-cells of scale 1; note however that in order to make the

weight of a super-cell of scale 1 large, we also need to ensure the second term of

the minimum in (2) is made large (say larger than some value α ). That is, we need

to make P[E(i, τ ) = 0] ≤ e−α given that there is at least a Poisson point process

with intensity (1 − ε)λ of particles inside of the cube Q(2η+1)ℓ and this particles

have displacement in Qwℓ during a time interval of length ηβ .

LEMMA 5.3. Let w ≥
√

ηβ

c2ℓ
2 log(8c1

ε
) and

α = min

{

ε2λ0ℓ
dC−1

M , log

(

1

1 − νEst((1 − ε)λ,Q(2η+1)ℓ,Qwℓ, ηβ

)}

.

If m is sufficiently large with respect to d , β/ℓ2, ε, w and CM , then there are

positive constants c = c(CM) ≥ 1 and α0 so that, for all α ≥ α0, all cells (k, i, τ )

and any F ∈ Fk(i, τ ), we have:

1. P[Ak(i, τ ) = 0] ≤ exp{−cψk}, for all k = 1,2, . . . , κ ,
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2. P[Ak(i, τ ) = 0|F ] ≤ exp{−cψk}, for all k = 1,2, . . . , κ − 1.

PROOF. Note that Ak is defined differently for k = 1 and 2 ≤ k ≤ κ − 1. We

will first prove the result for k ≥ 2 and establish part 2 of the lemma. Since

P
[

Ak(i, τ ) = 0|F
]

= P
[{

Dext
k (i, τ ) = 0

}

∩
{

Dbase
k (i, τ ) = 1

}

|F
]

,

if F ∩ {Dbase
k (i, τ ) = 1} = ∅, then the lemma holds. We now assume F ∩

{Dbase
k (i, τ ) = 1} =∅ and write

P
[

Ak(i, τ ) = 0|F
]

≤ P
[{

Dext
k (i, τ ) = 0

}

|F ∩
{

Dbase
k (i, τ ) = 1

}]

.

Recall that {Dbase
k (i, τ ) = 1} gives that all cubes Sk(i

′) of scale k contained in

Sbase
k (i) have at least (1 − εk+1)λ0

∑

y∈Sk(i
′) μy particles at time γ

(1)
k (τ )βk+1

and the displacement of these particles throughout [γ (1)
k (τ )βk+1, τβk] is in

Qηmn(k+1)aℓk
. Remember that F reveals only information about the location of

these particles before time γ
(1)
k (τ )βk+1 since these particles never leave the cube

Sinf
k (i) during the whole [γ (1)

k (τ )βk+1, τβk].
We now apply Theorem 4.1 and denote the variables appearing in the statement

of that theorem with a bar. We apply the theorem with

K̄ =
(

1 + 2ηmn(k + 1)a
)

ℓk,

ℓ̄ = ℓk,

β̄ = (1 − εk+1)λ0,

�̄ = τβk − γ
(1)
k (τ )βk+1 ∈ [βk+1,2βk+1],

K̄ ′ such that K̄ − K̄ ′ = ηmn(k + 1)aℓk, and

ε̄ such that (1 − ε̄)(1 − εk+1) =
(

1 − (εk+1 + εk)

2

)

.

This gives that ε̄ ≥ εk−εk+1

2
= ε

2(k+1)2 . Using these values and the fact that m is

large enough, we have that

K̄ ′ = ℓk + ηmn(k + 1)aℓk ≥ ℓk + 2ηmnkaℓk−1,

which is the side length of Sext
k (i). We also have �̄ ≥ βk+1 ≥ c0

ℓ̄2

ε̄4/� since

Cmix ≥ 24/�c0 in the definition of βk+1. We still have to check whether K̄ − K̄ ′ ≥
C

√

�̄ log �̄, which is equivalent to checking that

ηmn(k + 1)aℓk ≥ C̃
√

βk+1 logβk+1
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for some constant C̃. Using the definitions of ℓk and βk+1, this inequality can be

rewritten as

ηmn(k + 1)aℓk ≥ C̃
√

Cmix
1

ε2/�
(k + 1)4/�ℓk

√

logβk+1.

Now, using the value of βk+1 and ℓk we obtain that there exists a constant C

independent of k and m, but depending on ε such that

C̃
√

Cmix

ε2/�

√

logβk+1 ≤ C
√

log k + k logm + a log k! + logℓ.

Therefore, it remains to check that

ηmn(k + 1)a−4/� ≥ C
√

log k + k logm + a log k! + logℓ.

Since a − 4/� > 1
2

by (10) and log k! ≤ k logk, (k + 1)a−4/� is larger than the

right-hand side above for all large enough k. Then, since ε is fixed, setting m large

enough makes the above inequality true for all k ≥ 1.

Hence, we obtain a coupling between the particles that end up in Sext
k (i) and an

independent Poisson point process � with intensity measure ζ(y) = (1 − ε̄)(1 −
εk+1)λ0μy = (1 − εk

2
− εk+1

2
)λ0μy that succeeds with probability at least

1 −
∑

y∈Sext
k (i)

exp
{

−C̄(1 − εk+1)λ0μy ε̄
2�̄d/2}

≥ 1 −
∑

y∈Sext
k (i)

exp

{

−C̄C
d/2
mixλ0μy

ε2

4(k + 1)4
ℓd
k

}

(23)

≥ 1 −
(

ℓk + 2ηmnkaℓk−1

)d
exp

{

−C̄C
d/2
mixλ0C

−1
M

ε2

4(k + 1)4
ℓd
k−1

}

≥ 1 − 1

2
exp{−cψk},

where c is constant independent of ℓ, k and ε, and we used that �̄ ≥ βk+1 ≥
Cmixℓ

2
k ≥ Cmixℓ

2
k−1. The last inequality holds for large k by setting m large, since

ℓk−1 = mk−2((k − 1)!)aℓ. Similarly, for small k ≥ 2 the inequality holds since

C−1
M ε2λ0ℓ

d ≥ α is assumed large enough.

Now, for the case k ≥ 2, define a Poisson point process �′ consisting of

those particles of � whose displacement throughout [τβk, (τ + 2)βk] is in

Qηmnkaℓk−1
. For each particle of �, this condition is satisfied with probability

P[F2βk
(ηmnkaℓk−1)], independently over the particles of �. Using Lemma 5.2

and the thinning property of Poisson processes, we have that �′ is a Poisson point

process with intensity measure

ζ ′(y) = (1 − ε̄)(1 − εk+1)P
[

F2βk

(

ηmnkaℓk−1

)]

λ0μy,
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which is greater than

(

1 − εk

2
− εk+1

2

)(

1 − c1 exp

{

−c2
(ηmnkaℓk−1)

2

2βk

})

λ0μy

≥
(

1 − εk

2
− εk+1

2

)(

1 − c1 exp

{

−c2
(ηmnka)2ε4/�

2Cmixk8/�

})

λ0μy

≥
(

1 − εk

2
− εk+1

2

)(

1 − c1 exp

{

−c2
(ηn)2k

2(β/ℓ2)

})

λ0μy,

where the first inequality follows from the definition of βk and the second inequal-

ity follows from the condition 2a − 8/� > 1 in (10) and from Cmix = βε4/�m2

ℓ2 ,

which is obtained by setting β1 = β in (8). Setting m, and thus n, sufficiently large

with respect to β , ε, η and the constants c1 and c2, we obtain that

ζ ′(y) ≥
(

1 − εk

2
− εk+1

2

)(

1 − (εk − εk+1)

4

)

λ0μy

≥
(

1 − 3εk

4
− εk+1

4

)

λ0μy .

Conditioning on the coupling above, we obtain that Dext
k (i, τ ) = 1 with probability

at least

1 −
∑

i′:Sk−1(i
′)⊆Sext

k (i)

exp

{

−1

2

(

εk − εk+1

4

)2(

1 − 3εk

4
− εk+1

4

)

λ0

∑

y∈Sk−1(i
′)

μy

}

≥ 1 −
∑

i′:Sk−1(i
′)⊆Sext

k (i)

exp

{

−1

2

(

ε2

16(k + 1)4

)

×
(

1 − 3ε1

4
− ε2

4

)

λ0

∑

y∈Sk−1(i
′)

μy

}

(24)

≥ 1 −
(

mka + 2ηmnka)d exp

{

−1

2

(

ε2

16(k + 1)4

)(

1 − 15ε

16

)

λ0C
−1
M ℓd

k−1

}

≥ 1 − 1

2
exp{−cψk}

for some constant c, where in the fist step we applied Chernoff’s bound from

Lemma A.1 with δ = εk−εk+1

4
, using that (1 − δ)(1 − 3εk

4
− εk+1

4
) ≥ 1 − εk . In

the second step, we used that εk is decreasing with k. The last inequality holds

using the same argument as the one following (23). This and (23) establish part 2

for k ≥ 2.
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For part 2 with k = 1, we again use the Poisson point process � of intensity

measure

ζ(y) ≥
(

1 − εk

2
− εk+1

2

)

λ0μy =
(

1 − 7ε

8

)

λ0μy

over Sext
1 (i) as defined above. We also use the fact that E(i, τ ) is an event restricted

to the super-cell i and Sext
1 (i) contains the super-cell i (see Remark 4.1). Recall

that, for the event E(i, τ ), we only consider the particles of � whose displacement

from time τβ to (τ +η)β is inside Qwℓ. Let the event that this happens for a given

particle of � be denoted by Fηβ(wℓ). Then we apply Lemma 5.2 with � = ηβ and

z = wℓ to obtain

P
[

Fηβ(wℓ)
]

≥ 1 − c1 exp

{

−c2
(wℓ)2

ηβ

}

.

Using the fact that w2ℓ2 ≥ 1
c2

ηβ log(8c1ε
−1), we have that P[Fηβ(wℓ)] ≥ 1 − ε

8
.

Therefore, using thinning, we have that the particles of � for which Fηβ(wℓ) hold

consist of a Poisson point process with intensity at least (1 − 7ε
8

)(1 − ε
8
)λ0μy ≥

(1 − ε)λ0μy . Since E(i, τ ) is increasing, we have that

P
[

E(i, τ ) = 0|F ∩
{

Dbase
k (i, τ ) = 1

}]

≤ 1 − νEst

(

(1 − ε)λ,Q(2η+1)ℓ,Qwℓ, ηβ
)

≤ e−α.

A similar argument as above can be used to establish part 1 with k < κ . For k =
κ , the argument is simpler as we do not need to carry out the coupling procedure.

�

Later, in Section 6, we will use Lemma 5.3 to bound the probability that a path

P ∈ �
sup
κ,t of multi-scale bad cells exists. We will use a uniform bound to control

the probability that at least one of the space–time cell of scale κ is multi-scale bad.

In the converse case, where all scale κ cells are multi-scale good (i.e., not multi-

scale bad), we will need to consider paths in �
sup
κ−1,t and count how many such

paths exist. To that end, we now show some bounds that hold for paths in �
sup
κ−1,t .

LEMMA 5.4. Assume the conditions of Lemma 5.3 are satisfied and let P ∈
�

sup
κ−1,t be the support connected D-path ((k1, ii, τ1), . . . , (kz, iz, τz)). Then, with

ψk as defined in (22) there exists a constant c3, such that we have

P

[

z
⋂

j=1

{

Akj
(ij , τj ) = 0

}

]

≤ exp

{

−c3

z
∑

j=1

ψkj

}

.

PROOF. We derive the probability that all cells of P are multi-scale bad. Con-

sider the following order of cells of P . First, take an arbitrary order of Zd . Then

we say that (kj , ij , τj ) precedes (kj ′, ij ′, τj ′) in the order if τjβkj
< τj ′βkj ′ or if
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both τjβkj
= τj ′βkj ′ and ij precedes ij ′ in the order of Zd . Then, for any j , we

let Jj be a subset of {1,2, . . . , z} containing all j ′ for which (kj ′, ij ′, τj ′) precedes

(kj , ij , τj ) in the order. Using this order, we write

P

[

z
⋂

j=1

{

Akj
(ij , τj ) = 0

}

]

≤
z
∏

j=1

P
[

Akj
(ij , τj ) = 0|

⋂

j ′∈Jj

{

Akj ′ (ik′
j
, τk′

j
) = 0
}

]

.

Note that, for each j ′ ∈ Jj , we have that (kj , ij , τj ) and (kj ′, ij ′, τj ′) are well sep-

arated. Using the definition of well separated cells, we have that Rinf
kj ′ (ij ′, τj ′) �

R
sup
kj

(ij , τj ) and Rinf
kj

(ij , τj )� R
sup
kj ′ (ij ′, τj ′). Hence, we obtain by Lemma 4.2 that

Rinf
kj ′ (ij ′, τj ′) ∩ Rinf

kj
(ij , τj ) = ∅. By the ordering above, we also have τjβkj

≥
τj ′βkj ′ , which gives that the event

⋂

j ′∈Jj
{Akj ′ (ik′

j
, τk′

j
) = 0} is measurable with

respect to Fkj
(ij , τj ). Then we apply Lemma 5.3 to obtain a positive constant c3

such that

P

[

z
⋂

j=1

{

Akj
(ij , τj ) = 0

}

]

≤ exp

{

−c3

z
∑

j=1

ψkj

}

.
�

LEMMA 5.5. Let z be a positive integer and k1, k2, . . . , kz ≥ 1 be fixed. Then,

if α and m are sufficiently large, the total number of support connected D-paths

containing z cells of scales k1, k2, . . . , kz is at most exp{ c3
2

∑z
j=1 ψkj

}, where c3

is the same constant as in Lemma 5.4, ψ is defined in (22) and α is defined in

Lemma 5.3.

PROOF. Recall that for two consecutive cells of a support connected D-path,

they are either support adjacent or the first cell is support connected with diago-

nals to the second; see the beginning of this section for details. For the remainder

of this proof, when a cell (k, i, τ ) of a support connected D-path P is support con-

nected with diagonals to the next cell (k′, i ′, τ ′) of P , we will refer to the scale 1

cells forming the diagonal connection between a cell contained in R
2sup
k (i, τ ) and

a cell contained in R
2sup

k′ (i ′, τ ′) as the diagonal steps. Note also that by the defini-

tion of D-paths from Section 4.3, the first cell of the diagonal steps is diagonally

connected to the last cell of the diagonal steps.

We will prove the result in three steps. We will first show an upper bound for the

number of support connected D-paths with no diagonal steps. Next, we will prove

a bound for the number of support connected D-paths where the first and last cell

of each sequence of diagonal steps is fixed and show that this bound is directly

linked to the bound from the first step. Finally, we will prove an upper bound for

the number of all possible arrangements of the first and last cell of the diagonal

steps for each diagonal, which will then, when combined with the bound from step

two, prove the lemma.
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We begin with the first step, by considering the number of possible support

connected D-paths when each cell of the D-path is support adjacent to the next

cell, that is, there are no diagonal steps in the D-path. For any k, k′ ≥ 1, define

�k,k′ = max
(i1,τ1)∈Zd+1

∣

∣

{

(i2, τ2) ∈ Zd+1 : (k, i1, τ1) is support adjacent to
(

k′, i2, τ2

)}∣

∣,

that is, �k,k′ is the maximum number of cells of scale k′ that are support adjacent

to a given cell of scale k. Let χk be the number of cells of scale k whose extended

support contains R1(0,0). This gives that the total number of different D-paths of

z cells of scales k1, . . . , kz with no diagonal steps can be bound above by

χk1

z
∏

j=2

�kj−1,kj
.

Now we derive a bound for χk . At scale k, the number of cells that have the same

extended support is (
ℓk+1

ℓk
)d

βk+1

βk
= md+2k2a−8/�(k + 1)8/�+ad . Furthermore, the

extended support of a cell of scale k contains exactly 27(2(3m+ 1)+ 1)d different

cells of scale k + 1. Thus, the number of different extended supports for a cell of

scale k that contains R1(0,0) is bounded above by

χk ≤ 27
(

2(3m + 1) + 1
)d

md+2k2a−8/�(k + 1)8/�+ad ≤ exp

{

c3

16
ψk

}

,

where the last inequality holds since m and α are large enough. To derive a bound

for �k,k′ , fix a cell (k, i1, τ1) of scale k. Now a cell of scale k′ can only be support

adjacent to (k, i1, τ1) if it is inside the region

(25)
⋃

x∈R
2sup
k (i1,τ1)

(

x+
[

−(3m+2)ℓk′+1, (3m+2)ℓk′+1

]d ×[−14βk′+1,14βk′+1]
)

.

For k ≥ k′, let �k,k′ be the number of cells of scale k′ that lie in the region above.

We then have that �k,k′ ≤ �k,k′ and

�k,k′ =
(

(6m + 3)ℓk+1 + 2(3m + 2)ℓk′+1

ℓk′

)d(27βk+1 + 28βk′+1

βk′

)

≤
(

(6m + 3)mk−k′+1
k+1
∏

i=k′+1

ia + 2(3m + 2)m
(

k′ + 1
)a

)d

×
(

27m2(k−k′+1)
k
∏

i=k′
i2a−8/�(i + 1)8/� + 28m2k′2a−8/�(k′ + 1

)8/�

)

≤ c4m
(k−k′+2)dkkadm2(k−k′+1)k2ka ≤ c4m

(d+2)(k−k′+2)k(ad+2a)k,

for some universal positive constant c4. Note that for any constant c > 0, since

m and α are large enough, it holds that c�k,k′ ≤ c�k,1 ≤ exp{ c3
16

ψk}. For k <
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k′, we set �k,k′ = 2d+1�k′,k , which gives using (25) that �k,k′ ≤ 2d+1�k′,k ≤
exp{ c3

16
ψk′}.

Observe now that
z
∏

j=2

�kj−1,kj

(26)

≤
z
∏

j=2

(�kj−1,kj
1kj−1≥kj

+ 1kj−1<kj
)(�kj ,kj−1

1kj≥kj−1
+ 1kj<kj−1

).

If write k0 = kz+1 = ∞, the right-hand side of (26) can be written as

z
∏

j=1

(�kj ,kj−1
1kj≥kj−1

+ 1kj<kj−1
)(�kj ,kj+1

1kj≥kj+1
+ 1kj<kj+1

).

Then, applying the bounds above for � and χ , we obtain

χk1

z
∏

j=2

�kj−1,kj
≤ χk1

�k1,1

z
∏

j=2

(

2d+1�kj ,1

)2 ≤ exp

{

c3

8

z
∑

j=1

ψkj

}

.

We now proceed to the second step. By definition, a cell (k, i, τ ) can only be

support connected with diagonals to (k′, i ′, τ ′) if there exists a cell (1, i ′′, τ ′′) for

which R1(i
′′, τ ′′) ⊆ R

2sup
k (i, τ ) that is diagonally connected to a cell (1, î, τ̂ ) for

which R1(î, τ̂ ) ⊆ R
2sup

k′ (i ′, τ ′). Define (î − i′′, τ̂ − τ ′′) ∈ Zd+1 to be the relative

position of the cell (1, î, τ̂ ) with respect to the cell (1, i′′, τ ′′). For convenience,

we will write when (k, i, τ ) is adjacent to (k′, i ′, τ ′) that the relative position of

(1, î, τ̂ ) with respect to (1, i ′′, τ ′′) is (0,0). We will show a bound for the number

of such relative positions in a D-path in step 3, so we now proceed to show a

bound for the number of D-paths that have fixed relative positions of (1, î, τ̂ ) with

respect to (1, i ′′, τ ′′) for all consecutive pairs of cells in the path.

Let (k, i, τ ) be a cell of the support connected D-path that is support adjacent

or support connected with diagonals to the cell (k′, i ′, τ ′) and let (î − i′′, τ̂ − τ ′′) ∈
Zd+1 be the relative position, as above. Then, for a fixed relative position (î −
i ′′, τ̂ − τ ′′), define

�∗
k,k′ = max

(i1,τ1)∈Zd+1

∣

∣

{

(i2, τ2) ∈ Zd+1 : (k, i1, τ1) is support adjacent or

support connected with diagonals to
(

k′, i2, τ2

)

with fixed relative position
(

î − i′′, τ̂ − τ ′′)}∣
∣.

Then the number of D-paths containing z cells of scales k1, k2, . . . , kz where

consecutive cells are support adjacent or support connected with diagonals with

fixed relative positions is smaller than

(27) χk1

z
∏

j=2

�∗
kj−1,kj

.
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Since a cell of a support connected D-path can either be support adjacent or

support connected with diagonals to the next cell, we will consider the two cases

individually. Consider first the case when the two cells are support adjacent, that

is, there are no diagonal steps between the extended supports of (k, i, τ ) and

(k′, i ′, τ ′). By step 1 of this proof, we have that in this case

�∗
k,k′ ≤ �k,k′ .

Let now the relative position of (1, î, τ̂ ) with respect to (1, i ′′, τ ′′) be different

from (0,0). Then, since the relative position is fixed, �∗
k,k′ can be bound by the

product of the number of cells of scale 1 contained in the extended support of a

cell of scale k and the number of cells of scale 1 that are contained in the extended

support of a cell of scale k′. Using the bounds from step 1, this gives that

�∗
k,k′ ≤ �k,1 · �k′,1.

We have therefore for any fixed relative position of (1, î, τ̂ ) with respect to

(1, i ′′, τ ′′) that

(28) �∗
k,k′ ≤ �k,k′1

(î,τ̂ )=(i′′,τ ′′) + �k,1 · �k′,11(î,τ̂ ) =(i′′,τ ′′).

By using the bounds from step 1 and (28), we get that

(29) χk1

z
∏

j=2

�∗
kj−1,kj

≤ exp

{

3c3

8

z
∑

j=1

ψkj

}

.

We now move on to the third step and show a bound for the number of different

relative positions that are possible in a support connected D-path of cells of scales

k1, k2, . . . , kz. We will show that this number is smaller than

(30) exp

{

c3

8

z
∑

j=1

ψkj

}

,

which combined with (29) proves the lemma.

Consider two consecutive cells of the D-path and let (1, i, τ ) be a cell con-

tained in the extended support of the first cell that is diagonally connected to a cell

(1, i ′, τ ′) that is contained in the extended support of the second cell. Recall from

Section 2 the definition of the base-height index and from Section 4.2 the proper-

ties of the sequence of cells that make (1, i, τ ) diagonally connected to (1, i ′, τ ′).
Denote by x the height difference between the two cells, that is, x := |h − h′| in

the base-height index, and define A(x), x ∈ Z, to be the number of different cells

of scale 1 that (1, i, τ ) is diagonally connected to with height difference x. More

precisely,

A(x) = max
(b1,h1)∈Zd+1

∣

∣

{

(b2, h2) ∈ Zd+1 : |h2 − h1| = x and

(b1, h1) is diagonally connected to (b2, h2)
}∣

∣.
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FIG. 8. Example with z = 4 where x2 = 0 and x1 + x2 + x3 + x4 ≤ H . The red cells are the scale

1 cells used as the (fixed) beginnings and ends of the diagonals within their respective extended

supports. The dark cells with the matching red cell at the bottom of the triangles represent the area

containing A(xi) cells of scale 1.

Let Hk be the side length of the cube S
2sup
k (i) divided by the side length of the

cube S1(i
′), that is, let Hk = (3m + 1)mk((k + 1)!)a . Recall from Section 4.2 that

using the base-height index, for any two cells (bi, hi), (bj , hj ) of the diagonal,

hihj ≥ 0 and that hj−1 − hj ∈ Sign(hj−1) for any two consecutive cells of the di-

agonal. Therefore, given the z cells of scales k1, k2, . . . , kz, the maximum number

of scale 1 diagonal steps contained in all diagonal connections between the cells

of the path is at most

H :=
z−1
∑

i=1

Hki
.

Letting xi , for i ∈ {1,2, . . . , z − 1} be the height difference between the ith and

(i + 1)th cell of the path, with xi = 0 if the cells are support adjacent, we have that

the number of possible configurations of the diagonal steps is at most

(31)

H
∑

y=0

∑

x1,x2,...,xz−1:
x1+···+xz−1=y

A(x1 + 1)A(x2 + 1) · · ·A(xz−1 + 1).

See Figure 8 for an illustration of one such configuration. The +1 terms in (31)

account for the fact that each diagonal either ends in a multi-scale bad cell or is

adjacent to one, so by increasing the height difference by 1, we account for both

possibilities at once.

Due to the properties of the diagonal steps, we have that A(x) is the volume of

a d-dimensional ball of radius x, so A(x) ≤ cdxd where cd is some constant that
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depends on d only. It follows, for example, by the method of Lagrange multipliers,

that for xk ≥ 0, k ∈ {1, . . . , z − 1} and x1 + · · · + xz−1 = y, we have

A(x1 + 1)A(x2 + 1) · · ·A(xz−1 + 1) ≤
[

A

(

y

z − 1
+ 1

)]z−1

.

Next, using the above bound and

∑

x1,x2,...,xz−1:
x1+···+xz−1=y

1 =
(

z + y − 2

z − 2

)

,

we have that the sum in (31) is smaller than

H
∑

y=0

(

z + y − 1

z − 1

)

A

(

y

z − 1
+ 1

)z−1

≤
(

z + H

z

)

A

(

H

z − 1
+ 1

)z−1

,

where the binomial inequality used can easily be proven by induction on H (using

Pascal’s rule).

Then, for some positive constants C and C2 and using that H
z

is large for large

α, we have that
(

z + H

z

)

A

(

H

z − 1
+ 1

)z−1

≤ C
(z + H)z

(z)!

(

H

z − 1
+ 1

)(z−1)d

≤ C
(z + H)z

(z/3)z

(

2H

z

)zd

≤ C(3 + 3H/z)z
(

2H

z

)zd

≤ C

(

C2
H

z

)2zd

.

In order to complete the proof, it remains to show that C(C2
H
z
)2zd ≤

exp{ c3
8

∑z
j=1 ψkj

}, which is equivalent to showing that

(32) C̃ log

(

H

z

)

≤ 1

z

z
∑

j=1

ψkj
,

where C̃ is some constant. For small k, setting α (and thus ℓ) large enough gives

that Hk ≤ ψk , and similarly setting m large gives Hk ≤ ψk for all large k. Com-

bined, this gives (32). �

REMARK 5.2. As mentioned in Section 2 (see Remark 2.1), one can set time

to be height in the base-height index. In that case, all results up to and includ-

ing Lemma 5.4 go through unchanged. However, an important issue arises in
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Lemma 5.5. In the proof of Lemma 5.5, the height Hk of the extended support

of a cell becomes the length of the interval T
2sup
k (τ ). Then, if d ≥ 3, the proof

goes through unchanged since it still holds that Hk ≤ ψk for all k ≥ 1 by setting m

and α large enough. For d = 2, however, the lemma no longer holds, since it can

happen that the number of different arrangements of diagonal steps and the z cells

of a path is larger than exp{∑z
i=1 ψki

}. To see this, consider the following example.

Let k1 be large and let ki = 2 for all i ∈ {2, . . . , z}. Let z be the largest integer for

which it holds that ψk1
≥ 4
∑z

i=2 ψki
= 4(z − 1)ψ2. Note that this gives that

(33)
ψk1

4ψ2
≤ z ≤ 1 + ψk1

4ψ2
≤ ψk1

3ψ2
,

where the last inequality holds for any large enough k1. Furthermore, note that

since d = 2 we can write Hk1
= ak1

ψk1
, where ak1

is a term that can be made arbi-

trarily large by increasing k1. Next, observe that the number of different arrange-

ments of diagonal steps for the cells of scale 2 is at least
(Hk1

+z−2

z−2

)

. Therefore, we

want to show that for any constant c1 > 0, we can set k1 large enough to have

(34)

(

Hk1
+ z − 2

z − 2

)

≥ exp

{

z
∑

i=1

c1ψki

}

.

Consider first the left-hand side of (34) and note that it is bigger than

H z−2
k1

(z − 2)! ≥
(

Hk1

z − 2

)z−2

≥ (3ak1
ψ2)

z−2,

where in the last inequality we used the upper bound on z from (33). For the right-

hand side of (34), we have

exp

{

z
∑

i=1

c1ψki

}

= exp
{

c1

(

ψk1
+ (z − 1)ψ2

)}

≤ exp
{

4c1ψ2z + c1ψ2(z − 1)
}

,

where the inequality follows from the upper bound on ψk1
obtained from the left-

most inequality in (33). Since ak1
grows with k1, we obtain (34) for large enough

k1.

For any support connected D-path P = ((k1, i1, τ1), (k2, i2, τ2), . . . , (kz, iz,

τz)) ∈ �
sup
κ−1,t , we define the weight of P as

∑z
j=1 ψkj

. The lemma below shows

that, for any P ∈ �
sup
κ−1,t , if t is large enough, then the weight of P must be large.

LEMMA 5.6. Let t > 0 and let P = ((k1, i1, τ1), (k2, i2, τ2), . . . , (kz, iz, τz))

be a path in �
sup
κ−1,t . If α is sufficiently large and κ = O(log t), then there exist a
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positive constant c = c(CM) and a value C independent of t such that

z
∑

j=1

ψkj
≥

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

C

√
t

(log t)c
for d = 1,

C
t

(log t)c
for d = 2,

Ct for d ≥ 3.

(35)

PROOF. Let �
2sup
k denote the diameter of the extended support of a cell of

scale k. Then we have

�
2sup
k ≤ (6m + 3)ℓk+1

√
d + 27βk+1

= (6m + 3)m(k + 1)aℓk

√
d + 27Cmix

ℓ2
k(k + 1)8/�

ε4/�
.

Then the definition of Cmix gives us that there exists a constant c6 (that might

depend on the ratio β/ℓ2) such that

�
2sup
k ≤ (6m + 3)m(k + 1)aℓk

√
d + 27m2 β

ℓ2
ℓ2
k(k + 1)8/� ≤ c6m

2(k + 1)2aℓ2
k.

Then, for k ≥ 2, we have for d = 1 that

ψk = ε2λ0ℓk−1

(k + 1)4
= ε2λ0

(k + 1)4

(

ℓk

m(ka)

)

≥ ε2λ0

m(k + 1)a+4

(

√

c6m2(k + 1)2aℓ2
k

√

c6m2(k + 1)2a

)

≥ ε2λ0√
c6m2(k + 1)3a+4

√

�
2sup
k

and for d ≥ 2 that

ψk =
ε2λ0ℓ

d−2
k−1

(k + 1)4

(

ℓk

mka

)2

≥
ε2λ0ℓ

d−2
k−1

m2(k + 1)2a+4

(

c6m
2(k + 1)2aℓ2

k

c6m2(k + 1)2a

)

≥
ε2λ0ℓ

d−2
k−1

c6m4(k + 1)4a+4
�

2sup
k .

Now, since κ = O(log t), there exists a constant c7 such that (k + 1)b ≤ c7(log t)b

for all k ≤ κ and any b ≥ 1. We use this for dimensions 1 and 2. For dimension 3
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and higher, we set c7 large enough to satisfy
ℓd−2
k−1

(k+1)4a+4 ≥ ℓd−2

mc7
; this is possible since

ℓk is of order (k!)a . This gives

ψk ≥

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ε2λ0√
c6c7m2

√

�
2sup
k

(log t)3a+4
for d = 1,

ε2λ0

c6c7m4

�
2sup
k

(log t)4a+4
for d = 2,

ε2λ0ℓ
d−2

c6c7m5
�

2sup
k for d ≥ 3.

For k = 1, we write ψ1 ≥ c

√

�
2sup
k for d = 1 and ψ1 ≥ c�

2sup
k for d ≥ 2, where c is

some positive value that may depend on ε, m, λ0, ℓ and νE . Moreover, if a support

connected D-path is such that
∑z

j=1 �
2sup
kj

< t/2, the extended support of all cells

of the path must be contained in [−t, t]d+1. This is true because if there are no di-

agonal steps in P , then the extended supports are contained in [−t/2, t/2]d+1, and

if there are diagonal steps, they can only prolong the path by at most
∑z

j=1 �
2sup
kj

.

Therefore, for P ∈ �
sup
κ−1,t we have

∑z
j=1 �

2sup
kj

≥ t/2. This implies that there ex-

ists a positive C independent of t , but depending on everything else such that

z
∑

j=1

ψkj
≥

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

C

√
t

(log t)3a+4
for d = 1,

C
t

(log t)4a+4
for d = 2,

Ct for d ≥ 3. �

We now write ψk , k ≥ 2 as a multiple of ψ2. This will be used to count the

number of paths in �
sup
κ,t later. For this, set ψ̃2 = ψ2 = 3−4ε2λ0ℓ

d , and for j ≥ 3,

define

ψ̃j = 2ψ̃2m
(j−2)d((j − 1)!

)ad−3(
(j − 2)!

)2
(j − 3)!.

LEMMA 5.7. For all j ≥ 2, it holds that ψ̃j ≤ ψj ≤ 41ψ̃j .

PROOF. For j ≥ 3, we write

ψj = ε2λ0ℓ
dm(j−2)d((j − 1)!)ad

(j + 1)4
= 34ψ̃2

m(j−2)d((j − 1)!)ad

(j + 1)4

= 34ψ̃2m
(j−2)d((j − 1)!

)ad−3(
(j − 2)!

)2
(j − 3)!

(

(j − 1)3(j − 2)

(j + 1)4

)

.

This implies that ψj ≤ 34

2
ψ̃j ≤ 41ψ̃j . The other direction follows from the fact

that
(j−1)3(j−2)

(j+1)4 ≥ 1/32 for all j ≥ 3. �
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6. Size of bad clusters. For k ≥ 1, define S t
k to be the set of indices i ∈ Zd

given by

S
t
k =
{

i ∈ Zd : Sk(i) intersects [−t, t]d
}

.

Similarly, we define T t
k as the set of indices τ for time intervals that have a de-

scendent at scale 1 intersecting [0, t]. Formally, let

T
t
k =
{

τ ∈ Z : ∃τ ′ s.t. γ
(k−1)
1

(

τ ′)= τ and T1

(

τ ′)∩ [0, t] =∅
}

.

Note that an interval in T t
k with k ≥ 2 may not intersect [0, t]. Using these defini-

tions, define

R
t
k = S

t
k × T

t
k .

For the following proposition, recall from Section 4.3 the definitions of K(0,0)

and K ′(0,0).

PROPOSITION 6.1. For each (i, τ ) ∈ Zd+1, let Est(i, τ ) be an increasing event

that is restricted to the super-cube i and the super-interval τ , and let νEst be the

probability associated to Est as defined in Definition 2.3. Fix a constant ε ∈ (0,1),

and integer η ≥ 1 and the ratio β/ℓ2 > 0. Fix also w such that

w ≥
√

ηβ

c2ℓ2
log

(

8c1

ε

)

,

for some constants c1 and c2 which depend on the graph. Then there exist constants

c and C, and positive numbers α0 and t0 that depend on ε, η, w and the ratio β/ℓ2

such that if

α = min

{

C−1
M ε2λ0ℓ

d , log

(

1

1 − νEst((1 − ε)λ,Q(2η+1)ℓ,Qwℓ, ηβ)

)}

≥ α0,

we have for all t ≥ t0 that

P
[

K(0,0)�R
t
1

]

≤

⎧

⎪

⎨

⎪

⎩

exp

{

−Cλ0
t

(log t)c

}

for d = 2,

exp{−Cλ0t} for d ≥ 3.

PROOF. First, for any k, note that the number of cells in Rt
k satisfies

(36)
∣

∣R
t
k

∣

∣≤
(

2

⌈

t

ℓk

⌉)d⌈

1 + t

βk

⌉

.

Also, using Lemmas 4.1 and 5.1, we have

P
[

K(i, τ )�R
t
1

]

≤ P
[

K ′(i, τ )�R
t
1

]

= P[∃P ∈ �t s.t. all cells of P have bad ancestry]

≤ P
[

∃P ∈ �
sup
κ,t s.t. all cells of P are multi-scale bad

]

.
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We note that the random variable Aκ is defined differently than other scales. It

follows from Lemma 5.3, (36) and the union bound over all cells in Rt
κ that

P
[

(Aκ

(

i ′, τ ′)= 1 for all (i, τ ) ∈ R
t
κ

]

(37)
≥ 1 −

∣

∣R
t
κ

∣

∣ exp{−cψκ} ≥ 1 − exp{−c1t},

for some positive constant c1, where the last step follows by setting κ to be the

smallest integer such that ψκ ≥ t , which using the Lambert W function and its

asymptotics gives that κ = �(
log t

log log t
). Let us define H as the event that Aκ(i, τ ) =

1 for all (i, τ ) ∈ Rt
κ . Then we have

P
[

∃P ∈ �
sup
κ,t s.t. all cells of P are multi-scale bad

]

≤ P
[

H ∩
{

∃P ∈ �
sup
κ,t s.t. all cells of P are multi-scale bad

}]

+ P
[

H c]

≤ P
[

∃P ∈ �
sup
κ−1,t s.t. all cells of P are multi-scale bad

]

+ e−c1t .

To get a bound for the term above, we fix a support connected D-path

P =
(

(k1, i1, τ1), . . . , (kz, iz, τz)
)

,

and use Lemma 5.4 to get

P

[

z
⋂

j=1

{

Akj
(ij , τj ) = 0

}

]

≤ exp

{

−c3

z
∑

j=1

ψkj

}

.

We now take the union bound over all support connected D-paths with cells of

scales k1, k2, . . . , kz and using Lemma 5.5, we get that

P
[

∃P ∈ �
sup
κ−1,t s.t. P has z multi-scale bad cells of scales k1, k2, . . . , kz

]

≤ exp

{

−c3

2

z
∑

j=1

ψkj

}

.

This bound depends on z and k1, . . . , kz only through
∑z

j=1 ψkj
, which we call

the weight of the path. Let W be the set of weights for which there exists at least

one path in �
sup
κ−1,t with such a weight. Then

P
[

∃P ∈ �
sup
κ−1 s.t. all cells of P are multi-scale bad

]

(38)

≤
∑

w∈W

exp

{

−c3

2
w

}

M(w),

where M(w) is the number of possible ways to choose z and k1, k2, . . . , kz such

that
∑z

j=1 ψkj
= w.

Let w =∑z
j=1 ψkj

and let w1 = ψ1|{j : kj = 1}|. Let w2 = w − w1, so w1 is

the weight given by cells of scale 1 and w2 the weight given by the other cells of
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the path. Note that by Lemma 5.7, w2 =∑j :kj≥2 ψkj
≥∑j :kj≥2 ψ̃kj

= h2ψ2 for

some nonnegative integer h2. Likewise, w2 ≤ 41h2ψ2 and w1 = h1ψ1 for some

nonnegative integer h1. Let w0 be the lower bound on the weight of the path given

by Lemma 5.6, so for all w ∈ W , we have w ≥ w0. Since either w1 or w2 has to be

larger than w0/2, we have that either h1 ≥ wo

2ψ1
or h2 ≥ w0

2·41ψ2
. Let M(h1, h2) be

the number of ways to choose z and k1, . . . , kz such that there are h1 values j with

kj = 1 and
∑

j :kj≥2 ψ̃kj
= h2ψ2. For any such choice, we have w =∑z

j=1 ψkj
≥

h1ψ1 + h2ψ2. Then the sum in the right-hand side of (38) can be bounded above

by

∑

h1≥ w0
2ψ1

∞
∑

h2=0

exp

{

−c3

2
(h1ψ1 + h2ψ2)

}

M(h1, h2)

+
∞
∑

h1=0

∑

h2≥ w0
82ψ2

exp

{

−c3

2
(h1ψ1 + h2ψ2)

}

M(h1, h2).

We now proceed to bound M(h1, h2). Suppose we have h1 blocks of size ψ1

and h2 blocks of size ψ2. Consider an ordering of the blocks, such that permuting

the blocks of the same size does not change the order. Then, for each block of size

ψ2, we color it either black or white, while blocks of size ψ1 are not colored. For

each choice of z and k1, . . . , kz, we associate an order and coloring of the blocks

as follows. If k1 = 1, then the first block is of size ψ1. Otherwise, the first ψ̃k1
/ψ2

blocks are of size ψ2 and have black color. Then, if k2 = 1, the next block is of

size ψ1; otherwise, the next ψ̃k2
/ψ2 blocks are of size ψ2 and have white color.

We proceed in this way until kz, where whenever ki = 1 we use the color black

if i is odd and the color white if i is even. Though there are orders and colorings

that are not associated to any choice of z and k1, . . . , kz, each such choice of z and

k1, . . . , kz corresponds to a unique order and coloring of the blocks. Therefore, the

number of ways to order and color the blocks gives an upper bound for M(h1, h2).

Note that there are
(h1+h2

h1

)

ways to order the blocks and 2h2 ways to color the

size-ψ2 blocks. Therefore,

P
[

∃P ∈ �
sup
κ−1,t s.t. all cells of P are multi-scale bad

]

≤
∑

h1≥ w0
2ψ1

∞
∑

h2=0

exp

{

−c3

2
(h1ψ1 + h2ψ2)

}

(

h1 + h2

h1

)

2h2

+
∞
∑

h1=0

∑

h2≥ w0
82ψ2

exp

{

−c3

2
(h1ψ1 + h2ψ2)

}

(

h1 + h2

h1

)

2h2

≤ C
∑

h1≥ w0
2ψ1

∞
∑

h2=0

exp

{

−c3

3
(h1ψ1 + h2ψ2)

}
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+ C

∞
∑

h1=0

∑

h2≥ w0
82ψ2

exp

{

−c3

3
(h1ψ1 + h2ψ2)

}

≤ exp{−cw0},
for some constants C and c, where in the second inequality we use Lemma A.2

and the fact that α is sufficiently large to write
c3ψ1

2
− 1 ≥ c3ψ1

3
, and similarly for

ψ2. Since we defined w0 to be the lower bound on the weight of a path given by

Lemma 5.6, the proof is complete. �

7. Proof of Theorem 2.1.

PROOF OF THEOREM 2.1. By Theorem 3.1, it suffices to show that
∑

r≥1

rdP
[

rad0(H0) > r
]

< ∞.

We begin by noting that after tessellating space and time, Rt
1 contains cells indexed

only by (i, τ ) for which ‖i‖∞ ≤ t
ℓ

and |τ | ≤ t
cℓ2 for some positive constant c. For

fixed R > 0, if we set T > 0 such that
(

d

ℓ
+ 1

cℓ2

)

T ≤ R,

then RT
1 is contained in {u ∈ Zd+1 : ‖u‖1 < R}. Let T (r) = (d

ℓ
+ 1

cℓ2 )−1r and fix

r0 such that T (r0) > t0, where t0 comes from Proposition 6.1. Then we have that
∑

r≥r0

rdP
[

rad0(H0) > r
]

≤
∑

r≥r0

rdP
[

H0 �R
T (r)
1

]

≤
∑

r≥r0

rdP
[

K(0,0)�R
T (r)
1

]

,

where we used in the second inequality that every d-path on the space–time tes-

sellation is also a D-path of bad cells. We now apply Proposition 6.1 with d ≥ 3

to bound P[K(0,0)�R
T (r)
1 ] for T (r) > t0 and get that

∑

r≥r0

rdP
[

rad0(H0) > r
]

≤
∑

r>r0

rd exp
{

−Cλ0T (r)
}

=
∑

r≥r0

rd exp

{

−C

(

d

ℓ
+ 1

cℓ2

)−1

λ0r

}

,

for some positive constant C, that does not depend on r . Since this expression is

finite, we have by Theorem 3.1 that the Lipschitz surface exists and is a.s. finite.
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For d = 2, we similarly get that

∑

r≥r0

rdP
[

rad0(H0) > r
]

≤
∑

r≥r0

rd exp

{

−Cλ0
ℓr

(logℓr)−c

}

< ∞.
�

The corollary below gives the probability that a base-height cell (b,0) ∈ L is

not part of F , that is, F+(b) = 0 and F−(b) = 0, where F+ and F− are the two

Lipschitz functions as defined in Definition 3.2.

COROLLARY 7.1. Assume the setting of Theorem 2.1. There are positive con-

stants C, c, C3 and r0 such that for any given b ∈ Zd , we have

P
[

F+(b) · F−(b) = 0
]

<

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Crd
0 P
[

Est(0,0)c
]

+
∑

r≥r0

rd exp

{

−C3λ0
ℓr

(logℓr)c

}

for d = 2,

Crd
0 P
[

Est(0,0)c
]

+
∑

r≥r0

rd exp{−C3λ0ℓr} for d ≥ 3.

PROOF. Recall first that by construction, F+(b) = 0 if and only if F−(b) = 0.

Then we have for a positive constant C that depends only on d that

P
[

F+(b) = 0
]

≤
∑

(x,0)∈L

P
[

(x,0)d (b,0)
]

=
∑

(x,0)∈L

‖x−b‖1≤r0

P
[

(x,0)d (b,0)
]

+
∑

(x,0)∈L

‖x−b‖1>r0

P
[

(x,0)d (b,0)
]

≤
∑

(x,0)∈L

‖x−b‖1≤r0

P
[

Ec
st(x,0)

]

+
∑

(x,0)∈L

‖x‖1>r0

P
[

(0,0)d (x,0)
]

≤ Crd
0 P
[

Ec
st(0,0)

]

+
∑

r>r0

CrdP
[

rad0(H0) > r
]

.

The sum above can be bounded as in the proof of Theorem 2.1. �

REMARK 7.1. We note that the sum in Corollary 7.1 is decreasing with ℓ

and can in fact be made arbitrarily small by making ℓ large enough. This gives

us that if the probability of the event Est(i, τ ) is increasing in ℓ, the expression in

Corollary 7.1 can also be made arbitrarily small.

8. Proof of Theorem 2.2. Recall from Section 3 that a hill Hu is defined

as all sites in Zd+1 that can be reached by a d-path started from u ∈ L. Recall

also the definition of a mountain Mu as a union of all hills that contain u. By the
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construction of D-paths, every d-path on the space–time tessellation is also a D-

path of bad cells. For this reason, as in Section 7, we will use an extension D-paths

when bounding probabilities of the existence of various hills and mountains in this

section.

We begin by considering a broader range of diagonally connected paths. Intu-

itively, these are paths that can move within sequences of hills Hu for different

u ∈ L. Let u = (b,0) ∈ L be a cell of the zero-height plane. By Definition 3.2, we

know a mountain touches the Lipschitz surface at (b,F+(u)) and (b,F−(u)), but

we cannot say anything more than that. If we want to say something about the pos-

itive and negative depth of the surface F across a larger area, we therefore need

to consider a large number of different mountains. Since these mountains likely

intersect and are composed of some of the same hills, we need a better way to con-

trol their dependences. To that end, we will consider paths with diagonals that can

be thought of as concatenations of different D-paths, where some D-paths may be

taken in reverse order. In order to define these, which we will refer to as DD-paths,

we will need to define the concept of a double diagonal, as well as slightly change

the definition of two cells being diagonally connected.

As before, we say that distinct scale 1 cells (i, τ ) and (i′, τ ′) are adjacent if

‖i − i ′‖∞ ≤ 1 and |τ − τ ′| ≤ 1. Also, we say that (i, τ ) is diagonally connected to

(i ′, τ ′) if there exists a sequence of cells (i, τ ) = (b0, h0), (b1, h1), . . . , (bn, hn) =
(î, τ̂ ), where the indices (bj , hj ) refer to the base-height index, such that all the

following hold:

• for all j ∈ {1, . . . , n}, ‖bj − bj−1‖1 = 1 and hj−1 − hj ∈ Sign(hj−1),

• hihj ≥ 0 for all i, j ∈ {0, . . . , n},
• (î, τ̂ ) is adjacent to (i ′, τ ′) or (î, τ̂ ) = (i′, τ ′).

Moreover, if (î, τ̂ ) = (i′, τ ′) we say that (i, τ ) and (i′, τ ′) are diagonally linked.

We say for two distinct cells (i, τ ) and (i ′, τ ′) are single diagonally connected if

(i, τ ) is diagonally connected to (i′, τ ′) or if (i ′, τ ′) is diagonally connected to

(i, τ ). Finally, we say two distinct cells (i, τ ) and (i′, τ ′) are double diagonally

connected, if there exists (î, τ̂ ) such that (i, τ ) is diagonally connected to (î, τ̂ ),

(i ′, τ ′) is diagonally connected to (î, τ̂ ), and (î, τ̂ ) is diagonally linked to (i, τ ) or

(i ′, τ ′).
Note that unlike the definition from Section 4.2 of a cell (i, τ ) being diagonally

connected to (i′, τ ′), two cells being single or double diagonally connected is a

symmetric relationship.

DEFINITION 8.1. We say a sequence of cells (i0, τ0), (i1, τ1), . . . , (in, τn) is a

DD-path if for all j ∈ {1, . . . , n}, we have that the cells (ij−1, τj−1) and (ij , τj )

are adjacent, single diagonally connected or double-diagonally connected.

Recall from Section 4 the definition of cells of multiple scales. Now we will

extend the definition of DD-paths to multiple scales, as we did in Section 5 for
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D-paths. We say (k, i, τ ) and (k′, i ′, τ ′) are single diagonally connected if there

exists a cell (1, î, τ̂ ) that is a descendant of (k, i, τ ) and a cell (1, i′′, τ ′′) that is

a descendant of (k′, i ′, τ ′), such that (1, î, τ̂ ) and (1, i ′′, τ ′′) are single diagonally

connected. We say (k, i, τ ) and (k′, i ′, τ ′) are double diagonally connected if there

exists a cell (1, î, τ̂ ) that is a descendant of (k, i, τ ) and a cell (1, i ′′, τ ′′) that is a

descendant of (k′, i ′, τ ′), such that (1, î, τ̂ ) and (1, i′′, τ ′′) are double diagonally

connected.

We refer to a DD-path as a sequence of distinct cells of possibly different scales

for which any two consecutive cells in the sequence are either adjacent, single

diagonally connected or double diagonally connected to the second.

We say two cells (k1, i1, τ1) and (k2, i2, τ2) are support connected with single

diagonals if there exists a scale 1 cell contained in R
2sup
k1

(i1, τ1) and a scale 1 cell

contained in R
2sup
k2

(i2, τ2) such that the two cells are single diagonally connected.

We say two cells (k1, i1, τ1) and (k2, i2, τ2) are support connected with double

diagonals if there exists a scale 1 cell contained in R
2sup
k1

(i1, τ1) and a scale 1 cell

contained in R
2sup
k2

(i2, τ2), such that the two are double diagonally connected.

Recall from Section 5 the definitions of two cells being well separated and sup-

port adjacent. Finally, we define a sequence of cells P = ((k1, i1, τ1), (k2, i2, τ2),

. . . , (kz, iz, τz)) to be a support connected DD-path if the cells in P are mutually

well separated and, for each j = 1,2, . . . , z − 1, (kj , ik, τj ) and (kj+1, ij+1, τj+1)

are support adjacent, support connected with single diagonals or support connected

with double diagonals.

8.1. Multi-scale analysis of DD-paths. We now follow the steps of Section 5,

presenting only the parts where the statements and proofs with DD-paths differ

from how they were for D-paths.

Define �t to be the set of all DD-paths of cells of scale 1 such that the first cell

of the path is (0,0) or (0,0) is single diagonally connected to the first cell, and the

last cell of the path is the only cell not contained in [−t, t]d × [−t, t]. Also, define

�
sup
κ,t as the set of all support connected DD-paths of cells of scale at most κ so that

the extended support of the first cell of the path contains R1(0,0) or (0,0) is single

diagonally connected to a scale 1 cell that is contained in the extended support of

the first cell of the path, and the last cell of the path is the only cell whose extended

support is not contained in [−t, t]d ×[−t, t]. Then the lemma below states that we

can focus on support connected DD-paths instead of DD-paths with bad ancestry;

the proof is identical to the one of Lemma 5.1.

LEMMA 8.1. We have that

P[∃P ∈ �t s.t. all cells of P have a bad ancestry]

≤ P
[

∃P ∈ �
sup
κ,t s.t. all cells of P are multi-scale bad

]

.
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We next have to show that the bound from Lemma 5.5 holds for DD-paths as

well.

LEMMA 8.2. Let z be a positive integer and k1, k2, . . . , kz ≥ 1 be fixed. Then,

if α is sufficiently large, the total number of support connected DD-paths, con-

taining z cells of scales k1, k2, . . . , kz is at most exp(
c3
2

∑z
j=1 ψkj

), where c3 is the

same constant as in Lemma 5.4 and ψ is as defined in (22).

PROOF. The proof follows the same steps as the proof of Lemma 5.5. The

only changes are that the first cell of a DD-path need not contain (0,0) and the

number of different relative positions in step 3 of the proof.

For the former, we note that the extended support of the first cell of the support

connected DD-path still has to contain (0,0) or (0,0) has to be single diagonally

connected to a scale 1 cell in the extended support of the first cell. If we define

χk1
as in Lemma 5.5, then the first case is already counted by χk1

. Otherwise, note

that if we fix the relative position of the first and final cell of the single diagonal

connecting (0,0) to the extended support of the first cell, we only need to control

the number of such relative positions, which is done in step 3. Therefore, it only

remains to prove step 3 of the proof for DD-paths.

Consider two consecutive cells of the DD-path that are single diagonally con-

nected and let (1, i, τ ) be a cell contained in the extended support of the first cell

that is single diagonally connected to a cell (1, i ′, τ ′) that is contained in the ex-

tended support of the second cell. Then, as in the proof of Lemma 5.5 we can

define

A(x) = max
(b1,h1)∈Zd+1

∣

∣

{

(b2, h2) ∈ Zd+1 : |h2 − h1| = x and

(b1, h1) is diagonally connected to (b2, h2)
}
∣

∣.

Consider now two consecutive cells of the DD-path that are double diagonally

connected and let (1, i, τ ) be a cell contained in the extended support of the first

cell that is double diagonally connected to a cell (1, i ′, τ ′) that is contained in the

extended support of the second cell. Furthermore, let (1, i ′′, τ ′′) be the cell of the

double diagonal that (1, i, τ ) or (1, i ′, τ ′) is diagonally linked to. Then, if x is the

height difference between (1, i, τ ) and (1, i′′, τ ′′) and y is the height difference

between (1, i ′, τ ′) and (1, i ′′, τ ′′), we can bound the number of different relative

positions of (1, i ′, τ ′) with respect to (1, i, τ ), such that the height difference be-

tween (1, i, τ ) and (1, i ′′, τ ′′) is x and the height difference between (1, i ′, τ ′) and

(1, i ′′, τ ′′) is y by A(x + 1)A(y + 1).

Let Hk be the side length of the cube S
2sup
k (i) relative to S1(i), as in the proof

of Lemma 5.5. Therefore, given the z cells of scales k1, k2, . . . , kz, the maximum
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FIG. 9. Example of a DD-path where the first cell of the path is diagonally connected to (0,0), is

double diagonally connected to the second cell, and the second and third cells are adjacent.

number of scale 1 diagonal steps contained in all single and double diagonal con-

nections between the cells of the path is at most

H := 2

z−1
∑

i=1

Hki
.

For notational convenience, when two consecutive cells (k, i, τ ) and (k′, i ′, τ ′) of

the DD-path are double diagonally connected, we now consider as part of the path

also the cell (1, i′′, τ ′′) of the double diagonal that both (k, i, τ ) and (k′, i ′, τ ′) are

diagonally connected to. Then letting xi , for i ∈ {1,2, . . . ,2z−1} be the height dif-

ference between two diagonally connected cells, with xi = 0 if the cells are support

adjacent, we have that the number of possible configurations of the diagonal steps

is at most

(39)

H
∑

y=0

∑

x1,x2,...,x2z−1

x1+···+x2z−1=y

A(x1 + 1)A(x2 + 1) · · ·A(x2z−1 + 1).

See Figure 9 for an illustration of one such configuration. As in the proof of

Lemma 5.5, we have that

A(x1 + 1)A(x2 + 1) · · ·A(x2z−1 + 1) ≤ A

(

y

2z − 1
+ 1

)2z−1

.

Next, using the above bound and

∑

x1,x2,...,x2z−1:
x1+···+x2z−1=y

1 =
(

2z + y − 2

2z − 2

)

,
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we have that the sum in (39) is smaller than

H
∑

y=0

(

2z + y − 2

2z − 2

)

A

(

y

2z − 1
+ 1

)2z−1

≤
(

2z + H

2z

)

A

(

H

2z − 1
+ 1

)2z−1

,

where the binomial inequality used can easily be proven by induction (using Pas-

cal’s rule).

Then, for some positive constants C and C2, we have

(

2z + H

2z

)

A

(

H

2z − 1
+ 1

)2z−1

≤ C
(2z + H)2z

(2z)!

(

H

2z − 1
+ 1

)(2z−1)d

≤ C
(2z + H)2z

(2z/3)2z

(

2H

2z

)2zd

≤ C
(

3 + 3H/(2z)
)2z
(

H

z

)2zd

≤ C

(

C2
H

z

)4zd

.

In order to complete the proof, it remains to show that C(C2
H
z
)4zd ≤

exp{ c3
8

∑z
j=1 ψkj

}, which is equivalent to showing that

(40) C̃z log

(

H

z

)

≤
z
∑

j=1

ψkj
,

where C̃ is some constant. Setting m and α sufficiently large, this holds using the

same argument as in the proof of Lemma 5.5. �

Similar to Lemma 5.5, if d ≥ 3 we have that Lemma 8.2 holds also when we set

time to be height in the base-height index. For d = 2, one can construct a similar

counterexample as the one outlined in Remark 5.2.

LEMMA 8.3. Let t > 0 and let P = ((k1, i1, τ1), (k2, i2, τ2), . . . , (kz, iz, τz))

be a path in �
sup
κ−1,t . If α is sufficiently large and κ = O(log t), then there exist a

positive constant c = c(CM) and a value C independent of t such that

z
∑

j=1

ψkj
≥

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

C

√
t

(log t)c
for d = 1,

C
t

(log t)c
for d = 2,

Ct for d ≥ 3.

(41)
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PROOF. The proof is identical to the proof of Lemma 5.6, save for one change.

In Lemma 5.6, when considering the sum across the cells of the path, we require

that
∑z

j=1 �
2sup
kj

≥ t/2. Since we now consider two diagonals per cell instead of

just one, the term on the right-hand side has to be changed to t/3 in order for the

statement to still hold. The rest of the proof is unchanged. �

We now define the analogous set of K(i, τ ) for DD-paths. Given an increasing

event Est(i, τ ), let E(i, τ ) be the indicator random variable of Est(i, τ ).

DEFINITION 8.2. Let (i, τ ) ∈ Zd+1. If E(i, τ ) = 1, define K∗(i, τ ) = ∅; oth-

erwise, define K∗(i, τ ) as the set
{(

i ′, τ ′) ∈ Zd+1 : E
(

i ′, τ ′)= 0 and

∃a DD-path of bad cells from (i, τ ) to
(

i ′, τ ′)}.

PROPOSITION 8.1. For each (i, τ ) ∈ Zd+1, let Est(i, τ ) be an increasing event

that is restricted to the super-cube i and the super-interval τ , and let νEst be the

probability associated to Est as defined in Definition 2.3. Fix a constant ε ∈ (0,1),

and integer η ≥ 1 and the ratio β/ℓ2 > 0. Fix also w such that

w ≥
√

ηβ

c2ℓ2
log

(

8c1

ε

)

,

for some constants c1 and c2 which depend only on the graph. Then there exist

constants c and C, and positive numbers α0 and t0 that depend on ε, η, w and the

ratio β/ℓ2 such that if

α = min

{

C−1
M ε2λ0ℓ

d , log

(

1

1 − νEst((1 − ε)λ,Q(2η+1)ℓ,Qwℓ, ηβ)

)}

≥ α0,

we have for all t ≥ t0 that

P
[

K∗(0,0)�R
t
1

]

≤

⎧

⎪

⎨

⎪

⎩

exp

{

−Cλ0
t

(log t)c

}

for d = 2,

exp{−Cλ0t} for d ≥ 3.

PROOF. The proof of this result proceeds in the same way as the proof of

Proposition 6.1, by replacing Lemma 5.1 with Lemma 8.1, Lemma 5.5 with

Lemma 8.2 and Lemma 5.6 with Lemma 8.3. �

We now argue that Proposition 8.1 implies that the Lipschitz surface not only

almost surely exists as shown in Theorem 2.1, but that areas of the surface that

have nonzero height are finite as well. To see why, denote with ui = (bi,0)

sites in L and consider a path along the surface F . More precisely, let π =
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{(b1,F+(u1)), (b2,F+(u1)), . . . , (bn,F+(un))} be such that F+(ui) = 0 for all

i ∈ {1, . . . , n} and ‖ui − ui−1‖1 = 1 for all i ∈ {2, . . . , n}. If such a path exists,

then both sides of the Lipschitz surface have nonzero height at least at the cells of

the path, so one can follow the path (u1, u2 . . . , un) and never reach the Lipschitz

surface F . Conversely, if a path π as above that leaves a ball of finite radius does

not exist, a self-avoiding path will have to reach the surface in finitely many steps.

Furthermore, since time is one of the d + 1 dimensions, one cannot construct a

time directed path without it containing a cell (b,F+(u)) or (b,F−(u)) for some

u = (b,0) ∈ L within a finite number of steps. This follows from the fact that by

Theorem 2.1 the surface is a.s. finite, so a path can avoid intersecting it indefinitely

only if there is always at least one way to construct a path between to the two sides

of the surface. If however, paths along which the two sides of the surface have

nonzero height cannot have arbitrary length, we get that avoiding the two sides

indefinitely is impossible.

To simplify things, we first observe that we can limit ourselves to only the pos-

itive Lipschitz open surface, since F+(u) = 0 if and only if F−(u) = 0, by the

definition of the two sides of the surface.

Recall from Section 3 the definition of a hill Hu. In the following, we will use

Hi , i ∈ Z to differentiate between different hills without specifying a cell u ∈ L for

which Hi = Hu. We now show that the existence of a path along the surface with

only positive heights implies the existence of a sequence of hills that are pairwise

intersecting or adjacent. Formally, we define the following.

DEFINITION 8.3. We say a hill Hi is adjacent to a hill Hi′ , if there exist a

cell u ∈ Hi and a cell v ∈ Hi′ such that ‖u − v‖1 = 1. We say Hi and Hi′ are

intersecting, if there exists a cell u such that u ∈ Hi and u ∈ Hi′ .

LEMMA 8.4. Write ui = (bi,0) ∈ L and let π = {(b1,F+(u1)), (b2,F+(u2)),

. . . , (bn,F+(un))} be a path, such that for all i ∈ {1, . . . , n}, F+(ui) = 0. Then

there exists a sequence of hills H = H1,H2, . . . ,Hk , k ≤ n, such that for every uℓ

there exists a hill Hk ∈ H that contains uℓ, and such that for all i ∈ {1, . . . , k},
there exists at least one j = i, j ∈ {1, . . . , k}, for which Hi intersects with or is

adjacent to Hj .

PROOF. We will prove the existence of the sequence of hills iteratively. Let

H = ∅ be the set of all hills that are part of the sequence already. We then add

hills to H in the following manner. Let u = (b,0) be the first cell of the path P =
((b1,0), (b2,0), . . . , (bn,0)) that is not contained in

⋃

H∈H H . Since F+(u) = 0

by assumption, there has to exist at least one cell v ∈ L such that u ∈ Hv . Since the

cell u is contained in Hv and it is adjacent to at least 1 cell contained in
⋃

H∈H H

(except for when H =∅), we get that Hv and at least one hill from H are adjacent

or they intersect. We add Hv to H, remove all cells of P that are contained in Hv

from P , and repeat the procedure. After at most n steps, the recursion ends and H
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is a set of k hills for some k ≤ n, such that every hill intersects or is adjacent to at

least one other hill in the set. �

We now want to show that if the sequence of hills H from Lemma 8.4 exists,

then a DD-path exists between any two cells contained in
⋃

H∈H H .

LEMMA 8.5. Let H = H1,H2, . . . ,Hk be a sequence of hills as in Lemma 8.4.

For any two (b,0), (b′,0) ∈⋃Hi∈H Hi , there exists a DD-path that starts in (b,0)

and ends in (b′,0).

PROOF. Let u1, u2, . . . , uk ∈ L be the cells such that Hi = Hui
for all i ∈

{1,2, . . . , k}. Next, observe that by the definition of H, there exists a sequence

of hills Hi1,Hi2, . . . ,Hiℓ such that (b,0) ∈ Hi1 , (b′,0) ∈ Hiℓ and every hill in

the sequence is adjacent or intersecting with the subsequent hill. For every j ∈
{1,2, . . . , ℓ}, let vij ∈ Hij be a cell that is contained in Hij+1

or adjacent to a cell

in Hij+1
.

By definition of a hill, there exists a d-path P1 from ui1 to (b,0). Furthermore,

there exists a d-path P2 from ui1 to vi1 and a d-path P3 from ui2 to vi1 or a cell

that is adjacent to vi1 . By repeating this, we obtain the sequence of cells

(b,0), ui1, vi1, ui2, vi2, . . . , viℓ−1
, uiℓ,
(

b′,0
)

,

where there exists a d-path from the first cell to the second or from the second to

the first (or a cell adjacent to it) for every consecutive pair of cells. It remains to

show that this implies that there exists a DD-path from (b,0) to (b′,0).

Note first that similar to D-paths, every d-path is also a DD-path. This follows

directly from the fact that DD-paths are defined as an extension of D-paths. Next,

note that if a sequence of cells (w1,w2, . . . ,wn) ∈ Zd+1 is a DD-path, then the

reverse sequence, that is, (wn,wn−1, . . . ,w1) is also a DD-path. This follows triv-

ially from the fact that being adjacent, single diagonally connected and double

diagonally connected are all symmetric relationships between cells. Finally, note

that if there exists a DD-path from a cell w1 to some cell w2 and there exists a

DD-path from w2 to w3, then there exists at least one DD-path from w1 to w3.

Once such path can be constructed by concatenating the two DD-paths and re-

moving any cells in the concatenated path that would result in loops, that is, if a

site appears in the concatenated path more than once, remove from the path all

sites between the first and last appearance of the site in the path, as well as the last

appearance of the site.

Then, using these facts with the sequence,

(b,0), ui1, vi1, ui2, vi2, . . . , viℓ−1
, uiℓ,
(

b′,0
)

,

concludes the lemma. �

We are now ready to prove Theorem 2.2.
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PROOF OF THEOREM 2.2. Note that the open Lipschitz surface exists a.s. by

Theorem 3.1, so we only need to show that it surrounds the origin at some finite

distance.

Assume the converse. Then, for any r > 0 there must exist a path of adjacent

cells (0,0) = (b1,0), . . . , (bn,0) with ‖(bn,0)‖1 > r , such that F+((bi,0)) = 0

for all i ∈ {1, . . . , n}. By Lemma 8.4, this implies the existence of a sequence of

hills such that the first one contains the origin and the last one contains (bn,0). By

Lemma 8.5, this gives the existence of a DD-path from the origin to (bn,0).

Note that by Proposition 8.1, for t ≥ t0 we have that the probability that such a

DD-path exists is smaller than

P
[

K∗(0,0)�R
t
1

]

≤

⎧

⎪

⎨

⎪

⎩

exp

{

−Cλ0
t

(log t)c

}

for d = 2,

exp{−Cλ0t} for d ≥ 3.

From here, setting t = (d
ℓ

+ 1
cℓ2 )−1r and using the same steps as in the proof of

Theorem 2.1 establishes the claim for r ≥ r0 := (d
ℓ

+ 1
cℓ2 )t0. �

Next, we show that Corollary 2.3 holds. Observe first the following well-known

geometric property. Let B2 be the plane spanned by any two base vectors of the

base-height index. Recall also the definition of L = {(x,0), x ∈ Zd}, the zero-

height hyperplane of Zd+1. It then holds that

P
[

zero height cells percolate in B2]

≤ P[zero height cells percolate in L],

since it clearly holds that the first event implies the second. Therefore, it is enough

to show that the first probability is positive for Corollary 2.3 to hold.

COROLLARY 8.1. Let d = 2 and let Est(i, τ ) be an increasing event restricted

to the super-cell (i, τ ). If ℓ is sufficiently large and P[Est(0,0)] is large enough,

then F ∩L percolates within L with positive probability.

PROOF. Assume without loss of generality that the origin is contained in F ∩L
and assume that the cluster of F ∩L that contains the origin is finite. Let x, y ∈ F ∩
L be two cells of this cluster for which ‖x −y‖1 is largest, and let k := ⌈‖x −y‖1⌉.

Then there exists a sequence cells v1, v2, . . . , vn ∈ L for some n ≥ 2k such that

F+(vi) > 0 for all i ∈ {1,2, . . . , n}, any two consecutive cells are adjacent, that is,

‖vi − v′
i‖∞ = 1, and such that ‖vn − v1‖∞ = 1. Furthermore, each such sequence

contains at least 2 cells u, v ∈ L for which ‖u − v‖1 ≥ k. By using Lemmas 8.4

and 8.5, this gives that there exists a DD-path that begins in u and ends in v. Let

r0 be a sufficiently large value of r so that Theorem 2.2 holds. We then have for
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k ≥ r0, by using that the probability space is space and time translation invariant

that

P[the cluster F ∩L around the origin has diameter k]
≤ P[a DD-path started at the origin leaves the ball

of radius k centered at the origin]

≤ exp

{

−Cλ
ℓk

(logℓk)c

}

,

where the second inequality follows from the same argument as in the proof of

Theorem 2.2. For k < r0, we can bound the probability by Cr2
0P[Est(0,0)c] for

some positive constant C, since a closed cell implies that the Lipschitz function

F+ is nonzero. Therefore, we get that the probability the zero-height cluster F ∩L
at the origin is not finite is greater than

1 − Cr2
0P
[

Est(0,0)c
]

−
∑

k≥r0

exp

{

−Cλ
ℓk

(logℓk)c

}

,

which is positive for sufficiently large ℓ, if P[Est(0,0)] is large enough. �

APPENDIX: STANDARD RESULTS

LEMMA A.1 (Chernoff bound for Poisson). Let P be a Poisson random vari-

able with mean λ. Then, for any 0 < ε < 1,

P
[

P < (1 − ε)λ
]

< exp
{

−λε2/2
}

and

P
[

P > (1 + ε)λ
]

< exp
{

−λε2/4
}

.

LEMMA A.2. Let x, y ∈ Z+. Then, for any c1, c2 > 1, we have

(

x + y

x

)

e−(c1x+c2y) ≤ e−(c1−1)x−(c2−1)y .

PROOF. Since
(x+y

x

)

=
(x+y

y

)

, we can assume that x ≥ y. Then we use the

inequality
(x+y

x

)

≤ (
(x+y)e

x
)x to obtain

(

x + y

x

)

e−c1x−c2y ≤
(

1 + y

x

)x

e−(c1−1)x−c2y ≤ e−(c1−1)x−(c2−1)y .
�
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