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Abstract. Weight-dependent random connection graphs are a class of
local network models that combine scale-free degree distribution, small-
world properties and clustering. In this talk we discuss recurrence or
transience of these graphs, features that are relevant for the performance
of search and information diffusion algorithms on the network.
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1 Introduction and statement of results

1.1 Motivation

In the age of “big data” we are increasingly faced with data that is not linearly
structured and instead organised in the form of networks. Algorithmic processing
of such data is often dependent on the topological connectivity properties of the
network. In this paper we therefore investigate finer connectivity features of a
range of random network models. Features shared by these models are:

– They are scale-free, i.e., the proportion of nodes with k neighbours is of order
k−τ+o(1) for some power law exponent τ .

– They are clustering, i.e., local neighbourhoods of a node have a much higher
connectivity than the overall network.

– They are small worlds, i.e., the graph distances are no more than polyloga-
rithmic with respect to the system size.

Under the further assumption that the power law exponent τ is sufficiently small,
the models have the following additional features:
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– They are ultrasmall, i.e., the shortest path between two typical nodes in the
graph is doubly logarithmic in the size of the graph.

– They are robust, i.e., if an arbitrarily large proportion of links is randomly
removed the qualitative features of the network remain unchanged.

A prototype of such a network is the age-based spatial preferential attachment
model introduced in [8]. In this model nodes arrive after exponential waiting
times and upon birth are placed randomly on the unit torus T

d. They connect
independently to all existing nodes with a probability which is a decreasing
function of the spatial distance and the birth times of both vertices. This network
model is a simplification of the spatial preferential attachment model in [16] and,
in a less general setup, in [1], which however is believed to retain all essential
features of the more complex original spatial preferential attachment model.

The major tool to study the age-based spatial preferential attachment model
is to look at a local limit graph on Rd. Such a graph describes the scaled neigh-
bourhoods of a typical vertex in the network at a large time; long term averaged
features of the network are reflected in the features of the limiting graph. It is
shown in [8] that the limiting graph for the age-based spatial preferential attach-
ment model is the age-dependent random connection model, which is a special
case of the class of weight-dependent random connection models studied in this
paper and introduced below. This connection is used in [8] to show scale-freeness
and clustering, and in [9,11] to identify regimes of robustness and ultrasmallness
of the age-based spatial preferential attachment model.

In the context of information propagation, further properties of networks are
relevant: How long does it take for the information to propagate and reach a set
of targets for the first time? Does a target node receive the information at all (or
is it possible that information bypasses it)? Can a single source result in informa-
tion reaching a target in more than one way? Conversely, can information travel
through the network without being “detected” by a large proportion of the net-
work? Such questions are tightly connected to (and often well described by) the
behaviour of a random walker on the network. In many cases, the behaviour of
the walker is crucial for the development of random walk based search strategies,
cf. [27]. The present paper addresses the problem of recurrence or transience of
the limiting graph. Recurrence means that a random walker returns infinitely
often to its origin and it is a prerequisite for the functioning of many search and
information diffusion algorithms on networks [23].

1.2 The weight-dependent random connection model

We study the transient/recurrent behaviour of a class of infinite graphs that,
although not necessarily built as a limit of a growing sequence of finite graphs as
in our motivating example, are built using similarly simple rules to connect pairs
of vertices. We call this class of graphs the weight-dependent random connection
model and we now describe the building principles they all have in common.
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The vertex set of the model is a Poisson process of unit intensity on Rd×[0, 1].
We think of a Poisson point x = (x, s) as a vertex at position x with weight s−1.
Two vertices x = (x, s) and y = (y, t) are connected by an edge with probability
ϕ(x,y) for a connectivity function

ϕ : (Rd × [0, 1])× (Rd × [0, 1]) → [0, 1], (1)

satisfying ϕ(x,y) = ϕ(y,x). Connections between different (unordered) pairs of
vertices occur independently. We assume throughout that ϕ has the form

ϕ(x,y) = ϕ
(

(x, s), (y, t)
)

= ρ
(

β−1 g(s, t) |x− y|d
)

(2)

for a non-increasing, integrable profile function ρ : R+ → [0, 1], a percolation
parameter β > 0 and a kernel function g : [0, 1]× [0, 1] → R+. The parameter β
controls the edge density in a monotone way; increasing β increases the number
of edges connected to a vertex at the origin. Varying β can also be interpreted
as rescaling distances, and therefore it is equivalent to varying the intensity of
the underlying Poisson process. We assume further that g is non-increasing in
both arguments, so that vertices whose positions are far apart are less likely to
be connected. Without loss of generality we scale the profile function as

∫

Rd

ρ(|x|d) dx = 1. (3)

Then it is easy to see that the degree distribution of a vertex does not depend
on ρ, which however influences the likelihood of long edges.

We next give concrete examples for the kernel function g, and demonstrate
that our setup yields a number of well-known models in continuum percola-
tion theory. We define the functions in terms of a parameter γ ∈ (0, 1), which
determines the strength of the influence of the vertex weight on the connection
probabilities; large γ correspond to strong favouring of vertices with large weight.
The models considered below are all scale-free with power-law exponent

τ = 1 + 1
γ
,

which means that, in probability as N → ∞,

# vertices x ∈ [−N,N ]d with degree k

# vertices x ∈ [−N,N ]d
→ µ(k), and µ(k) = k−τ+o(1).

(A) We define the plain kernel as

gplain(s, t) = 1. (4)

In this case we have no dependence on the weights. If ρ(r) = 1[0,a] for a =
d
√

d/ωd and ωd is the area of the unit sphere in Rd, this gives the Gilbert
disc model with radius d

√
βa. Functions ρ of more general form lead to the

(ordinary) random connection model, including in particular a continuum
version of long-range percolation when ρ has polynomial decay at infinity.
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(B) We define the sum kernel as

gsum(s, t) =
(

s−γ + t−γ
)−1

. (5)

Interpreting (as−γ)1/d, (at−γ)1/d as random radii and letting ρ(r) = 1[0,a]
we get the Boolean model in which two vertices are connected by an edge
if the associated balls intersect. We get a further variant of the model with
the min-kernel defined as

gmin(s, t) = (s ∧ t)γ ,

which, as gsum ≤ gmin ≤ 2gsum, shows qualitatively the same behaviour.

(C) For the max-kernel defined as

gmax(s, t) = (s ∨ t)1+γ ,

we may choose any γ > 0. This is a continuum version and generalization
of the ultra-small scale-free geometric networks of Yukich [28], which is also
parametrized to have power-law exponent τ = 1 + 1

γ
.

(D) A particularly interesting case is the product kernel

gprod(s, t) = sγtγ , (6)

which leads to a continuum version of the scale-free percolation model of
Deijfen et al. [4,13], see also [5,6]. This model combines features of scale-
free random graphs and polynomial-decay long-range percolation models
(for suitable choice of ρ).

(E) Our final example for g is the preferential attachment kernel

gpa(s, t) = (s ∨ t)1−γ(s ∧ t)γ , (7)

which gives rise to the age-dependent random connection model introduced
by Gracar et al. [8] as local weak limit of the age-based preferential at-
tachment model, which is a simplification and approximation of the spatial
preferential attachment model in Jacob and Mörters [16]. In this model, s
and t actually play the role of the birth times of vertices in the underlying
dynamic network. This model also combines scale-free degree distributions
with power-law exponent τ = 1 + 1

γ
and long edges in a natural way, but

has a fundamentally different graph topology, as we will see.

The above listed kernels represent only some of the possible choices. We refer
the reader to Table 1 for a short literature survey of the terminology under which
the above kernels appear in the literature.
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Table 1. Terminology of the models in the literature.

Vertices Profile Kernel Name and reference

Poisson indicator plain Random geometric graph, Gilbert disc model [24]
Poisson general plain Random connection model [20]

Soft random geometric graph [25]
lattice polynomial plain Long-range percolation [2]
Poisson indicator sum Boolean model [12,21]
lattice indicator max Ultra-small scale-free geometric networks [28]
Poisson indicator min Scale-free Gilbert graph [15]
lattice polynomial prod Scale-free percolation [4,13]
Poisson polynomial prod Inhomogeneous long-range percolation [5]

Continuum scale-free percolation [6]
Poisson general prod Geometric inhomogeneous random graphs [3]
Poisson general pa Age-dependent random connection model [8]

1.3 Main results

We now focus on a profile function with polynomial decay

lim
v→∞

ρ(v) vδ = 1 for a parameter δ > 1, (8)

and fix one of the kernel functions described above. We keep γ, δ fixed and study
the resulting graph Gβ as a function of β. Note that our assumptions δ > 1 and
γ < 1 guarantee that Gβ is locally finite for all values of β, cf. [8, p. 315]. We
informally define βc as the infimum over all values of β such that Gβ contains
an infinite component (henceforth the infinite cluster). If d ≥ 2, we always have
βc < ∞, cf. [13]. General arguments in [7] yield that there is at most one infinite
component of Gβ , and hence there is a unique infinite component whenever
β > βc. We study the properties of this infinite cluster.

Two cases correspond to different network topologies.

– If γ > 1
2 for the product kernel, γ > 0 for the max kernel, or γ > δ

δ+1 for the
preferential attachment, min or sum kernels we have βc = 0, i.e. there exists
an infinite cluster irrespective of the edge density, see [13] for product, [28]
for max and [17,11] for all other kernels. We say that this is the robust case.

– Otherwise, if γ < 1
2 for the product kernel, see [13], or if γ < δ

δ+1 for the
preferential attachment, min or sum kernels, we have βc > 0. This was
recently shown in [11]. In this case we say we are in the non-robust case.

Our main interest is whether the infinite cluster is recurrent (i.e., simple ran-
dom walk on the cluster returns to its starting point almost surely), or transient
(i.e., simple random walk on the cluster never returns to its starting point with
positive probability). Our results are summarized in the following theorem.
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Theorem 1 (Recurrence vs. transience of the weight-dependent ran-
dom connection model). Consider the weight-dependent random connection
model with profile function satisfying(8).

(a) For preferential attachment kernel, sum kernel, or min kernel and β > βc,
the infinite component is
– transient if either 1 < δ < 2 or γ > δ/(δ + 1);
– recurrent if d ∈ {1, 2}, δ > 2 and if γ < δ/(δ + 1).

(b) For the product kernel and β > βc, the infinite component is
– transient if either 1 < δ < 2 or γ > 1/2;
– recurrent if d ∈ {1, 2}, δ > 2 and if γ < 1/2.

(c) For the max kernel and β > βc, the infinite component is transient.

γ
0 1/2 1

recurrent for d = 1, 2

γ = δ
δ+1

δ

1

2

transient

transient

γ
0 1/2 1

recurrent for

d = 1, 2

δ

1

2 transient

transient

Fig. 1. The different phases in Theorem 1: Left: preferential attachment kernel. Right:
product kernel. The dashed line separates the robust from the non-robust phase.

For a summary of the results we refer to Figure 1. We describe the proof of
this theorem in Sections 3 and 4, and refer to the journal version [10] for the full
argument.

Remarks:

– Loosely speaking, for the models in (a) and (b) the walk can travel to infinity
using long edges if there are enough of them, i.e. if δ < 2. For the models
in (a) the walk can also use that vertices of ever increasing weight can be
reached using a pool of intermediate vertices, which is big enough if δ < γ

1−γ
.

For the model in (b) with γ > 1
2 and the model in (c) with 0 < γ < 1 the

walk can travel directly between vertices of increasing weight without using
intermediate edges.
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– When δ > 2 and γ < δ
δ+1 for the preferential attachment kernel resp. γ < 1

2
for the product kernel, we expect that the long-range and scale-free effects
do not influence the behaviour of the random walk, so that for d ≥ 3 the
infinite cluster would be transient. A mathematical proof of transience in
this regime (even for long-range percolation) has not yet been found. We
plan to address this in future work.

2 The weight-dependent random connection model

Construction as a point process on (Rd
× [0, 1])[2]× [0, 1]. We give now a

more formal construction of our model. To this end, we extend the construction
given in [14, Sections 2.1 and 2.2] by additional vertex marks (the weight or birth
time). For further constructions, see Last and Ziesche [19] and Meester and Roy
[22]. We construct the random connection model as a deterministic functional
Gϕ(ξ) of a suitable point process ξ. Let η denote a unit intensity Rd-valued
Poisson point process, which we can write as

η = {Xi : i ∈ N}; (9)

such enumeration is possible, cf. [18, Corollary 6.5]. In order to define random
walks on the random connection model, it is convenient to have a designated
(starting) point, and we therefore add an extra point X0 = 0 and thereby get a
Palm version of the Poisson point process.

We further equip any Poisson point Xi (i ≥ 0) with an independent mark
Si drawn uniformly from the interval (0, 1). This defines a point process η′ :=
{Xi = (Xi, Si) : i ∈ N0} on R

d × (0, 1). Let (Rd × (0, 1))[2] denote the space of
all sets e ⊂ R

d ×M with exactly two elements; these are the potential edges of
the graph. We further introduce independent random variables (Ui,j : i, j ∈ N0)
uniformly distributed on the unit interval (0, 1) such that the double sequence
(Ui,j) is independent of η′. Using < for the strict lexicographical order on Rd,
we can now define

ξ :=
{(

{(Xi, Si), (Xj , Sj)}, Ui,j

)

: Xi < Xj , i, j ∈ N0

}

, (10)

which is a point process on (Rd×(0, 1))[2]×(0, 1). Mind that η′ might be recovered
from ξ. Even though the definition of ξ does depend on the ordering of the points
of η, its distribution does not.

We can now define the weight-dependent random connection model Gϕ(ξ) as
a deterministic functional of ξ; its vertex and edge sets are given as

V (Gϕ(ξ)) = η′,

E(Gϕ(ξ)) = {{Xi,Xj} ∈ V (Gϕ(ξ))
[2] : Xi < Xj , Ui,j ≤ ϕ(Xi,Xj), i, j ∈ N0}.

Only in this section we write Gϕ(ξ) in order to make the dependence on the
connection function ϕ explicit; in the following sections we will fix a kernel
function as well as the parameters δ and γ, and therefore only write Gβ = Gβ(ξ).
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Percolation. Our construction ensures that 0 := (X0, S0) ∈ V (Gϕ(ξ)). We now
write {0 ↔ ∞} for the event that the random graph Gϕ(ξ) contains an infinite
self-avoiding path (v1, v2, v3, . . . ) of vertices with vi ∈ V (Gϕ(ξ)) (i ∈ N) such
that {0, v1}, {v1, v2}, {v2, v3} · · · ∈ E(Gϕ(ξ)), and we say that in this case the
graph percolates. We denote the percolation probability by

θ(β) = P(0 ↔ ∞ in Gϕ(ξ));

for the probability that this happens; this quantity is well-defined by the mono-
tonicity of the right-hand side in β. This allows us to define the critical percola-
tion threshold as

βc := inf{β > 0 : θ(β) > 0} ≥ 0. (11)

Random walks. We recall that, as γ < 1, the resulting graph Gϕ(ξ) is locally
finite, i.e.

∑

y∈V (Gϕ(ξ))

{{x,y} ∈ E(Gϕ(ξ))} < ∞ for all x ∈ V (Gϕ(ξ)) almost surely,

cf. [8, p. 315]. Given Gϕ(ξ) with 0 ↔ ∞ we define the simple random walk on the
random graph Gϕ(ξ) as the discrete-time stochastic process for which X0 = 0
and

PGϕ(ξ)(Xn = y | Xn−1 = x) =

{

{x,y} ∈ E(Gϕ(ξ))
}

∑

z∈V (Gϕ(ξ))

{

{x, z} ∈ E(Gϕ(ξ))
}

for any x,y ∈ V (Gϕ(ξ)) and n ∈ N. We say that Gϕ(ξ) is recurrent if

PGϕ(ξ)
(

∃n ≥ 1 : Xn = 0
)

= 1,

otherwise we say that it is transient.

3 Transience

In this section we outline the key steps needed to prove the transience statement
of Theorem 1. Throughout, we write Gβ instead of Gϕ(ξ) to stress that kernel
and profile are fixed and the percolation parameter is β.

3.1 Transience in the robust case

Proving transient behaviour for the robust case hinges on a renormalisation se-
quence argument. Heuristically, we consider a finite box in Rd and the largest
cluster of connected vertices inside of this box. Then, if the box is chosen suffi-
ciently large, the probability that this cluster represents positive proportion of
the entire vertex set is increasing, as is the probability that within this cluster
a vertex with weight greater than some predetermined value exists. When these
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two conditions are satisfied, we consider this box good. We now, roughly speak-
ing, repeat this argument for a considerably larger box. We break this large box
into disjoint boxes of the previous scale and consider only those boxes which
satisfy the two conditions (which occurs independently and with uniform prob-
ability for all boxes). Then, we call the bigger box good whenever a sufficiently
large proportion of the boxes contained therein are good, they are sufficiently
well connected with each other and there exists a vertex in this newly constructed
cluster with weight greater than an even larger predetermined value.

Repeating this procedure at greater and greater scales we obtain a renor-
malised graph sequence that is contained in the infinite component of the graph
and can be shown to be transient with a fairly straightforward argument. We
formalise this statement in the following two results and leave the proof of The-
orem 2 for the full version of this paper [10].

Given a graph G = (V,E) and a sequence {Cn}
∞

n=1 let Vl(jl, . . . , j1) with
l ∈ N and jn ∈ {1, . . . , Cn} be a subset of the vertex set V . Now let for l ≥ m

Vl(jl, . . . , jm) =

Cm−1
⋃

jm−1=1

· · ·

C1
⋃

j1=1

Vl(jl, . . . , j1).

We call the sets Vl(jl, . . . , jm) bags, and the numbers Cn bag sizes.

Definition 1. We say that the graph G = (V,E) is renormalized for the se-
quence {Cn}

∞

n=1 if we can construct an infinite sequence of graphs such that
the vertices of the l-th stage graph are labelled by Vl(jl, . . . , j1) for all jn ∈
{1, . . . , Cn}, and such that for every l ≥ m > 2, every jl, . . . , jm+1, and all pairs
of distinct um, wm ∈ {1, . . . , Cm} and um−1, wm−1 ∈ {1, . . . , Cm−1} there is an
edge in G between a vertex in the bag Vl(jl, . . . , jm+1, um, um−1) and a vertex in
the bag Vl(jl, . . . , jm+1, wm, wm−1).

The underlying intuition is that every n-th stage bag contains Cn (n−1)-stage
bags, which contains again Cn−1 (n− 2)-stage bags. Every pair of (n− 2)-stage
bags in an n stage bag is connected by an edge between one of the vertices in
the bags.

Lemma 1 (Berger, [2, Lemma 2.7]). A graph renormalized for the sequence
Cn is transient if

∑

∞

n=1 C
−1
n < ∞.

Theorem 2 (Product and max kernel contain a renormalised graph
sequence). Let β > βc for the chosen kernel. If γ > 1

2 for hprod or γ > 0 for
hmax, then the infinite connected component contains a graph renormalized for
the sequence Cn = (n+1)2d almost surely. Consequently, the infinite component
is transient.

Before we proceed to argue the result for the remaining kernels from Theo-
rem 1, we first give a heuristic argument as to why the proof for the max and
product kernel does not work for the rest. In order to demonstrate the argument,
we assume for the moment that the profile function ρ is the indicator function
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Fig. 2. The diagram illustrates the intensity of the Poisson point process of all points
that are connected to (x, t) and (y, s) for the pa kernel and a large δ. Intuitively,
the area where such points are probable (contained roughly within the 4th innermost
contour line) is sufficiently large to make the existence of a bridged connection (like the
one in red) more probable than the direct connection (which would fall well outside
the 4th innermost contour line of only (x, t) or (y, t)).

[0,c] for some constant c. The first key observation is that two nodes of the graph
that are far apart can only be connected if both of their respective weights are
large. This is especially clear in the max kernel case, since a connection between
two nodes at distance v is then only possible when both of their weights are
greater than β

c v
d/(1+γ). A similar observation can be made for the product ker-

nel - if one of the weights is small, the other weight must be considerably bigger
to ensure their product is large enough.

For the other kernels, both weights being large is similarly beneficial; it should
be remarked however that the probability of both weights being large is not suf-
ficiently offset by the increase in the connection probability. Unlike in the above
example, only the first heavy weight leads to a big increase in the probability of
a connection existing (the second weight has a considerably smaller effect on the
probability). In contrast to the max and product kernel, however, if the profile
function has sufficiently heavy tails at infinity, an alternative strategy exists. We
can connect pairs of nodes with large weights through a connector node with a
comparatively small weight. Intuitively, since the smaller of the weights in a pair
does not affect the connection probability of two nodes for the min kernel (and
affects the probability at a lower order than the large weight in the sum and
pa kernel), we can attempt to connect two far away nodes with large weights
through nodes of smaller weight. Their large number then makes the probabil-
ity of such a bridged connection sufficiently high to again obtain a renormalised
graph sequence.
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Therefore, although the construction of Theorem 2 does not yield the desired
renormalised graph sequence for the remaining kernels when using direct con-
nections, it does lead to the stated result when using the bridged connections
instead. We state the main properties that hold for these connections in the
following proposition.

Proposition 1 (Occurrence of bridged connections). Let (x, t) and (y, s)
be two nodes of the graph with t > s. Then there exists a positive constant C
such that the probability that there exists a bridged connection between the two
vertices is at least

1− exp{−Cs−γρ(β−1tγ(s
−γ
d + |x− y|)d)}.

Furthermore, this probability is monotonically decreasing in |x− y|.

A direct consequence of Proposition 1 is that one can, using the same construc-
tion as used to prove Theorem 2, obtain a renormalised graph sequence satisfying
the conditions of Lemma 1 which leads to the following result.

Theorem 3 (Min, sum and preferential attachment kernel contain a
renormalised graph sequence). Suppose γ > δ

δ+1 and the kernel is hmin,
hsum or hpa. Then if β > βc the infinite connected component contains a graph
renormalized for the sequence Cn = (n + 1)2d almost surely. Consequently, the
infinite component is transient.

3.2 Transience in the non-robust case

Similar to the robust case, transience in the non-robust case requires a renor-
malisation argument. However, unlike in the previous section, the paths which
carry the random walk out of any finite neighbourhood of 0 are not supported
by vertices of extremely large weight which in turn are incident to very long
edges, independently of the overall density of edges. Instead, the walk travels
along a multitude of moderately long edges; if δ < 2 and β > βc then there are
sufficiently many of these edges and the walk is transient. The reason behind
this difference is the same structural feature that distinguishes robustness from
non-robustness: In the robust phase, there is a backbone of very few hubs of ex-
tremely high weight that guarantees a high connectivity of the network, whereas
in the non-robust phase, these hubs are absent and high connectivity can only
be obtained by strongly amplifying the edge density.

We have seen in Section 3.1 that the precise way of forming the connections
between vertices of large weight in the robust case depends on the form of the
kernel function g. In the non-robust case, the form of the kernel g is much less
important for the proof of transience, and only requires that the profile decays
sufficiently slowly. More precisely, we require only the existence of s∗ such that

lim inf
v→∞

ρ
(

g(s∗, s∗) v
d
)

vδd > 0, (12)
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for some δ < 2. As soon as (12) is satisfied, any supercritical weight-dependent
random connection model contains a sub-graph that shows the same qualitative
behaviour as a supercritical cluster in long-range percolation with tail expo-
nent δ, which is known to be transient [2].

Theorem 4 (Non-robust supercritical clusters are transient if δ < 2).
Let G = Gϕ(ξ) denote the weight-dependent random connection model with ρ, h
satisfying (12) for some δ < 2. If G is supercritical, then the infinite cluster is
transient.

For a detailed proof of Theorem 4 we refer the reader to the full version
of this paper [10]. Here, we provide a condensed version of our argument and
briefly discuss its limitations. To relate G to long-range percolation, we use a
coarse graining technique. Rd is partitioned into cubes and these cubes form the
sites in a long-range bond-site percolation model. Connectivity between sites is
established using the edge-probabilities inherited from the underlying weight-
dependent random connection model. The crucial ingredient is that, for a site
to be present at all in the coarse grained model, the corresponding cube needs
to contain a cluster of G that is sufficiently dense in the cube.

Proposition 2 (Local density of clusters). Let G be as in Theorem 4. For
any λ ∈ (0, 1), and any ε > 0, there is a sufficiently large M0 ∈ N, such that the
following is true for all M > M0: the probability that the cube [0,M)d contains
a cluster with at least Mλd vertices exceeds 1− ε.

The proof of Proposition 2 is precisely where the renormalisation scheme men-
tioned above comes into play. Just as in the robust case, vertices are grouped
into boxes on the initial scale. Boxes are called good if the vertices inside a box
form sufficiently large clusters, and bad if this is not the case. On all subsequent
scales, boxes themselves are grouped into larger boxes. The larger boxes are in
turn good if they have many good sub-boxes and the clusters inside these good
sub-boxes are sufficiently well-connected with each other, and thus form a single
cluster on a larger scale. When proceeding upwards in this hierarchy, one needs
to control the probability that several sub-clusters inside a box do not belong
to a single larger cluster. Our estimate for this probability is obtained from an
auxiliary construction describing how clusters inside boxes merge. To formulate
it, let δ0 ∈ (1, 2), m = (m1, . . . ,mr) with r ∈ N and mj ∈ N, j = 1, . . . , r and
let Im,δ0 denote the inhomogeneous random graph which is constructed on the
vertex set {1, . . . , r} by creating edges between 1 ≤ i < j ≤ r independently
with probability

1− e−mimj/(
∑r

k=1
mk)

δ0

.

It is instructive to interpret m as mass distribution and |m| :=
∑r

k=1 mk as total
mass of Im,δ0 . At any stage of the renormalisation scheme, the clusters inherited
from the previous stage are interpreted as the vertices in an inhomogeneous
random graph and the cluster sizes as the corresponding masses. Our probability
bounds for the merger of clusters rely on the following result:
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Lemma 2 (Berger, [2, Lemma 2.5]). Let δ0 ∈ (1, 2) and - ∈ (0, 1) such that

18- > 16 + δ0.

There exist ζ = ζ(δ0, -) > 0 and M0(δ0, -) > 0 such that for all m with |m| ≥ M0

P
(

N|m|$(Im,δ0) > 1
)

< |m|−ζ ,

where Nx(Im,δ0) denotes the number of clusters C ⊂ Im,δ with
∑

j∈C mj ≥ x.

Note that the assumption that δ ≤ δ0 < 2 is necessary to apply Lemma 2. This
is precisely the reason why neither for the weight-dependent random connection
model, nor for any other known long-range percolation model with polynomial
tail connection probabilities, the proof of transience in the non-robust case can
be extended to the case where δ ≥ 2.

After invoking Lemma 2, a union bound over all stages of the renormali-
sation shows that if the scaling parameters are carefully tuned, then the total
probability of ever encountering a bad box when zooming outward from 0 can be
made arbitrarily small, which implies Proposition 2. In turn, Proposition 2 im-
plies that the site density in the coarse grained model can be brought arbitrarily
close to one and thus the transience of the coarse-grained long-range bond-site
percolation model follows from the corresponding result for the long-range bond
percolation model.

4 Recurrence

In order to show recurrence in dimensions d ∈ {1, 2}, we use electrical network
theory.

Proposition 3 (Nash-Williams, [26]). Let G be a graph with conductance
Ce on every edge e. Consider a random walk on the graph such that when the
particle is at some vertex, it chooses its way with probabilities proportional to
the conductances on the edges that it sees. Let {Πn}

∞

n=1 be disjoint cut-sets, and
denote by CΠn

the sum of the conductances of Πn. If
∑

n

C−1
Πn

= ∞,

then the random walk is recurrent.

The arguments that lead to the result for d = 1 and d = 2 are subtly different
from each other, but roughly correspond to showing that the number of edges
leaving disjoint cut-sets are sufficiently light tailed. In dimension 1, this can
be shown directly by simply treating each edge as having unit conductance
and counting the expected number of edges connecting subsequent cut-sets. In
dimension 2, we consider instead a lattice based graph that is constructed so
as to have effective conductance that is not smaller than that of our random
graph. Then, using a projection argument similar to the one in [2] on this lattice
graph, a sufficient condition for recurrence can again be obtained. Putting these
arguments together, we obtain the following result.
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Theorem 5 (Recurrence in one and two dimensions, [2]). For d = 1 let
G be a random graph on a unit intensity Poisson point process where two vertices
x and y are connected with probability P|x−y| such that

lim sup
v→∞

v2Pv < ∞.

For d = 2 let G be a random graph on a unit intensity Poisson point process
where two vertices x and y are connected with probability P|x1−y1|,|x2−y2| such
that

lim sup
u,v→∞

(u+ v)4Pu,v < ∞.

In both cases, any infinite component of such graph is recurrent.

Consequently in dimensions 1 and 2, if δ > 2 and γ < δ/(δ + 1) for the pref-
erential attachment, sum and min kernels, any infinite component is recurrent.
Similarly, if δ > 2 and γ < 1/2 for the product kernel, any infinite component is
recurrent.
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lation. Ann. Inst. Henri Poincaré Probab. Stat. 49, 3 (2013), 817–838.
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