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Abstract

Avoidance of disproportionate and progressive collapse, often termed ‘fail-safe design’, is a key consideration in the design

of buildings and infrastructure. This paper addresses the problem of fail-safe truss topology optimization in the setting of

plastic design, where damage is defined as a moveable circular region in which members are considered to have zero strength

for that particular load case. A rigorous and computationally efficient iterative solution strategy is employed in both the dual

(member adding) and primal (damage-case adding) problems simultaneously, which allows cases of high complexity and

many damage cases (maximum of 16290 potential members and 16291 damage cases) to be solved to the global optimum.

Common member-based damage definitions (e.g. damage to any one member) are shown to be highly dependent on the

nodal grid; in the limiting case completely negating the effect of the fail-safe constraints. The method proposed in this article

does not have such limitations, enabling a more sophisticated and robust treatment of fail-safe design. Moreover, the global

minimization and high resolutions create new benchmarks for the least-material designs of ‘fail-safe’ structures using rigid-

plastic materials. A number of example structures are considered (short cantilever, square cantilever, multi-span truss), and

the effects of damage radius, location, and structure rationalisation are discussed.

Keywords Fail-safe optimization · Ground structure methods · Disproportionate collapse

1 Introduction

High-profile cases of disproportionate collapse include Ronan

Point apartment in 1968 (Pearson and Delatte 2005), Alfred

P. Murrah Federal Building in 1995 (Tagel-Din and Rah-

man 2006), and the World Trade Centre buildings in 2001

(Bažant and Verdure 2007). Such events often lead to changes

in regulatory requirements (e.g. European Committee for

Standardization 2006; U.S. General Services Administration

2013), as well as increased attention among the engineering

community. Accordingly, resistance to the effects of dis-

proportionate collapse is now an important consideration in

structural design.

Whilst significant advancements have been made in the

field of structural optimization over recent years, optimal

structures by their very nature possess low, if any, redun-

dancy. This problem was neatly articulated in the 1858 poem
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The wonderful “one-hoss-shay” (Holmes 1858), where the

titular one-horse carriage, made such that the weakest part

was “as strong as the rest”, catastrophically failed after 100

years of use, “All at once, and nothing first, just as bubbles

do when they burst”.

To avoid such catastrophic failures, there is a clear need

to develop accurate and computationally efficient tools to

improve the resilience of optimal structures against dis-

proportionate collapse. This paper investigates such an

approach, termed ‘fail-safe truss optimization’. Similar to the

‘member adding’ scheme (Gilbert and Tyas 2003; He et al.

2019), here a damage load case adding approach is developed

in addition, which allows rigid-plastic problems of relatively

large size (e.g., 16290 members, and 16291 damage cases)

to be solved rigorously (i.e. guaranteeing the same solution

as that obtained by solving the full problem with all damage

load cases). Using this new approach, it will be shown that

the problem inherent in continuum fail-safe optimization –

i.e. defining a member for the purpose of applying failure –

also becomes a challenge in fail-safe truss optimization when

problems of topology (as opposed to sizing) optimization are

considered.
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The remainder of the paper is structured as follows: first,

salient literature is reviewed in Sect. 2, then a basic formu-

lation considering damage to a single member is outlined in

Sect. 3, and is applied to a simple example in Sect. 4. From

this, issues are identified which cause the per-member dam-

age definition to be deemed impractical. Alternative means

of defining damage cases are therefore proposed in Sect. 5.

Due to the large size of the optimization problems given in

both Sect. 3 and 5, adaptive working-set type approaches are

described in Sect. 6, which allow these formulations to be

solved for larger problem sizes. The efficacy of this approach

is then demonstrated on a range of examples in Sect. 7, and

conclusions are drawn in Sect. 8.

2 Literature Review

The terms progressive collapse and disproportionate collapse

refer to events whereby damage to a relatively small part

of a structure results in damage or collapse over a much

larger area. Here, the term ‘disproportionate’ relates to the

final magnitude — a disproportion between the triggering

event and the resulting failure – whilst the term ‘progressive’

emphasises the mechanism by which this failure propagates

through a structure (Starossek and Haberland 2010). Typi-

cal approaches to assess the likelihood of disproportionate

collapse involve removal of a critical element and assess-

ment of the damaged structure’s ability to resist the applied

loading. This is inherently a dynamic problem (Pretlove

et al. 1991), but static methods are often used to reduce

computational demand via the use of dynamic amplification

factors (Khandelwal and El-Tawil 2011; U.S. General Ser-

vices Administration 2013; Ruth et al. 2006; McKay et al.

2012).

A related term, robustness, refers to the ability of a struc-

ture to avoid or mitigate the effects of progressive collapse,

i.e. insensitivity to local failure (Starossek and Haberland

2011, p. 625). Robustness is typically achieved through the

addition of redundancy and/or compartmentalisation (Maso-

ero et al. 2013). It is worth highlighting the difference

between use of this term in a progressive/disproportionate

collapse context, and its use in a structural optimization

context; the latter referring to cases where problem parame-

ters are ambiguous or uncertain (Gabrel et al. 2014). When

applied to structural topology optimization, this may also

be termed Reliability-Based Topology Optimization (RBTO)

(Kharmanda et al. 2004; Kim et al. 2006; Guest and Igusa

2008). This field focuses on the probability of failure under

given uncertainties such as a change in Young’s modu-

lus (material uncertainty), loading conditions, or geometric

imperfections.

The problem of explicitly resisting disproportionate col-

lapse is addressed in the field of structural optimization

research under the terminology ‘fail-safe’ design, a term also

common in the aerospace industry (Niu 1999). In contrast to

RBTO, fail-safe topology optimization focuses on ensuring

the performance of the optimized structure after damage has

occurred, i.e. damage to any one structural member should

not cause global failure to occur. This is problematic in the

context of topology optimization as structural members are

not defined in advance and emerge only as the optimal design

is calculated. This was addressed by Jansen et al. (2014)

via the ‘failure-patch approach’, where structural damage is

introduced as a square void zone of pre-defined size, to be

applied at every finite element grid individually, resulting

in a computationally expensive problem. Zhou and Fleury

(2016) extended this approach to 3D, and proposed reduc-

ing the number of required failure patches whilst imposing

a maximum length scale to ensure the full cross-section of

a member would be damaged. Ambrozkiewicz and Krieges-

mann (2018) used an active-set method to reduce the number

of damage cases, whilst Wang et al. (2020) used the stress in

the structure to guide the selection of which damage cases

to include. Hederberg and Thore (2021) allow the damage

patches to move, using a ‘moving morphable components’

approach, allowing the optimizer to identify critical failure

locations.

These methods are each based on continuum topology

optimization, and output structures formed in a single piece of

material. For larger structures, such as buildings, it is usual to

assemble the structure from many smaller members. There-

fore, truss based approaches, such as the ground structure

method of Dorn et al. (1964), are typically more appropriate.

Whether obtained through numerical methods or analytically

from the Michell-Hemp optimility criteria (Michell 1904;

Hemp 1973), optimized truss forms are always statically

determinate, with no structural redundancy. This is intuitive,

as the most efficient load path will be used, and any others

neglected; but it does mean that all members become critical,

with any one member’s removal causing failure by mecha-

nism.

The idea of fail-safe truss optimization was proposed by

Sun et al. (1976). As it is necessary to consider the full struc-

tural response under every prescribed damage condition, the

size of the optimization problem grows rapidly, thus the prob-

lems which could be solved were significantly limited by the

computational resources available (up to 72 bars, 5 damage

cases). Feng and Moses (1986) defined the term ‘residual

strength index’ as the ratio between the strength of the sys-

tem after structural damage has occurred and strength of

the undamaged system. In general, residual strength index

is taken as 0.667 to 0.8 (Feng 1988) for modest damage

cases, i.e. single members. Frangopol and Curley (1987) also

highlight the importance of the material’s ductility in the cal-

culation of damage effects, but again the need to re-calculate
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structural response under each damage case limited the size

of problems which were addressed.

With the power of modern computing technology, inter-

est in computational optimization is increasing substantially.

Mohr et al. (2014) developed a method to explicitly obtain

truss structures with a specific degree of redundancy. This

approach generates multiple complete structures within the

design domain, which are then combined to form a result-

ing structure which can withstand removal or damage to the

entirety of a given sub-structure. Compared to formulations

explicitly requiring the damage of a single member, this is

likely to be over-conservative. Kanno (2017) sets the prob-

lem of redundant optimization in the context of reliability

based optimization, with the uncertainty being in which of

the members are damaged in the worst case. The results show

that, in the optimal solution, multiple damage cases may be

equally critical.

Lüdeker and Kriegesmann (2019) included bending capac-

ity in the structural members of their structures, which is of

particular interest as the use of bending capacity is often one

of the most practical methods used to provide resistance to

disproportionate collapse. However, of the examples con-

sidered, the obtained structures are mainly loaded axially.

Stolpe (2019) proposed a working-set methodology to reduce

the number of damage conditions which must be considered

simultaneously. As only compliance optimization was con-

sidered, globally optimal solutions (for the prescribed ground

structure) could be obtained, and the proposed working-

set method maintained this. The method was used to solve

problems with up to 272 members and 36856 cases (i.e.

degradation of any 2 members) which required up to 13150 s

CPU time, whilst for the more typical problems where dam-

age is inflicted to any 1 member (i.e. 272 cases) the CPU

time required was 193 s. This approach was extended to

incorporate constraints on eigen-frequency and stresses by

Dou and Stolpe (2021, 2022), and it was noted that the

combination of stress constraints and elastic compatibility

resulted in a singularity-like effect, where partial damage to

members resulted in a higher objective value than complete

damage. The problems considered in these three papers use

mainly adjacent-connectivity ground structures – i.e. struc-

tural members exist only horizontally, vertically and at ±45◦

– thus they fall mainly into the category of lattice size opti-

mization, rather than allowing true optimal truss layouts to

be obtained.

Kirby et al. (2022) obtained analytical solutions for fail

safe design of simple structures subject to the complete dam-

age of one or more members. Both minimum compliance and

minimum volume problems were considered. It was found

that, as the resolution increased, the fail-safe designs tended

towards the form of the non-fail-safe result.

The fail-safe truss optimization studies mentioned above

assume that the structure is constructed from a linear-elastic

material; in some cases stress constraints are introduced to

ensure this, whilst in other studies it is simply assumed. Yet,

as noted by McKay et al. (2012), it is both common in practice

and can produce more efficient designs if the plastic range is

used. Therefore, standard linear-elastic finite-element mod-

els which are commonly used in structural design practice

today (especially at the conceptual design stage) would not

be appropriate for this application. More suitable are the

detailed analysis methods specifically designed for use on

damaged structures. These often use elasto-plastic material

models, leveraging the plasticity found in most common con-

struction materials to allow for re-distribution of loads to

alternative load-paths. These advanced approaches can also

integrate material non-linearities and realistic damage mod-

els to give an accurate depiction of the structure at failure.

However, such analyses can take hours to run, placing them

well beyond the scope of integration within an optimization

process.

To provide a computationally tractable formulation for an

optimization problem, a simplified model must be adopted.

In the aftermath of an extreme event which has damaged

the structure, ultimate limit states (e.g. strength) are likely to

be of greater importance than serviceability limit states (e.g.

deflection limits). The rigid-plastic material model aims to

represent the ultimate limit state, whilst maintaining com-

putational simplicity. As this is a simplified model, it is

important to be aware of the limitations and assumptions,

for example the assumption that unlimited plastic deforma-

tion is permitted, or the lack of an explicit damage model.

More advanced analysis methods should therefore be used

to verify designs, especially during the detailed design phase

of a project.

For truss layout optimization, rigid-plastic material mod-

els are also attractive as they result in computationally

efficient linear programming problems, and permit the use

of the member-adding method (Gilbert and Tyas 2003;

Pritchard et al. 2005; Sokół and Rozvany 2013; He et al.

2019) which can further reduce the computational effort

required. For these reasons, rigid-plastic materials will be

assumed here.

3 Basic methodology

In this section, a simple formulation for fail-safe truss opti-

mization will be proposed which is based on the standard

layout optimization formulation for rigid-plastic materials.

The standard plastic layout optimization formulation for a

problem with m potential members, n nodes and a load case

set F can be written as:
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min
a,qk

lT a (1a)

s.t. Bqk = fk (1b)

qk ≤ σ+a

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

∀k ∈ F (1c)

−qk ≤ σ−a (1d)

where k is the load case index; a = [a1, a2, ..., am]T is a vec-

tor of optimization variables representing the cross-section

area of each potential truss bar, and qk = [q1,k, q2,k, ..., qm,k]T

is a vector of optimization variables representing the axial

force in each potential truss bar in case k. The vector l =
[l1, l2, ..., lm]T contains the lengths of each potential truss

bar, while the plastic yield stress of the material is given

by σ+ and σ− in tension and compression respectively. The

vector fk = [ f x
1,k, f

y
1,k, f x

2,k, ..., f
y

n,k] contains the external

forces applied at each node in the x and y directions and B

is an equilibrium matrix containing direction cosines.

The formulation is now modified to ensure that failure in

any one member does not lead to collapse of the frame. This

requires that a statically admissible set of bar forces in the

(remaining) members is possible for each damaged member.

This is implemented with each damage-case acting much like

the different load-cases in (1); a separate set of bar forces qk

is defined for each, and equilibrium and yield constraints are

independently imposed. Scaling of fk could be undertaken

for damaged cases to provide an implementation of dynamic

amplification factor, but for simplicity this is neglected here.

Thus, the external forces fk will no longer vary from case to

case, and will be simply denoted as f .

In this paper, damage to any member is assumed to be

complete, leaving the member with no force-carrying capac-

ity. Therefore, damage to members is modelled by setting

the axial force, qi,k , to zero in the relevant case. For simplic-

ity, it is assumed that the indices of potential members and

their relevant damage case correspond, i.e. that member k is

damaged in case k.

The fail-safe optimization problem can now be written as:

min
a,qk

lT a (2a)

s.t. Bqk = fk (2b)

qk ≤ σ+a (2c)

−qk ≤ σ−a (2d)

qk,k = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

∀k ∈ C

(2e)

where the new constraint (1) imposes that the kth bar car-

ries no force in case k. The set C = {1, 2, 3, ..., p} contains

p damage load cases (in this case p = m). Note that par-

tial reduction in member capacity could be introduced by

replacing (1) with yield constraints modified with the desired

damage factor applied to a. However, unlike the elastic case

F

L

L

L

a
=

− √

2
2 F

σ

q
=

√

2
2 F

a
=

√ 2

2

F
σ

q
=

−
√ 2

2

F

a = 1F

σ

a
= √

2 F
σ

a
=

√ 2
F

σ

(a) (b) (c)

q = 1F

q
=

0

q
=

−
√ 2F

q = 0

q
=

√

2
2 F

q
=

−
√ 2

2

F

q = −1F

q
= √

2F

q
=

0

(d) (e) (f)

Fig. 1 Short cantilever example: Results with three-bar ground struc-

ture (a) problem definition, (b) Nominal design, (c) Fail-safe plastic

design, (d)-(f) Forces in the fail-safe plastic design for each damage

case

considered by Dou and Stolpe (2021, 2022) there are no com-

patibility constraints to cause the existence of singularities,

and so full damage is expected to be the critical case.

It is conceptually simple to extend (2) to also consider

multiple non-damage load cases as in classical layout opti-

mization problems; however, for sake of simplicity, this

extension is not considered here.

It should also be noted, that the problem (2) is substan-

tially larger and more computationally challenging than (1).

With a single load-case and a fully connected ground struc-

ture (m ∝
∼

n2), problem (1) requires 2m ∝
∼

n2 variables and

up to 2m + 2n ∝
∼

n2 constraints. Meanwhile, (2) requires

m +m2 ∝
∼

n4 variables and m(2m +2n +1)∝
∼

n4 constraints.

Thus, problem (2) also increases in size at a much faster rate

as the number of nodes increases.

4 A (de-)motivational example

Stolpe (2019, section 1.2) describes a motivating three-bar

truss example equivalent to that shown in Fig. 1a. The ground

structure consists of three potential truss bars, and the mate-
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Fig. 2 Short cantilever

example: Convergence of form

with increasing nodal resolution.

Note that even the largest bars

represented here have

cross-sectional areas of less than

0.1 F
σ

, whilst the bars of the

nominal designs have

cross-section area 0.707 F
σ

, and

of the three-bar fail-safe design

have areas up to 1.414 F
σ −2L −L 0 L 2L

0

0.02

0.04

0.06

Elevation of support connection, where force is applied at 0

B
a
r

a
re

a
,
a

(
F σ

)

Spacing= L

16

Spacing= L

32

Spacing= L

64

(a) (b) (c)

Fig. 3 Short cantilever example: Results with extended design domain

and nodal spacings of (a) L , (b) L
8

, (c) L
128

rial to be used has the same plastic yield stress in tension

and compression, which will be denoted as σ . This example

will now be used to demonstrate that, as the resolution of the

problem increases, it becomes ineffective to define damage

based on the removal of a single member.

A non-fail-safe, or nominal, design (such as may be

obtained by (1)) uses just two of the potential truss bars,

as shown in Fig. 1b. In the nominal design each bar has area√
2

2
F
σ

, giving a total volume of 2 F L
σ

.

If the same problem is solved using the fail-safe formu-

lation, (2), then the obtained solution is as shown in Fig. 1c.

This has a volume of 5 F L
σ

, over twice that of the nominal

design. Note that this solution is slightly different to the

compliance-based optimal fail-safe design given by Stolpe

(2019), where all three bars were found to take equal cross-

10 100 1000
0

1

2

3

4

5

Number of nodes, n

V
o
lu

m
e,

V
(

F
L

σ
)

Fail-safe results

Nominal solution

(a)

10 100 1000

10−1

100

101

102

103

104

1 second

1 minute

1 hour

Number of nodes, n

T
im

e
ta

k
en

(s
)

(b)

Fig. 4 Short cantilever example: Solutions of problems with increasing

nodal resolution. (a) optimal volume, (b) Time taken to solve problem

section areas; a detailed discussion of the reasons for this

may be found in Appendix 1.

The bar forces in the fail-safe structure for each damage

case are shown in Fig 1d–f. However, this 3-bar problem

cannot truly be said to be a problem of layout optimization.

To provide insights into optimal layout for this problem,

it will be prudent to follow the advice of Rozvany (2009),

who suggests examining the behaviour of the problem as
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the resolution is increased and extrapolating this to the case

with infinite resolution. In Figs. 2, 3 and 4 the line sup-

port is extended to a distance of 2L above and below the

level of the force application; and is discretized with an

increasing number of equally spaced nodes (located on the

support line only, c.f. Fig. 9). It can be observed that the solu-

tion is tending towards the volume of the nominal solution,

2 F L
σ

. Furthermore, using the extrapolation scheme proposed

by Darwich et al. (2010), the extrapolated volume for the

infinite-resolution problem lies within 0.07% of the nominal

volume.

In the limiting case of infinitesimal nodal spacing, these

results suggest an optimal form consisting of two ‘bundles’

of infinitesimally thin members, connecting the loaded point

to points on the support line which are infinitesimally close to

elevations of ±L . This structure therefore becomes almost

identical to the nominal solution in Fig. 1a, but with each

member replaced by a bundle of infinitesimal members,

thereby bypassing the per-member damage requirement.

Further examples, which will be shown in Section 7, will

demonstrate that this is not a problem-specific issue, but

applies to many scenarios. Furthermore, a similar effect was

observed by Kirby et al. (2022) in the optimization of fail-

safe structures using elastic material, implying that this is

likely to be a ubiquitous feature of optimal fail-safe designs

when structural freedom is increased.

If the fail-safe design is being sought principally for rea-

sons of fracture resistance (as in the cases of Kirby et al.

2022), then structures using bundles of members following

the nominal solution may be an appropriate and efficient

solution. However, disproportionate collapse in buildings is

typically caused by accidental actions, e.g. explosions or

impacts. In these cases, it is the spatial separation which

differentiates one member from another, rather than mate-

rial boundaries. Therefore, in a building design context, the

bundles would likely be considered as a single member, and

such designs would not be acceptable. To address this issue,

the following section will describe alternative approaches to

define damage cases.

5 Definitions of damage

The previous section showed that the common, per-member,

definition of damage is not appropriate for use in problems

of topology (rather than size) optimization. This section will

describe a fail-safe layout optimization formulation with a

more general definition of damage. Specific damage cases

which will be used in Section 7 will also be outlined.

To define a general damage case k, the set Dk will be used;

this set contains the indices of each member that is damaged

in case k. This allows the general fail-safe optimization prob-

rk

Pk

Fig. 5 Damage case defined by point pk and radius rk . Thicker black

members show those damaged in the given load-case, whilst thin grey

members are undamaged. For this damage case, Dk would contain the

indices of the members shown with thick black lines

lem to be written as:

min
a,qk

lT a (3a)

s.t. Bqk = fk (3b)

qk ≤ σ+a (3c)

−qk ≤ σ−a (3d)

Dkqk = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

∀k ∈ C

(3e)

where Dk is a diagonal matrix, where each element dk
i,i is

given by:

dk
i,i =

{

1, if i ∈ Dk

0, otherwise.
(4)

This will result in (1) containing many constraints of the form

0 = 0, which may be removed.

Note that (3) is a generalisation of (2), and the per-member

damage can be implemented by generating damage cases:

Dk = {k} ∀k ∈ 1, 2, ..., m (5)

for a problem with m potential members.

In general, the sets Dk can be chosen arbitrarily, allow-

ing great flexibility in describing damage appropriate to a

scenario. In this paper, the main approach used will be to

simultaneously damage all members which lie within a cir-

cle defined by a point Pk and a radius rk . Formally,

Dk = {i | distance(Pk, i) ≤ rk } ∀k ∈ 1, 2, ..., p (6)

where p is the number of damage-cases. The function

distance(Pk, i) is defined as the minimum distance between

the point Pk and the line segment which is the center-line of

the potential member with index i . The values of Pk and rk

must be defined for each case k in advance. Here, rk will,

for simplicity, be kept uniform for all k, and will thus be

denoted by r . An example of a damage case defined in this

way is shown graphically in Fig. 5.
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Table 1 Some terminology and methods based on the sequential addition of violated (primal or dual) constraints to a reduced master problem

Term As used by Notes

Column generation Gilmore and Gomory (1961); Lübbecke (2010) Used in the operations research community, typically

concerns the addition of primal variables (i.e. dual

constraints). Today, it is most commonly employed in

Integer Programming (IP) problems.

Cutting plane Kelley (1960); Gomory (1963) Typically used in IP applications, usually adds (primal)

constraints which were not in the original problem,

and which remove some non-integer solutions without

removing any possible integer solutions.

Lazy constraints IBM Corporation (2022); Gurobi Optimization, LLC

(2022)

Widely implemented within commercial IP solvers, this

refers to addition of violated primal constraints during

the solution process. For some applications, the set of

all constraints may be too large to enumerate, and can

instead be defined algorithmically by the user.

Working-set Verbart and Stolpe (2018); Stolpe (2019) This term has been used in the context of truss design to

describe approaches where constraints are added in

larger conceptual blocks, for example all constraints

corresponding to a certain damage scenario.

Constraints, once added, remain in all subsequent

sub-problems, thus this terminology varies from the

standard use of the term working-set in relation to

active-set approaches.

Member-adding Gilbert and Tyas (2003); Sokół and Rozvany (2013); He

et al. (2019)

Application-specific term for use in layout optimization

methods. Rather than adding individual constraints, a

set of both primal and dual constraints corresponding

to a structural member are added simultaneously,

based on violation of the dual constraints.

This approach is somewhat similar to the ‘failure patch

approach’ used in continuum methods (Jansen et al. 2014),

although here the check on whether an element is within/outside

the region is performed on the center-line only. However, we

emphasise that the damage cases, represented by Dk , may be

chosen entirely freely by the user, allowing this framework

to be used with any generic or problem-specific definitions

for damage.

6 Adaptive solution strategies

6.1 Existing adaptive techniques

The optimization problems (2) and (3) may become intractable

as the number of potential truss members and damage cases

increases. This section will present solution strategies which

can significantly reduce the computational cost.

Consider that a new constraint is to be added to an existing

optimization problem, P; if the new constraint is satisfied at

the optimal solution to P , then that same solution is also the

optimum of the problem including the new constraint. Whilst

this statement may appear trivial, it underpins a number of

powerful techniques for solving large optimization problems.

Table 1 outlines a number of methods which implement this

principle. In this paper, we use the term ‘adaptive’ (see e.g.

Sokół and Rozvany 2013; He et al. 2019) to cover all methods

of this type.

In the remainder of this section, adaptive techniques will

be applied to the solution of problem (3). In Section 6.2, the

approach will be applied to add constraints to the dual prob-

lem, whilst in Section 6.3 adaptive techniques are applied to

the primal problem. Finally, in Section 6.4, it is shown that

these two techniques can be applied simultaneously.

6.2 Dual adaptivity (member-adding)

The member adding procedure was developed by Gilbert and

Tyas (2003) and extended to multiple load-case problems by

Pritchard et al. (2005) and He et al. (2019), whilst Sokół and

Rozvany (2013) provide an alternative implementation. In

this approach, a ground structure is generated from a sub-

set, M
′, of the set of all potential members M. Members in

M
′ are said to be active, whilst those not in M

′ are inactive.

This approach is based on the dual of the standard layout

optimization problems. The dual of problem (3) is written

as:

max
uk ,y

+
k ,y−

k ,zk

∑

∀k∈C

(fT uk) (7a)

subject to
(

y+
k − y−

k + zk = BT uk

)

∀k∈C
(7b)
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∑

∀k∈C

(σ+y+
k + σ−y−

k ) ≤ l (7c)

(

y+
k , y−

k ≥ 0
)

∀k∈C
(7d)

where u is a vector of optimization variables representing

virtual deflections at each unsupported degree of freedom,

y+
k and y−

k are vectors of optimization variables representing

virtual extension in load case k. zk is a vector containing opti-

mization variables zi,k where member i is damaged in case

k (i ∈ Dk), and zeros otherwise. Also note that constraints

(7b)-(7d) are the Karush-Kuhn-Tucker (KKT) conditions of

Problem (3), so if there is no constraint violation in the dual

problem, the optimum solution is identified.

Problem (7) is identical to the dual of the nominal prob-

lem (2), with the exception of the addition of zk . This change

means that (7b) can be satisfied with y+
i,k = y−

i,k = 0 when-

ever member i is damaged in case k. Thus the member adding

procedure can be implemented in the same manner as for

the nominal problem, but neglecting any cases in which the

member under consideration is damaged.

As with the member adding process for the nominal prob-

lem, adding members will never increase the volume of the

structure. Therefore,

VM ≤ VM′ (8)

Where VM is the optimal volume for a certain problem using

a ground structure containing all members M, and VM′ is the

optimal volume for the problem when using a ground struc-

ture consisting of only the active set of potential members,

M
′.

6.3 Primal adaptivity (damage-case adding)

Here, a concept similar to the member adding method will

also be used to enable only a subset of the damage cases to

be considered initially. The approach is also similar to the

working-set approach used by Stolpe (2019) in the context

of elastic optimization. Initially, the problem (3) is written

using only a subset of the set of all required damage cases,

C
′ ⊆ C, and this reduced problem is solved. Similarly to the

member-adding process, damage cases in C
′ are referred to

as active, and those not in C
′ as inactive.

Once the reduced problem is solved, it is easy to check if

a potential damage case c (which was previously inactive) is

violated. Firstly, the violation of damage case c is calculated

separately for each active damage case k ∈ C
′, using the

axial force values qk from the reduced problem, i.e.

(

γc,k =
∑

i∈Dc

|qi,k |
)

∀k∈C′ (9)

where γc,k is the violation of damage case c under the internal

forces condition of case k. If γc,k = 0 then the values in qk

can be used as the values of qc, and would satisfy all relevant

constraints. Thus there is no need to explicitly add case c

to the problem. Note that case c is appropriately addressed

when there is at least one case k which provides a valid set

of forces, so cases only need to be considered for addition

when (γc,k > 0)∀k ∈ C
′. Thus the overall violation of case

c is defined as

βc = min
k∈C′

γc,k (10)

As previously mentioned, only cases where βc > 0 are

violated and need to be added to the problem. Furthermore,

to improve computational efficiency, only a limited number

of load cases are added per iteration. To prioritise which cases

should be added, this paper uses a simple heuristic based only

on the values of βc and Dc. This has been identified as an area

where there is significant potential for future work to identify

more effective heuristics to improve speed. It is important to

note that changes to this heuristic will have no effect on the

reported minimum volume1, as long as all cases are checked

and found to have no violation at the final iteration.

For the simple heuristic used here, the violated damage

cases {c | βc > 0} are first sorted in descending order of

the value βc, to give an ordered set V = (v1, v2, ...), where

βv1 ≥ βv2 etc. Case v1 (with the largest violation) is first

added to the (initially empty) set A, which will contain the set

of damage cases added in this iteration. Then the remaining

cases in V are considered in order; each case c is only added to

A if over half of the damaged members in Dc are not damaged

in any case currently in A, i.e. if |Dc ∩(
⋃

k∈A
Dk)| ≥ 0.5|Dc|

then c is added to A. This prevents multiple damage cases –

which have very similar effects on the structure – from being

added simultaneously.

Here up to ⌈ p
10

⌉ potential cases are added in each iteration,

i.e. |A| ≤ ⌈ p
10

⌉, where p = |C|. If there are insufficient

violated cases in V, or insufficient differences between these

cases, then fewer cases may be added. The set of active cases

C
′ is then updated by adding the contents of set A, and the

next iteration begins.

Note that when damage-case adding process is used, the

volume of the structure will increase with each iteration, i.e.:

VC ≥ VC′ (11)

where VC is the volume of the problem with all damage

cases included, whilst VC′ is the optimal volume given by

1 If multiple structural forms achieve this optimal volume, and satisfy

all of the fail-safe constraints, then precisely which of these equally-

optimal solutions is found may vary.
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the problem with a subset, C
′, of damage cases included. At

convergence, this relationship will be satisfied by equality.

6.4 Combined adaptivity

In previous approaches (such as the examples in Tab. 1),

adaptive methods have been applied only to the primal or

the dual problem. In this section, it will be shown that it is

possible to employ the primal and dual adaptive processes

simultaneously with only a few extra considerations. As the

number of variables qi,k is proportional to the number of

members multiplied by the number of cases, this new tech-

nique of applying both adaptive approaches simultaneously

allows the procedure to be initialised using a comparatively

very small problem. In this paper, problems using combined

adaptivity will be initialised with a ground structure of adja-

cent connectivity, and only the undamaged case.

The convergence of the combined adaptivity process ini-

tially appears strange, as the volume will variously rise and

fall as the iterations progress. However, the solution upon

convergence will still be identical to that obtained by consid-

ering all cases and all bars from the outset. To demonstrate

why this must be the case, it is necessary to consider the

solutions to four related problems:

• The full problem, with all possible damage cases C and

all possible members M in the ground structure, having

optimal volume V M

C
. Shown in black in Fig. 6.

• The sub-problem used in the combined adaptive process,

with a subset C
′ of the damage cases and a subset M

′ of

members in the ground structure, having optimal volume

V M
′

C′ . Shown in green in Fig. 6.

• A problem containing all damage cases C but only the

active ground structure of members M
′, with optimal vol-

ume V M
′

C
. Shown in red in Fig. 6.

• A problem containing only the active damage cases C
′

but with all potential members M, with optimal volume

V M

C′ . Shown in blue in Fig.6.

As it is known that adding members to the ground structure

cannot increase the volume, from (8) the following inequality

conditions hold:

V M

C
≤ V M

′
C

(12)

V M

C′ ≤ V M
′

C′ (13)

Furthermore, since adding additional damage cases can-

not decrease the optimal volume, from (11) the following

inequality conditions hold:

V M

C
≥ V M

C′ (14)

V M
′

C
≥ V M

′
C′ (15)

Primal

Dual

Add damage cases     

Add members

(a)

2 4 6 8 10 12 14 16
8

10

12

14

1

Iteration

V
o
lu

m
e

(
F

L

σ
)

Current sub-problem, V
M

′

C′

+ all members, V
M

C′

+ all cases, V
M

′

C

Full problem, V
M

C

(b)

Fig. 6 Convergence characteristics, using optimal volumes (V M

C
, V M

′
C′ ,

V M
′

C
and V M

C′ ) of the four problems discussed in Section 6.4: (a) Clos-

ing the gap between lower and upper bounds via combined adaptivity

(shaded area indicates primal and dual violations). When no violation

is detected (i.e., V M

C′ = V M
′

C′ = V M
′

C
), the inequality conditions ensure

that V M
′

C′ = V M

C
(i.e., the adaptive solution converges to that obtained by

solving the full problem). (b) Convergence of example problem show-

ing volumes of the four problems discussed in Section 6.4 for each

iteration. Example problem is the short cantilever example (Sec. 7.1)

with 45 nodes and damage radius 0.1L

These inequalities do not permit any conclusions to be

drawn about the relative values of V M

C
(the master problem

volume) and V M
′

C′ (the adaptive problem) in the general case.

This is demonstrated graphically in Figure 6b, where the

green points (representing V M
′

C′ ) may be either above or below

the black line (representing V M

C
). In particular, for the case

shown, iteration 6 has an adaptive problem volume, V M
′

C′ ,

which is higher than the master problem volume, V M

C
, whilst

in other iterations the converse is true.
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The inequalities (12)-(15) may however be combined as

follows:

V M

C′ ≤ V M
′

C′ ≤ V M
′

C
(16)

V M

C′ ≤ V M

C
≤ V M

′
C

(17)

In other words, the volumes of both the master problem and

adaptive sub-problem, V M
′

C′ and V M

C
, lie in a range bounded

by V M

C′ (lower bound) and V M
′

C
(upper bound). This is also

illustrated in Fig. 6.

This range may be tightened to encompass just a single

value when primal and dual violation are not present. Specif-

ically, once the member adding checks have been completed

without finding any violation, it is known that (13) is satisfied

with equality. Then by combining with (14) it is found that:

V M

C′ = V M
′

C′ ≤ V M

C
(18)

i.e. any solution where there are no members to add is a lower

bound on the true solution

If the damage-case adding checks have been completed

without finding any violation, then (15) must be satisfied

with equality. Combining this with (12) gives:

V M
′

C
= V M

′
C′ ≥ V M

C
(19)

These two relationships can only be simultaneously satis-

fied when V M

C
= V M

′
C′ , as is illustrated graphically in Fig. 6.

Thus it is demonstrated that when a sub-problem has no vio-

lated members (in the dual problem) and no violated damage

cases (in the primal problem), then its optimal volume will

be identical to the optimal volume of the full problem.

Therefore, the only requirement to demonstrate conver-

gence is that, in the final iteration, both the primal and dual

adaptive processes are checked and find no violation. The

choice of whether to add members and/or damage cases may

be made freely at each iteration. In the examples which fol-

low, potential members are checked and added to the ground

structure at every iteration. Meanwhile damage cases are only

checked/added when the volume decrease between the pre-

vious two iterations is less than 1%, due to the larger impact

on problem size from the addition of damage cases. Final

termination of the solution process occurs only when both

checks find no violation.

6.4.1 Infeasible sub-problems

An issue which can arise when both adaptive methods are

combined is that a damage case may be added when the

members in the current ground structure are not sufficient

to carry the loading in that case. When only one of the two

Fig. 7 Parallel forces example: Demonstration of potential infeasible

sub-problem. Potential members present in an adjacent connectivity

ground structure are shown as solid lines, and other potential members

shown as dashed lines. Potential members which would be damaged

(have zero force) under a damage case affecting the green circle are

shown in grey

adaptive processes are used, infeasible sub-problems gener-

ally only arise for situations wherein the full problem is also

infeasible.2

To demonstrate the issue, consider the problem in Fig 7

(this is Example II of Stolpe 2019). The first iteration con-

siders the members which give adjacent connectivity (shown

solid in Fig 7) and only the undamaged case, the solution

to this is two disconnected bars, as given by Stolpe (2019,

Fig.3b), and this solution cannot be improved by adding any

further members. Therefore the algorithm proceeds to add

required damage cases.

Assume that the damage case indicated by the green circle

in Fig. 7 is added in the next iteration, members which are

damaged and cannot take any force in this case are shown

in grey. The problem will thus become infeasible as only

the lines in solid black are available to carry the loading in

this damage case, and they go to a single point/hinge on the

bottom chord below the damaged point. (If only the primal

adaptivity is used, then both the solid black and dashed black

lines would be available to carry this case, and the problem

would still be feasible.)

When the primal problem is infeasible, the member adding

process cannot proceed, as virtual displacements are not

available. In the kinematic setting, the problem becomes

unbounded, with one or more virtual displacements tend-

ing to infinity (i.e. moving freely and forming a mechanism).

The Mosek (MOSEK ApS 2020) solver which is here used

to solve the linear optimization problems will return an

unbounded ray if it identifies that a problem is unbounded.

In this case, the unbounded ray in the kinematic problem

will describe the virtual displacements of a mechanism. For

use of this approach with solvers which do not return this

information, see the alternative approach in Appendix 2.

The virtual displacement values forming the unbounded

ray can be used in the adaptive process in almost the same

2 One exception to this occurs when only member adding is used; the

initial sub-problem may be infeasible if the initial ground structure is

inappropriate. But even in this case, infeasible sub-problems still cannot

arise part-way through the solution process.
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Table 2 Parallel forces example: solution progress. Bar thickness in

Solution column represents bar area. Thick members in the violated

members column are those to be added, thin members are those already

in the ground structure. In the violated damage cases column, previ-

ously added damage cases are shown as filled circles, the damage case

to be added is shown with a solid line, other violated damage cases are

shown with dotted line

Iter. (Vol.) Solution Violated members Violated damage cases

1 (6.0)

No Violation

2 (N/A)

Infeasible problem Not checked

3 (8.0)

No Violation

4 (N/A)

Infeasible problem Not checked

5 (15.5)

No Violation

manner as the standard virtual displacements. The only

change is that any non-zero virtual strain caused by displace-

ments from a mechanism implies that the relevant bar has

potential to improve the solution. This can be easily achieved

by scaling the virtual displacements by some large value.

6.5 Step-by-step solution

To illustrate the process, the problem in Fig 7 will be solved,

and the solutions shown at each step.

Damage cases will be defined as occurring at the central

four nodes, with damage radius r of one fifth of the nodal

spacing; in this scenario, this radius results in only members

which connect to the node being damaged in each case. Note

that damage points centered on either of the support points

would result in an infeasible problem, as the remaining sin-

gle point support would be inadequate to provide restraint.

Similarly, damage centered on a loaded point would prevent

that force from being supported, and thus would also result

in an infeasible problem.

The nominal solution to this problem is two disconnected

bars, as is obtained in iteration 1 of Tab. 2 (since the proce-

Fig. 8 Parallel forces example: solution with per-member damage

dure is initialised with only the undamaged case), this has a

volume of 6.00. Note that in both iterations 1 and 3, there are

multiple equally-violated cases by the definition used here,

thus it is arbitrary which is chosen for addition. The final

solution has a volume of 15.50, over 2.5 times the volume of

the nominal structure.

The problem has also been solved using the per-member

damage definition (5), in this case the volume of the fail-safe

structure is 14.41, a 140% increase over the nominal structure

and the resulting structure is shown in Fig. 8. As expected,

this is a slightly lower volume than was obtained for per-

node damage (Table 2) as the per-node damage requirement

is more onerous (i.e. involves damage to multiple members

simultaneously). In the results of Stolpe (2019), the objective
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function increased by 190% from the nominal to the fail-

safe design under complete damage to 1 member. Both the

results of Kanno (2017) and Stolpe (2019) for this problem

appear to be doubly symmetric, however the solution using

the plastic formulation used here does not have a vertical

axis of symmetry. It is possible that this may be caused by

the existence of multiple equally optimal solutions, but this

has not been investigated further here.

7 Examples

7.1 Short cantilever

The short cantilever problem from section 4 will now be

revisited using the methods described in Sections 5 and 6.

As these approaches allow larger problems to be solved, the

more general problem will be considered, with nodes spread

throughout the design domain, rather than just along the sup-

port line as previously.

Firstly, the adaptive solution method will be used with

damage cases defined individually for each member in the

ground structure, i.e using damage cases defined by (5).

Nodes are spread on a Cartesian grid with equal spacings

in the x and y direction, whilst the domain is taken to extend

a distance of L above and below the elevation of the load.

Figure 9 gives the volumes as the resolution is increased. As

previously, it can be seen that the results tend towards a vol-

ume of 2 as resolution is increased; qualitatively, the structure

again tends towards ‘bundles’ of members following the lines

of the nominal solution (c.f. Fig. 9b and 1b).

Figure 9 also shows results for the same problem with

damage defined using circular damage regions applied at

points on a regular 6 × 11 grid. Due to the unevenness of

the convergence (caused by the interaction between the node

spacing and damage locations) the extrapolation method of

Rozvany (2009) and Darwich et al. (2010) has not been

employed here. Nonetheless, it can be seen that, as resolution

increases, these solutions are converging towards solutions

distinct from the original, nominal result.

To quantify the effectiveness of the proposed solution

strategies proposed in Sect. 6, the problem with per-member

damage cases has been solved with and without the various

adaptivity methods. In all cases, identical values for the opti-

mal volume were obtained using every strategy, verifying the

reasoning in Sect. 6. Fig. 10a shows the time taken using each

method. It can be seen that for all but the smallest problems,

the combined adaptivity strategy is the fastest; in the largest

case solved using all approaches (66 nodes, i.e. a 6×13 grid)

the combined adaptivity process reduces the time required by

a factor of 41 (43 s compared to 1774 s ≈ 30 minutes without

adaptive methods).
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(a)
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Fig. 9 Short cantilever problem: Comparison between various defini-

tions of damage. (a) volumes using various damage definitions. (b)-(e)

optimal solutions with 11 × 21 grid of nodes and various damage defi-

nitions: (b) per-member damage cases (p = 16290), (c)-(e) damage at

points on a 6 × 11 grid (p = 66) with (c) r = 0.1L , (d) r = 0.15L and

(e) r = 0.25L

Note also that the non-adaptive approach could not be

used for the larger problem sizes. This is not due to the time

taken, but rather the amount of memory required to hold the

full problem. The largest problem solved here using the non-

adaptive method used a 6 × 11 grid of nodes, resulting in a

problem with 1361 members, and 1362 damage cases; this

problem required approximately 8GB of memory, whilst a

problem with a grid of 7 × 13 nodes would imply a prob-

lem requiring some 43GB of memory. Meanwhile the largest

problem solved using the adaptive strategy involved a grid

of 11 × 21 nodes, allowing 16290 potential members, and

16291 potential damage cases; yet the largest sub-problem

explicitly solved required just 1765 members and 305 dam-

age cases, the size of each sub-problem solved can be seen

in Fig. 10b.

The problem was also solved using the primal/dual

adaptive strategies individually. Using the primal adaptive

(damage-case adding) strategy only resulted in a moderate
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Fig. 10 Short cantilever problem: (a) CPU time taken to solve problem

with per-member damage and various resolutions, solution speed with

and without adaptive methods. (b) Number of members and damage

cases considered at each iteration of the adaptive solution process for

the case with 231 nodes - i.e. the largest result in part a - for which the

full problem contains 16290 potential members and 16291 potential

damage cases

reduction in time taken (up to a factor of 4). Conversely, using

the dual adaptive (member adding) strategy alone actually

increased the time taken in many cases. This is because this

strategy involves solving multiple problems which each con-

tain all of the damage cases and are therefore much larger

than those solved when primal adaptivity is used.

7.2 Square cantilever

This example is based on Example III of Stolpe (2019), com-

prising a square 9 × 9 grid of nodes at unit spacing, with
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Fig. 11 Square example: Volumes for fail-safe structures with various

connectivity and damage radius

supports on the left side and a downwards force on the bottom

right corner. The problem is initially solved using a ground

structure allowing only adjacent connectivity, see results in

Table 3 and Fig. 11. Imposing per-member damage in this

case increases the structure’s volume by 66% above the vol-

ume of the nominal solution. In the elastic solution of Stolpe

(2019), imposing complete failure of a single member was

found to increase worst-case compliance by 55%.

If the ground structure is now permitted to contain all

non-overlapping connections between nodes (as shown in

Table 3), then the imposition of fail-safe constraints for a

single member failing results in an increase in volume of

just 17%. From the solution shown in Table 3, it can be seen

that this structure is again approaching the form of the associ-

ated nominal solution, with nearly coincident members again

leading to the formation of ‘bundles’ following the form of

the nominal structure.

The problem will now be considered with damage cases

based on circles about points. The points pk defining the

damage cases will be spread over a grid with half the nodal

spacing of the nodes in the ground structure; this means that,

in the adjacent connectivity case, the intersections of two

diagonal members will be the center of a damage case. Ini-

tially the damage radius r will be set to 0.353 ≈
√

2
4

, i.e.

the largest damage radius such that members at a 45◦ are

not removed by damage points centred midway between two

(horizontally or vertically adjacent) nodes. The results of this

for both adjacent and full connectivity ground structures are

shown in Table 3, along with the set C
′ of damage circles

which were active in the final iteration. It can be seen that, for

the adjacent connectivity ground structure, damage applied

to nodes or at the intersections of two diagonals were almost

123



  148 Page 14 of 19 H. E. Fairclough et al.

Table 3 Square example: Results with different damage conditions

with various damage definitions. Volume changes given based on the

relevant nominal design. For point-based damage, all damage cases

present in the final iteration are shown

Adjacent connectivity Full connectivity

N
o
m

in
a
l
d
es

ig
n

V = 24.000F

σ
V = 21.852F

σ

P
er

-m
em

b
er

d
a
m

a
g
e

V = 39.797F

σ
(+66%) V = 25.610F

σ
(+17%)

P
o
in

t-
b
a
se

d
d
a
m

a
g
e

r
=

0
.3

5
3

V = 44.431F

σ
(+85%) V = 39.241F

σ
(+79%)

always deemed more critical than damage halfway along a

horizontal or vertical member.

This problem is very sensitive to the damage case applied

just above the loaded point. With the damage radius used

here, r = 0.353, the damage case applied directly above the

load removes all members connected to the loaded point and

at an angle less than 45◦ to the vertical. Any increase in r

will also remove the bar at 45◦; for the adjacent connectivity

ground structure, this will result in an infeasible problem, as

now only the horizontal member connects to the load. For

the full connectivity ground structure, a bar at a shallower

angle can be used. However, as shown in Fig. 11, this results

)b()a(

Fig. 12 Square example: Results fully connected ground structure and

damage applied at points on left edge only, (a) r = 0.353, (b) r = 1.55

L L L

2L

3

Fig. 13 Spanning Example: Problem setup and nominal solution

in a sudden volume increase of 28% when r =
√

2
4

, and a

continuing rapid increase in volume beyond this point.

To provide results which are less susceptible to this sen-

sitivity, this problem has been run with just the left-most

column of damage cases. Results are shown in Fig. 12, with

the volumes again plotted in Fig 11. Observe that there is now

a high level of sensitivity to the number of support points

which may be removed simultaneously, with sudden jumps

in volume at r = 0.5, 1, 1.5 (i.e. when damage cases can

remove 2, 3 and 4 support points simultaneously).

7.3 Multi-span structure

The final example concerns a multi-span structure, resem-

bling a transfer truss or bridge. The geometry of the problem,

as well as the nominal solution, is shown in Fig. 13.

For comparison purposes, a simple manual approach has

been undertaken, approximating a real-world process. First,

single load-case results were found for manually chosen key

damage cases; in this scenario damage cases centered on

each support point have been used (Fig 14a-b, and mirror

images thereof). These four structures are then combined by

taking the largest area for each potential member to give the

structure shown in Fig. 14c.

For the method proposed here, it is assumed that damage is

caused by ground-based hazards (e.g. impacts from vehicles),

thus damage cases have been defined as circular regions cen-

tered on any node in the the bottom two rows. This will also
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3333

(a)

2LL

33

(b)

2LL

33

(c)

Fig. 14 Spanning example: Results using simple, manual method. (a)

- (b) Nominal solutions under single damage case with r = 1.6, (c)

superposition of (a), (b), and their mirror images

avoid the issues of sensitivity to damage occurring around

load application points, as noted in the previous example.

To simplify the structures produced, a simple post-

processing filter has been used. For this, the resulting

structure from the proposed adaptive process was altered by

removing any member which had a cross-section area less

than a certain percentage of the largest area in the structure;

values of up to 10% have been tested. The filtered struc-

ture was then subjected to a size optimization, again using

(3). As the number of members has been greatly reduced,

it was found to be unnecessary to use the adaptive solution

process in the filtering stage, instead the problem with all pos-

sible damage cases and all remaining members was solved

directly.

Figure 15 shows the volume and number of structural

members for various damage radii and filtering levels,

selected structural forms are shown in Fig. 16. Note that,

in this case, even a small damage radius results in a large

increase in the structural volume. This is because any dam-

age case containing one of the supported nodes removes that

support, significantly increasing the span of the structure. It

can be seen that the results using the method proposed here

have a lower volume than the result in Fig. 14c, and the fil-

tered result in Fig. 16d also has fewer structural members.

Furthermore, the structure in Fig 14c is likely to be invalid
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Nominal damaged

Fig. 15 Spanning Example: Resulting volume and number of members

for various values of damage radius, r with filtering of areas below

0.01%, 1% 2%, ... 10% of largest cross-section area. (Filter levels which

produced an infeasible size optimization problem are excluded). The

letters adjacent to the nominal damaged results refer to Fig. 14

under damage cases other than the four which were explic-

itly considered. Therefore, the nominal designs (e.g., from

Figs. 13 or 14) are not always appropriate benchmarks for

‘fail-safe’ design problems. Instead, the optimum solutions

obtained by the proposed method can be used as new bench-

marks for this type of problems.

Figure 17 shows the forces in the filtered structure (r =
1.6, filtering members with areas below 10% of the maxi-

mum). It can be seen that some damage cases produce internal

force states which are equally well suited to address damage

applied at other, physically remote, locations; for example,

the forces shown in Fig. 17c could also apply in the case that

the right-most column was damaged. This further supports

the hypothesis that is is unnecessary to explicitly consider

every damage case, and suggests that the speed of the adap-

tive process could be further increased by improvements to

the heuristics used to select the order in which damage cases

are added.

8 Conclusions

A computationally efficient adaptive procedure has been

presented for the solution of the fail-safe truss topology opti-

mization problem. This has been used to solve problems

with over 16000 members and 16000 possible damage cases

to the global optimum, generating new benchmarks for the

least-material designs of ‘fail-safe’ structures. The proposed

method greatly reduces the size of the optimization problem,

by explicitly considering only a sub-set of both the poten-

tial members and of the damage cases, giving substantial
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(a)

(b)

(c)

(d)

Fig. 16 Spanning example, results with various filtering levels for r =
1.6. (a) 0.01%, (b) 4%, (c) 9%, (d) 10%

improvements in both solution time (speed up factor of 41)

and memory needed to solve the problem. It has been demon-

strated that the optimal volume obtained using this method

will be identical to that obtained by solving the full problem

in a single step.

The method proposed here has allowed for the solution of

problems at significantly higher nodal resolutions than was

possible previously. From this, it has been found that a per-

member definition of damage, as is common in both industry

and previous academic studies, becomes ill-defined as res-

olution increases. In the extreme case, the fail-safe solution

becomes effectively identical to the nominal solution, with

the exception that each bar of the nominal solution is replaced

with a bundle of many very close, very thin structural mem-

bers.

To counter this, the method has been defined in a way

that permits the use of arbitrary pre-defined damage cases,

allowing flexibility to adapt to different problems. Exam-

ples with damage inflicted to all structural members in a

circular region have been used to demonstrate the applica-

bility of the method. It has been observed that the volume,

and even feasibility, of the problems is very strongly depen-

dent on the precise damage definitions used. As such, further

application-specific studies are suggested to define these for

scenarios of interest.

(a)

(b)

(c)

(d)

Fig. 17 Spanning example, load-paths under selected damage cases.

Blue members are fully stressed in compression,and red members are

fully stressed in tension; darker members carry lower stresses. Relevant

damage case shown in green

To summarise, the proposed method provides a flexible

and computationally tractable approach to the fail-safe truss

topology optimization problem.

Replication of Results A python script based on He et al.

(2019) and extended to implement the methods presented

here is available in the Electronic Supplementary Materials.
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Appendix A: Stress based and compliance
based formulations

This appendix will consider the simple three-bar problem

solved using a rigid-plastic material in Section 4 of the

present work, and using an elastic material, as in Section

1.2 of Stolpe (2019). Similarities and differences between

the two methods will be discussed.

This problem has a ground structure containing just three

bars, as shown in Fig. 1a. Considering anti-symmetry about

the horizontal axis, this can be reduced to just two indepen-

dent bar areas, the area of the horizontal bars ah and the area

of the diagonal bars ad . Further, if a limit on the total vol-

ume is imposed, as in common in compliance-based design

problems, then the number of independent variables can be

reduced to just one (in plastic context, it would be usual to

consider this final step by normalising the volume based on

the applied load, but this would have the same effect).

In this way, Fig. 18 shows results of linear-elastic analysis

of all possible solutions to the three-bar problem, where solu-

tions with thicker horizontal bars lie to the left of the plots,

and those with thicker diagonal bars lie on the right. Fig-

ure 18a shows the compliance of each structure in the nominal

case, as well as in the worst-case of the three damage con-

ditions. The worst-case always occurred under removal of a

diagonal member (removal of either diagonal having an iden-

tical impact), whilst the removal of the horizontal member

resulted in a compliance equal to the nominal case. The solu-

tions corresponding to the compliance-based (Stolpe 2019)

and plastic stress-based (Sec. 4) formulations are marked.

We note that Stolpe (2019) uses ‘compliance’ as referring

to the compliance in the nominal case (i.e. giving a value of

1+2
√

2 for the compliance-optimized structure). Thus state-

ments such as the fail-safe conditions causing ‘an increase of

more than 35% in the objective function’ are not strictly true.

The objective in Stolpe’s (2019) formulation is the worst-case

compliance, which actually increases by 266% in this case,

as shown in Fig 18. For comparison, the objective function

(volume) in the stress based formulation increases by 150%

with the introduction of the fail-safe constraints.

Figure 18b displays the worst-case stress under any of the

three damage cases for all possible structures, this assumes

plastic material behaviour, and therefore differs from the

results of Kirby et al. (2022). It can be observed that there

is a cusp at ad = 0.4. For solutions right of this point, the

worst-case stress occurs in the horizontal bar when one of
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Fig. 18 Three-bar example: Analysis of all possible designs. (a) Nom-

inal and worst-case compliance. (b) Worst-case stress. The dashed line

represents the plastic stress-limited optimum structure obtained here,

whilst the dash-dotted line represents the elastic compliance-optimized

structure obtained by Stolpe (2019)

the diagonals is damaged. For solutions left of this point, the

worst-case again occurs with damage to a diagonal bar, but

now the remaining diagonal is critical. At ad = 0.4 both

members are equally stressed in this damage case, and the

worst-case stress is minimized.

Note that the plastic stress-constrained optimum struc-

ture obtained in this paper also gives the minimum peak

stresses under elastic material modelling. This likely not

a general result, and may have been caused by the stati-

cally determinate nature of the ground-structure under each
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damage condition. Nonetheless, it is important to note that

the strongest (i.e. stress-based optimum) and stiffest (i.e.

compliance-based optimum) are not, in general, coincident

under fail-safe constraints. As fail-safe constraints are likely

to concern behaviour under extreme or emergency condi-

tions, the considerations of strength (ultimate limit states)

are likely to be more important than those of stiffness (ser-

viceability limit states). Furthermore, it should be noted

that both the linear-elastic and rigid-plastic material mod-

els incorporate many assumptions and simplifications, and

more complex models may produce optima which are differ-

ent again.

Appendix B: Addressing infeasible
sub-problems

If the solver used to handle the reduced problems does not

return an unbounded ray for problems which are primal infea-

sible/dual unbounded, then the following modification can be

used to provide practical virtual displacements with which it

is possible to obtain and, crucially, rank potential members

which are violated. This problem is a modified version of

(3), which is kinematically restricted, i.e. statically relaxed,

in such a way that the kinematic problem cannot become

unbounded.

This modified problem, in the kinematic setting, involves

adding limits on the virtual deflections (in the positive and

negative x and y directions) possible at each point. The limit,

ū is set to a large value; as ū tends to infinity, the modified

problem tends to the original problem. Converting this mod-

ification to the static setting, the added limits become four

added slack forces per node (in positive and negative x and y

directions). These slack forces are penalised in the objective

function with a coefficient of ū; a suitable physical interpre-

tation of this is that the slack forces represent forces in a

bar connecting to some distant imagined support, thus the

value ū would be equal to the stress in the bar multiplied by

the distance to the imaginary support. Again, as ū increases,

these imaginary supports have less and less influence and the

problem tends towards the original.

ū should be chosen large enough that the imaginary sup-

ports are only triggered for cases where the real structure is

not feasible, but coefficients which are too large may have

an adverse effect on the numerical performance of the opti-

mization algorithm. Initial testing has shown that a suitable

value for, ū is the sum of the horizontal and vertical ranges

of the design domain, divided by the smallest value of yield

stress amongst the potential members.
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