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Abstract 17 

Comprehensive provenance studies of syn-rift basin fills are required to better understand possible 18 

sources of clastic detritus and sediment routing systems. The Eocene fill of the Bohai Bay Basin in 19 

eastern China represents a syn-rift succession, where subsurface datasets permit investigation of 20 

sediment sources and sinks. New detrital zircon U-Pb samples (441 detrital zircon grains) from six 21 

wells were combined with elemental geochemical analysis of siliciclastic sediment, sandstone 22 
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petrography and palynology to investigate depositional ages and provenance. This study demonstrates 23 

the importance of integrating geochronometry, geochemistry, petrology and palynology datasets to 24 

fully unravel syn-rift sediment provenance and routing. Zircons of the Dongying Depression were 25 

derived principally from an active continental margin island-arc setting characterized by felsic acid 26 

magmas, and subordinately from a recycled orogenic belt. The Shicun and Binnan faults controlled the 27 

relationship between sediment routing systems and source areas, explaining spatial differences of 28 

provenance signals in the depression. The routing system around the Shicun fault is characterized by 29 

a dominance of late Paleozoic and Paleoproterozoic zircons and subordinate Mesozoic zircons. In 30 

contrast, increased Mesozoic zircons in samples from south of the Binnan fault provide evidence of 31 

Mesozoic magmatism in this area. The early Eocene sediments record the signal of early Cretaceous 32 

magmatism in the North China Craton, but lack a record of substantial syn-depositional magmatic 33 

activity since the Paleogene in the Dongying Depression. Zircons from early Cretaceous strata and pre-34 

existing zircons from the Xing-Meng Orogenic Belt and Inner Mongolia paleo-uplift were transported 35 

to the Yanshan and Luxi areas together. These sediments entered the Dongying Depression in the early 36 

Eocene, following a period of recycling. In addition, a Precambrian basement signal indicates possible 37 

denudation of Neoarchean to Proterozoic rocks in the Luxi uplift and from the Binnan fault footwall. 38 

Overall, the provenance signals of the basin reflect zircon recycling from an Early Cretaceous 39 

succession, denudation of ancient magmatic rock masses and the absence of syn-sedimentary 40 

magmatism. 41 

Keywords 42 

Syn-rift basin 43 

Felsic island arc source 44 
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1. Introduction 48 

Sediment routing systems in tectonically active settings are commonly complicated; tracking the 49 

fate of sediments from their source to their sink over geological time can be challenging (Caracciolo, 50 

2020). Regional provenance studies seek to determine the following: (i) robust ages from complex 51 

sedimentary datasets; (ii) the source region(s) from which clastic detritus was derived; and (iii) the 52 

processes responsible for the formation and evolution of source areas and sediment routing systems 53 

within the context of one or more particular regional tectonic setting (Cawood et al., 2012; Saylor et al., 54 

2018; Tan et al., 2018; Liu et al., 2020; Barham et al., 2020). Comprehensive studies of sediment 55 

provenance in ancient successions employ techniques in geomorphology, sedimentary geology and 56 

basin analysis to ascertain environmental signals that indicate mechanisms and pathways for the 57 

dispersal of sediments (e.g., Gawthorpe et al., 2000; Michael et al., 2013; Romans et al., 2016; Duller et 58 

al., 2019; Toby et al., 2019; Caracciolo et al., 2020). Provenance analysis has now developed as a 59 

rigorous and quantitative scientific discipline in its own right, which utilizes a combination of 60 

complementary techniques (Caracciolo, 2020). Notably, the analysis of detrital minerals with 61 

particular chemical and isotopic signatures is employed to reveal associations with potential source 62 

areas and with particular tectonic settings (Peyton and Carrapa, 2013; Gehrels, 2014; Owusu 63 

Agyemang et al., 2019; Go mez et al., 2021). 64 

Due to their widespread occurrence in magmatic, metamorphic and sedimentary rocks (Yang et 65 

al., 2022), detrital zircons are commonly used to identify sediment provenance via analysis of a 66 
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combination of zircon crystallization ages, Th/U values, cathodoluminescence-induced internal 67 

textures, and grain shapes (Augustsson et al., 2018; Tan et al., 2018; Peng et al., 2020; Wang et al., 2021a; 68 

Caracciolo et al., 2021). In a crystalline state, zircons are physically and chemically robust and their 69 

trace-element compositions reflect the rocks in which they crystallized (Andersen et al., 2022). The 70 

recognition of compositional differences in the detrital U-Pb age components of sedimentary 71 

sequences permits the identification of different provenance signals (Tyrrell et al., 2012; Franklin et al., 72 

2019). High degrees of grain abrasion are characteristic of multiple cycles of sedimentary grain 73 

recycling, whereas pristine zircons tend to exhibit their original morphology (Kowal-Linka et al., 2022). 74 

The employment of multiple complementary dating methods, including geochronometry and low-75 

temperature thermochronometry, enables the reconstruction of the tectonic history of a basin, which 76 

enhances the recognition of syntectonic provenance information (Thomson et al., 2017; Ge et al., 2018; 77 

Buelow et al., 2018; Bernet, 2019; Malusa and Fitzgerald, 2019a, b). In addition, these techniques 78 

provide evidence of the history of unroofing of tectonostratigraphic units in orogens, and of the 79 

evolution and modification of drainage systems and sediment-dispersal pathways in response to 80 

tectonic activity (Caracciolo, 2020). An integrated approach employing mineralogy, petrography and 81 

bulk-rock geochemistry is now increasingly being employed to reveal variations in sediment 82 

provenance, tectonic activity, paleoweathering and paleoclimate (Ge et al., 2019; Sallam and Wanas, 83 

2019; Chen and Robertson, 2020; Wanas and Assal, 2021). 84 

The Bohai Bay Basin has been extensively studied due to its high petroleum potential. Existing 85 

studies mostly employed detrital zircons, heavy minerals, lithofacies and 3D-seismic data to 86 

characterize the source-to-sink system of the basin (e.g., Du et al., 2017; Zhu et al., 2017; Wang et al., 87 

2021b; Chen et al., 2022; Liu et al., 2023). Previous studies demonstrate that the proportion of zircons 88 
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from Mesozoic, Early Proterozoic and Neoarchean in the Shahejie Formation sandstones is relatively 89 

large; these studies confirmed the contribution of Mesozoic magmas and Precambrian metamorphic 90 

basement to the provenance of the middle Eocene in Bohai Bay Basin (Liu et al., 2023). However, 91 

several knowledge gaps remain in our understanding of the tectono-sedimentary evolution of the 92 

Dongying Depression, especially in relation to the early Eocene source-to-sink sedimentary systems 93 

and sediment-provenance evolution. Here, we present new U-Pb ages from detrital zircon 94 

geochronology, geochemistry, petrography and palynology to investigate the sediment provenance and 95 

tectonic setting of early Eocene strata of the Dongying Depression, in the Bohai Bay Basin, Eastern 96 

China. The tectonic evolution of the Dongying Depression includes a major syn-rift stage during the 97 

Paleogene (~65.0 to 24.6 Ma) (Liu et al., 2018). A comprehensive study on the provenance of this syn-98 

rift basin-fill succession is required to better understand the possible source(s) of sediments and their 99 

transport pathways during this period. Such a study provides evidence on source-to-sink system 100 

evolution in the Dongying Depression during the early development of a series of linked rift 101 

depocenters, and more precisely elucidates the sources of sediments, and further provides a wealth of 102 

information about the tectonic setting and the basin evolution. Furthermore, it provides a basis for 103 

better understanding the contribution of tectonic evolution and magmatism of the North China Craton 104 

to the provenance of the early Eocene rift basin in the Bohai Bay Basin. 105 

The aim of this study is to explain and discuss the sedimentary provenance of the Dongying 106 

Depression during the early Eocene, in relation to ongoing basin evolution. Specific research objectives 107 

are as follows: (1) to reconstruct the possible early Eocene provenance of the Dongying Depression; (2) 108 

to determine the relationship between detrital zircon ages from the Dongying Depression and its 109 

surrounding source areas, so as to characterize the evolution of the source-to-sink system; (3) to 110 
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analyze and discuss the causes of differences in source signals. 111 

2. Geological setting 112 

The Dongying Depression is located in the southern part of the Jiyang Sub-basin (JYSB), which is 113 

a petroliferous basin in the North China Craton. It covers an area of approximately 5,700 km2 and is a 114 

major hydrocarbon province within the southeastern part of the Bohai Bay Basin (BBB) in eastern 115 

China (Fig. 1A, B). The northern part of the basin is located adjacent to the Yanshan fold belt (YSFB) 116 

and the eastern extension of the Central Asian Orogenic belt (the Xing-Meng Orogenic Belt (XMOB)) 117 

(Fig. 1A). The Dongying Depression is bordered by the Chengjiazhuang bulge to the north, the 118 

Qingcheng and Binxian bulges to the west, and the Luxi uplift and the Guangrao bulge to the south (Fig. 119 

1B) (Meng et al., 2021). A series of NW-SE trending normal faults developed in the JYSB as a 120 

consequence of regional extension during the late Cretaceous. These faults controlled the structural 121 

framework and depositional history of the JYSB (Wu, 2013). 122 

Previous studies (Qiu et al., 2015; Liang et al., 2016; Liu et al., 2017; Zhu et al., 2021) demonstrate 123 

that the tectonic evolution of the Jiyang Sub-basin comprised a major syn-rift stage during the 124 

Paleogene (~65.0 to 24.6 Ma), followed by a post-rift stage during the Neogene (~24.6 Ma to present). 125 

Liu et al. (2018) recalibrated the ages of biozones, rifting episodes, and paleoclimate stages within the 126 

BBB based on the astronomical time scale. Six sub-stages of basin evolution have been reconstructed: 127 

(i) incipient rifting, which occurred in the Paleocene to early Eocene (ca. 65-50.5 Ma: Ek1-2); (ii) a late-128 

initial rifting episode in the early to middle Eocene (ca. 50.5-42 Ma: Es4); (iii) a sub-stage of enhanced 129 

subsidence associated with a climax in tectonic extension, during the middle Eocene (ca. 42.5-35.99 130 

Ma: Es3); (iv) a compressive sub-stage rifting during the middle Eocene to early Oligocene (ca. 36-131 

28.86 Ma: Es1-2); (v) waning of rifting in the main BBB during the Oligocene (32.8-24.6 Ma: Ed1-3); 132 
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(vi) a thermal subsidence sub-stage characterized by relative tectonic quiescence and stable 133 

sedimentation rates, which has persisted from the Miocene to the present (24.6-0 Ma: Ng-m, Qp) (Feng 134 

et al., 2016; He et al., 2017; Liu et al., 2018; Zhu et al., 2021). 135 

Paleogene to Neogene sediments are widely distributed in the Dongying Depression, and can be 136 

divided into five formations; from bottom to top: (i) the Kongdian Formation (Ek) of Paleocene to early 137 

Eocene age (ca. 65-50.8 Ma); (ii) the Shahejie Formation (Es) of Eocene to Oligocene age (ca. 50.8-28.86 138 

Ma); (iii) the Dongying Formation (Ed) of Oligocene age (ca. 28.86-23 Ma); (iv) the Guantao Formation 139 

(Ng) of Miocene age (ca. 23-5.1 Ma); (v) and the Minghuazhen Formation (Nm) of Pliocene age (ca. 5.1-140 

2.1 Ma) (Liu and Wang, 2013; Liu et al., 2018). The samples collected in this paper are from the Lower 141 

4th member of the early Eocene Shahejie Formation (Es4L) of the Dongying Depression (Fig. 2). The 142 

examined stratigraphy is characterized by red clastic deposits of terrestrial origin, which record 143 

evidence of sedimentation in fluvial and shallow-lake systems (Fig. 2; He et al., 2017). 144 

3. Data and methods 145 

We report six new detrital zircon U-Pb age samples (441 detrital zircon grains) from sandstones 146 

of the Lower 4th member of the Shahejie Formation in the Dongying Depression. (Table 1, Fig. 3). U-Pb 147 

dating and trace-element analyses of zircons were conducted at the State Key Laboratory of Geological 148 

Processes and Mineral Resources, China University of Geosciences, Wuhan. Experiments were 149 

performed on an Agilent 7900 ICP-MS instrument (Agilent Technology, Tokyo, Japan) in combination 150 

with an ArF excimer laser (λ = 193 nm) (Geolas HD, MicroLas Go ttingen, Germany). All analyses were 151 

performed with a laser spot size of 32 μm, a repetition rate of 5 Hz and a fluence of 8 J/cm2. Absolute 152 

concordance of 207Pb/235U and 206Pb/238U ages is uncommon; the most common approach to the 153 

discordance problem is to exclude points that fall outside an envelope around the concordia curve 154 
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(Andersen et al., 2019). Here, we applied a <10% discordance filter to the generated data. For detrital 155 

zircon grains older than 1,000 Ma, the apparent age of 207Pb/206Pb was adopted due to the large volume 156 

of radiogenic Pb; instead, for those younger than 1,000 Ma, the more reliable 206Pb/238U apparent age 157 

was adopted due to the lower content of measurable radiogenic Pb (Sircombe, 1999). We also collected 158 

mudstone samples from wells Gan113, W46 and Ln120 for elemental geochemical analysis, and 159 

sandstone samples from wells Gan113, Fan178 and Ln90 for petrological analysis (Fig. 1C). Trace-160 

element analyses of mudstone samples were conducted at the Analytical Laboratory of BRIUG, Beijing. 161 

Experiments were performed on an NexION300D ICP-MS. The major-element analyses of mudstone 162 

samples were conducted at the State Key Laboratory of Petroleum Resource and Prospecting (China 163 

University of Petroleum, Beijing), and the experiments were performed on a Malvern Panalytical 164 

AxiosmAX X-ray fluorescence spectrometer. Data on sandstone petrography were collected from the 165 

Shengli oilfield. Additionally, palynology data from the Lower 4th member in well W46, from the Shengli 166 

Oilfield database, are used for identifying marker species of the Cenozoic strata. Palynology data was 167 

obtained from confidential oilfield operator reports, with standard procedures for palynological 168 

sample preparation and analysis (Wood et al., 1996). 169 

To investigate similarities and differences in zircon U-Pb age, we have used the nonparametric two-170 

sample Kolmogorov-Smirnov test (K-S test) and Multidimensional scaling (MDS).   The K-S test is based 171 

on the K-S statistic, which is the maximum difference between the empirical cumulative distribution 172 

functions of two samples (Wissink et al., 2018), and is most sensitive to the region near the modes of 173 

the sample distributions, and less sensitive to their tails (Vermeesch, 2013). The probability (p-value) 174 

of the K-S test is commonly used to measure the homology of samples. For example, a p-value <0.05 175 

correlates to a >95% confidence level that the two samples are not drawn from the same parent 176 
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population. In addition, the maximum vertical difference between the cumulative curves is compared, 177 

providing a D-value (Guynn & Gehrels, 2010). High D-values and low p-values indicate that the 178 

observed difference between the two populations may be explained by distinct origins (Pereira et al., 179 

2016). 180 

Multidimensional scaling is a useful tool for evaluating the generalities of large datasets containing 181 

multiple components (Wissink et al., 2018); it allows determination of similarities between 182 

successions within the same domain and in a broader regional scale (Solí s-Alulima et al., 2022). In the 183 

case of non-metric MDS, the solution is not found analytically but numerically. This is done by 184 

minimizing a so-called ‘stress parameter’ (Vermeesch et al., 2013). Age samples are represented as a 185 

point in MDS; the distances between these points linearly correlate with the dissimilarities between 186 

samples, especially in the low-stress MDS maps (Saylor et al., 2018). One simple but effective way to 187 

aid in the interpretation of MDS maps is to draw a solid line from each point in the configuration to its 188 

‘closest’ neighbor in dissimilarity-space, and a dotted line to the second closest neighbor. Thus, MDS 189 

maps group samples with similar age spectra, and discriminate samples with different spectra; the 190 

final stress value between 0.05 and 0.1 can be used to evaluate the quality of the MDS fit through the 191 

‘Shepard Plot’ (Vermeesch, 2013). Here, we use DZmds software to plot 3D-MDS of all samples 192 

(stress=0.08), and jointly analyze it with Kernel Density Estimation (KDE), to better constrain the 193 

similarities between the age successions within the Dongying Depression and in a broader regional 194 

perspective. 195 

4. Results 196 

4.1. Petrography and geochemistry of detrital zircons 197 A total of 441 zircon grains were analyzed from 6 samples of Es4
L, yielding Th/U ratios of 0.02–198 
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2.00 (Fig. 4A). Among them, the Th/U ratio of most zircon grains is greater than 0.1, and Th/U >0.4 199 

accounts for 68.7%, representing the majority of studied grains (Fig. 4A). The zircon grains with Th/U 200 

ratios greater than 0.4 are concentrated in the 100-500 Ma, 1750-2000 Ma and 2500-2800 Ma range. 201 

Most zircons that yielded concordant ages are prismatic with well-developed oscillatory zoning, and 202 

distinct core and rim structures; these features suggest an igneous origin (Ramos-Va zquez et al., 2019; 203 

Tan et al., 2020). The shapes of the zircon grains range from subrounded to angular, and the zoning of 204 

the zircon grains range from clear to weak (Fig. 5). By contrast, a few Early Proterozoic zircons with 205 

Th/U less than 0.1 are evident; these are darker in color and exhibit weak oscillatory zoning or 206 

metamorphic accretion structures (Fig. 4B, C). Compared with the zircon grains within 1,750-2,800 Ma, 207 

the CL reflection of the Mesozoic and Paleozoic zircon grains is stronger and the oscillation zoning is 208 

clearer (Fig. 5), suggesting that the young zircons have a greater igneous affinity than the ancient ones. 209 

Well-rounded stubby grains (Fig. 5) can be observed in each sample, suggesting that they have 210 

undergone mechanical abrasion (Shaanan and Rosenbaum, 2018) In this work, the normalized pattern 211 

is characterized by a steeply rising slope from the LREE to the HREE with a positive Ce-anomaly and 212 

negative Eu-anomaly (Fig. 6). 213 

4.2. Zircon U-Pb ages 214 Six detrital zircon samples were collected and analyzed from Es4L (Table 2). For analyses with 215 

ages younger than 1,000 Ma, we use the 206Pb/238U age, whereas for older ages we use the 207Pb/206Pb 216 

age. All of the ages are represented for visualization and comparison in Kernel Density Estimation plots 217 

(KDEs). Samples GW-1, LH-9, YL-3, LV-2, BD-9 and BX-8 from Es4L represent the early Eocene 218 

sedimentary units. All samples collected from the Dongying Depression show similar age spectra (Fig. 219 

7). 220 
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Samples GW-1 and LH-9 are located on the east and west sides of the Shicun fault respectively (Fig. 221 

1). Sample GW-1 contains zircon U-Pb ages varying from 133 Ma to 2,744 Ma, with five significant 222 

unimodal age peaks at ca. 144 Ma, 317 Ma, 365 Ma, 1,869 Ma, and 2,541 Ma (Fig. 7). There are 16 zircon 223 

ages from the late Paleozoic (252-419 Ma), accounting for 25% of all ages; these are mainly distributed 224 

from 260±3 to 403±4 Ma; Carboniferous and Permian zircons are dominant. There are 33 zircon grains 225 

from the Paleoproterozoic (1,600-2,500 Ma), accounting for 51.6% of all ages, mainly distributed from 226 

1,683±26 Ma to 2,495±24 Ma (Table 2). Sample LH-9 contains zircon U-Pb ages varying from 138 Ma 227 

to 2,587 Ma, with five significant unimodal age peaks at ca. 268 Ma, 314 Ma, 442 Ma, 1,904 Ma and 228 

2,537 Ma (Fig. 7). There are 24 zircon ages from the late Paleozoic (252-419 Ma), mainly distributed 229 

from 254±2 to 338±4 Ma (Carboniferous to Permian), and 22 zircon grains from the Paleoproterozoic 230 

(1,600-2,500 Ma), mainly distributed from 1,635±21 Ma to 2,496±21 Ma, accounting for the two largest 231 

proportions among 63 zircon grains (38.09% and 34.92%) (Table 2). The age distribution 232 

characteristics of these two samples are relatively consistent; notably, the Mesozoic signals are 233 

relatively weak compared to those in the other samples. Sample LH-9 has a weak early Paleozoic signal, 234 

which is not detected in sample GW-1. 235 

Sample YL-3 comes from the west side of the Shicun fault, which is located in the central part of 236 

the Boxing Sag (Fig. 1). It contains zircon U-Pb ages varying from 125 Ma to 2,594 Ma, with the most 237 

significant unimodal age peaks at ca. 1,856 Ma. The number of early Proterozoic zircon grains is up to 238 

fifty, accounting for 67.57% and contributing to the single dominant age peak of the sample; by contrast, 239 

other age signals are relatively weak (Fig. 7; Table 2). 240 

Sample LV-2 comes from the south side of the Binnan fault (Fig. 1). It contains zircon U-Pb ages 241 

varying from 127 Ma to 2,554 Ma, with seven significant unimodal age peaks at ca. 132 Ma, 177 Ma, 242 
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261 Ma, 299 Ma, 321 Ma, 1,806Ma and 2,527 Ma (Fig. 7). Late Paleozoic, early Proterozoic and Mesozoic 243 

ages dominate the age spectrum, accounting for 32.05%, 28.21% and 23.08% of readings, respectively 244 

(Table 2). Although the age group greater than 2,500 Ma accounts for the smallest proportion (14.1%) 245 

(Table 2), there is a single peak at ca. 2,527 Ma, indicating that the distribution of Neoarchean age 246 

groups is also recorded in this sample. Compared with the samples near the Shicun fault, sample LV-2 247 

displays a larger number of age peaks, reflecting a more varied age signal. 248 

Similar characteristics also appear in the other two samples in the northwest region. Samples BD-249 

9 and BX-8 exhibit age spectrum distributions similar to that of LV-2. Specifically, the bandwidth of the 250 

Mesozoic and Paleozoic age spectra is broad, and a single peak is not observed, with age peaks 251 

occurring mainly at ca. 130 Ma, ca. 165 Ma, and 250-260 Ma. The proportion of Precambrian zircons 252 

presents double peaks in sample BD-9 and BX-8; however, the peak value of sample BX-8 is slightly 253 

lower than that of sample BD-9. 254 

4.3. Element geochemistry 255 

The trace-element contents of the studied sediments, including REEs, are presented in 256 

supplementary material 2. The shape of the REE pattern and the size of Eu anomaly are considered 257 

important indicators of sediment provenance (Basu et al., 2016; Bansal et al., 2018; Chen and 258 

Robertson, 2020; Wanas and Assal, 2021). The chondrite-normalized patterns of REEs for wells W46, 259 

Gan113 and Ln120 are shown in Fig. 8. The REE values show enriched light REEs (LREEs) and low 260 

heavy REEs (HREEs). The Eu/Eu* and Ce/Ce* anomalies were quantified as follows: Eu/Eu*=2×EuN 261 

/(SmN+GdN), Ce/Ce*=2×CeN/(LaN+PrN) (Taylor and McLennan, 1985). The subscript N denotes the 262 

chondrite-normalized values according to Taylor and McLennan (1985). The chondrite-normalized 263 

LaN/YbN ratios are reported in supplementary material 2. 264 
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The total concentration of rare earth elements (ΣREE) shows significant variability from 190.87 265 

ppm to 362.35 ppm (average = 252.59 ppm). The LREE content varies between 172.44 ppm and 333.89 266 

ppm (average = 230.02 ppm); the HREE content varies between 18.43 ppm and 28.46 ppm (average = 267 

22.57 ppm). The LREE/HREE ratio varies from 8.39 to 11.73 (average = 10.18). The (La/Yb)N ratio, 268 

which expresses the fractionation of LREE and HREE, ranges from 8.99 to 14.55 (average = 11.72). The 269 

Eu/Eu* values generally show negative anomalies, and vary from 0.57 to 0.71 (average = 0.65) (Table 270 

3). The Ce/Ce* anomaly varies from 0.85 to 1.00 (average = 0.96). The negative Eu anomalies observed 271 

in the majority of samples indicate that the sediments were derived from felsic source rocks (Ramos-272 

Va zquez and Armstrong-Altrin, 2019; Jia et al., 2019). 273 

The geochemical analysis of clastic sediments provides insight into provenance and tectonic 274 

setting (Marsaglia et al., 2016; Critelli, 2018; Garzanti, 2019; Chen and Robertson, 2020). The studied 275 

samples demonstrate a felsic source (Fig. 9A, B) based on the bivariate diagrams of Hf vs. La/Th (Floyd 276 

and Leveridge, 1987) and La/Sc vs. Co/Th (McLennan et al., 1993). Similarly, analysis of Zr/Sc vs. Th/Sc 277 

(McLennan et al., 1993) indicates that most of the studied samples demonstrate affinity with the upper 278 

continental crust (UCC) (Fig. 9C). A comparison of the La/Sc, Th/Sc and Cr/Th ratios of the Es4L 279 

siliciclastic sediments (taking values of 3.16, 0.9 and 6.25, respectively) with those of the upper 280 

continental crust (Table 3), indicates that the sandstones deposited during the early Eocene originated 281 

from felsic rocks. Based on SiO2 vs. K2O/Na2O data, the majority of the samples are compatible with an 282 

origin from an active continental-margin setting, and to some degree also with an island-arc context 283 

(Fig. 9D). The major element ratios are reported in supplementary material 3. 284 

4.4. Sandstone detrital modes 285 

The sandstone samples have similar grain compositions and textures, which are mainly medium- 286 
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to coarse-grained and characterized by argillaceous and carbonate cementation (Fig. 10). The samples 287 

from well Fan178 are dominated by quartz (48% on average) but also contain significant fractions of 288 

feldspar (27.9% on average) and lithic fragments (24.1% on average) (Fig. 10B). Samples from well 289 

Gan113 are also dominated by quartz but with lower content than samples from Fan178 (43.3% on 290 

average) and also contain abundant feldspar (35.6% on average) and lithic fragments (21.4% on 291 

average) (Fig. 10A). The content of quartz and feldspar in the samples taken from Well Ln90 is similar 292 

(37.7% and 35.5% on average), and the fraction of lithic fragments is slightly less than that of the 293 

former two (26.8% on average) (Fig. 10C). The quartz grains are mostly monocrystalline, generally 294 

with sub-angular to sub-rounded shape. The occurrence of common potassium feldspar and 295 

plagioclase in the clastic composition indicates that these sandstones were dominantly sourced from 296 

acidic intrusive rocks. In the Qt-F-L diagram, samples from well Fan178 are distributed in the ‘dissected 297 

arc’ and ‘recycled orogen’ fields, whereas other samples lie exclusively in the ‘dissected arc’ field (Fig. 298 

10D), which is consistent with elemental geochemical indicators (Fig. 9D). 299 

5. Discussion 300 

5.1. Depositional ages and provenance of the detrital zircons 301 The youngest U-Pb ages of zircon grains in populations of detrital zircons are commonly used to 302 

constrain maximum depositional ages (MDAs) of stratigraphic units (Brown and Gehrels, 2007; Jones 303 

et al., 2009). Determination of MDAs in detrital zircon studies remains a valid approach, which has 304 

been employed in many recent studies (Bahlburg et al., 2020; Barrett et al., 2020; Sharman & 305 

Malkowski, 2020; Solí s-Alulima et al., 2022). The majority of these studies used methods that were 306 

tested by Dickinson and Gehrels (2009), including: (i) calculation of the MDA by the youngest single 307 

grain (YSG); (ii) determination of the youngest age peak defined by two or more analyses (YPP); (iii) 308 
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computation of the weighted mean average of the youngest cluster of two or more grains that overlap 309 

at 1-sigma or 2-sigma uncertainty (YC1σ and YC2σ) (Sharman and Malkowski, 2020). 310 

The ages obtained from all samples are presented in Table 4 and discussed below. The youngest 311 

single zircon grain ages are concentrated in the Lower Cretaceous in all samples. By contrast, the grain 312 

age calculated at 1-sigma or 2-sigma of uncertainty are older than the YSG, especially in samples from 313 

the Boxing Sag and near the Shicun fault (Table 4). It is crucial to select a group of appropriate 314 

parameters to constrain the maximum sedimentary age for provenance analysis. Dickinson and 315 

Gehrels (2009) recommend a method that makes use of the youngest grain cluster at 2σ (YGC 2σ) 316 

because the resulting MDAs are virtually never younger than the known biostratigraphic ages, unlike 317 

with YSG and youngest grain cluster at 1σ (YGC1σ). However, YSG is the most effective approach when 318 

the proportion of near-depositional-age grains is low (Coutts et al., 2019). Here, we choose the YSG for 319 

constraining the maximum depositional age in the early Eocene, since it is applicable to low-320 

uncertainty and small datasets consisting of 50-120 samples (Jackson et al., 2004; Gehrels et al., 2008; 321 

Dickinson and Gehrels, 2009).  322 

The presence of regional unconformities in the syn-rift stratigraphy is an important indicator of 323 

stratigraphic age division. A prior study showed that two important sequence boundaries can be 324 

identified in the late Cretaceous/Paleocene of the Dongying Depression, which represent first-order 325 

and second-order unconformities, respectively, developed in response to tectonic denudation at 65 Ma 326 

(Late Cretaceous/Paleocene) and 50.4 Ma (Kongdian Fm./the Lower 4th member of the Shahejie Fm.) 327 

(Meng and Ge, 2004). 328 

In this study, palynology data were collected from well W46 for biostratigraphic constraints (Fig. 329 

11). According to the species and genera of sporopollen, gymnosperms and angiosperms were 330 
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relatively abundant in the Dongying Depression in the early Eocene. Among these, Ephdripites trinata, 331 

Taxodiaceae pollenites, Qunercoidites potonie, and Ulmapollenites sp. are dominant, which is consistent 332 

with the biostratigraphic time scale of the early Eocene in the Jiyang Depression, according to which 333 

the base of the Lower 4th member of the Shahejie Fm. is inferred to be 50.4 Ma (Wu et al., 2022). In 334 

contrast, the dominant Mesozoic species of the Bohai Bay Basin, namely Cyathidites sp., Osmundacites 335 

sp., Cycadopites sp., Classopolli sp. or Classopollis sp., and Abietinaeepollenites sp., are not found in our 336 

samples (Li et al., 2022). Thus, all the calculated MDAs are older than the true accumulation age (TDA) 337 

of the early Eocene sediments of the Dongying Depression. The lower limit of the depositional age of 338 

the early Eocene sediments in our study area is the Early Cretaceous. The changes in the MDA correlate 339 

with a change in the population that dominates the zircon age spectra (Orrillo et al., 2019).  340 

Likewise, an important difference is seen in age distribution of the smaller populations between 341 

the area near the Shicun fault and the northwest belt of the Dongying Depression (Fig. 7). Samples from 342 

the latter area yield subordinate age clusters including the Early Cretaceous, Early-Middle Jurassic, 343 

Carboniferous-Permian, Paleoproterozoic and Neoarchean, whereas minor populations from the area 344 

around the Shicun fault are concentrated in the Mesozoic and Neoarchean. Considering that Cenozoic 345 

zircon grains are totally absent from all collected samples, we infer that there has been no widespread 346 

syn-depositional magmatic activity since the Paleogene in the Dongying Depression. 347 

The provenance of the detrital zircons, in terms of expected tectonic settings, can also be 348 

distinguished by the cumulative proportion of differences between the crystallization ages (CA) of 349 

individual zircon grains and the depositional ages (DA) of the sediment (Cawood et al., 2012). 350 

Sediments that formed in a convergent setting (e.g., island arc) generally have large percentages of 351 

zircons with crystallization ages that are close to the depositional age of the sediments. By contrast, 352 
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sediments deposited in collisional and extensional settings tend to have large percentages of zircons 353 

with crystallization ages that are much older than the depositional age of the sediments (Cawood et al., 354 

2012). Based on the detrital zircon age distribution, the MDA analysis and the cumulative proportion 355 

diagram, we concluded that detrital zircons age distributions, the MDA analysis and the cumulative 356 

proportion diagram are all consistent with deposition in an extensional setting (Fig. 12). 357 

5.2. Statistical comparison of ages in the Dongying Depression 358 A comparison of age distributions (Fig. 13) between samples from the Dongying Depression 359 

was made using the Kolmogorov-Smirnov (K-S) test, in the manner it is applied to establish provenance 360 

characteristics based on U-Pb dates (Pereira et al., 2016; Pereira and Gama, 2021; Solí s-Alulima et al., 361 

2022). 362 

P<0.05 indicates a 95% probability that the two samples are derived from different parent 363 

populations (Tan et al., 2018; Solí s-Alulima et al., 2022). According to the distribution of sample P value, 364 

the K-S test of the six samples from the early Eocene of the Dongying Depression demonstrates evident 365 

zonation, particularly between the area near the Shicun fault (samples GW-1, LH-9, YL-3) and the 366 

northwest region (samples LV-2, BD-9, BX-8) (Fig. 14A). To explore the causes of this spatial variability, 367 

and to infer tectonic drivers of differential provenance signals, it is necessary to consider the 368 

characteristics of basin-controlling faults that were active during this period. Samples GW-1 and LH-9, 369 

from the eastern and western sides of the Shicun fault, exhibit high homology with each other (D=0.197; 370 

P=0.152), and their cumulative U-Pb age curves demonstrate a relatively close match for the 371 

Phanerozoic and Precambrian (Fig. 13). In addition, the proportion of Mesozoic zircons (9.4%) from 372 

samples around the Shicun fault is significantly different from that of other ages (path A and B) (Fig. 373 

13B). According to previous studies, the Shicun fault has been active since the Mesozoic, and continued 374 
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to be active in the Paleocene and early Eocene, resulting in the depression being divided into eastern 375 

and western sectors (Wu et al., 2012; Zhang et al., 2012). The footwall of the Shicun fault is the 376 

Guangrao bulge, which formed after the Yanshan orogenesis in the Mesozoic (Han et al., 2011). It is 377 

inferred that the rift-related extension experienced by the Shicun fault in the early Eocene provided 378 

conditions for syn-depositional topographic development on both sides of the fault (He et al., 2017). 379 

The sediment dispersal pathways acting around the fault dominantly transported Carboniferous-380 

Permian and Paleoproterozoic zircon particles. 381 

Samples in the northwest region of the Dongying Depression constitute another group of data with 382 

high similarity; these samples were collected between the Gaoqing-Pingnan fault and the Binnan fault 383 

in the north. Wu et al. (2012) concluded that the slip-rate of the Binnan fault in the early Eocene was 384 

higher than that of the Gaoqing-Pingnan fault, and that the former had become the basin-bounding 385 

fault in the northern part of the depression in that period. Thus, the three samples located in the 386 

hanging wall of the Binnan fault are more likely to have incorporated the northern provenance system 387 

in this area (path C) (Fig. 14B). The D-value for samples LV-2 and BX-8 is the smallest, whereas their P-388 

value is the largest, therefore, they form the pair of samples with the largest similarity in the collected 389 

dataset (D=0.096; P=0.835) (Fig. 14A). If sample BD-9 is compared with these two samples, it can be 390 

seen that their cumulative age distributions broadly coincide for the Mesozoic and Paleozoic interval 391 

(Fig. 13B). Some discrepancy is observed between the three cumulative age distributions in the 392 

Precambrian age interval (Fig. 13C); nonetheless, due to homogeneity in the Precambrian 393 

metamorphic basement preserved in the North China Craton, the Precambrian age curves of our 394 

samples are all inferred to record phases of Archean and Paleoproterozoic crustal evolution, 395 

cratonization and related geodynamic history (Yang et al., 2021). 396 
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The relative scarcity of Phanerozoic and Archean zircons is a key difference of sample YL-3 relative 397 

to the other samples (Fig. 7). A genetic relationship with sample GW-1 on the east side of the Shicun 398 

fault may be inferred, as their KDEs show that both samples contain zircon grains of similar age 399 

distributions. The cumulative U-Pb age curves of the two sample only coincide at ca. 150-300 Ma and 400 

ca. 1,850-1,860 Ma, and the Paleoproterozoic and late Paleozoic zircons represent the vast majority 401 

(67.57% and 16.22%, respectively) of sample YL-3. Sample YL-3 inherits the characteristics of the 402 

general lack of Mesozoic provenance signals on the eastern side of the Shicun fault, while retaining a 403 

record of the Precambrian metamorphic basement source. The activity of the Gaoqing-Pingnan and 404 

Shicun faults provided accommodation for sediment coming from the northern potential source area 405 

to the south. Therefore, it is possible that the northern sediment dispersal pathway continued beyond 406 

the fault slope into the periphery of the Boxing depression and along the Shicun fault (path D) (Fig. 407 

14B); this may explain the similarity between sample LH-9 and the northwest sample. 408 

5.3. Comparison with potential regional source areas 409 As described above, there are significant differences in the zircon signal carried by different 410 

sediment dispersal pathways in the early Eocene of the Dongying Depression. Therefore, in addition to 411 

the chronological analysis of the samples in the study area, we compare the age of the samples with 412 

previously published Paleozoic and Mesozoic U-Pb ages from samples from the surrounding areas, 413 

including the Luxi uplift and the Yanshan fold belt. This is done to explore the potential regional 414 

differences in sediment provenance in our study area during the early Eocene. Xu et al (2013, 2015) 415 

reported the characteristics of Mesozoic detrital zircons from the Luxi area, including their samples 416 

SD026-2, SD089-1 and SD092-1, which were collected from the Lower Cretaceous Mengyin Formation 417 

and the Middle-Upper Jurassic Santai Formation, with youngest U-Pb ages of 144.6 ± 4.1 Ma, 155 ± 1 418 
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Ma and 154 ± 7 Ma, respectively. Detrital zircon samples FW04-122, FW04-121 and 05FW003 are 419 

collected from the late Triassic-Early Cretaceous sandstone and Carboniferous-late Permian sandstone, 420 

in the Yanshan fold belt of the northern North China Craton (NCC). These samples indicate two 421 

apparently sudden shifts in source provenance between the NCC and Xing-Meng Orogenic Belt (XMOB), 422 

from the Late Triassic or earlier to the Late Jurassic (Yang et al., 2006). 423 

The 3D-MDS shows that the data points from the early Eocene in the Dongying Depression are 424 

related to those from the Luxi area and the Yanshan fold belt to varying degrees, and are distributed 425 

differently in the three-dimensional space, allowing separation of data into three groups (Fig. 15). 426 

The sediment distributed around the Shicun fault (path A) contains detrital zircons of Middle-427 

Upper Jurassic sandstones from the Luxi uplift and of late Paleozoic sandstones from the Yanshan area 428 

(Group 1) (Fig. 15). In contrast, the age composition of sample LH-9 is more similar to the source of 429 

late Paleozoic detrital zircons of the Yanshan area. The results of the multi-sample comparison support 430 

the idea that the sediment routing system on the eastern side of the Shicun fault share some similarities 431 

with the source of the Jurassic detrital zircons of the Luxi uplift (Group 2) (Fig. 15). The northern 432 

routing systems labelled as C and D in Fig. 14B, which were controlled by the Binnan fault, are similar 433 

to the late Triassic-Early Cretaceous detrital zircon sources of the Yanshan fold belt, in which samples 434 

LV-2 and BX-8 are the closest and most closely related to samples FW04-121 (Group 3) (Fig. 15). 435 

The maximum sedimentary age from the YSG indicates that the detrital zircons transported into 436 

the Dongying Depression in the early Eocene could not have been initially deposited earlier than the 437 

Early Cretaceous. In addition to spatial variability in fault activity as a control on the sediment routing 438 

system, the Early Cretaceous regional magmatic activity in the Luxi and Yanshan regions may also 439 

account for the difference in zircon source. This includes not only the syn-sedimentary zircons of the 440 
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Early Cretaceous, but also recycling of the pre-existing zircons, because the last source contributing 441 

zircons to a sedimentary cycle also contains a zircon family derived from early proto-sources (Gehrels, 442 

2014). 443 

To investigate this hypothesis, we compared the Mesozoic age signal of the early Eocene in the 444 

Dongying Depression with the magmatic intrusive signal in the Yanshan area (Fig. 16). The comparison 445 

shows that the bimodal ages of samples LV-2 and BX-8 in the Mesozoic correspond to the Early 446 

Cretaceous and Jurassic magmatic activities of the North China craton (Zhang et al., 2022); the age 447 

peaks are consistent with the two intrusion peaks in the Mesozoic (Fig. 16A). However, the Jurassic 448 

magmatic activity recorded by sample LV-2 and BX-8 is slightly different. The age peak of the former, at 449 

177 Ma, is consistent with the timing of Early Jurassic magmatic intrusion in the Yanshan area, whereas 450 

ages of 160 Ma and 169 Ma in the latter are consistent with the peak time of Middle-Late Jurassic 451 

magmatic activity (Zhang et al., 2022). Qiu et al. (2023) concluded that the Jurassic intrusive rocks 452 

occurring in the Yanshan area are mainly granites, monzogranites, and syenites. Combined with the 453 

above-mentioned geochemical discrimination indicators (Fig. 9), we infer that our provenance signals 454 

are compatible with the Mesozoic acid magmatic rocks that were preset in the Yanshan area, and with 455 

Mesozoic rocks that were widely exposed along the northwestern routing system. In contrast, the 456 

Mesozoic magma signal has less influence on samples GW-1, LH-9 and YL-3.  457 

Xu et al. (2013, 2015) confirmed that the Xing-Meng Orogenic Belt (XMOB) on the northern 458 

margin of the NCC transported zircon grains from north to the Yanshan region and the Luxi region 459 

during the Jurassic and Cretaceous. These zircons include not only the contemporaneous magmatic 460 

signals, but also signals of older recycled zircons. Specifically, the late Paleozoic age peak recorded in 461 

the Shicun fault sediment routing system is very synchronous, corresponding to the late Carboniferous 462 
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single-peak magmatism (~315 Ma) of the Inner Mongolia Paleo-Uplift (IMPU). These zircons are 463 

believed to come from the IMPU in the context of an Andes-type magmatic arc setting, and correspond 464 

to the first uplift stage of the IMPU (325-312 Ma) (Zhang et al., 2009). This inference is consistent with 465 

the active continental-margin setting indicated by data on major elements (Fig. 9D) and with the 466 

dissected arc setting suggested by the sandstone petrography (Fig. 10). The routing system of the 467 

northwest provenance system in the early Eocene recorded the magmatism more fully after the first 468 

and second uplift phases of the IMPU (~271 Ma) (Ma et al., 2014) (Fig. 16B). The multiple exhumation 469 

phases of the IMPU in the late Paleozoic (Ma et al., 2014) facilitated the denudation of the magmatic 470 

body that supplied sediment to the NCC from north to south (Li et al., 2010). With regards to the 471 

Yanshan fold belt, Yang et al. (2006) argued that the provenance of the Paleozoic Shuangquan 472 

Formation in the Yanshan fold belt came from the NCC, whereas the Mesozoic Xingshikou and Xiayaopo 473 

sandstone samples recorded a mixing of XMOB and NCC sources. The two uplift events at ca. 158 and 474 

137 Ma of the Yanshan orogeny (Yang et al., 2006) (Fig. 16A) facilitated the recycling of the pre-existing 475 

zircons. Together with the Mesozoic zircons from the XMOB, zircons were transported southward to 476 

the Luxi region, forming the material basis for the source of the Cenozoic Dongying Depression. 477 

Notably, a small amount of zircons of Ordovician to Early Silurian age can be identified in our 478 

samples (442 Ma of sample LH-9, 434 Ma of sample YL-3, and 446 Ma of sample BD-9)(Fig. 7). These 479 

age peaks are consistent with the weighted mean ages of the Early Paleozoic igneous rocks from the 480 

Bainaimiao arc in the northern margin of the North China Craton. This reflects both the contribution 481 

of the felsic sources from the Early Palaeozoic Bainaimiao Arc (Eizenho fer and Zhao, 2018), and the 482 

original source of Early Paleozoic zircons in the Boxing Sag and south of the Binnan fault. The origin of 483 

the zircons can therefore be ascribed to the continuous subduction and mature arc development that 484 
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took place during ~455-415 Ma (Chen et al., 2020a). 485 

By contrast, Neoarchean to early Proterozoic zircons from the Precambrian basement of the North 486 

China Craton are present in all samples in the study area, with the main age groups between 1.80-2.50 487 

Ga, and Neoarchean peaks mainly at 2.52-2.57Ga. The NCC (including the Luxi area and the Yanshan 488 

fold belt) and the Inner Mongolia Paleo-Uplift (IMPU) are all characterized by the widespread presence 489 

of high-grade Archean to Paleoproterozoic metallic rocks (Ma et al., 2014; Xu et al., 2015; Tang et al., 490 

2021; Yang et al., 2021). Previous studies have indicated that the late Archean micro-continental 491 

collision was an important process for crustal reworking and maturation of Archean upper continental 492 

crust of the NCC (Wang et al., 2022), and that the 2.50–2.42 Ga magmatism bore a recorded of a tectonic 493 

transition from subduction-collision to post-collisional extension during the Neoarchean cratonization 494 

(Zhou and Zhai., 2022; Zhai et al., 2021). By contrast, Xu and Liu (2019) propose that the ~2000-1895 495 

Ma collisional orogeny and the ~1875-1850 Ma postcollisional extension played a crucial role in the 496 

early Proterozoic tectonic evolution of the NCC. Based on the cumulative proportion of differences 497 

between the crystallization ages (CA) of individual zircon grains and the depositional ages (DA) 498 

presented in section 5.1 (Fig. 12), we conclude that the Neoarchean to Early Proterozoic zircons in our 499 

samples likely record the transition from micro-continental collision to post-collisional extension in 500 

the NCC. In our samples, the shapes of the zircon grains range from sub-rounded to angular, and the 501 

Precambrian terranes (such as the Luxi uplift) were widely exposed around the Dongying depression 502 

in the early Eocene. Thus, there may have been two sources of Precambrian zircons for the early Eocene 503 

sandstone: one associated with denudation of the Precambrian rocks around the Luxi uplift and the 504 

Binnan fault, and a second one due to re-cycling of pre-existing zircons driven by the NCC orogeny in 505 

the late Paleozoic and Mesozoic (such as IMPU and YSFB). 506 
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5.4. The early Eocene provenance system of the Dongying Depression 507 The Luxi uplift and the Yanshan fold belt are the potential provenance areas of the early Eocene 508 

sediments of the Dongying Depression. The youngest zircon age in the sample indicates that the early 509 

Eocene detrital zircons in the Dongying Depression came from the denudation of Early Cretaceous 510 

detritus and lacked the direct influence of the early Eocene magmatic activity. The activity of the Shicun, 511 

Gaoqing-Pingnan and Binnan faults controlled the pathways of the sediment routing system. Due to the 512 

activity of the Gaoqing-Pingnan fault, the clastic materials shed from the Luxi uplift on the southern 513 

side were prevented from reaching the northwest region, and thus formed their own independent 514 

sediment routing system, along the area on the north side of the fault (Fig. 14B). 515 

The southern routing system was mainly located in the vicinity of the Shicun fault. Although the 516 

fault had started to be active in the early Eocene, this study shows that fault activity did not lead to 517 

differences in the zircon signals on its eastern and western sides, which both demonstrate well-518 

preserved late Paleozoic and early Proterozoic zircons (Fig. 17A). However, the Mesozoic age signal is 519 

significantly weaker than the northern provenance system (Fig. 17B). On the contrary, the routing 520 

system controlled by the Binnan fault on the northern side is characterized by a stronger magmatic 521 

signal related to Early Jurassic to Early Cretaceous volcanism in the Yanshan area. This contrasts 522 

markedly with what observed in the area near the Shicun fault (Fig. 17A-B). Previous research on the 523 

source-to-sink system of the Paleogene in the Bohai Bay Basin has identified that a considerable 524 

proportion of Mesozoic age populations, thought to indicate that the drainage system, could either (i) 525 

pass through the adjacent Jurassic and Cretaceous intrusive rocks, or (ii) traverse late Mesozoic clastic 526 

successions recording the early Mesozoic magmatic event in their detrital zircons (Tan et al., 2018).  527 

In addition, the Boxing Sag was subject to an increased influx of recycled zircons in the early 528 
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Eocene compared with the periphery of the Shicun fault and the area south of the Binnan fault; this 529 

had a significant impact on differences in the distribution of zircon ages in the study area. Moreover, 530 

the record of late Paleozoic XMOB and IMPU magmatism is also a factor leading to differences in the 531 

routing system between the north and the south. This is mainly reflected in the fact that the late 532 

Paleozoic magmatic signal retained by the Luxi provenance system (Path A) in the south is recorded by 533 

a single peak, unlike the one in the north (Fig. 17A). There is relatively little difference between the two 534 

types of routing systems with respect to their record of Neoarchean-Paleoproterozoic magmatic-535 

metamorphic signals related to the NCC. 536 

Notably, in this study, we observe that the age components of the sediments in the Dongying 537 

Depression of the early Eocene have different degrees of affinity with the Yanshan and Luxi areas, but 538 

the zircon age spectrum in the hinterland is not fully consistent with the age signals of the provenance 539 

areas (Fig. 17A). In general, the loss or redistribution of U-Pb age components is a common 540 

phenomenon in source-to-sink systems, since these may reflect variations in sediment flux in response 541 

to climatic and tectonic controls affecting the drainage systems (Chen et al., 2020b; Caracciolo, 2020). 542 

However, not all changes in zircon grain populations are associated with dramatic changes of drainages 543 

in the hinterland (Chen et al., 2020b). Lamminen et al. (2015) suggest that changes of zircon age suites 544 

are all related to one another, with any decrease or increase in any one age suite inducing a 545 

corresponding increase or decrease in other age suites; this may also be a reason for differences in 546 

source signals in our study area. Therefore, based on the above results, we tentatively interpret an 547 

overall consistency in the feeder systems supplying zircons to the Dongying Depression from the 548 

Yanshan fold belt and Luxi uplift during the early Eocene. 549 
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6. Conclusions 550 

This study investigated 441 detrital zircon grains from early Eocene aged sediments from the 551 

Dongying Depression with respect to their grain morphology, isotopic composition, and associated 552 

mudstone elementary geochemistry. 553 

(1) The peak zircon ages of the samples mainly show Mesozoic, late Paleozoic, early Proterozoic and 554 

Neoarchean affinities. The Maximum Depositional Ages (MDAs) of detrital zircons recovered from 555 

the Eocene interval of the Dongying Depression mostly indicate a Lower Cretaceous MDA, 556 

indicating that there has been no large-scale syn-depositional magmatic activity since the 557 

Paleogene in the Dongying Depression. The ancient ages recorded in zircons comes from the direct 558 

erosion of the parent rock and also likely to be derived from recycling. 559 

(2) The chronological data comparison based on the K-S test shows that there were two main 560 

provenance areas for sediments in the Dongying Depression during the early Eocene. One routing 561 

system was mainly located around the Shicun fault, and was controlled by the activity of this fault, 562 

the Gaoqing-Pingnan fault and the Binnan fault; the second routing system was located on the 563 

south side of the Binnan fault. The routing system around the Shicun fault is mainly characterized 564 

by a lack of Mesozoic zircons, and late Paleozoic and Paleoproterozoic zircons are relatively 565 

concentrated. The proportion of Jurassic and Early Cretaceous zircons is significantly higher in the 566 

southern routing system of the Binnan fault, in which zircons of late Paleozoic and Precambrian 567 

age are also widely recorded. Through multi-comparison with the results of geochronometry in 568 

the surrounding areas, it is found that the Luxi uplift and Yanshan fold belt were the source areas 569 

of the sediments. The provenance system controlled by the Binnan fault is closely related to the 570 

Early Cretaceous magmatism of the Yanshan fold belt, whereas the Luxi area generally lacks such 571 
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records. 572 

(3) Carboniferous to Permian and Neoarchean to Paleoproterozoic zircons are generally preserved in 573 

the early Eocene sediments of the Dongying Depression. These zircons are recorded from the 574 

magmatism of the Xing-Meng Orogenic Belt and the Mongolia Paleo-Uplift in the late Paleozoic 575 

and the Precambrian metamorphic basement of the North China Craton. The smaller amount of 576 

Early Paleozoic zircons reflects the contribution of felsic sources from the Bainaimiao Arc on the 577 

northern margin of the North China Craton.  578 

(4) In the absence of syn-depositional magmatism, the age signal in the Bohai Bay Basin is the result 579 

of recycled zircons from sedimentary rocks and denudation of pre-existing magmatic rock masses. 580 

These recycled signals are faithful records of all major magmatic-metamorphic events in the 581 

orogenic belts around the Bohai Bay Basin. The activity of syn-depositional faults controls the 582 

relationship between sediment routing systems and source areas, and explains the spatial 583 

difference of provenance signals in the Bohai Bay Basin. 584 
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 Fig. 930 1. (A) Regional tectonic setting (modified from Xu et al. (2015), in which the NCB, IMPU, XMOB 931 

respectively denote the North China Block, Inner Mongolia Paleo-uplift, Xing-Meng Orogenic Belt. (B) 932 

The Cenozoic basement of Bohai Bay Basin (modified from Qi et al., 2004). (C) Schematic map of 933 

secondary tectonic units in the Dongying Depression (modified from Meng et al., 2021) and the location 934 

of the samples from Yanshan fold belt (Yang et al., 2006) and Luxi area (Xu et al., 2013, 2015). (D) 935 

Geologic map of Luxi and adjacent areas (modified from Xu et al., 2015). 936 
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 937 Fig. 2. Stratigraphic column and stratigraphic framework of the Dongying Depression. Modified after 938 

He et al. (2017) and Liu et al. (2018). 939 



46 
 

 940 Fig. 3. Schematic lithologic sections from study wells of the Dongying Depression from the Lower 4th 941 

member of the Shahejie Formation. The map is modified from Meng et al. (2021). 942 



47 
 

 943 Fig. 4. (A) Th/U and its percentage of zircon grains in the sand samples from the Lower 4th member of 944 

Shahejie Formation. (B) Scatter diagram with Th/U<0.1. (C) Representative examples of the 945 

morphology and internal structure of zircon grains with Th/U<0.1. The Th/U ratios are reported in 946 

supplementary material 1. The origin of samples reported in the legend is shown in Fig. 3. 947 



48 
 

 948 Fig. 5. Representative examples of the morphology and internal structure of zircon grains from the sand 949 

samples of the Dongying Depression; all to the same scale. The origin of samples is shown in Fig. 3. 950 



49 
 

 951 Fig. 6. Chondrite-normalized REE patterns of detrital zircons of the Dongying Depression; 952 

normalization is performed according to values from Taylor and McLennan (1985). 953 



50 
 

 954 Fig. 7. Normalized U-Pb detrital zircon age Kernel Density Estimates (KDEs) of all samples of this study 955 

(n = amount of near concordant age determinations / amount of analysed U-Pb compositions) and 956 

their proportions shown in pie charts. The U-Pb ages are reported in supplementary material 1. 957 



51 
 

 958 Fig. 8. REE diagrams, normalized to chondrite according to values from Taylor and McLennan (1985). 959 

(A) Well Gan113; (B) Well Ln120; (C) Well W46. 960 



52 
 

 961 Fig. 9. Provenance-dependent elements and elemental ratios for the Lower 4th member of the Shahejie 962 

Formation mudstones: (A) La/Th vs. Hf diagram (after Floyd and Leveridge, 1987); (B) La/Sc vs. Co/Th 963 

diagram (after McLennan et al., 1993). (C) Zr/Sc vs. Th/Sc diagram (after McLennan et al., 1993) and 964 

(D) SiO2 vs. K2O/Na2O diagram (after Roser and Korsch, 1986). Spots color-coded according to 965 

borehole name, as in Fig. 3. 966 

 967 
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 968 Fig. 10. Photomicrographs of the collected sandstone samples and discrimination plots of Qt–F–L. 969 

Fields after Dickinson (1985). Q, quartz; Pl, plagioclase; L, lithic fragments; Kf, K-feldspar; Qt, total 970 

quartz; F, total feldspars . Spots color-coded according to borehole name, as in Fig. 3. 971 

 972 

 973 Fig. 11. Palynology of the Lower 4th member of the Shahejie Formation in the Dongying Depression 974 

from the well W46. 975 



54 
 

 976 Fig. 12. Cumulative proportion curve of the difference between crystallization age (CA) and 977 

depositional age (DA) (modified from Cawood et al., 2012). A: convergent setting, B: collisional setting, 978 

C: extensional setting. 979 

 980 
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 981 Fig.13. U–Pb age cumulative frequency plots. (A) All data; (B) Phanerozoic data; (D) Precambrian data. 982 

Curves color-coded according to sample ID, as in Fig. 3. 983 



56 
 

 984 Fig. 14. Results of the K–S (Kolmogorov-Smirnov) test (A) and sediment routing system of the early 985 

Eocene in the Dongying Depression (B). Sample IDs as in Fig. 3. 986 



57 
 

 987 Fig. 15. Summary of 3D-MDS results for detrital zircon U-Pb ages from the Dongying Depression, Luxi 988 

area, Yanshan fold belt (Yang et al., 2006; Xu et al., 2013, 2015). (A) and the Shepard plot with the ‘stress 989 

value between 0.05 and 0.1’ (B). This plot shows K-S dissimilarities between age samples (C and D) 990 

visualized in 3D space, where similar samples tend to be clustered and contrasting samples are spread 991 

apart (samples GW-1, LH-9, YL-3 are near the Shicun fault in the Dongying Depression; samples LV-2, 992 

BD-9, BX-8 are from northwest region in the Dongying Depression; samples SD026-2, SD089-1 and 993 

SD092-1 are from the Lower Cretaceous Mengyin Formation and the Middle-Upper Jurassic Santai 994 

Formation in the Luxi area; samples FW04-122, FW04-121 and 05FW003 are collected from the late 995 

Triassic-Early Cretaceous sandstone and Carboniferous-late Permian sandstone in the Yanshan fold 996 

belt).  997 
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 998 Fig. 16. Comparison of Jurassic-Cretaceous (A) (Zhang et al., 2022) and Devonian-middle Middle 999 

Triassic (B) (Ma et al., 2014) magmatism in the North China Craton with the early Eocene detrital 1000 

zircon records from the Dongying Depression. 1001 

 1002 

 1003 
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 1004 Fig. 17 . (A) Differential response of provenance signals of different sediment paths in the early Eocene 1005 

Dongying Depression, compared with Yanshan and Luxi area (Yang et al., 2006; Xu et al., 2013, 2015); 1006 

(B) Comparison of the proportion of provenance signals in each sample (i-iii refers to samples on the 1007 

south side of Binnan fault, and iv-vi refers to samples on the periphery of Shicun fault ). Sample IDs as 1008 

in Fig. 3. 1009 

 1010 

 1011 

 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 
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Table 1. Information of analyzed detrital zircon samples. See Fig. 1 for well location and Fig. 3 for 1021 

sample intervals in each well. 1022 

Region Well Sample Sample type Strata Number of analyses 

East side of Shicun fault Gan113 GW-1 Sandstone from core Es4L 64 

West side of Shicun fault Liu3 LH-9 Sandstone from core Es4L 63 

Boxing Sag Fan178 YL-3 Sandstone from core Es4L 74 

South side of Binnan Fault 

Ln90 LV-2 Sandstone from core Es4L 78 

Bn62 BD-9 Sandstone from core Es4L 79 

Gx73 BX-8 Sandstone from core Es4L 83 

 1023 

Table 2. Values of detrital zircon age and percentage of effective grains from study wells in the Dongying 1024 

Depression. 1025 

(A) 

Phanerozoic 

Empty 
Cell 

Empty 
Cell 

Empty Cell Empty Cell Empty 
Cell 

Empty Cell Empty Cell Empty 
Cell 

Empty 
Cell 

Well Sample Grains 

Percentage of total effective grains 

Mesozoic Late Paleozoic Early Paleozoic
Cretaceous Jurassic Triassic Permian Carboniferous Devonian Silurian
66–145 145–201 201–252 252–299 299–359 359–419 419–444

Gan113 GW-1 64 4.69 %(3) 1.56 %(1) 3.13 %(2) 6.25 %(4) 14.06 %(9) 4.69 %(3) 0 

https://www.sciencedirect.com/science/article/pii/S0037073823001252?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=251040441&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM380756&utm_source=AC_#f0005
https://www.sciencedirect.com/science/article/pii/S0037073823001252?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=251040441&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM380756&utm_source=AC_#f0015
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(A) 

Phanerozoic 

Empty 
Cell 

Empty 
Cell 

Empty Cell Empty Cell Empty 
Cell 

Empty Cell Empty Cell Empty 
Cell 

Empty 
Cell 

9.4 % (6) 25 % (16) 0 

Liu3 LH-9 63 

1.59 %(1) 4.76 %(3) 1.59 %(1) 15.87 %(10) 22.22 %(14) 0 1.59 %(1)
7.94 %(5) 38.09 %(24) 3.18 %(2)

Fan178 YL-3 74 

1.35 %(1) 4.05 %(3) 0 6.76 %(5) 4.05 %(3) 5.41 %(4) 2.70 %(2)
5.4 %(4) 16.22 %(12) 2.70 %(2)

Ln90 LV-2 78 

8.97 %(7) 10.26 %(8) 3.85 %(3) 19.23 %(15) 12.82 %(10) 0 0 

23.08 %(18) 32.05 %(25) 0 

Bn62 BD-9 79 

10.13 %(8) 5.06 %(4) 8.86 %(7) 13.92 %(11) 5.06 %(4) 2.53 %(2) 2.53 %(2)
24.05 %(19) 21.71 %(17) 3.8 %(3)

Gx73 BX-8 83 

7.23 %(6) 10.84 %(9) 9.64 %(8) 15.66 %(13) 9.64 %(8) 4.82 %(4) 0 

27.71 %(23) 30.12 %(25) 1.20 %(1)
(B) Precambrian       

Well Sample Grains 

Percentage of total effective grains 

Precambrian 

Neoproterozoic Mesoproterozoic Paleoproterozoic Neoarchean 

539–1000 1000–1600 1600–2500 2500–2800 
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Gan113 GW-1 64 0 1.56 %(1) 51.56 %(33) 12.50 %(8) 
Liu3 LH-9 63 0 4.76 %(3) 34.92 %(22) 11.11 %(7) 
Fan178 YL-3 74 1.35 %(1) 1.35 %(1) 67.57 %(50) 5.41 %(4) 
Ln90 LV-2 78 1.28 %(1) 1.28 %(1) 28.21 %(22) 14.10 %(11) 
Bn62 BD-9 79 2.53 %(2) 1.27 %(1) 34.18 %(27) 12.66 %(10) 
Gx73 BX-8 83 3.61 %(3) 1.20 %(1) 30.12 %(25) 6.02 %(5) 

 1027 

 1028 

Table 3. Elemental ratios of our samples compared to the range of values of siliciclastic sediments 1029 

derived from felsic and upper continental crust (UCC). 1030 

Elemental ratio of this study Studied samples Range of sediments from felsic sourcesa UCCb 

Range Average 

Eu/Eu* 0.57–0.71 0.65 0.40–0.94 0.72 

La/Sc 2.38–3.99 3.16 2.50–16.3 2.21 

Th/Sc 0.80–1.03 0.9 0.84–20.5 0.75 

Cr/Th 5.10–12.06 6.25 4–15.0 8.76 

a Cullers, 1994, Cullers, 2000; Cullers and Podkovyrov (2000). 1031 

b Rudnick and Gao (2003). 1032 

 1033 

https://www.sciencedirect.com/science/article/pii/S0037073823001252?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=251040441&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM380756&utm_source=AC_#tf0005
https://www.sciencedirect.com/science/article/pii/S0037073823001252?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=251040441&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM380756&utm_source=AC_#tf0010
https://www.sciencedirect.com/science/article/pii/S0037073823001252?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=251040441&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM380756&utm_source=AC_#bb0105
https://www.sciencedirect.com/science/article/pii/S0037073823001252?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=251040441&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM380756&utm_source=AC_#bb0110
https://www.sciencedirect.com/science/article/pii/S0037073823001252?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=251040441&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM380756&utm_source=AC_#bb0115
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Table 4. Comparison of maximum depositional ages (MDA) between samples from different regions of 1034 

the Dongying Depression. 1035 

Regin Well Sample YSG / Ma YC1σ(2+) / Ma YC2σ(3+) / Ma 

East side of Shicun fault Gan113 GW-1 133.1 ± 1.53 144.4 ± 1.26 318.2 ± 1.12 

West side of Shicun fault Liu3 LH-9 137.9 ± 1.78 267.2 ± 1.3 268.0 ± 1.18 

Boxing Sag Fan178 YL-3 125.1 ± 1.47 162.1 ± 1.01 293.8 ± 1.83 

Northwestern depression 

Ln90 LV-2 127.4 ± 2.55 129.7 ± 0.98 131.2 ± 0.83 

Bn62 BD-9 127.1 ± 1.12 127.6 ± 0.87 129.2 ± 0.68 

Gx73 BX-8 120.7 ± 1.51 131.2 ± 1.3 132.3 ± 1.06 

 1036 


