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a b s t r a c t

We utilise the 0–1 test to automatically classify elementary cellular automata. The quantitative results

of the 0–1 test reveal a number of advantages over Wolfram’s qualitative classification. For instance,

while almost all rules classified as chaotic by Wolfram were confirmed as such by the 0–1 test, there

were two rules which were revealed to be non-chaotic. However, their periodic nature is hidden by

the high complexity of their spacetime patterns and not easy to see without looking very carefully.

Comparing each rule’s chaoticity (as quantified by the 0–1 test) against its intrinsic complexity (as

quantified by its Chua complexity index) also reveals a number of counter-intuitive discoveries; i.e.

non-chaotic dynamics are not only found in simpler rules, but also in rules as complex as chaos.

Crown Copyright© 2023 Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cellular Automata (CAs) are able to exhibit dynamics which

are astonishingly complicated [1] and even unpredictable [2],

despite their trivially simple composition. Chaos is one of the

most interesting and appealing kind of dynamic which CAs ex-

hibit [3], and of direct relevance to a number of fields, ranging

from random number generators and cryptography [4] to cardiac

arrhythmias [5] and the stability of celestial orbits.

Wolfram [6] proposed the existence of four classes of CA

behaviour (of which one is chaos). Unfortunately, without pre-

cisely formalised mathematical definitions for each class, there

is no effective criteria for membership, nor any quick tests to

distinguish classes from one another [2,3,7–10]. Therefore, many

successive works in the field have tried to find well-formalised

classifications, utilising various ways to quantify interesting char-

acteristics [11]. However, a universally accepted mathematical

definition of chaos still does not exist [1,2,8,10,12–16].

Lyapunov exponents have been widely used to determine

whether a dynamical system is chaotic or not [5,17,18], but it

is important to realise that a positive Lyapunov exponent is not

a direct indication of chaos [19] but of sensitive dependence on

initial conditions, which is a necessary but insufficient condition

of chaos [17]. More recently, the 0–1 test for chaos has been

proposed as a simple binary test for distinguishing between

regular and chaotic dynamics [5,18,20,21]. Unlike computing

the maximal Lyapunov exponent, this test is straightforward to
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E-mail addresses: mdtj500@york.ac.uk (M. Terry-Jack),

simon.okeefe@york.ac.uk (S. O’Keefe).

implement [20,22] and computationally inexpensive [18,21,22]. It

is even able to detect weak chaos [22] and transitions that occur

without Lyapunov exponents turning positive [21]. We have,

therefore, implemented the 0–1 Test in python (available at our

github page1) and are the first to utilise it to classify Elementary

Cellular Automata (ECA).

This paper is organised as follows: Section 2 introduces various

definitions related to ECAs and their local dynamics, Section 3

expands on the global dynamics of interest, i.e. Chaos (3), and

Section 4 introduces definitions related to the 0–1 Test for Chaos.

Section 5 specifies the pseudocode for the 0–1 test (algorithm

1), the exact test settings and ECA parameters used (5.1) and the

resulting classification (Table 3). Section 5.2 analyses the types of

spectral patterns observed (5.2.1), compares the results against

Wolfram’s famous classification (5.2.2) and investigates the re-

lationship between each rule’s chaoticity and complexity (5.2.3).

Section 6 discusses the importance of the initial configuration (IC)

on CA dynamics (6.1), some advantages and disadvantages of the

0–1 test (6.2) and the difference between chaos and randomness

(6.3).

2. Cellular automata

Cellular Automata (CA) have received growing attention as

formal models for complex systems with applications in almost

every scientific domain [3,16].

1 https://github.com/mohammedterryjack/0-1Test
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2.1. 1D-ECAs

Below we introduce the simplest kind of CA that exists, defin-
ing its composition and key dynamical properties it can exhibit
over time.

Definition 1. An Elementary Cellular Automaton (ECA) is a one-
dimensional, dynamical system in which space and time are
discrete. Let r ∈ N : r ≥ 1 be the neighbourhood radius. Space is
represented by a regular lattice of W ∈ N : W ≥ 2r + 1 identical,
locally-interconnected cells (finite automata) with a binary state
space, S = {0, 1}.

Definition 2. The ECA’s global state, x ∈ S
W , is a lattice

configuration specified by the values of all the states of all cells
in the lattice at a given time.

Definition 3. A lattice x is spatially periodic iff ∃ s ∈ N : s ≥ 1
s.t. ∀w ∈ [0,W − s) :

xw = xw+s (1)

where the least s with such a property is the spatial period. When
s = 1, x is homogeneous.

Definition 4. This state evolves deterministically in synchronous,
discrete time steps according to a global map gρ : S

W → S
W

defined by a local rule ρ : S2r+1 → S (Section 2.2) which acts on
the value of each single cell on the basis of the cell’s present state
and those of a finite set of neighbouring cells

[gρ(x)]w = ρ(xw−r , . . . , xw, . . . , xw+r ) (2)

Definition 5. The sequence of states an ECA passes through
during its space–time evolution, OT (x) =
[x, gρ(x), gρ(gρ(x)), . . . , g

◦T−1
ρ (x)], defines its trajectory (also

referred to as its orbit) from an initial condition (configuration)
x for T ∈ N : T ≥ 1 finite time steps to be observed, and can be
compactly written as:

[OT (x)]t = g◦tρ (x) (3)

Definition 6 (or simply periodic). A trajectory O(x) is temporally
periodic iff ∃ τ ∈ N : τ ≥ 1 s.t. ∀t ∈ [0, T − τ ) :

[OT (x)]t = [O
T (x)]t+τ (4)

where the least τ with such a property is called the temporal
period. When τ = 1, x is a fixed point.

Definition 7. Let dist|x, y| denote the distance between any two
points x, y ∈ S

W , s.t. dist|x, x| = 0 and dist|y, y| = 0. A trajectory
O

T (x) is regular if it has a dense orbit (i.e. it remains arbitrarily
close to the orbits of all sufficiently close configurations) ∃ε ∈ R :
ε > 0 s.t. ∀t ∈ [0, T − τ ) :

dist|[OT (x)]t , [OT (x)]t+τ | ≤ ε (5)

[OT (x)]t is an equicontinuity point if OT (x) is regular (equicon-
tinuous) with period τ .

Definition 8. O
T (x) is almost equicontinuous if for some ε ∈

R : ε > 0 there exists at least one t ∈ [0, T − τ ):

dist|[OT (x)]t , [OT (x)]t+τ | ≤ ε (6)

Definition 9. Sensitive dependence on initial conditions describe
trajectories wherein infinitesimally small differences in their ini-
tial condition grow exponentially, on-average, into macroscopic-
scale divergences [15,23–25]. Thus we can say O

T (x) is sensitive if

Table 1

Lookup table for Rule 14 (ρ14)

v1 v2 v3 ρ14(v)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

the trajectories of at least two nearby points eventually separate

by some sensitivity constant δ ∈ N : δ > ε. Let N(x) = {n ∈
S
W | 0 < dist|n, x| ≤ ε} denote points arbitrarily close to x. A

trajectory O
T (x) is sensitive iff ∃ t ∈ N : t ≥ 1:

∃y ∈ N(x) : dist|[OT (x)]t , [OT (y)]t | ≥ δ (7)

Definition 10 (a stricter form of sensitive dependence). A trajectory

O
T (x) is positively expansive if all points arbitrarily close to x

diverge over time:

∀y ∈ N(x) : dist|[OT (x)]t , [OT (y)]t | ≥ δ (8)

It is thus straightforward to verify that positively expansive ECAs

are also sensitive

Definition 11 (or topological mixing).Topological transitivity de-

scribes how well a transformation mixes up its domain. The high-

est and lowest forms of mixing are called Bernoulli and Ergodic,

respectively [19]. A trajectory O
T (x) is topologically transitive iff

∃ t ∈ N : t ≥ 1 s.t. for any pair of non-empty sets X, Y ⊂ S
W

X ∩ [OT (Y )]t ̸= ∅ (9)

where [OT (Y )]t = {[O
T (y)]t | y ∈ Y } denotes all possible future

states resulting from the trajectories of each state y in the set Y

after t time steps.

2.2. Local rule ρ

Below we expand upon the concept of the local rule which

lies at the heart of every CA (according to Definition 4). For

the simplest case of 1D ECA (i.e. with nearest-neighbourhood

coupling, r = 1) there are 256 possible local rules.

2.2.1. Tabular form

Conventionally, a local rule ρ is expressed as a truth table

(e.g. Table 1) and referred to by the value of its output sequence,

in decimal (e.g. 00011102 = 1410).

2.2.2. Hypercube representation

A rich range of mathematical characteristics can be found in

the local rules, many of which become more apparent when

reformulated into functional form. For example, the boolean hy-

percube representation [26,27] is a geometrical approach which

allows for ECA rules to be easily expressed in unique yet generic

boolean equations (each representing a limited number of geo-

metric configurations on the hypercube). Every input v ∈ S
2r+1

of the local rule’s truth table gets mapped onto exactly one of

the n coloured vertices in a (2r + 1)-dimensional unit hyper-

cube (where the colour represents the corresponding output,

ρ(v1, . . . , v2r , v2r+1) ∈ S). The set of true points, V⊤ ⊆ S
2r+1,

and the set of false points, V⊥ ⊆ S
2r+1, correspond to the

specific inputs yielding a 1 or 0, respectively (i.e. the edges of

the hypercube which are coloured or not). For ECA rules, the true

and false points do not intersect, V⊤ ∩ V⊥ = ∅. E.g. an ECA with

2
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Fig. 1. 3D hypercube representation.

Fig. 2. A couple of example threshold functions represented as 2D hypercubes.

A single 1D hyperplane h ∈ R
2 is able to separate their true and false points,

demonstrating their linear separability.

neighbourhood radius r = 1 would thus have 8 unique inputs in

its truth table, corresponding to the n = 8 vertices on a (2r+1 =)
3-dimensional hypercube (Fig. 1). For 3-dimensional hypercubes,

there are exactly 14 unique configurations (with corresponding

boolean or algebraic expressions) that compactly represent all

ECA rules (Table 5).

2.2.3. Threshold functions

Linearly separable hypercubes are geometrical representations

of threshold functions (or regular functions [27]) — i.e. functions

producing a set of true points, V⊤, that can be separated from

the set of false points, V⊥, by a single hyperplane (known as the

separator or separating structure)(see Figs. 2 and 3).

Definition 12. A local rule, ρ, is a threshold function iff ∃ h ∈
R

2r+1 s.t.

min{h · v⊤ | v⊤ ∈ V⊤} > max{h · v⊥ | v⊥ ∈ V⊥} (10)

3. Deterministic chaos

Despite being composed of trivially simple elements, ECAs

exhibit a variety of dynamical behaviours, some of which are as-

tonishingly complicated [1] and even unpredictable [2], including

self-organisation, fractals, chaos and many complex features [15]

(most of which are not completely understood yet [3]).

Chaos is one of the most interesting and appealing kinds of

dynamical behaviours that can be found among CAs [3]. Being

Fig. 3. This 2d hypercube represents the function ρ(a, b) = ab∨ab, which is not

a threshold function because its set of true points are V⊤ = {(0, 0), (1, 1)} and
its set of false points are V⊥ = {(0, 1), (1, 0)} and they are not linearly separable.

able to distinguish between regular and chaotic dynamics is an

important question with applications ranging from random num-

ber generators and cryptography [4] to cardiac arrhythmias [5]

and the stability of celestial orbits.

Chaos is a phenomenon governed entirely by an underlying,

deterministic process [12,16,28] (i.e. its future is completely de-

termined by the past, such that [OT (x)]t+1 is related to [OT (x)]t by
some functional relation gρ). As such, chaotic systems are quite

predictable in the short term [12,17] and may even allow for

accurate forecasts beyond the near future, well into the medium

range [19,24]. However, it becomes impossible to predict in the

long run [12,19,23,24], which seems paradoxical; unpredictable

determinism [12,29]!

Chaos creates unpredictability where none existed before via

sensitive dependence on initial conditions [12] (Definition 9), which

means initial sensitivities (i.e. small uncertainties or errors in

the input introduced by round-off imprecision inherent in all

instruments) get amplified (as the predicted trajectory diverges

from the true orbit) and lead to catastrophic errors in the final

output.

3.1. Defining chaos

So what are the signs of chaos? How can they be measured?

What precisely are the properties of strange chaotic attractors

that can be quantified? Unfortunately, a universally accepted

mathematical definition of chaos does not yet exist [1,2,8,10,12–

16]. Capturing chaos in a single definition is difficult since its

manifestations can be varied and a general, unified theory for this

scientific phenomenon (which is still far from being completely

understood) is lacking [3,17,19].

Nevertheless, several different mathematically precise

attempts to quantify chaos have been proposed, each based on

different backgrounds and levels of mathematical sophistica-

tion [1,14,24,29,29].

Definition 13. Devaney’s definition marked the point where

chaos (as a mathematical notion) became popular and began to

enter university textbooks [1,29]. A trajectory O
T (x) is D-chaotic

(chaotic inspired by Devaney’s definition of chaos) iff:

D1: O
T (x) is transitive (Definition 11)

D2: O
T (x) is regular (Definition 7)

D3: O
T (x) is sensitive (Definition 9)

3



M. Terry-Jack and S. O’Keefe Physica D 453 (2023) 133786

D-chaos is a purely topological definition and, as such, one of

the simpler definitions. It was actually found to contain redun-

dancies (D1 and D2 imply D3 in any metric system [2,8,12,29,30])

and can therefore be made even simpler (which is ironic since

sensitivity, the hallmark of chaos, turns out to be superfluous in

its definition [29]).

Unfortunately, the shift map (a very simple ECA which just

shifts the content of configurations one step to the left) would be

considered chaotic according to Devaney’s definition. However,

the lack of aperiodic motion in a shift map makes it the kind of

system people would not intuitively consider chaotic. In fact, this

counter-intuitive result seems to be more an artefact of Devaney’s

definition (and Cantor topology) than any intrinsic chaoticity

present in the shift map itself [3].

Definition 14. Knudsen’s definition of chaos attempts to remedy

this by excluding dynamics without aperiodic motion [31]. A

trajectory O
T (x) is K-chaotic (chaotic according to Knudsen’s

definition of chaos) iff:

K1: O
T (x) is regular (Definition 7)

K2: O
T (x) is sensitive (Definition 9)

Definition 15. Expansive chaos is similar to Devaney’s definition

of chaos, except sensitivity is replaced with positive expansivity

(a stronger form of sensitivity) [25,32]. A trajectory O
T (x) is

E-chaotic (positively expansive chaotic) iff:

E1: O
T (x) is transitive (Definition 11)

E2: O
T (x) is regular (Definition 7)

E3: O
T (x) is positively expansive (Definition 10)

3.2. Testing for chaos

3.2.1. Lyapunov exponents

Many definitions of chaos are based on the notion of sensitiv-

ity in some way and it is widely recognised as a central notion in

chaos theory [2,12,12,15]. Many even assume it to be the single

most significant attribute of chaotic attractors [33] and a property

which all chaotic systems definitely have [12].

Lyapunov exponents can be used to detect sensitive dependence

on initial conditions [24] and are, therefore, are popular indicator

of a system’s chaoticity [12] and one of the first tests developed

for determining whether a dynamical system is chaotic or not [5,

17,18] (a bounded deterministic system is considered chaotic if it

has at least one positive Lyapunov exponent [12,16–19,24]).

A Lyapunov exponent, λ, quantifies the instantaneous rate of

change of infinitesimally small perturbations in state space [16,

24,33]. By comparing a trajectory O
T (x) belonging to some initial

condition x with a trajectory O
T (y) for an initial condition which

carries an error y ∈ N(x) : dist|x, y| ̸= 0, we can quantify how

the error amplifies during the course of the iteration. Specifically,

the Lyapunov exponent, λ, characterises the average logarithmic

growth of the relative error per iteration [12]:

λ = lim
t→∞

1

T

T−1
∑

t=0

ln
dist| [OT (x)]t+1 , [OT (y)]t+1 |

dist| [OT (x)]t , [OT (y)]t |
(11)

A negative Lyapunov exponent λ ≤ 0 means nearby trajecto-

ries remain close to each other [17,18] while a positive Lyapunov

exponent λ > 0 indicates an exponential divergence of nearby

trajectories (i.e. a small error will be scaled exponentially, by the

factor of eλ, in each iteration) [12,16–18,33].

Unfortunately, there are a number of problems with Lyapunov

exponents as a test for chaos:

1. It is easy to forget that a positive Lyapunov exponent is

not a direct indication of chaos [19]. Rather, it is only an

indication of sensitivity, which is a necessary but insuffi-

cient condition of chaos [17]. It is possible for a sensitive

trajectory to be non-chaotic [14] (for example, the simple

function f (x) = 2x causes two real numbers x, y ∈ R to

rapidly diverge and grow arbitrarily far apart over time

t ∈ N s.t. |f ◦t (x)− f ◦t (y)| = 2t|x− y|, and so, by definition,

f is sensitive, although it is certainly not chaotic)

2. Higher Lyapunov exponents do not always correspond with

higher degrees of chaoticity or even complexity (i.e. a

higher complexity can be obtained from a lower expo-

nent [19]).

3. Lyapunov exponents are limited to distinguishing between

regularity and chaos and fail on other types of intermedi-

ate dynamics, such as quasiperiodic dynamics and strange

non-chaotic attractors (SNAs) [21].

3.2.2. Fractal dimensions

Definitions of chaos have failed to recognise the inherent frac-

tal nature of chaotic systems [34]. Fractals are special types of pat-

terns with a nested structure. Put precisely, a fractal is a set that

exhibits a degree of self-similarity (i.e. it remains quantitatively

similar in its spatial characteristics under contraction, magnifica-

tion and bounded deformation [16]). Not only are chaotic trajec-

tories known to produce fractals [34], but it has been proposed,

informally, that chaotic attractors are fractals [34].

A fractal dimension is the most common numerical measure

used to quantify a fractal [16,35]. In contrast to Lyapunov expo-

nents (which characterises the dynamical properties of trajecto-

ries on attractors), the fractal dimension focuses on the geometry

of an attractor [12].

There are many approaches to calculate the fractal dimension

(including but not limited to the topological dimension, Hausdorff

dimension, self-similarity dimension, box-counting dimension,

capacity dimension, information dimension, Euclidean dimen-

sion, correlation dimension, Lyapunov dimension, and more [12,

36]). Even the Hurst exponent, a statistical measure of roughness,

is very closely related to the fractal dimension [7,37]. Irregard-

less of the method, a non-integer fractal dimension is a typical

signature of chaotic attractors [16] and a fractal dimension curve

can be used to distinguish clearly between chaotic and regular

trajectories (each showing very different dimension curves) [36].

However, fractal dimensions are also not a direct measure

of chaos. Rather, they measure fractals and, to the best of our

knowledge, a formal definition clarifying the exact relationship

between fractals and chaos has yet to be established.

4. The 0–1 test for chaos

The 0–1 test for chaos is a new, very simple, binary test for

distinguishing between regular and chaotic dynamics [5,18,20,

21]. In contrast to the usual method of computing the maximal

Lyapunov exponent, this test is straightforward to implement [20,

22] and computationally inexpensive [18,21,22] (working directly

on the time-series data without the need for phase-space recon-

struction [18,22,38]). Moreover, the test is universally applicable

since it is independent of the origin, nature and dimension of the

data fed into the dynamical system under consideration (i.e. the

form of the system’s equations do not need to be known) [18,22].

A qualitative distinction between this test and other tests for

chaos is its ability to detect weak chaos [22] and transitions

that occur without Lyapunov exponents turning positive [21]

such as with strange non-chaotic attractors (SNAs) [20,21] which

are neither chaotic nor quasiperiodic and return an intermediate

value 0 < K < 1.

4



M. Terry-Jack and S. O’Keefe Physica D 453 (2023) 133786

Fig. 4. Power spectrum plots (Re(z
c
) × Im(z

c
)) of nonchaotic dynamics are

typically bounded.

Fig. 5. Power spectrum plots (Re(z
c
)× Im(z

c
)) of chaotic dynamics tend to grow

diffusely.

Definition 16. The 0–1 test for chaos is not applied directly

to a trajectory O
T (x), but rather to a time-series of observations

Φ ∈ R
T : Φ = (Φ0, . . . , ΦT−1), s.t. ∀t ∈ [0, T ):

Φ t = φ( [OT (x)]t ) (12)

where the exact form of φ : SW → R is irrelevant to the test

(highlighting its universality).

Definition 17. The time-series of observations Φ is transformed

into a complex-valued series z
c ∈ C

T : z
c = (z

c
0, . . . , z

c
T−1)

parameterised by some arbitrary angle c ∈ [0, 2π ] s.t. ∀τ ∈ [1, T ]

z
c
τ
=

τ
∑

t=0

Φ te
itc (13)

The dynamics are characterised by how the variance of the

trajectory scales with time in the power spectrum [5,21,39].

For nonchaotic trajectories with regular motion (i.e. periodic or

quasiperiodic dynamics), the growth of the transformed trajec-

tory, z
c
, is typically bounded and exhibits no drift (Fig. 4) [5,

20,22], ensuring the mean square displacement is a bounded

function in time [18,39].

Whereas for chaotic trajectories, the transformed trajectory

behaves asymptotically and grows diffusely, like a two-dimens

ional Brownian motion with zero drift (Fig. 5) [5,20,22], ensuring

the mean square displacement scales linearly with time [18,39].

Definition 18. The smoothed mean square displacement vector

M
c

n ∈ R
N is a convenient method for distinguishing whether z

c

has a bounded or diffusive growth rate. Let ∥.∥ = Re(.)2 + Im(.)2

Fig. 6. Examples of the mean square displacement Mc for regular and chaotic

dynamics, including: rule 0, ρ0 (a point attractor), rule 1, ρ1 (a limit cycle), rule

14, ρ14 (a toroidal attractor) and rule 150, ρ150 (a strange attractor)

Table 2

Expected outcomes for a chaotic and non-chaotic trajectory, O
T (x), its growth

pattern in the power spectrum, z
c
, mean square displacement, M

c
, and resulting

correlation coefficient, K .

O
T (x) z

c
M

c
K

Non-chaotic bounded bounded 0

Chaotic diffusive linear 1

and N ∈ N : N ≪ T then ∀n ∈ [1,N]:

M
c

n =
1

T − N

T−N
∑

t=0

∥zct+n − z
c
t ∥ (14)

Definition 19. The correlation coefficient vector K
c
∈ R

N

represents the log–log plot of mean square displacement ∀n ∈
[1,N]:

K
c

n = lim
n→∞

logM
c

n

log n
(15)

Definition 20. We obtain the final asymptotic growth rate,

K c ∈ [0, 1], by applying linear regression to K
c
. After repeating for

I ∈ N : I ≥ 1 angles, the median is taken as the final classifier:

K = median{K c | c ∈ [0, 2π ]} (16)

In this way, all the information relevant for chaoticity or reg-
ularity is condensed into a single scalar value, K , that effectively
captures the strength of the linear growth [5,18,21,22]. When the
underlying dynamics are regular, the test yields an output close
to K = 0, with probability one but K = 1 for sufficiently chaotic
dynamics [18,20,21,38].

5. Experiment

The 0–1 test for chaos is universally applicable to any deter-
ministic dynamical system and has already found a wide range of

5
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applications within areas such as finance and economics [40,41],
engineering [42,43], electronics [44], multi-agent systems [45],
traffic dynamics [46], fluid dynamics [47], dissipative systems [48,
49], Hamiltonian systems [50], discrete systems, partial differen-
tial equations, etc. In addition, we aim to utilise the 0–1 test for
the automatic classification of ECA dynamics.

5.1. Setup

The 88 equivalent rule classes were tested using an ECA lattice
width equal to that used by Wolfram in his classification (Sec-
tion 5.2.2), W = 637, a trajectory depth of T = 50,000 and a
fixed initial configuration (IC), x ∈ S

W , selected at random from
a set of configurations with an approximately equal density of 0s
and 1s (see our github repository2 for the exact IC used).

An ECA trajectory, OT (x), is then converted into a sequence of
observations (Definition 16) by taking the gray encoding of each
configuration and expressing it as a decimal (normalised to be
within the range 0 and 1):

φ(x) =
1

2W

W
∑

w=1

2W−w(xw ⊕ xw+1) (17)

Our Python implementation of the 0–1 Test for chaos (algo-
rithm 1) was run using the following parameters: N = T

3
=

50,000

3
≈ 16, 666 and I = 5 angles (whereby the ith angle

is calculated as c = iπ
20
). The result, K , of each rule, ρ, was

recorded3 and grouped by common patterns exhibited in the
power spectrum (Section 5.2.1) in Table 3.

Algorithm 1: The 0–1 Test for Chaos

Φ ← (φ(x̂) | x̂ ∈ O
T (x)) ; // Def16

N ← T
3

I ← 5

for i ∈ [1, I] do

c ← iπ
20

; // i-th angle

for τ ∈ [1, T ] do

z
c
τ
←
∑

τ

t=0 Φ te
itc ; // Def17

end

z
c ← (z

c
1, . . . , z

c
T )

for n ∈ [1,N] do

M
c

n ←
1

T−N

∑T−N
t=0 ||z

c
t+n − z

c
t || ; // Def18

K
c

n ←
logM

c
n

log n
; // Def19

end

Ki ← linear_regression{K
c

1, . . . , K
c

N};

end

K ← median{K1, . . . , KI} ; // Def20

5.2. Analysis of results

5.2.1. Types of spectral patterns
The test is easily automated and, while it is not necessary to

make a visual interpretation of the results, the growth patterns
may be visualised by plotting the real and imaginary components
of z

c
. Upon a qualitative inspection of each rule’s growth in the

power spectrum, chaotic rules were confirmed to exhibit the
expected brownian motion. Unexpectedly, three distinct types
of bounded spectral patterns were discovered for nonchaotic
dynamics (Fig. 8).

2 https://github.com/mohammedterryjack/0-1Test/blob/main/run_

experiment.ipynb
3 https://raw.githubusercontent.com/mohammedterryjack/0-1Test/main/

experiments/results/t=50000.csv

Fig. 7. Example spacetime trajectories, OT (x), of three nonchaotic rules (a) ρ0 ,

(b) ρ1 , (c) ρ14 and one chaotic rule (d) ρ150 .

Fig. 8. Example of power spectrum plots (Re(z
c
)× Im(z

c
)) for the transformed

trajectories, z
c
, of three nonchaotic rules (a) ρ0 , (b) ρ1 , (c) ρ14 and one chaotic

rule (d) ρ150 .

• We identified 8 nonchaotic rules governed by a Point At-
tractor (an attractor of linear dissipative systems whose
trajectories converge to a single steady state, as shown in
Fig. 7(a)). These rules share a common power spectrum
growth which is bound to a single point (Fig. 8(a)). There-
fore, their resulting correlation coefficients are exactly K =
0.00.

⃝ We identified 31 nonchaotic rules governed by a Limit Cycle
Attractor (an attractor which causes trajectories to form a
periodic cycle with regularly repeating behaviour which is
easily predictable, as shown in Fig. 7(b)). These rules all ex-
hibit a common power spectrum growth which is bound to a
closed loop (Fig. 8(b)). Therefore, their resulting correlation
coefficient is also exactly K = 0.00.

⊚ We identified 37 nonchaotic rules governed by a Toroidal
Attractor (an attractor which looks like a large doughnut or
bagel with geometrical characteristics of a torus due to the

6

https://github.com/mohammedterryjack/0-1Test/blob/main/run_experiment.ipynb
https://github.com/mohammedterryjack/0-1Test/blob/main/run_experiment.ipynb
https://raw.githubusercontent.com/mohammedterryjack/0-1Test/main/experiments/results/t=50000.csv
https://raw.githubusercontent.com/mohammedterryjack/0-1Test/main/experiments/results/t=50000.csv


M. Terry-Jack and S. O’Keefe Physica D 453 (2023) 133786

Table 3

0–1 Test Results.

Spectral Pattern Rules

(ρ)

0–1 (K ) Test

• Point Attractor 0, 8, 32, 40, 128, 136,

160, 168

0.00 Regular

⃝ Limit Cycle Attractor 1, 4, 5, 12, 13, 19, 23,

28, 29, 33,

36, 37, 44, 50, 51, 72,

73, 76, 77, 78,

104, 108, 132, 140, 156,

164, 172, 178, 200, 204,

232

0.00 Regular

⊚ Toroidal 62, 94, 184 0.00 Regular

Attractor 57 0.01

58 0.05

27, 35 0.06

9, 138 0.07

3, 25, 43, 134 0.08

10, 14, 15 0.09

7, 11, 142, 162 0.10

34, 42, 56, 74, 130, 152,

170

0.11

2, 24, 46 0.12

6, 18, 38 0.13

126 0.32

41 0.39

26 0.53

154 0.75

↭ Strange 110 0.95 Chaotic

Attractor 54 0.97

45, 60, 90, 106 0.99

22, 30, 105, 122, 146,

150

1.00

superposition of different shifting spirals over many planes,

that eventually cycle back on itself exactly or inexactly. Un-

like limit cycle attractors, each cycle in a toroidal attractor is

not identical to the last due to this shift, causing the cycles

to drift over the course of a larger cycle, leaving toroidal

attractors with a very large period. Toroidal attractors pro-

duce either periodic dynamics, as shown in Fig. 7(c), or

quasiperiodic dynamics). These rules display a common type

of power spectrum pattern which is bound to the region

of a torus (Figs. 8(c), 9, 14(a) and 14(b)). Therefore, their

resulting correlation coefficient is close to K ≈ 0. Rules like

ρ41 had very large periods (τ ≈ 250, 000) which resulted

in misleadingly high test values, K (however, their values

approach K = 0 as their trajectory length increases).

↭ We identified 12 chaotic rules governed by a Strange Attrac-

tor (an attractor which generates highly complex, aperiodic

trajectories with chaotic dynamics, as shown in Figs. 7(d)

and 21(b)). In the power spectrum, these rules all have un-

bounded growths which resemble brownian motion (Figs. 5,

8(d) and 22(b)). Their resulting correlation coefficients are

between K = 0.95− 1.00.

5.2.2. Quantitative vs qualitative classifications

Stephen Wolfram [6] simulated thousands of ECAs with lattice

widths W = 637 to a depth of T = 318 from a single, identical

initial configuration, x′ ∈ D0.5, chosen at random from a subset of

configurations with 0.5 densities, D0.5 = {x ∈ S
W |

∑W

w=1 xw =
W
2
} [4]. By relying on ‘‘how things look to our eyes’’ [6], Wolfram

proposed there exist four unique classes of behaviour:

W1: Homogeneous fixed points [7] (Fig. 10): evolutions toward

uniform, quiescent configurations [4,51] with zero tempo-

ral and spatial entropy [52,53] and the lowest Kolmogorov

complexity (i.e. an asymptotic compressibility ratio of 0).

Fig. 9. Example of power spectrum plots (Re(z
c
)× Im(z

c
)) for the transformed

trajectories, z
c
, of several nonchaotic (toroidal attractor) rules (a) ρ94 , (b) ρ184 ,

(c) ρ57 , (d) ρ56 , (e) ρ34 , (f) ρ2 , (g) ρ130 , (h) ρ138 .

7
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Fig. 10. Wolfram’s Class I (W1).

Fig. 11. Wolfram’s Class II (W2)

Fig. 12. Wolfram’s Class III (W3)

Fig. 13. Wolfram’s Class IV (W4)

W2: Spatially inhomogeneous fixed points (Fig. 11): evolutions

toward temporally periodic configurations [4,51] with zero

temporal entropy but positive spatial entropy [52] and low

Kolmogorov complexities (i.e. compressibility ratios less

than 1/2 [53].

W3: Strange (chaotic) attractors (Fig. 12): complex chaotic ape-

riodic evolutions [4,7] with positive spatial and temporal

entropy [52] and the highest Kolmogorov complexity (i.e. al-

most incompressible) [53].

W4: Strange (weakly chaotic) attractors (Fig. 13): complex

quasiperiodic evolutions [4,7] with localised structures,

sometimes long-lived (comparable to biological systems or

self-organising, computational systems [51]) and asymptotic

compressibility ratios equal to 1 [53]. Often described as an

intermediate, transition phase between classes W2 and W3

(i.e. between order and chaos) and thus informally referred

to as the edge of chaos

Wolfram’s classification renewed public interest in CA re-

search and became very popular. However, many perceived his

qualitative and, ultimately, subjective approach to be the classi-

fication’s greatest drawback [8,54,55]. Wolfram maintained that

his heuristic approach was actually a strength of the classification,

as opposed to a weakness, because it leverages the unparallelled

pattern recognition capabilities of the human mind; ‘‘despite all

the various methods of mathematical and other analysis that have

been developed, our visual system still represents one of the most

powerful and reliable tools we have’’ [6].

Unfortunately, without precisely formalised mathematical def-

initions for each class, there is no effective criteria for mem-

bership, nor any quick tests to distinguish classes from one an-

other [2,3,7–10]. Therefore, many successive works in the field

have tried to find well-formalised classifications, utilising various

ways to quantify interesting characteristics of ECAs. For exam-

ple, Kurka [56] suggests the following dynamical properties to

precisely describe Wolfram’s classes:

W1: O
T (x) is equicontinuous (Definition 7)

W2: O
T (x) is almost equicontinuous (Definition 8)

W3: O
T (x) is sensitive (Definition 9)

W4: O
T (x) is positively expansive (Definition 10)

When comparing the famous qualitative classification of

Stephen Wolfram (Section 5.2.2) with the quantitative results

given by the 0–1 Test for Chaos (Table 4), we notice the following

similarities and differences:

W1: Wolfram’s class 1 rules (Fig. 10) all test as nonchaotic, K =
0, in agreement with the definition of the class given by

Wolfram definition (Section 5.2.2). Furthermore, these rules

exactly correspond with the nonchaotic rules exhibiting a

point attractor in their power spectrum plots.

W2: Wolfram’s class 2 rules (Fig. 11) also all test as nonchaotic,

K = 0 − 0.75, in agreement with their class definition

(Section 5.2.2). These rules consist of every rule exhibiting

a limit cycle attractor in their power spectrum as well as

all but three rules exhibiting toroidal attractors. Wolfram

may not have considered the distinction between these two

types of dynamics in his classification since their spacetime

diagrams appear similar (if the space and time axes are

considered equivalently); i.e. dynamics governed by a limit

cycle typically appear as vertical lines (Fig. 7(b)) whereas

dynamics governed by a toroidal attractor typically appear

as diagonal lines (Fig. 7(c)).

W3: The majority of Wolfram’s chaotic class 3 rules (Fig. 12)

are confirmed as chaotic by the 0–1 test, K = 0.99 −
1.00. However, there is an exception for a couple rules

(i.e. rule 18 and 126) which actually test as nonchaotic, K =
0.13− 0.32, and exhibit toroidal attractor spectral patterns

(Fig. 14). After approximately 350 time steps, τ ≈ 350, these

rules periodically repeat their spacetime patterns, which

is a clear confirmation of their regular, nonchaotic nature

(nonchaotic dynamics governed by toroidal attractors may

be as complex as chaos, but their regular nature make them

predictable. Chaos, on the other hand, is both complex and

unpredictable [57]). It is understandable how these complex

nonchaotic dynamics could be confused for complex chaotic

dynamics in Wolfram’s qualitative classification, as the com-

plexity of their spacetime pattern make their periodic nature

difficult to detect by eye (Figs. 15 and 16).

W4: Wolfram’s class 4 rules (Fig. 13) also test as chaotic, K =
0.95− 0.99, but the range of values are slightly lower than

those of class 3 rules, K = 0.99− 1.00, which may indicate

a weaker form of chaos (inline with the class’ description

as being ’weakly chaotic’). In the class’ description, Wol-

fram posited that certain features, like emergent particles,

8
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Table 4

Comparing the 0–1 Test Results against Wolfram’s Classification.

W. Class Rules (ρ) 0–1 Test Result Spectral Pattern (K )

W1 0, 8, 32, 40, 128, 136,

160, 168

Regular • Point 0.00 - 0.00

W2 1, 4, 5, 12, 13, 19, 23,

28, 29, 33,

36, 37, 44, 50, 51, 72,

73, 76, 77, 78, 104,

108, 132, 140, 156, 164,

172, 178, 200, 204, 232

Regular ⃝ Limit Cycle 0.00 - 0.00

2, 3, 6, 7, 9, 10, 11, 14,

15, 24, 25, 26, 27, 34,

35, 38, 42, 43, 46, 56,

57, 58, 62, 74, 94, 130,

134, 138, 142, 152, 154,

162, 170, 184

⊚ Toroidal 0.00 - 0.75

W3 18, 126 Regular ⊚ Toroidal 0.13 - 0.32

22, 30, 45, 60, 90, 105,

122, 126, 146, 150

Chaotic ↭ Strange 0.99 - 1.00

W4 41 Regular ⊚ Toroidal 0.39 - 0.39

54, 106, 110 Chaotic ↭ Strange 0.95 - 0.99

Fig. 14. Example power spectrum plots (Re(z
c
) × Im(z

c
)) for the transformed

trajectories, z
c
, of rules (a) ρ18 and (b) ρ126 , showing toroidal attractors.

are unique to class 4 rules. However, it is also plausible

that such features are common to all chaotic rules and the

complexity of strongly chaotic rules obscure the visibility of

these features (similar to the way in which the periodicity

of rules 18 and 126 become camouflaged). Rule 41 is the

only exception to the class 4 rules because it is nonchaotic

according to the 0–1 test, K = 0.39, exhibiting a toroidal

attractor in its power spectrum. Rule 41 happens to have an

incredibly long period, τ ≈ 250, 000, meaning its regularity

went unnoticed by Wolfram when viewing its spacetime

pattern (if a periodic trajectory has an extremely long period

which is greater than the observed trajectory, τ ≥ T ,

it appears indistinguishable from a non-periodic trajectory

because it has not been observed long enough to see the

orbit closing [12,23]). Even if it were to be viewed long

enough to permit a single repetition to occur, T > 500, 000,

it would render the spacetime too zoomed-out to have

any discernible details (highlighting another advantage of

quantitative approaches over qualitative classifications).

5.2.3. Chaoticity vs complexity

Linear separability (Section 2.2.3) is a vital concept in Chua’s

definition of complexity. The Chua complexity index, κ ∈ Z, is

the minimum number of hyperplanes, h, needed to separate the

bipolar vertices of a hypercube [26,58]. In this way, the geo-

metrical structure of a local rule (represented as a hypercube,

Section 2.2.2) can be quantified and used as a measure of the

Fig. 15. Example spacetime trajectory O
T (x) of rule 18 ρ18 showing complex

non-chaotic dynamics (purple highlights facilitate recognition of the repeating

pattern).

rule’s intrinsic complexity. There are exactly 14 ways to uniquely
colour a 3D hypercube and all ECA rules, ρ, can be mapped to
one of these unique colour combinations (hypercube structures),
ϱ : S2r+1 → S (Table 5).

9
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Table 5

ECA rules, ρ, mapped to their respective hypercube structures, ϱ, of varying intrinsic complexity, κ .

Hypercube Structure (ϱ) ECA Rules

(ρ)

Chua Complexity (κ)

I (Eq. (18)) 0 0

II (Eq. (19)) 1, 2, 4, 8, 32, 128 1

III (Eq. (20)) 3, 5, 10, 12, 34, 136, 160

IV (Eq. (21)) 7, 11, 13, 14, 19, 35, 42,

50, 76, 138, 140, 162,

168, 200

V (Eq. (22)) 15, 51, 170, 204

VI (Eq. (23)) 23, 43, 77, 142, 178, 232

VII (Eq. (24)) 6, 9, 18, 33, 40, 72, 130,

132

2

VIII (Eq. (25)) 24, 36, 126

IX (Eq. (26)) 25, 26, 28, 37, 38, 44,

56, 62, 74, 94, 110, 122,

152, 164

X (Eq. (27)) 30, 45, 54, 57, 106, 108,

154, 156

XI (Eq. (28)) 22, 41, 73, 104, 134, 146

XII (Eq. (29)) 60, 90

XIII (Eq. (30)) 27, 29, 46, 58, 78, 172,

184

3

XIV (Eq. (31)) 105, 150

κ = 0
The rules associated with ϱI are the simplest because all ver-

tices in the hypercube are the same colour, and therefore do
not require separating, or in other words, require 0 hyperplanes,
κ = 0.

ϱI(v) = 0 (18)

κ = 1
All rules requiring a single hyperplane, κ = 1, are linearly

separable and known as ’threshold functions’ (Section 2.2.3)

ϱII(v) = v1v2v3 (19)

produces true points V⊤ = {(1, 1, 1)} and false points V⊥ =
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1),
(1, 1, 0)} which are linearly separable (Fig. 17).

Proof. Let h =

(

1.0

1.0

1.0

)

. By Definition 12, ϱII is a threshold function

if min{h · v⊤ | v⊤ ∈ V⊤} > max{h · v⊥ | v⊥ ∈ V⊥} ⇒ min{3} >
max{0, 1, 1, 2, 1, 2, 2} ⇒ 3 > 2

ϱIII(v) = v1v2 (20)

produces true points V⊤ = {(1, 1, 0), (1, 1, 1)} and false points
V⊥ = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)}
which are linearly separable (Fig. 17(b)).

Proof. Let h =

(

1.0

1.0

0.0

)

. By Definition 12, ϱIII is a threshold

function if min{h · v⊤ | v⊤ ∈ V⊤} > max{h · v⊥ | v⊥ ∈ V⊥} ⇒
min{2, 2} > max{0, 0, 1, 1, 1, 1} ⇒ 2 > 1

ϱIV(v) = v1 max{v2, v3} (21)

produces true points V⊤ = {(1, 0, 1), (1, 1, 0), (1, 1, 1)} and false
points V⊥ = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0)} which
are linearly separable (Fig. 17(c)).

Proof. Let h =

(

1.0

0.5

0.5

)

. By Definition 12, ϱIV is a threshold

function if min{h · v⊤ | v⊤ ∈ V⊤} > max{h · v⊥ | v⊥ ∈ V⊥} ⇒

min{1.5, 1.5, 2} > max{0, 0.5, 0.5, 1, 1} ⇒ 1.5 > 1

ϱV(v) = v1 (22)

produces true points V⊤ = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
and false points V⊥ = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}which

are linearly separable (Fig. 17(d)).

Proof. Let h =

(

1.0

0.0

0.0

)

. By Definition 12, ϱV is a threshold function

if min{h · v⊤ | v⊤ ∈ V⊤} > max{h · v⊥ | v⊥ ∈ V⊥} ⇒
min{1, 1, 1, 1} > max{0, 0, 0, 0} ⇒ 1 > 0

ϱVI(v) = max{v1v2, v1v3, v2v3} (23)

produces true points V⊤ = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
and false points V⊥ = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}which

are linearly separable (Fig. 17(e))(see Fig. 18).

Proof. Let h =

(

1.0

1.0

1.0

)

. By Definition 12, ϱVI is a threshold

function if min{h · v⊤ | v⊤ ∈ V⊤} > max{h · v⊥ | v⊥ ∈ V⊥} ⇒
min{2, 2, 2, 3} > max{0, 1, 1, 1} ⇒ 2 > 1

κ = 2

Chua observed that all linearly separable rules, κ = 1, fell

within Wolfram’s classes W1 and W2 (Section 5.2.2) [58] and,

thus, never tend toward chaotic or complex evolutions (i.e. Wol-

fram’s classes W3 and W4) [26]. Therefore, Chua concluded that

only linearly inseparable rules, κ > 1, are sufficiently complex for

such global behaviours to emerge.

ϱVII(v) = v1(v2 = v3) (24)

ϱVIII(v) = (v1 = v2 = v3) (25)

ϱIX(v) = max{(1− v1)(1− v2), v1v2v3} (26)

ϱX(v) = v1 ⊕ (v2v3) (27)

ϱXI(v) = max{v1v2v3, v1(1− v2)(1− v3), (1− v1)(1− v2)v3} (28)

ϱXII(v) = v1 ⊕ v2 (29)

10
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Fig. 16. Example spacetime trajectory O
T (x) of rule 126 ρ126 showing complex

non-chaotic dynamics. The regular nature is not easily discernible, due to the

high complexity, so purple highlights facilitate recognition of the repeating

pattern (τ ≈ 350).

Fig. 17. Hypercube structures, ϱ, which are linearly separable, κ = 1.

Fig. 18. Hypercubes structures, ϱ, which are linearly inseparable, κ > 1.

κ = 3

ϱXIII(v) =

{

v2 if v1 = 1

v3 otherwise
(30)

ϱXIV(v) = v1 ⊕ v2 ⊕ v3 (31)

The following relationships were noted when each rule’s
chaoticity, K , was compared against its complexity, κ (Table 6).

Simple The only rule with a complexity of 0, κ = 0, was
regular, exhibiting a simple point attractor in the power
spectrum. Of the 37 linearly separable rules with a
complexity of 1, κ = 1, all were regular, exhibiting
either point, limit cycle or toroidal attractors in the
power spectrum.

Complex Of the 41 linearly inseparable rules with a complexity
of 2, κ = 2, 31 were regular and 10 were chaotic. Of
the 9 linearly inseparable rules with a complexity of 3,
κ = 3, 7 were regular and 2 were chaotic.

Chaotic Chaotic dynamics, K ≈ 1, seem to only occur above a
certain level of complexity (i.e. chaotic rules are only
found in rules with a complexity greater than 1, κ > 1),
in accordance with Chua’s observation that threshold
functions are insufficiently complex for chaotic dynam-
ics to emerge (Section 5.2.3).

Regular However, we find nonchaotic dynamics, K ≈ 0, occur-
ring in rules of any complexity, κ = 0−3, which means
nonchaotic dynamics are not only found in simple rules,
κ ≤ 1, but in highly complex rules too, κ > 1. This
points to an important and counter-intuitive distinction
between chaoticity and complexity; chaos is necessarily
highly complex but not all highly complex dynamics are
necessarily chaotic (since many nonchaotic dynamics
can also have highly complex dynamics). For example,
rules governed by toroidal attractors have regular, per-
fectly periodic orbits, which may still produce space-
time patterns as complex as chaos (Figs. 15 and 16).

11
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Table 6

Comparing each rule’s 0–1 Test Result (K ) against its Chua Complexity Index (κ)

(κ) Rules (ρ) 0–1 Test Result Spectral Pattern (K )

0 0 Regular • Point 0.00

1 8, 32, 128, 136, 160, 168 Regular • Point 0.00

1, 4, 5, 12, 13, 19, 23, 50,

51, 76, 77, 140, 178,

200, 204, 232

⃝ Limit Cycle 0.00

2, 3, 7, 11, 10, 14, 15, 34,

35, 42, 43, 138, 142,

162, 170

⊚ Toroidal 0.06 - 0.12

2 40 Regular • Point 0.00

28, 33, 36, 37, 44, 72, 73,

104, 108, 132, 156, 164

⃝ Limit Cycle 0.00

6, 9, 18, 24, 25, 26, 38,

41, 56, 57, 62, 74, 94,

126, 130, 134, 152, 154

⊚ Toroidal 0.00 - 0.75

22, 30, 45, 54, 60, 90,

106, 110, 122, 146

Chaotic ↭ Strange 0.95 - 1.00

3 29, 78, 172 Regular ⃝ Limit Cycle 0.00

27, 46, 58, 184 ⊚ Toroidal 0.00 - 0.06

105, 150 Chaotic ↭ Strange 1.00 - 1.00

Fig. 19. Rule 30, ρ30 , showing chaotic and periodic dynamics depending on its

initial configuration.

As such, it is important not to confuse the 0–1 test as

a complexity metric because regular rules will always

result in near-zero test scores, K ≈ 0, to indicate their

low chaoticity (irregardless of their potentially high

complexity).

6. Discussions

6.1. Rules vs initial configurations

It is still unclear exactly which properties of the local rule,

ρ, influence the global behaviour [32] (making the connection

between the global behaviour of a CA and its local rule explicit

is one of the most interesting and challenging problems in CA

theory [32]). What has become evident, however, is that the

typical long-term behaviour of a CA depends on more than just

the local rule, ρ.

While it is fairly obvious that the lattice size can impact the

resulting dynamics (since smaller lattices may be unable to unfold

the full dynamical potential of the rule [59]), many examples

have also been found demonstrating the IC’s influence on the

resulting dynamics [60] (e.g. rule 40, ρ40, is ordered when starting

from a configuration of all 0s but chaotic when starting from

random ICs [54]. Rule 106, ρ106, generates simple dynamics from

an IC of all 0s bar a single 1, (. . . , 0, 0, 1, 0, 0, . . . ), yet becomes

dynamically complex from an IC of all 0s containing two adjacent

1s (. . . , 0, 0, 1, 1, 0, 0, . . . ) [60]. The infamously chaotic rule 30,

ρ30, can suddenly exhibit periodic behaviour for some ICs [6], as

shown in Fig. 19).

Since rules have been shown to belong to different classes of

dynamics depending on the exact IC, x, it is slightly misleading to

provide a single classification result for each rule, ρ. Nevertheless,

due to the impracticality of taking the rule’s average dynamics

over all possible ICs, it is fairly common for researchers to use a

single IC chosen at random (as was specified in our experimental

setup in Section 5.1), with the assumption that the rule’s typical

dynamical behaviour (i.e. the dynamics most often expressed by

the rule across all its ICs) will be captured by doing so.

6.2. Pros & cons of the 0–1 test

The 0–1 test for chaos is a proper mathematical test which

successfully distinguishes between regular and chaotic dynamics

in deterministic systems (such as ECAs) based on a complex-

valued transformation of the input time series z
c
(Definition 17)

and a theorem which states that non-chaotic behaviour in this

domain is bounded whereas chaos is not, but rather behaves

diffusely of the mean zero random walk (Definition 17). The

property of the power spectrum is quantified using the mean-

square displacement (Definition 18) and extracted into a single

number K which represents the median asymptotic growth rate

(Definitions 19 and 20). If the underlying dynamics are regular

(i.e. periodic, quasiperiodic, etc.) then K ≈ 0 and if they are

chaotic then K ≈ 1 (Table 2).

Unlike more traditional tests for chaos which rely on phase-

space reconstructions, the 0–1 test bypasses the explicit compu-

tation of the power spectrum making it very easy to compute,

straightforward to implement [20,22] and computationally inex-

pensive [18,21,22]. Moreover, the test is universally applicable

since it is independent of the origin, nature and dimension of the

data fed into the dynamical system under consideration [18,22].

This made the 0–1 test a convenient and computationally efficient

tool for diagnosing ECA dynamics.

The test does have some known disadvantages. For instance,

it requires a carefully chosen angle c in Definition 17 to avoid the

occurrence of resonance triggered for some isolated values of c.

In fact, this is why the test is designed to be run over a range of

angles c before taking the median result (Definition 20, Fig. 20),

to ensure the final K is more robust against outliers caused by

resonance.

The number of data points used also has an impact on the

results of the test. Fewer data points (i.e. a shorter time-series)

runs a greater risk of false results. For instance, the mean-squared

displacement of only 100 data points of rule 150 appears to grow

and not be bounded, thus indicating chaotic dynamics (Fig. 6(a)).

However, this conclusion is premature and the mean-squared

displacement of 8,000 data points reveals a bounded growth

(Fig. 6(b)), correctly indicating non-chaotic dynamics. We noted

some regular rules in our own results with scores higher than
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Fig. 20. Correlation coefficients, K
c
, over a range of angles, c , for rule 54, ρ54 .

The median gives the final 0–1 Test Result, K .

expected (e.g. rule 41 tests highly K = 0.75, although it is non-

chaotic), despite using 50,000 data points (Section 5.1). However,

with probability one K converges to 0 or 1 as N → ∞ and so

with more data points the test is guaranteed to provide accurate

results.

Interestingly, the binary test was also able to detect a slight

difference in the strength of chaos (Section 5.2.2) between Wol-

fram’s chaotic class 3 rules (W3) and the weaker chaotic edge

rules (W4). However, we failed to identify a single threshold

value for K that would perfectly separate these two classes from

one another, which would suggest that the qualitative differences

seen between chaos (W3) and the edge of chaos (W4) is not

something which is fully captured by the 0–1 test in its current

form (or that the proposed class separation is superficially exag-

gerated and the chaotic edge has far more in common with chaos

than not).

6.3. Chaos vs randomness

Given the long-term unpredictability of chaos, it is under-

standable how it could be confused for randomness (e.g. noise),

which is also unpredictable. However, randomness is a stochastic

process governed nondeterministically, by chance [16], and the

probability of appearance of any value in a random sequence

is not affected by the knowledge of past values (i.e. values are

mutually independent [28]). Randomness also lacks any structure,

regularities or order [6,12] whereas chaos has readily recog-

nisable structures (i.e. fractals) and regular, nested patterns [6,

34].

Even though randomness (Fig. 21(a)) is stochastic and, unlike

deterministic chaos (Fig. 21(b)), is not governed by any attractor,

randomness exhibits a diffusive growth pattern in the power

spectrum almost identical to that of chaos (Fig. 22) with a mean

square displacement that scales linearly (Fig. 23) and a resulting

correlation coefficient close to 1, K ≈ 1 (incorrectly indicating

chaos). Misidentifying randomness for chaos is a known weak-

ness of the 0–1 test since it was designed for deterministic

dynamical systems [20] as opposed to stochastic systems [18].

While it has been shown to accurately detect regular behaviour

within noisy data [22], there is a risk for the test to interpret

random data or noise as chaos if it were incorrectly assumed that

the data came from a deterministic system [39].

7. Conclusion

The 0–1 Test was used to automatically classify ECA rules

(Table 3). Unlike more traditional tests for chaos which rely on

Fig. 21. Example trajectories O
T (x) (Definition 5) for (a) stochastic randomness

and (b) deterministic chaos, ρ30 .

Fig. 22. Example of power spectrum plots (Re(z
c
)× Im(z

c
)) for the transformed

trajectories, z
c
, of (a) a random and (b) chaotic rule, ρ30 .

Fig. 23. Examples of the mean square displacement Mc for randomness and

chaos, ρ30 .

phase-space reconstructions, the 0–1 test bypasses the explicit
computation of the power spectrum making it very easy to com-
pute, straightforward to implement [20,22] and computationally
inexpensive [18,21,22]. Moreover, the test is universally applica-
ble since it is independent of the origin, nature and dimension of
the data fed into the dynamical system under consideration [18,
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22]. This made the 0–1 test a convenient and computationally

efficient tool for diagnosing ECA dynamics.

Upon inspecting each rule’s growth in the power spectrum,

chaotic rules were confirmed to exhibit the expected brownian

motion (Figs. 5, 8(d) and 22(b)). On the other hand, the bounded

growths of nonchaotic dynamics unexpectedly revealed three

distinct types of spectral patterns (Section 5.2.1). The quantitative

results of the 0–1 test were then compared against Wolfram’s

famous, qualitative classification (Table 4). All class 3 rules, which

were classified as chaotic by Wolfram, were also confirmed as

chaotic by the 0–1 test, except for two (rule 18 and 126) which

are actually periodic (with periods of τ ≈ 350) but, due to the

high complexity of their spacetime patterns, their periodic nature

went undetected by Wolfram (Figs. 15 and 16).

Interestingly, the binary test was also able to detect a slight

difference in the strength of chaos (Section 5.2.2) between Wol-

fram’s chaotic class 3 rules (W3) and the weaker chaotic edge

rules (W4). The 0–1 test also identified a nonchaotic rule in the

’weakly chaotic’ class 4 rules (rule 41), but due to its extremely

long period, τ ≈ 250, 000, which is greater than the observed

trajectory, τ ≥ T , it was indistinguishable from a non-periodic

trajectory because it had not been observed long enough to see its

orbit closing [12,23]. Unfortunately, even viewing its spacetime

for a timespan long enough to see its repetitive nature would be

impractical, as it would render the spacetime too zoomed-out to

be discernible in any detail. This highlights yet another advantage

of quantitative approaches over qualitative classifications.

Each rule’s chaoticity (as quantified by the 0–1 test), was also

compared against its complexity (as quantified by its Chua Com-

plexity Index), (Table 6) and it was apparent that a higher level of

complexity was necessary for chaotic dynamics to emerge. How-

ever, not all highly complex dynamics were necessarily chaotic

since nonchaotic dynamics were found in both simple and com-

plex rules (some even as complex as chaos, despite their regular

nature, which ultimately meant they were predictable, in direct

contrast to chaotic dynamics which are complex and unpre-

dictable [57]). As such, the 0–1 test should not be confused for a

complexity metric [11] because, irregardless of a potentially high

complexity, nonchaotic dynamics will always result in near-zero

scores to indicate their low chaoticity.

A final discussion briefly touches on a problematic assumption

underlying the ECA classification task; the local rules are classi-

fied irrespective of the IC used, implicitly neglecting any influence

the IC may have on the resulting global dynamics (even though

rules have been shown to belong to entirely different classes

of dynamics depending on the exact IC used). Furthermore, a

known limitation of the 0–1 test was discussed; its inability to

distinguish between chaos and randomness.
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