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Reconfigurable Intelligent Surface-assisted Indoor

Millimeter-wave Communications for Mobile

Robots

Zhiyu Liu, Yang Liu, Member, IEEE, and Xiaoli Chu, Senior Member, IEEE

Abstract—Reconfigurable intelligent surfaces (RISs) and
millimeter-wave (mmWave) communications have been consid-
ered for providing wireless connectivity to mobile robots used in
industrial plants and other indoor environments. However, the
existing works have not sufficiently studied how the number and
deployment locations of RISs should be optimized for serving
a mobile robot. In this paper, we study RIS-assisted mmWave
communications for a robot moving around fixed obstacles in
an indoor industrial environment. For a fixed total number of
reflecting elements, we formulate an optimization problem to
minimize the transmission energy consumption of the access
point (AP) while ensuring the robot’s received signal-to-noise
ratio (SNR) above a threshold throughout its journey by jointly
optimizing the number, positions and phase shifts of RISs and
the beamforming vectors of the AP. To solve the formulated non-
convex optimization problem, we devise an iterative algorithm
that decomposes it into two subproblems (i.e., optimizing the
phase shifts of RISs and the beamforming vector of the AP, and
optimizing the number and locations of RISs) and solves them
alternately. Simulation results show that the proposed algorithm
converges fast and can obtain the best number and locations of
RISs that lead to a transmission energy consumption of the AP
much lower than the benchmark schemes.

Index Terms—Reconfigurable intelligent surface deployment,
millimeter-wave, mobile robot, energy consumption, beamform-
ing.

I. INTRODUCTION

As the industrial Internet of things (IIoT) continues to

expand, wirelessly connected mobile robots are expected to

be in increasingly widespread use, carrying out various tasks

[1]. Due to the presence of machines, furniture and other

things in an industrial environment, the line-of-sight (LoS)

link between an access point (AP) and a mobile robot is

likely to be blocked while the robot is moving around them.

This makes it difficult to employ millimeter-wave (mmWave)

communications for mobile robots because non-line-of-sight

(NLoS) mmWave links suffer from severe penetration losses

[2], [3].

To increase the possibility of a receiver seeing a LoS link

and to enable continuous connectivity, reconfigurable intel-

ligent surfaces (RISs) have been employed to reflect signals

from a transmitter to a receiver [4]. An RIS is a planar surface
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composed of reconfigurable passive reflecting elements, each

being capable of controlling the amplitude and phase shift of

their reflected signal [5], and has attracted a lot of interest

from researchers. In [6], the authors minimized the transmit

power of the AP by jointly optimizing the phase shifts of

elements on a single RIS and the beamforming vectors at the

AP while meeting the downlink signal-to-interference-plus-

noise ratio (SINR) requirement. Their results demonstrated

that the transmit power at the AP can be scaled down by 1/N2,

where N denotes the number of elements on the RIS. In [7],

the authors maximized the downlink received signal-to-noise

ratio (SNR) in a single RIS-aided multiple-input single-output

(MISO) mmWave communication system by optimizing the

phase shifts of the RIS and found that the RIS achieved a lower

outage probability than amplify-and-forward (AF) relaying. In

[8], the authors maximized the downlink received signal power

in a RIS-aided MISO system by jointly optimizing the active

beamforming at the AP and passive beamforming at the RIS.

We note that only a single RIS was considered in [6]–[8] and

their results cannot be readily extended to cases of multiple

RISs.

Depoying multiple RISs opens the door to more design

variables, such as the number and deployment positions of

RISs. In [9], the simulation results showed that a distributed

deployment of multiple RISs across the service area of a

base station (BS) can improve the mean rate of all the users

as compared with the full-duplex (FD) relaying; and when

centralizing the fixed total number of elements on fewer

RISs, the mean user rate will increase but the fairness among

spatially distributed users in terms of their achievable rates

will degrade. In [10], the authors found that for a fixed total

number of elements, deploying one RIS achieves a larger

capacity region for two single-antenna users of different data

rate requirements than deploying two RISs. In [11], the results

showed that deploying two RISs can increase the downlink

received signal power by a factor of O(N4), while that of

deploying a single RIS is O(N2), where N is the total number

of reflecting elements. In [12], the authors showed that with a

fixed total number of elements, the distributed deployment of

multiple RISs (at the same height on a vertical 2D plane) can

achieve a higher downlink ergodic capacity than deploying

a single RIS under outdated channel state information in a

single-input single-output (SISO) system. In [13], the authors

maximized the downlink sum rate of all users in a multi-RIS-

aided MISO system by jointly optimizing the beamforming



vector at the BS, the phase shifts at the RISs and the block-

length for ultra-reliable low-latency communication (URLLC)

subject to a maximum allowed packet error probability. In

[14], the authors jointly optimized the locations of UAVs each

carrying an RIS, the phase shifts of the RISs and the BS

transmit power to minimize the number of RISs required for

meeting a downlink received SNR requirement. However, the

above studies on the deployment of multiple RISs all assumed

that the user devices were stationary. Their results cannot

be readily extended to the cases of moving users, because

the LoS/NLoS status of the links from the RISs and BSs to

the users may change as the users move around obstacles.

Moreover, in [10]-[12], only two RISs were considered, while

the locations of them were not optimized.

Recently, RIS-assisted communications for moving objects

have been studied. In [15], the authors maximized the uplink

average data rate of a robot moving from an initial position to

a target position within a limited time by jointly optimizing

the phase shifts of an RIS deployed nearby, the trajectory and

the beamforming vector of the robot. In [16], the trajectory

and speed of a UAV (carrying a RIS) and the phase shifts

of the RIS were jointly optimized to maximize the average

downlink rate of a vehicle that moves along a road in an urban

area. In [17], the authors analyzed the coverage probability of

a single-antenna vehicle served by a UAV carried BS and a

single RIS deployed on the exterior wall of a building while the

vehicle drives along a straight motorway for different positions

of the UAV. In [18], for a vehicular network assisted by a UAV

carried RIS, the authors maximized the minimum downlink

throughput among all the vehicles served by a BS by jointly

optimizing the phase shifts of the RIS, transmission schedul-

ing, transmission power of the BS and the UAV trajectory.

In [15]-[18], only a single RIS was considered. In [19], the

vehicles moving along a straight motorway were served by

a BS carried by a UAV and multiple RISs deployed on a

vertical 2D plane that is parallel to motorway, where each

RIS served a different vehicle. The authors minimized the

sum outage probability of all the vehicles by optimizing the

transmit power of the BS, but the locations or number of RISs

were not optimized. We note that in the above works, the

LoS/NLoS status of each link was statistically characterized by

an independent LoS probability, but the impact of blockage(s)

on the wireless links seen by a moving user was not explicitly

modeled.

In this paper, we study RIS-assisted mmWave communica-

tions for a mobile robot in an indoor industrial environment

with large obstacles. Aiming to minimize the transmission

energy consumption of the AP, we investigate whether a fixed

number of passive elements should be distributed to a large

number of small RISs or centralized to a small number of large

RISs, while maintaining reliable downlink communications for

a robot moving around the obstacles along a known trajectory

within a given time limit. The contributions of this paper are

summarized as follows:

• We present a system model for the RIS-assisted mmWave

downlink transmission from an AP on the ceiling to a

robot moving around obstacles at fixed locations inside an

industrial plant, where one or multiple RISs are deployed

on a selected wall. At each position along its trajectory,

whether the robot sees a LoS or NLoS link from an RIS

or the AP is explicitly modelled for the considered indoor

industrial environment. This is different from the existing

works [15]-[19] where the effects of blockages on the

links from the RISs or APs to the moving users (e.g.,

vehicles or robots) were not explicitly modeled.

• We formulate an optimization problem to minimize the

transmission energy consumption of the AP while guar-

anteeing that the received SNR at the robot is kept above

a threshold throughout its journey by jointly optimizing

the number, positions and phase shifts of RISs and the

beamforming vectors of the AP. The difficulties of this

optimization problem mainly lie in the unfixed number of

variables that are coupled in both the objective function

and the constraint on the received SNR in complicated

ways. This is different from the existing works where

only a single RIS was considered [6]-[8], [15]-[18], the

locations or numbers of RISs were not optimized [10]-

[12], [19], or users were assumed to be stationary [6]-

[14].

• Since the formulated joint optimization problem is non-

convex and difficult to solve directly, we decompose it

into two subproblems and solve them alternately. More

specifically, for given number and locations of RISs,

we devise a Total Energy Consumption Optimization

(TECO) Algorithm to minimize the AP’s transmission

energy consumption by iteratively optimizing the phase

shifts of each RIS and the beamforming vector of the

AP. For given phase shifts of the RISs and beamforming

vectors of the AP, we devise a genetic algorithm to find

the optimal number and deployment locations of RISs

that minimize the AP’s transmission energy consumption.

Then, we propose a RIS Locations and Number (RISLN)

Algorithm that iteratively calls the TECO Algorithm

and the genetic algorithm until the decrease of the AP

transmission energy consumption is below a threshold.

• Our simulation results demonstrate that the proposed

algorithms converge fast and can find the suitable number

and best deployment locations of RISs that minimize the

AP’s transmission energy consumption while maintaining

reliable communications between the AP and the robot.

The simulation results also show that the transmission

energy consumption of the AP decreases when the fixed

total number of reflecting elements are shared by more

distributed RISs, but the reduction in AP transmission

energy consumption stops when the number of RISs

becomes too large.

The rest of the paper is organized as follow. In Section II,

we introduce the system model, LoS/NLoS status indicator

vector and channel model. In Section III, we formulate the

AP’s transmission energy consumption minimization problem

and propose algorithms to solve it. In Section IV, we provide



simulation results. Finally, we conclude the paper in Section

V.

II. SYSTEM MODEL

A. System Model

As shown in Fig. 1, we consider an industrial indoor envi-

ronment containing several parallel rows of interior obstacles

(e.g., large machines or shelves deployed in parallel across

the industrial plant) in a Cartesian coordinate system, where

one of the ground corners of the plant is set as the origin of

the horizontal plane. The plant has a rectangular floor area of

lf × lp, where lf is the length of the wall perpendicular to the

rows of obstacles, and lp is the length of the wall parallel

to the rows of obstacles. We model the parallel obstacles

as evenly spaced identical convex cubes each of length L,

width W , and height H , where the distance between any two

adjacent obstacle is la, and the number of obstacles is given

by I 6 lf/(la+W ). A robot moves on the horizontal ground

plane around the parallel rows of obstacles from a starting

point qs to a destination point qd along a fixed trajectory (as

indicated by the dashed line on the ground plane in Fig. 1). The

trajectory keeps a distance of l (< la/2) meters from the closet

obstacle and forms a U shaped route between any two adjacent

obstacles. The obstacles locate along the robot’s trajectory

from qs to qd are denoted by O1, O2, · · · , OI , respectively.

The corners of the obstacles closest to the start point are

denoted by qO1
, qO2

, · · · , qOI
and are used to represent the

locations of the corresponding obstacles.

We consider the downlink from an access point (AP)

mounted on the ceiling to the single-antenna robot. The AP

is equipped with a uniform linear array (ULA) of M (>1)

antennas. The location of the AP is denoted by qA. There are

K RISs deployed on a wall perpendicular to the obstacles

to reflect signals from the AP to the robot. Each RIS is

equipped with N
K

passive reflecting elements, where N is the

total number of passive reflecting elements of all the RISs. We

assume that the reflecting elements on the RISs are all passive

[5]-[7]. The deployment of RISs ensures the LoS links between

the AP and themselves, and their locations are higher than the

receive antenna on the robot. The locations of RISs are given

by qR = [qR1 , qR2 , · · · , qRK
], where qRk

= [xRk
, yRk

, zRk
].

The passive reflecting elements of each RIS form an uniform

rectangular array (URA). For simplicity, the location of the

central element of the AP’s or an RIS’s array is considered

as the location of the AP or the RIS, which is used to

calculate the distance between the AP or the RIS and another

communication node [6]. Each RIS is connected to a smart

controller that adjusts its phase shifts and reflection amplitudes

via a separate wired link.

The time required for the robot to move from the start point

to the destination along the fixed trajectory is divided into

T + 1 timeslots, t = 0, · · · , T . Timeslot t has a duration ∆t,

which is sufficiently short so that the channel conditions can be

assumed to be fixed within the timeslot. In timeslot t, the robot

moves over a distance of Dt = vt∆t, where vt is the speed of

the robot in timeslot t. We use the location of the robot antenna

to represent the location of the robot at any time. The trajectory

of the robot can be represented by q = [q0, q1, · · · , qT ], where

qt = [xt, yt, zr] denotes the position of the robot in the t-th
timeslot, zr is the height of the robot antenna above ground,

q0 = qs, and qT = qd.

Fig. 1. System Model.

B. LoS Indicator Matrix

The AP-robot and RISk-robot links (k = 1, · · · ,K) may

become NLoS when they are blocked by obstacles as the robot

moves along the trajectory. We define an I × (K + 1) LoS

indicator matrix at timeslot t:

µ(t) =
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(1)

where µ
(t)
i0 = 1 if the LoS link between the AP and the robot is

not blocked by the i-th obstacle at timeslot t, otherwise µ
(t)
i0 =

0; µ
(t)
ik = 1 (k = 1, · · · ,K) if the LoS link between RISk and

the robot is not blocked by the i-th obstacle at timeslot t,

otherwise µ
(t)
ik = 0. We use a ray-slope method, as shown

in Algorithm 1, to identify intersections between the K + 1
links and the I obstacles at timeslot t [20], and obtain the LoS

indicator matrix.

We note that the system model in Section II-A can be gen-

eralized by allowing each obstacle to have its distinct length,

width and height, and by allowing different distances between

different pairs of adjacent obstacles. In this way, the modeled

obstacles can be of various sizes and do not necessarily locate

along a straight line. The proposed Algorithm 1 can still obtain

the LoS indicator matrix under such a more general setting of

obstacles as long as the trajectory of the robot and the locations

and sizes of the obstacles are pre-determined.



Algorithm 1 LoS Indicator Vector

Input: qA, qR, qO, qt
Output: µ

(t)
ik (i = 1, · · · , I; k = 0, 1, · · · ,K)

1: Initialize µ
(t)
ik = 0, (i = 1, · · · , I; k = 0, · · · ,K)

2: for k = 0 to K do

3: for i = 1 to I do

4: Obtain the slope of the link between the AP and

the robot/ the link between the k-th RIS and the

robot with the input qa, qRk
, and qt.

5: Obtain the slope of the link between AP/RIS and

the corner of the i-th obstacle with the input qA,

qRk
, and qOi

6: Obtain µ
(t)
ik by comparing the obtained slopes.

7: end for

8: end for

C. Channel Model

The channels from the AP to RISk, from the AP to the

robot, and from RISk to the robot at timeslot t are denoted by

Gk ∈ C
N
K

×M , h
(t)
AR ∈ C

1×M , and h
(t)
kR ∈ C

N
K

×1, respectively.

Accordingly, Gk is given by [21]

Gk =
√

ρd−2
Ake

−j2πτAkcr(VAoA
Ak )ct(VAoD

Ak ), (2)

where ρ (<1) denotes the LoS path loss at the reference

distance of 1 m, dAk denotes the distance between the AP

and RISk, τAk is the time of arrival (ToA) from the AP to

RISk, cr(VAoA
Ak ) and ct(VAoD

Ak ) are respectively given by

cr(V
AoA
Ak )=

[

1,exp(
jπdAsinV

AoA
Ak

λAI

),· · ·,exp(
jπdA(

N
K
−1)sinVAoA

Ak

λAI

)

]T

,

(3)

ct(V
AoD
Ak )=

[

1,exp(
jπdAsinV

AoD
Ak

λAI

),· · ·,exp(
jπdA(M−1)sinVAoD

Ak

λAI

)

]T

,

(4)

where VAoA
Ak and VAoD

Ak are the angle of arrival (AoA) at

RISk from the AP and the angle of departure (AoD) at the

AP towards RISk, respectively, dA is the spacing between any

two adjacent antennas at the AP, and λAI is the wavelength

of the signal transmitted from the AP to RISk.

Similarly, h
(t)
AR is given by

h
(t)
AR=











√

ρ(d
(t)
AR)

−2e
−j2πτ

(t)
ARct(V

AoD(t)
AR ), µ

(t)
i0 =1, i=1, · · · , I

√

ρ(d
(t)
AR)

−βARe
−j2πτ

(t)
AR h̃, otherwise

,

(5)

where d
(t)
AR denotes the distance between the AP and the

robot at timeslot t, βAR is the path loss exponent of the NLoS

channel between the AP and the robot, τ
(t)
AR is the ToA from

the AP to the robot at timeslot t, and h̃ ∼ CN (0, 1) is a

1 × M vector whose elements follow independent complex

Gaussian distribution with zero mean and unit variance, and

ct(VAoD(t)
AR ) is given by

ct(V
AoD(t)
AR )=

[

1,exp(
jπdAsinV

AoD(t)
AR

λ
(t)
AR

),· · ·,exp(
jπdA(M−1)sinV

AoD(t)
AR

λ
(t)
AR

)

]T

,

(6)

where VAoD(t)
AR is the AoD at the AP towards RISk at

timeslot t, and λ
(t)
AR can be expressed as:

λ
(t)
AR =

c

fc +
fcvt cos(φ

(t)
AR

)

c

, (7)

where fc is the carrier frequency of the AP transmission, vt
is the velocity of the robot at timeslot t, φ

(t)
AR is the angle

between the AP signal’s AoA at the robot and the direction

of the robot’s motion, and c is the speed of light.

Similarly, h
(t)
kR is given by

h
(t)
kR =











√

ρ(d
(t)
kR)

−2e
−j2πτ

(t)
kRct(V

AoD
kR ), µ

(t)
ik = 1, i = 1, · · · , I

√

ρ(d
(t)
kR)

−βkRe
−j2πτ

(t)
kR h̃, otherwise

,

(8)

where d
(t)
kR denotes the distance between RISk and the robot

at timeslot t, βkR is the path loss exponent of the NLoS

channel between RISk and the robot, τ
(t)
kR is the ToA from

RISk to the robot, and ct(VAoD(t)
kR ) is given by

ct(V
AoD(t)
kR )=

[

1,exp(
jπdIsinV

AoD(t)
kR

λ
(t)
kR

),· · ·,exp(
jπdI(M−1)sinV

AoD(t)
kR

λ
(t)
kR

)

]T

,

(9)

where VAoD(t)
kR is the AoD at the AP at timeslot t, dI is the

spacing between any two adjacent antennas at an RIS. λ
(t)
kR is

the wavelength of the siganl reflected by RISk to the robot at

timeslot t and can be expressed as

λ
(t)
kR =

c

fc +
fcvt cos(φ

(t)
kR

)

c

, (10)

where φ
(t)
kR is the angle between the AoA of the signal reflected

by RISk to the robot and the direction of the robot’s motion.

The channel from the AP to the robot at timeslot t is given

by

h(t) =

K
∑

k=1

(h
(t)
kR)

H
Θ

(t)
k G

(t)
k + h

(t)
AR, t = 0, · · · , T, (11)

where the diagonal matrix Θ
(t)
k = diag(η

(t)
k,1e

jθ
(t)
k,1 , · · · ,

η
(t)

k,N
K

e
jθ

(t)

k, N
K ) (j denotes the imaginary unit) is the reflection-

coefficients matrix of RISk at timeslot t, θ
(t)
k,n ∈ [0, 2π)

and η
(t)
k,n ∈ [0, 1] denote the phase shift and the reflec-

tion coefficient amplitude of the n-th element of the k-

th RIS, respectively. For simplicity, we assume η
(t)
k,n =

1, ∀n, k, t, since the reflection coefficient amplitudes are typi-

cally set at their maximum value [6], and accordingly Θ
(t)
k =

diag(ejθ
(t)
k,1 , · · · , e

jθ
(t)

k, N
K ).



We consider linear transmit precoding at the AP. At timeslot

t (t = 0, · · · , T ), the signal transmitted by the AP can be

expressed as u(t) = w(t)s(t), where s(t) is the information

symbol with a zero mean and unit variance (i.e., normalized

power), w(t) =
√
P (t)ŵ(t) is the AP’s beamforming vector at

timeslot t, ŵ(t) ∈ C
M×1 denotes the transmit beamforming

direction vector, and P (t) is the transmit power of the AP

at timeslot t. For given phase shifts Θ
(t)
k of the k-th RIS at

timeslot t, k = 1, · · · ,K, ŵ(t) is given by [22]

ŵ(t) =

(

h(t)
)H

∥

∥h(t)
∥

∥

. (12)

The signal received by the robot at timeslot t is expressed

as

y(t) = h(t)w(t)s(t) + n(t), t = 0, · · · , T, (13)

where n(t) ∼ CN (0, σ2) denotes the additive white Gaussian

noise (AWGN) at the robot at timeslot t. Accordingly, the SNR

received at the robot at timeslot t is given by

SNR(t) =

∣

∣h(t)w(t)
∣

∣

2

∣

∣n(t)
∣

∣

2 , t = 0, · · · , T. (14)

III. PROBLEM FORMULATION AND SOLUTION

ALGORITHMS

We formulate an optimization problem to minimize the

total transmission energy consumption at the AP by jointly

optimizing the number and locations of RISs, reflection-

coefficients at RISs, and the beamforming vector at the AP,

subject to a minimum received SNR constraint at the robot

throughout its trajectory, i.e.,

(P1) : min
K,qR1

,··· ,qRK
,Θ

(t)
1 ,··· ,Θ

(t)
K

,w(t)

T
∑

t=0

∥

∥

∥
w(t)

∥

∥

∥

2

(15)

s.t. C1 : 0 6 θ
(t)
k,n < 2π, ∀k, ∀n, ∀t, (15a)

C2 : SNR(t) > γ, ∀t, (15b)

C3 : K > 1, (15c)

C4 : 0 6 P (t) 6 Pmax, ∀t, (15d)

C5 : xRk
= 0, yRk

∈ [0, lf ] , zRk
∈ [zr, hce] , ∀k (15e)

where γ > 0 is the minimum SNR requirement of the robot, K
is the number of RISs, qRk = [xRk

, yRk
, zRk

] is the position of

the k-th RIS, k = 1, · · · ,K, Pmax is the maximum transmit

power at the AP, and hce is the height of the ceiling. The

objective function
T
∑

t=0

∥

∥w(t)
∥

∥

2
is the total transmission energy

consumption of the AP during the robot’s journey. Constraint

C1 imposes the value range of the phase shift for each element

on the RISs, C2 ensures that the received SNR of the robot

at each time slot is above the minimum SNR required, C3
ensures that at least one RIS will be deployed, C4 specifies

the upper and lower bounds of the transmit power at the AP,

and C5 is the constraint on the location of each RIS.

A. TECO Algorithm

We note that it is hard to solve (P1) directly due to the

varying number of variables involved. We first study the case

with the number K and the locations of RISs fixed, for which

(P1) reduces to

(P2) : min
Θ

(t)
1 ,··· ,Θ

(t)
K

,w(t)

T
∑

t=0

∥

∥

∥
w(t)

∥

∥

∥

2

(16)

s.t. C1,C2, C4.

Since w(t) and Θ
(t)
k are independent for different t, the

objective function of (P2) is minimized when each
∥

∥w(t)
∥

∥

2
in

the summation from t = 0 to t = T is minimized. According

to the above and substituting w(t) =
√
P (t)ŵ(t) into (16),

(P2) can be equivalently rewritten as

(P3) : min
Θ

(t)
1 ,··· ,Θ

(t)
K

,P (t),ŵ(t)

P (t)
∥

∥

∥
ŵ(t)

∥

∥

∥

2

, ∀t ∈ {0, · · · , T}

(17)

s.t. C1,C2, C4.

Although (P3) is still a non-convex problem and is difficult

to solve directly, since
∥

∥ŵ(t)
∥

∥

2
= 1, we can obtain the optimal

transmit power of the AP by substituting (14) into (15b) and

solving the resulting inequality for P (t). Thus, the optimal

transmit power of the AP is given by

P
(t)
opt =

γ|n(t)|2
∥

∥

∥

∥

(
K
∑

k=1

h
(t)
kR

H
Θ

(t)
k G

(t)
k + h

(t)
AR

H
)ŵ(t)

∥

∥

∥

∥

2 . (18)

By substituting (18) into (P3) and assuming that the AP’s

maximum transmit power Pmax is sufficiently large (and hence

C4 can be ignored for analytical tractability), we have

(P4) : min
Θ

(t)
1 ,··· ,Θ

(t)
K

,ŵ(t)

γ|n(t)|2
∥

∥

∥

∥

(
K
∑

k=1

h
(t)
kR

H
Θ

(t)
k G

(t)
k + h

(t)
AR

H
)ŵ(t)

∥

∥

∥

∥

2

, ∀t ∈ {0, · · · , T}
(19)

s.t. C1, C2.

Please note that C4 will be considered in our proposed

Algorithm 2 (which will be presented later in this section)

to ensure that the optimized transmit power of the AP does

not go beyond its maximum allowed transmit power.

In order to solve (P4), we divide it into two sub-problems

ŵ(t) and by fixing Θ
(t)
k (k = 1, · · · ,K, t = 0, · · · , T ) in

(P4), respectively, as detailed below.

For a given ŵ(t), (P4) is equivalent to

(P5) : max
Θ

(t)
1 ,··· ,Θ

(t)
K

∥

∥

∥

∥

∥

(

K
∑

k=1

h
(t)
kR

H
Θ

(t)
k G

(t)
k + h

(t)
AR

H
)ŵ(t)

∥

∥

∥

∥

∥

2

, ∀t ∈ {0, · · · , T}
(20)



s.t. C1, C2

According to the triangle inequality, we have

∥

∥

∥
(

K
∑

k=1

h
(t)
kR

H
Θ

(t)
k G

(t)
k + h

(t)
AR

H
)ŵ(t)

∥

∥

∥

6
∥

∥

∥
h
(t)
1R

H
Θ

(t)
1 G

(t)
1 ŵ(t)

∥

∥

∥
+
∥

∥

∥
h
(t)
2R

H
Θ

(t)
2 G

(t)
2 ŵ(t)+, · · · ,

+h
(t)
KR

H
Θ

(t)
K G

(t)
K ŵ(t) + h

(t)
AR

H
ŵ(t)

∥

∥

∥
.

(21)

The equality in (21) holds if and only if

arg(h
(t)
1R

H
Θ

(t)
1 G

(t)
1 ŵ(t))

= arg(h
(t)
2R

H
Θ

(t)
2 G

(t)
2 ŵ(t))+, · · · ,+

arg(h
(t)
KR

H
Θ

(t)
K G

(t)
K ŵ(t)) + arg(h

(t)
AR

H
ŵ(t))

,Φ
(t)
1 ,

(22)

where arg(x) gives the phases of the elements of x.

For given Θ
(t)
2 , · · · ,Θ(t)

K (and thus given Φ
(t)
1 ), let-

ting h
(t)
1R

H
Θ

(t)
1 G

(t)
1 ŵ(t) = Θ

(t)
1

H
R

(t)
1 , where R

(t)
1 =

diag(h
(t)
1R

H
)G

(t)
1 ŵ(t), and substituting (21) under the condi-

tion of (22) into (P5), we have

(P6) : max
Θ

(t)
1

∥

∥

∥

∥

Θ
(t)
1

H
R

(t)
1

∥

∥

∥

∥

2

, ∀t ∈ {0, · · · , T} (23)

s.t. C1

C6 : arg(Θ
(t)
1

H
R

(t)
1 ) = Φ

(t)
1 . (23a)

According to (22), we can show that the optimal solution

to (P6) is given by

Θ
(t)
1opt = ej(Φ

(t)
1 −arg(R

(t)
1 )), (24)

which suggests that the phase shifts of RIS1 should be tuned

according to the beamforming of the AP and the phase shifts

of RISk, k = 2, · · · ,K.

Following the similar procedures as above, the optimal

phase shifts of RISk(k = 2, · · · ,K) can be obtained as

Θ
(t)
kopt = ej(Φ

(t)
k

−arg(R
(t)
k

)), (25)

where R
(t)
k = diag(h

(t)
kR

H
)G

(t)
k ŵ(t) and Φ

(t)
k is given by

Φ
(t)
k

, arg(h
(t)
1R

H
Θ

(t)
1 G

(t)
1 ŵ(t))+, · · · ,+

arg(h
(t)
(k−1)R

H
Θ

(t)
k−1G

(t)
k−1ŵ

(t))

+ arg(h
(t)
(k+1)R

H
Θ

(t)
k+1G

(t)
k+1ŵ

(t))+, · · · ,+

arg(h
(t)
KR

H
Θ

(t)
K G

(t)
K ŵ(t)) + arg(h

(t)
AR

H
ŵ(t))

(26)

For given Θ
(t)
k , k = 1, · · · ,K, t ∈ {0, · · · , T}, (P4)

converts to

(P7) : max
ŵ(t)

∥

∥

∥

∥

∥

(

K
∑

k=1

h
(t)
kR

H
Θ

(t)
k G

(t)
k + h

(t)
AR

H
)ŵ(t)

∥

∥

∥

∥

∥

2

, ∀t ∈ {0, · · · , T}
(27)

s.t. C2

Based on (14) and (15b), we solve (P7) and obtain the

optimal transmit beamforming direction vector ŵ
(t)
opt of the

AP as [22]

ŵ
(t)
opt =

(

K
∑

k=1

h
(t)
kR

H
Θ

(t)
k G

(t)
k + h

(t)
AR

H
)H

∥

∥

∥

∥

K
∑

k=1

h
(t)
kR

H
Θ

(t)
k G

(t)
k + h

(t)
AR

H
∥

∥

∥

∥

. (28)

We can obtain the optimal transmit power P
(t)
opt of the AP

by substituting (24), (25), and (28) into (18).

Based on the above solutions to the two subproblems (P5)

and (P7), we propose an iterative algorithm that solves (P5)

and (P7) alternately in each iteration to minimize the total

energy consumption at the AP, i.e., the TECO algorithm as

presented in Algorithm 2. In each iteration, according to

Algorithm 2 TECO Algorithm

Input: h
(t)
kR,G

(t)
k ,h

(t)
AR, qR

Output: ŵ
(t)
opt,Θ

(t)
kopt, P

(t)
opt

1: Set the iteration index s = 1 and initialize the AP’s

transmit beamforming direction ŵ
(t)
opt(s).

2: Initialize the RIS phase shifts Θ
(t)
k(s), k = 1, · · · ,K.

3: Obtain P
(t)
opt(s) according to (18).

4: repeat

5: Update s = s+ 1.

6: Obtain Θ
(t)
k(s), k = 1, · · · ,K, using (24) or (25).

7: Obtain ŵ
(t)
opt(s) according to (28).

8: Obtain P
(t)
opt(s) according to (18).

9: P
(t)
opt(s) = min

{

P
(t)
opt(s), Pmax

}

10: until P
(t)
opt(s−1) − P

(t)
opt(s) < ε.

11: ŵ
(t)
opt = ŵ

(t)
opt(s), Θ

(t)
kopt = Θ

(t)
k(s), P

(t)
opt = P

(t)
opt(s),k =

1, · · · ,K.

(21) and (22), calculating (24) or (25) guarantees that the

objective function of (P5) is non-decreasing, and calculating

(28) guarantees that the objective function of (P7) is non-

decreasing [22]. As a result, after each iteration, the objective

function value of (P4) is non-increasing. Since there is a lower

bound of the objective function of (P4) given by C2, the

objective function of (P4) will decrease after each iteration

until its convergence. In Algorithm 2, solving (P5) has a

complexity of O(N
K

× K) = O(N), where N is the total

number of passive reflecting elements of all the RISs, while



solving (P7) has a complexity of O(M), where M is the

number of antennas at the AP. Thus, Algorithm 2 has a

complexity of O(NI(M + N)), where NI is the number of

iterations required for convergence.

B. RISLN Algorithm

In order to optimize the number and locations of RISs, we

divide the wall area where the RISs are deployed into a grid

of ⌈ lf×(lh−zr)
d2
u

⌉ equal rectangular units, where lf is the length

of the wall, lh is the height of the wall, zr is the height of the

robot antenna, and d2u is approximately the size of each RIS.

We assume that each RIS is deployed in one of the units and

no more than one RIS can be deployed in any unit. Hence,

the location of the k-th RIS, qRk, ∀k ∈ {1, · · · ,K}, can be

uniquely represented by a sequence of b = ⌈log2( lf×(lh−zr)
d2
u

)⌉
binary bits.

Given I obstacles in the considered indoor environment,

we can show that there is no need to deploy more than

I + 1 RISs to ensure the robot seeing a LoS link from at

least one RIS or the AP at all times along its trajectroy. For

each K ∈ {1, · · · , I + 1}, we employ Algorithm 2 and the

Genetic Algorithm [23] to optimize the locations of the K
RISs as follows. First, set the iteration index s′ = 1, and

randomly initialize a population of Nind individuals, where

Nind is an even number and each individual contains a binary

bit sequence qR = [qR1
, qR2

, · · · , qRK
] that represents the

locations of K RISs. Then, Algorithm 2 is used to obtain

ŵ
(t)
opt,Θ

(t)
kopt, P

(t)
opt, t ∈ {0, · · · , T}, k ∈ {1, · · · ,K} for each

individual and
T
∑

t=0
P

(t)
opt is taken as the fitness value of the

corresponding individual.

Update s′ = s′+1, and a new population of Nind individuals

are generated from the current population by the Roulette

Wheel Selection scheme [23], where each individual has a

probability of selection proportional to its fitness value. Next,

the population generated by Selection is randomly divided

into Nind

2 pairs of individuals. For each pair, generate a

random number r following a uniform distribution in (0, 1)
and swap the ⌊(Kb/2)⌋-th to the Kb-th bits between the

two individuals if r 6 Pc, where 0 < Pc < 1 is the

Crossover probability. Afterwards, for each individual in the

new population generated by Crossover, generate a random

number r′ following a uniform distribution in (0, 1) and flip

every binary bit of the corresponding individual if r′ 6 Pm,

where 0 < Pm < 1 is the Mutation probability. Then, for

each individual in the new population generated by Muta-

tion, Algorithm 2 is used to obtain ŵ
(t)
opt,Θ

(t)
kopt and P

(t)
opt,

t ∈ {0, · · · , T} , k ∈ {1, · · · ,K}. The individual that has the

smallest fitness value among the population is identified, and

its ŵ
(t)
opt,Θ

(t)
kopt and P

(t)
opt are labeled as ŵ

(t)
optK(s′),Θ

(t)
koptK(s′)

and P
(t)
optK(s′), t ∈ {0, · · · , T} , k ∈ {1, · · · ,K}, respectively.

The above Selection, Crossover and Mutation procedures

repeat until
T
∑

t=0
P

(t)
optK(s′−1) −

T
∑

t=0
P

(t)
optK(s′) < ε, where ε is a

positive constant. Once converged, the individual that has the

TABLE I
PARAMETER VALUES USED IN THE SIMULATION

Parameter Value

lf length of the wall where RISs are deployed 18m
lp length of the wall parallel to obstacle’s rows 20m
lh height of the wall where RISs are deployed 12m
I number of obstacles 3
qO1

location of Obstacle 1 [19, 1, 0]m
qO2

location of Obstacle 2 [19, 8, 0]m
qO3 location of Obstacle 3 [19, 15, 0]m
L length of each obstacle 15m
W width of each obstacle 2m
H height of each obstacle 10m
la distance between two adjacent obstacles 5m
l distance between robot and obstacle 1m
qs robot’s start point [19, 0, 0]m
qd robot’s destination point [19, 18, 0]m
zr height of the robot antenna 1m
vt speed of the robot 1m/s
qA location of the AP [1, 6, 12]m
d AP’s spacing between adjacent antennas λ/2
M number of antennas on the AP 5
N total number of elements on all RISs 90
d2u approximate RIS size used in Algorithm 3 1cm2

βAR = βkR path loss exponent [25] 4
ρ LoS path gain [21] −30dB
σ2 noise power [21] −109dBm
γ minimum SNR requirement 10dB
fc carrier frequency 60GHz
Pc crossover probability 0.6
Pm mutation probability 0.01
Nind number of individuals in a population 20
ε convergence threshold 0.001

smallest fitness value among the latest population is identified

as the optimal locations of K RISs, labeled as qRoptK ,

and its ŵ
(t)
optK(s′),Θ

(t)
koptK(s′) and P

(t)
optK(s′) are labeled as

ŵ
(t)
optK ,Θ

(t)
koptK and P

(t)
optK , t ∈ {0, · · · , T} , k ∈ {1, · · · ,K},

respectively. The above iterative algorithm for each K is

ensured to converge when the iteration number is large enough

[23].

After the optimized locations of K RISs have been obtained

for all K ∈ {1, · · · , I + 1}, the value of K that is associated

with the lowest value of
T
∑

t=0
P

(t)
optK is identified as the optimal

value of K and its corresponding qRoptK ,
√

P
(t)
optKŵ

(t)
optK and

Θ
(t)
koptK , t ∈ {0, · · · , T}, k ∈ {1, · · · ,K} return the optimal

RIS locations, AP beamforming vectors and RIS phase shifts,

respectively.

The above described RIS Locations and Number (RISLN)

Algorithm is presented in Algorithm 3. It has a complexity

of O((T +1)NI(M +N)Nind

I+1
∑

K=1

NGK), where NGK is the

number of iterations required for K ∈ {1, · · · , I + 1}.

IV. SIMULATION RESULTS

In this section, we present numerical results to verify

the proposed algorithms. The parameter values used in the

simulation are listed in Table I unless otherwise specified.

Fig. 2 shows the transmission energy consumption of the

AP versus the iteration number in Algorithm 3. The fluctuation



Algorithm 3 RISLN Algorithm

Input: Pc,Pm, Nind, I (0 < I 6 lf/(la +W )).

Output: Kopt, qRoptK ,

√

P
(t)
optKŵ

(t)
optK , Θ

(t)
koptK , t ∈

{0, · · · , T}, k ∈ {1, · · · ,K}.

1: Initialize the number of RISs K = 1.

2: repeat

3: Set the iteration index s′ = 1, and randomly initialize a

population of Nind individuals, where each individual

is a binary bit sequence qR = [qR1
, qR2

, · · · , qRK
].

Run Algorithm 2 for t = 0, · · · , T for each individual

and take
T
∑

t=0
P

(t)
opt as its fitness value.

4: repeat

5: Update s′ = s′ + 1
6: Selection: Obtain a new population of Nind indi-

viduals from the current population by the Roulette

Wheel Selection scheme [23].

7: Crossover: The new population is randomly di-

vided into Nind

2 pairs. For each pair, randomly

generate r ∈ (0, 1) and swap the ⌊(Kb/2)⌋-th

to the Kb-th bits between the two individuals if

r 6 Pc.

8: Mutation: For each individual in the population

generated by Crossover, randomly generate r′ ∈
(0, 1) and flip every bit of it if r′ 6 Pm.

9: Run Algorithm 2 for each individual in the popu-

lation generated by Mutation. The individual that

has the smallest fitness value returns ŵ
(t)
optK(s′),

Θ
(t)
koptK(s′) and P

(t)
optK(s′), t ∈ {0, · · · , T}, k ∈

{1, · · · ,K}.

10: until
T
∑

t=0
P

(t)
optK(s′−1) −

T
∑

t=0
P

(t)
optK(s′) < ε.

11: P
(t)
optK = P

(t)
optK(s′), ŵ

(t)
optK = ŵ

(t)
optK(s′), Θ

(t)
koptK =

Θ
(t)
koptK(s′), t ∈ {0, · · · , T}, k ∈ {1, · · · ,K}.

12: Update K = K + 1.

13: until K = I + 2.

14: Kopt = argmin
K{1,··· ,I+1}

{

T
∑

t=0
P

(t)
optK

}

and return its qRoptK ,

√

P
(t)
optKŵ

(t)
optK , Θ

(t)
koptK , t ∈ {0, · · · , T}, k ∈

{1, · · · ,K} as output.

of the curve is due to the use of the Genetic Algorithm that

randomly generates a new population of candidate solutions

in each iteration. By generating new populations, the genetic

algorithm introduces genetic diversity so as to escape local

optima by exploring different regions of the solution space,

but the AP’s transmission energy consumption of a randomly

generated new population is not necessarily lower than that of

the population obtained in the previous iteration. We can see

that Algorithm 3 converges after the 19th iteration.

In the simulation, we compare the performance of Al-

gorithm 3 with the following four benchmark schemes: the

evenly distributed RIS deployment scheme proposed in [24],

Fig. 2. Transmission energy consumption of the AP versus the iteration
number.

where the RISs are evenly spaced on the wall at the same

height, and the number and the height of RISs are the optimal

results obtained by Algorithm 3; the centralized deployment

(i.e., a single RIS) with the optimal location of the RIS ob-

tained by Algorithm 3 for K = 1; the centralized deployment

of one RIS at the centre of the wall; and the case without

deploying any RIS. For all the RIS deployment schemes under

comparison, the RISs are deployed on the same wall as shown

in Fig. 1. The specific locations of RISs for the four RIS

deployment schemes are indicated in Fig. 3.

Fig. 3. Locations of RISs.

Fig. 4 plots the AP’s transmission energy consumption

versus the minimum required SNR at the robot. The op-

timal number of RISs obtained by the proposed algorithm

is Kopt = 3. As shown in Fig. 4, the transmission energy

consumption at the AP increases when the minimum required

SNR at the robot increases, since a higher target SNR at

the robot requires higher transmit power at the AP at each

timeslot. The optimal RIS deployment obtained by Algorithm

3 achieves the lowest energy consumption at the AP among

all the considered schemes. Compared with the evenly dis-

tributed RIS deployment scheme, deploying a single RIS at

the optimal location obtained by Algorithm 3 for K = 1 leads

to a lower energy consumption at the AP. This is because

Algorithm 3 optimizes the RIS location while considering the



exact locations of obstacles and the robot. Between the two

schemes both without optimizing the RIS location, the evenly

distributed deployment outperforms deploying a single RIS at

the center of the wall because the multiple distributed RISs

make it more likely for the robot to see a LoS link from one

of the RISs along the whole trajectory than a single RIS. The

case with no RIS always has the highest transmission energy

consumption at the AP among all the considered schemes.

This indicates that the deployment of RIS can decrease the

transmission energy consumption at the AP.

Fig. 4. AP’s transmission energy consumption versus the minimum required
SNR at the robot.

In Fig. 5, we plot the transmission energy consumption at

the AP versus the total number of elements on RISs. The

optimal number of RISs obtained by the proposed algorithm

is Kopt = 3. In addition to the four benchmark shcemes con-

sidered in Fig. 4, we also plot a curve for the even deployment

scheme [24] with K = 2Kopt. The AP’s transmission energy

consumption decreases with the total number of elements

on RISs under all the considered schemes, because a larger

number of elements leads to a larger beamforming gain of the

RISs. The proposed algorithm performs the best because the

optimized deployment locations of RISs ensure that the robot

sees a LoS link from an RIS or the AP throughout its trajectory

and the AP can transmit at the lowest possible power at each

timeslot. The even deployment scheme for K = Kopt achieves

a lower transmission energy consumption of the AP than the

even deployment scheme for K = 2Kopt. This indicates

that further distributing the fixed total number of elements to

more RISs cannot further lower the AP’s transmission energy

consumption if the whole trajectory has already been covered

with LoS links, while less elements per RIS will reduce the

beamforming gain of each RIS.

In Fig. 6, we plot the transmission energy consumption at

the AP versus the carrier frequency of the mmWave signal. The

optimal number of RISs obtained by the proposed algorithm

is Kopt = 3. For all the considered schemes, the transmission

energy consumption at the AP increases with the carrier

frequency of the signal because the signal strength decays

faster over distance at a higher carrier frequency. The perfor-

mance gain of the proposed algorithm over the other schemes

becomes larger with the increase of the carrier frequency.

This shows the importance of optimizing RIS deployment for

indoor downlink transmissions in high mmWave bands.

In Fig. 7, we plot the transmission energy consumption

at the AP versus the number of obstacles. The transmission

energy consumption at the AP increases with the number of

obstacles for all the considered schemes because of the robot’s

longer trajectory. The proposed algorithm, the proposed al-

gorithm for K = 1 and the even deployment scheme have

the same AP’s transmission energy consumption when the

number of obstacle is one, because deploying one RIS is

enough for the robot to maintain a LoS link from the RIS

or the AP along the whole trajectory. The even deployment

scheme outperforms the proposed algorithm for K = 1 when

the number of obstacles is four or five, because the centralized

deployment scheme keeps the robot seeing a LoS link from

the RIS or the AP for fewer timeslots.

Fig. 5. AP’s transmission energy consumption versus the total number of
elements on RISs.

Fig. 6. AP’s transmission energy consumption versus the carrier frequency
of the signal.



Fig. 7. AP’s transmission energy consumption versus the number of obstacles.

V. CONCLUSION AND FUTURE WORK

In this paper, we have studied multiple-RIS-assisted

mmWave communications for a robot moving around obstacles

along a predefined trajectory inside an industrial building.

To minimize the transmission energy consumption at the AP

while ensuring the received SNR at the robot above a threshold

throughout its journey, we have proposed the TECO Algorithm

and RISLN Algorithm that jointly optimize the number, loca-

tions and phase shifts of RISs and the beamforming vector

of the AP. Simulation results demonstrate that the proposed

algorithms converge fast and can significantly reduce the

transmission energy consumption at the AP as compared to

the benchmark schemes that either do not deploy any RIS or

do not optimize the number or locations of RISs. Distributing

the fixed total number of reflecting elements to more RISs

leads to a lower transmission energy consumption of the AP,

since more distributed RISs provide more LoS links to the

robot while it moves along its trajectory. The reduction in AP

transmission energy consumption stops when the number of

RISs becomes too large. This is because when all sections

of the robot trajectory have been covered by LoS links from

either the AP or an RIS, further dividing the fixed total

number of reflecting elements into more RISs will reduce the

beamforming gain of each RIS. For the considered scenario of

I obstacles, properly deploying I RISs is sufficient to ensure

that the robot sees a LoS link from at least one RIS or the AP

at all times along its trajectory. The AP’s transmission energy

consumption increases with the minimum SNR required at the

robot and the carrier frequency of the mmWave signal, but

decreases with a larger total number of elements on the RISs.

In our future work, we will study the AP transmission

energy consumption minimization problem where the robot’s

trajectory can be jointly optimized with the deployment of the

AP and RISs. We will also extend out work to more com-

plex scenarios, e.g., multiple robots moving along different

trajectories. This will require allocating the available RISs and

AP beamforming vectors to different robots while considering

potential co-channel interference among the links serving

neighboring robots. It will also be interesting to consider the

energy consumption of RISs when the reflecting elements are

not fully passive.
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