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LMI-based Decentralized Load Frequency Control of a Hybrid Power 

System with a Virtual Synchronous Generator and Battery Storage

ind generation is modelled as a ‘Virtual Synchronous Generator (VSG)’ 

generation system in a ‘de loaded’ mode, thereby allowing it to take part in freq

Power networks are experiencing a period of rapid 

transformation due to the increased penetration of renewable 

technologies such as wind generation and battery storage 

systems. Such increased penetration, especially of wind, poses 

significant challenges to the operation and resiliency of the 

future power system. At a network level, the inertia-less 

interface provided by the power electronic converters and the 

intermittency in the renewable supply may result in poor 

quality supply and even frequency stability issues leading to 

damage of electrical equipment or, worse, blackouts. 

Additionally, the increase in the uncontrollable renewable 

assets is making traditional centralized load frequency control 

(LFC) schemes challenging to operate: in essence, the 

intermittency in the renewable generation is ‘offloaded’ to the 

grid, thereby stressing it.  The described scenario has two main 

implications. Firstly, the need to develop effective methods 

that allow renewable generation to take part in frequency 

regulation. Secondly, motivated by the increasing complexity 

of the system, the need to devise scalable and practical control 

approaches, such as decentralized control laws (Bakule, 2008) 

that account for interconnectivity of the system and the limited 

information available to operators. 

 1.1 Wind Generation Modelling and Integration 

Various methods of incorporating a wind generation (WG) 

system for LFC have been proposed in literature. In (Arita et 

al., 2006), a noise model consisting of band-limited white-

noise with filtering was used to model the power output of a 

wind farm. Though this model provides a rough approximation 

of the wind power variability, it does not provide an insight 

into the physics of the wind turbine and hence cannot be 

utilized effectively in frequency control. A simplified 

mechanical model of a variable-speed wind turbine was 

investigated in (Martínez-Lucas et al., 2018). Though the 
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1.2 Decentralized Load-Frequency Control using LMIs 

Decentralized control has been widely studied for applications 

to LFC; see, for example, the surveys (Ejegi et al., 2014, 

Ranjan and Shankar, 2022). Among the many techniques 
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scheme is able to provide short-term inertia in the event of a 

frequency disturbance, it cannot be incorporated into the LFC 

design because the proposed PI and PD loops have no direct 

connection to a dynamical component.  

The virtual synchronous generator (VSG) has become widely 

studied and accepted as a means of connecting inverter-based 

renewables to the grid while emulating the inertial effect of 

conventional synchronous generators (Suvarov et al., 2022). 

The VSG control architecture uses the swing equation to 

calculate the desired voltage angle and a reactive power 

control loop to calculate the desired voltage magnitude. Both 

these quantities are used to produce the pulse-width modulated 

(PWM) signal to the inverter interfaced with the grid. The 

reactive power control loop is, however, typically decoupled 

and disregarded for LFC purposes (Bevrani et al., 2014). This 

approach is taken in, for example, (da Silva et al., 2020) where, 

in addition to the swing equation, a virtual mechanical actuator 

was presented to incorporate primary frequency control (PFC) 

and secondary frequency control (SFC). This model provides 

only short-term inertia since the remainder of the control 

action is cancelled by a low pass filter and an integrator. A 

similar approach was investigated in (Tessaro and Oliveira, 

2019) where PFC and SFC are incorporated into the VSG 

model. In addition to providing short-term virtual inertia, the 

VSG adjusts its output power to reduce the steady-state 

frequency deviation. Neither contribution, however, achieves 

theoretical guarantees of system stability and control 

performance, and this is typical of the VSG-supported LFC 

literature at large (Bevrani et al., 2021). 
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Abstract: This paper proposes the participation of wind generation in the decentralized control of load 

frequency of a hybrid power system consisting of, in addition to wind generation, conventional generation 

and battery storage. The wind generation is modelled as a ‘Virtual Synchronous Generator (VSG)’ in a 

separate control area with its own virtual frequency. It has also been proposed to operate the wind 

generation system in a ‘de-loaded’ mode, thereby allowing it to take part in frequency regulation services. 

For the purposes of a decentralized control design, the overall system model is decomposed into three 

subsystems. Static state-feedback control gains are computed by posing the decentralized control problem 

as a set of linear matrix inequalities (LMIs) subject to structural and stabilizing constraints.  
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proposed, optimization-based design methods using Linear 

Matrix Inequalities (LMIs) have attracted significant attention, 

owing to their flexibility to handle many control synthesis 

problems in a tractable and systematic way yet provide stable 

and effective control. The earliest proposals include 

(Rerkpreedapong et al., 2003a), where an LMI-tuned PI 

control law was developed and found, in a three-area LFC 

scenario, to  achieve performance similar to that of a full-order 

dynamic 𝐻𝐻∞ controller. A robust decentralized 𝐻𝐻∞ controller, 

synthesized using LMIs, was computed for one of the control 

areas in a two-area LFC scenario (Rerkpreedapong et al., 

2003b). Its performance was compared with the other area 

controlled by a conventional PI controller and was found to be 

superior in terms of transient performance and disturbance 

rejection. Siljak et al. (2002) considered a multi-machine 

power system where each machine was represented with a 

nonlinear differential equation; a nonlinear interconnection 

term representing the power exchange over a tie-line was 

assumed to bounded by a quadratic inequality. The robust 

decentralized control synthesis problem was formulated as a 

set of LMIs such that the global asymptotic stability is 

achieved under worst-case uncertainty. Numerous other 

studies and proposals have followed (Ejegi et al., 2014), 

achieving a wide range of system theoretic guarantees and 

performance benchmarks. 

1.3 Scope and Contribution   

The focus of the current paper is on the decentralized LFC 

problem for a hybrid power system, wherein conventional 

generation, WG and battery energy storage (BESS) are desired 

to be integrated and controlled by independent controllers. 

Similar to (Tessaro and Oliveira, 2019) and (da Silva et al., 

2020), we integrate WG into the LFC problem by modelling it 

as a VSG in a separate control area, connected via a tie-line 

cable to the control area containing conventional generation 

and BESS. We then regard the decentralized control design 

problem as a structured state-feedback control synthesis 

problem, and formulate this using LMIs. To achieve this, we 

adopt and extend a recently developed approach to the 

structured state-feedback design problem (Ferrante et al. 

2020a), which fully relaxed the requirement – typical in 

decentralized LMI design – to impose particular structure on 

the Lyapunov matrix in the LMIs in order to achieve desired 

structure on the feedback gain matrix; the formulation is 

known to reduce conservatism and succeed in decentralized 

control law synthesis problems that conventional LMI 

formulations find infeasible (Ferrante et al., 2020a). An 

extension (Ferrante et al., 2020b) included an 𝐻𝐻∞ performance 

criterion. The current paper extends the basic approach to 

consider a quadratic performance criterion in the LMI 

formulation, thus offering a tractable solution to the structured 

LQR problem. We achieve this by using a dilation of the 

Lyapunov inequality (Ebihara et al., 2004) that allows the LQ 

criterion to be imposed without introducing nonlinear terms.  

This paper is organized as follows: Section 2 presents the 

system model and Section 3 presents the decentralized control 

synthesis formulation. Section 5 illustrates the application of 

the proposed method to an example LFC problem and gives 

simulation results. Section 5 presents the conclusions and 

highlights areas for future research. 

Notation: ℝ denotes the set of reals, ℝ𝑚𝑚×𝑛𝑛 denotes the set of 𝑛𝑛 × 𝑛𝑛 real matrices, and 𝕊𝕊+𝑛𝑛  denotes the set of 𝑛𝑛 × 𝑛𝑛 symmetric 

positive definite matrices; negative definiteness of a matrix 𝐴𝐴 is denoted as 𝐴𝐴 ≺ 0. The set of non-singular 𝑛𝑛 × 𝑛𝑛 matrices 

is ℛ𝑘𝑘. The element-wise (Hadamard) product of matrices 𝐴𝐴 

and 𝐵𝐵 is 𝐴𝐴 ∘ 𝐵𝐵; the Kronecker product of the same is 𝐴𝐴⨂𝐵𝐵. He{A} is shorthand for 𝐴𝐴 + 𝐴𝐴T. 

2. PROBLEM STATEMENT 

 

Fig. 1. The hybrid power system incorporating conventional 

generation, battery storage and wind generation, and the 

proposed decentralized control architecture.  

We consider a hybrid power system, shown in Fig. 1, 

consisting of two control areas (CAs): the first CA (CA1) 

consists of conventional generation rated at 2000MVA and 

BESS rated at 10 MW / 40 MWh. The second CA (CA2) 

contains the wind generation system, rated at 400MW and 

operating with a de-loaded factor of 30%, modelled as a VSG 

connected via a tie-line to the first CA. This abstraction is valid 

as the system frequency in first control area and the ‘virtual’ 

frequency in the second area are separate quantities.   

The linearized dynamics of a conventional power system are 

governed by the swing equation: 

𝑀𝑀𝑒𝑒𝑒𝑒 𝑑𝑑𝜔𝜔𝑑𝑑𝑡𝑡 = 𝑃𝑃𝑀𝑀 − (𝑃𝑃𝐿𝐿 + 𝐷𝐷𝜔𝜔),   (1) 

where 𝜔𝜔 is the frequency deviation,  𝑀𝑀𝑒𝑒𝑒𝑒  is the sum of inertial 

constants of all generation units, 𝑃𝑃𝑀𝑀 is the mechanical power 

output of the conventional generator, 𝑃𝑃𝐿𝐿  is the static load 

change and 𝐷𝐷 is the load damping coefficient (Chow and 

Sanchez-Gasta, 2020). All variables are expressed as 

deviations from nominal values. 
The mechanical power, 𝑃𝑃𝑀𝑀, is produced via turbine and 

governor actions, modelled as 

𝑇𝑇𝑔𝑔 𝑑𝑑𝑃𝑃𝐺𝐺𝑑𝑑𝑡𝑡 + 𝑃𝑃𝐺𝐺 = 𝑃𝑃𝐶𝐶 − 1𝑅𝑅𝜔𝜔 ,    (2) 

𝑇𝑇𝑡𝑡 𝑑𝑑𝑃𝑃𝑀𝑀𝑑𝑑𝑡𝑡 + 𝑃𝑃𝑀𝑀 = 𝑃𝑃𝐺𝐺 .   (3) 
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Here the governor output, 𝑃𝑃𝐺𝐺 , is determined by the setpoint, 𝑃𝑃𝐶𝐶 , and the droop (primary control) gain for power sharing, 1 𝑅𝑅⁄ . This output is sent to the turbine to produce mechanical 

power, 𝑃𝑃𝑀𝑀. The time constants of the governor and turbine are  𝑇𝑇𝑔𝑔 and  𝑇𝑇𝑡𝑡, respectively.  

The BESS is a modelled as a first-order process with an 

integrator to measure state of charge: 

𝑇𝑇𝑏𝑏 𝑑𝑑𝑃𝑃𝐵𝐵𝑑𝑑𝑡𝑡 + 𝑃𝑃𝐵𝐵 = 𝑃𝑃𝐶𝐶𝐵𝐵 ,    (4) 

𝑑𝑑𝑆𝑆𝑆𝑆𝐶𝐶𝐵𝐵𝑑𝑑𝑡𝑡 = −𝑃𝑃𝐵𝐵 .    (5) 

Here 𝑇𝑇𝑏𝑏  is the battery time constant, 𝑃𝑃𝐵𝐵 is the battery power 

output, 𝑃𝑃𝐶𝐶𝐵𝐵  is the setpoint and 𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 is the state of charge. 

The WG system is modelled with a linearized swing equation 

and a virtual mechanical actuator with first order dynamics and 

droop regulation:   

𝑀𝑀𝑣𝑣 𝑑𝑑𝜔𝜔𝑣𝑣𝑑𝑑𝑡𝑡 = 𝑃𝑃𝑀𝑀𝑣𝑣 − (𝑃𝑃𝐿𝐿𝐿𝐿 + 𝐷𝐷𝑣𝑣𝜔𝜔𝑣𝑣),   (6) 

𝑇𝑇𝑣𝑣 𝑑𝑑𝑃𝑃𝑀𝑀𝑣𝑣𝑑𝑑𝑡𝑡 + 𝑃𝑃𝑀𝑀𝑣𝑣 = 𝑃𝑃𝐶𝐶𝐿𝐿 − 1𝑅𝑅𝑣𝑣𝜔𝜔𝑣𝑣 ,   (7) 

where 𝜔𝜔𝑣𝑣 is the virtual frequency deviation,  𝑀𝑀𝑣𝑣 is the virtual 

inertia, 𝑃𝑃𝑀𝑀𝑣𝑣  is the virtual mechanical power output, 𝑃𝑃𝐿𝐿𝐿𝐿 is the 

static load on the WG, 𝐷𝐷𝑣𝑣  is the virtual load damping 

coefficient, and 𝑃𝑃𝐶𝐶𝐿𝐿 is the setpoint. The interconnection 

between the WG system and rest of the system is modelled as 

the tie-line  

𝑑𝑑𝑃𝑃tie𝑑𝑑𝑡𝑡 = 𝑃𝑃𝑠𝑠𝑠𝑠(𝜔𝜔 − 𝜔𝜔𝑣𝑣),    (8) 

where 𝑃𝑃𝑠𝑠𝑠𝑠 is the line synchronizing coefficient and is related 

to the physical properties (reactance) of the interconnection 

between WG and system. 

Equations (1)‒(8) may be written in compact form as 

𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 + 𝐸𝐸𝐸𝐸,    (9) 

where  

𝑥𝑥 ∶=  [𝑃𝑃𝐺𝐺 𝑃𝑃𝑀𝑀 𝜔𝜔 𝑃𝑃𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 𝑃𝑃tie 𝑃𝑃𝑀𝑀𝑣𝑣 𝜔𝜔𝑣𝑣 𝑧𝑧1 𝑧𝑧3]T 

𝑢𝑢 ∶= [𝑃𝑃𝐶𝐶 𝑃𝑃𝐶𝐶𝐵𝐵 𝑃𝑃𝐶𝐶𝐿𝐿]T and 𝐸𝐸 ∶= [𝑃𝑃𝐿𝐿 𝑃𝑃𝐿𝐿𝐿𝐿]T, 

and, without loss of generality, we have augmented the states 

with 

𝑑𝑑𝑧𝑧1𝑑𝑑𝑡𝑡 = −𝜔𝜔, 
𝑑𝑑𝑧𝑧3𝑑𝑑𝑡𝑡 = −𝜔𝜔𝑣𝑣 .    (10) 

to facilitate offset-free frequency regulation in the presence 

of non-zero loads. 

The objective is to provide secondary frequency control to 

maintain the frequency deviation, 𝜔𝜔, close to zero, despite the 

presence of load disturbances, 𝑃𝑃𝐿𝐿 , by manipulating power 

setpoints, 𝑃𝑃𝐶𝐶 , 𝑃𝑃𝐶𝐶𝐵𝐵  and 𝑃𝑃𝐶𝐶𝐿𝐿. This must be achieved in a 

decentralized manner where subsystems employ feedback on 

local states such that the resulting system-wide performance is 

stable and optimal with respect to a quadratic performance 

criterion. More precisely, to clarify what is meant by local 

states in this context, consider that (9) is written as 

𝑑𝑑 𝑑𝑑𝑡𝑡 [𝑥𝑥1𝑥𝑥2𝑥𝑥3] = [
𝐴𝐴11 𝐴𝐴12 𝐴𝐴13𝐴𝐴21 𝐴𝐴22 𝐴𝐴23𝐴𝐴31 𝐴𝐴32 𝐴𝐴33] [

𝑥𝑥1𝑥𝑥2𝑥𝑥3] + [
𝐵𝐵1 0 00 𝐵𝐵2 00 0 𝐵𝐵3] [

𝑢𝑢1𝑢𝑢2𝑢𝑢3] +
+ [𝐸𝐸1 00 00 𝐸𝐸3] [ 𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿]  (11) 

with local states and inputs 𝑥𝑥1 = [𝑃𝑃𝐺𝐺 𝑃𝑃𝑀𝑀 𝜔𝜔 𝑃𝑃tie 𝑧𝑧1],  𝑢𝑢1 = 𝑃𝑃𝐶𝐶 , 𝑥𝑥2 = [𝜔𝜔 𝑃𝑃tie 𝑃𝑃𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵],  𝑢𝑢2 = 𝑃𝑃𝐶𝐶𝐵𝐵 , 𝑥𝑥3 = [𝑃𝑃tie 𝑃𝑃𝑀𝑀𝑣𝑣 𝜔𝜔𝑣𝑣 𝑧𝑧3],  𝑢𝑢3 = 𝑃𝑃𝐶𝐶𝐿𝐿. 

The decentralized control problem is therefore to design 

matrices 𝐾𝐾1, 𝐾𝐾2 and 𝐾𝐾3 such that 𝑢𝑢𝑖𝑖 = 𝐾𝐾𝑖𝑖𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2,3,   (12) 

stabilizes and provides offset-free control for (9), while 

minimizing a quadratic performance index 

∫ 𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑄𝑄𝑢𝑢𝑢𝑢 𝐸𝐸𝑡𝑡.∞0    (13) 

3. DECENTRALIZED CONTROL SYNTHESIS  

The decomposition depicted in (11) is overlapping (Siljak, 

1991) in the sense that the three subsystems share some states, 

namely 𝜔𝜔 and 𝑃𝑃tie. The decentralized control law design 

problem may be cast as one of designing a structured state-

feedback control law 𝑢𝑢 = 𝐾𝐾𝑥𝑥: in this case 

[𝑢𝑢1𝑢𝑢2𝑢𝑢3] = [
𝐾𝐾1 0 00 𝐾𝐾2 00 0 𝐾𝐾3]⏟        𝐾𝐾𝐷𝐷

[𝑥𝑥1𝑥𝑥2𝑥𝑥3] ⟹ 𝑢𝑢 = 𝐾𝐾𝐷𝐷𝑀𝑀⏟𝐾𝐾 𝑥𝑥 (14) 

where 𝑀𝑀 determines the overlapping decomposition of states. 

The gain matrix 𝐾𝐾 = 𝐾𝐾𝐷𝐷𝑀𝑀 satisfies a structural constraint 

(Ferrante et al. 2020a) 𝐾𝐾 ∈ 𝒮𝒮, where  

𝒮𝒮 = {𝐾𝐾 ∈ ℝ𝑚𝑚𝑥𝑥𝑛𝑛: 𝐾𝐾 ∘ 𝒮𝒮(𝐵𝐵T) = 0},   (15a) 

𝒮𝒮(𝐵𝐵T)𝑖𝑖𝑖𝑖 ≔ {0 if 𝐵𝐵𝑖𝑖𝑖𝑖 ≠ 0,1 otherwise    (15b) 

The structured control problem is to then find a 𝐾𝐾 ∈ 𝒮𝒮 and 𝑃𝑃 ∈𝕊𝕊+𝑛𝑛  satisfying the bilinear matrix inequality (BMI) 

(𝐴𝐴 + 𝐵𝐵𝐾𝐾)𝑃𝑃 + 𝑃𝑃(𝐴𝐴 + 𝐵𝐵𝐾𝐾)T ≺ 0.  (16) 
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𝑃𝑃𝐺𝐺𝑃𝑃𝐶𝐶1 𝑅𝑅⁄ 𝑃𝑃𝑀𝑀𝑇𝑇𝑔𝑔 𝑇𝑇𝑡𝑡

𝑇𝑇𝑏𝑏 𝑑𝑑𝑃𝑃𝐵𝐵𝑑𝑑𝑡𝑡 + 𝑃𝑃𝐵𝐵 = 𝑃𝑃𝐶𝐶𝐵𝐵
𝑑𝑑𝑆𝑆𝑆𝑆𝐶𝐶𝐵𝐵𝑑𝑑𝑡𝑡 = −𝑃𝑃𝐵𝐵
𝑇𝑇𝑏𝑏 𝑃𝑃𝐵𝐵𝑃𝑃𝐶𝐶𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵

𝑀𝑀𝑣𝑣 𝑑𝑑𝜔𝜔𝑣𝑣𝑑𝑑𝑡𝑡 = 𝑃𝑃𝑀𝑀𝑣𝑣 − (𝑃𝑃𝐿𝐿𝐿𝐿 + 𝐷𝐷𝑣𝑣𝜔𝜔𝑣𝑣)
𝑇𝑇𝑣𝑣 𝑑𝑑𝑃𝑃𝑀𝑀𝑣𝑣𝑑𝑑𝑡𝑡 + 𝑃𝑃𝑀𝑀𝑣𝑣 = 𝑃𝑃𝐶𝐶𝐿𝐿 − 1𝑅𝑅𝑣𝑣𝜔𝜔𝑣𝑣
𝜔𝜔𝑣𝑣 𝑀𝑀𝑣𝑣𝑃𝑃𝑀𝑀𝑣𝑣 𝑃𝑃𝐿𝐿𝐿𝐿𝐷𝐷𝑣𝑣𝑃𝑃𝐶𝐶𝐿𝐿
𝑑𝑑𝑃𝑃tie𝑑𝑑𝑡𝑡 = 𝑃𝑃𝑠𝑠𝑠𝑠(𝜔𝜔 − 𝜔𝜔𝑣𝑣)
𝑃𝑃𝑠𝑠𝑠𝑠

‒

𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 + 𝐸𝐸𝐸𝐸
𝑥𝑥 ∶=  [𝑃𝑃𝐺𝐺 𝑃𝑃𝑀𝑀 𝜔𝜔 𝑃𝑃𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 𝑃𝑃tie 𝑃𝑃𝑀𝑀𝑣𝑣 𝜔𝜔𝑣𝑣 𝑧𝑧1 𝑧𝑧3]T

𝑢𝑢 ∶= [𝑃𝑃𝐶𝐶 𝑃𝑃𝐶𝐶𝐵𝐵 𝑃𝑃𝐶𝐶𝐿𝐿]T 𝐸𝐸 ∶= [𝑃𝑃𝐿𝐿 𝑃𝑃𝐿𝐿𝐿𝐿]T

𝑑𝑑𝑧𝑧1𝑑𝑑𝑡𝑡 = −𝜔𝜔 𝑑𝑑𝑧𝑧3𝑑𝑑𝑡𝑡 = −𝜔𝜔𝑣𝑣

𝜔𝜔𝑃𝑃𝐿𝐿𝑃𝑃𝐶𝐶 𝑃𝑃𝐶𝐶𝐵𝐵 𝑃𝑃𝐶𝐶𝐿𝐿

𝑑𝑑 𝑑𝑑𝑡𝑡 [𝑥𝑥1𝑥𝑥2𝑥𝑥3] = [
𝐴𝐴11 𝐴𝐴12 𝐴𝐴13𝐴𝐴21 𝐴𝐴22 𝐴𝐴23𝐴𝐴31 𝐴𝐴32 𝐴𝐴33] [

𝑥𝑥1𝑥𝑥2𝑥𝑥3] + [
𝐵𝐵1 0 00 𝐵𝐵2 00 0 𝐵𝐵3] [

𝑢𝑢1𝑢𝑢2𝑢𝑢3] +
+ [𝐸𝐸1 00 00 𝐸𝐸3] [ 𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿]

𝑥𝑥1 = [𝑃𝑃𝐺𝐺 𝑃𝑃𝑀𝑀 𝜔𝜔 𝑃𝑃tie 𝑧𝑧1] 𝑢𝑢1 = 𝑃𝑃𝐶𝐶𝑥𝑥2 = [𝜔𝜔 𝑃𝑃tie 𝑃𝑃𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵], 𝑢𝑢2 = 𝑃𝑃𝐶𝐶𝐵𝐵𝑥𝑥3 = [𝑃𝑃tie 𝑃𝑃𝑀𝑀𝑣𝑣 𝜔𝜔𝑣𝑣 𝑧𝑧3], 𝑢𝑢3 = 𝑃𝑃𝐶𝐶𝐿𝐿
𝐾𝐾1 𝐾𝐾2 𝐾𝐾3𝑢𝑢𝑖𝑖 = 𝐾𝐾𝑖𝑖𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2,3,

∫ 𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑄𝑄𝑢𝑢𝑢𝑢 𝐸𝐸𝑡𝑡.∞0

𝜔𝜔 𝑃𝑃tie 𝑢𝑢 = 𝐾𝐾𝑥𝑥
[𝑢𝑢1𝑢𝑢2𝑢𝑢3] = [

𝐾𝐾1 0 00 𝐾𝐾2 00 0 𝐾𝐾3]⏟        𝐾𝐾𝐷𝐷
[𝑥𝑥1𝑥𝑥2𝑥𝑥3] ⟹ 𝑢𝑢 = 𝐾𝐾𝐷𝐷𝑀𝑀⏟𝐾𝐾 𝑥𝑥

𝑀𝑀 𝐾𝐾 = 𝐾𝐾𝐷𝐷𝑀𝑀𝐾𝐾 ∈ 𝒮𝒮
𝒮𝒮 = {𝐾𝐾 ∈ ℝ𝑚𝑚𝑥𝑥𝑛𝑛: 𝐾𝐾 ∘ 𝒮𝒮(𝐵𝐵T) = 0}
𝒮𝒮(𝐵𝐵T)𝑖𝑖𝑖𝑖 ≔ {0 if 𝐵𝐵𝑖𝑖𝑖𝑖 ≠ 0,1 otherwise

𝐾𝐾 ∈ 𝒮𝒮 𝑃𝑃 ∈𝕊𝕊+𝑛𝑛
(𝐴𝐴 + 𝐵𝐵𝐾𝐾)𝑃𝑃 + 𝑃𝑃(𝐴𝐴 + 𝐵𝐵𝐾𝐾)T ≺ 0.

It is well known (Boyd et al., 1994) that (16) converts to a 

linear matrix inequality (LMI) via the change of variable 𝐾𝐾 =𝑌𝑌𝑃𝑃−1:  

(𝐴𝐴𝑃𝑃 + 𝐵𝐵𝑌𝑌) + (𝐴𝐴𝑃𝑃 + 𝐵𝐵𝑌𝑌)T ≺ 0.  (17) 

Finding a 𝐾𝐾 ∈ 𝒮𝒮 that satisfies (17) is conventionally achieved 

by imposing structural constraints on 𝑃𝑃, which is conservative 

and may fail to find a feasible solution even when 

decentralized stabilizability of the system is possible. This 

limitation was overcome by Ferrante at al. (2020a), who 

proposed a novel dilation of (17) in order that no structure need 

be imposed on the matrix 𝑃𝑃 other than positive definiteness. 

The proposal is characterized by the following result. 

Theorem 1. (Ferrante et al. 2020a) Let {𝒮𝒮1, … . , 𝒮𝒮𝑘𝑘} be a basis 

for 𝒮𝒮, let 

𝐿𝐿 ∶= [𝒮𝒮1 𝒮𝒮2 ⋯ 𝒮𝒮𝑘𝑘]    (18) 

and define the structured set 

Υ ≔ {𝑋𝑋 ∈ ℛ𝑛𝑛: ∃Λ ∈ ℛ𝑘𝑘  𝑠𝑠. 𝑡𝑡. 𝐿𝐿(𝐼𝐼𝑘𝑘⨂ 𝑄𝑄) = 𝐿𝐿(Λ ⨂𝐼𝐼𝑛𝑛)}.  
If there exists a 𝑃𝑃 ∈ 𝕊𝕊+𝑛𝑛 , an 𝑅𝑅 ∈ 𝒮𝒮 and an 𝑋𝑋 ∈ Υ such that 

[0 𝑃𝑃𝑃𝑃 0] + He {[𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑅𝑅 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑅𝑅−𝑋𝑋 −𝑋𝑋 ]} ≺ 0 (19) 

then 𝐾𝐾 = 𝑅𝑅𝑋𝑋−1 ∈ 𝒮𝒮 solves (16). 

Theorem 1 solves the structured state-feedback control 

problem with respect to stability but omits any performance 

criterion; an extension of the method (Ferrante et al. 2020b) 

minimizes the 𝐻𝐻∞ performance criterion. In this paper, in a 

similar vein, we extend the result of Ferrante et al. (2020a) to 

minimize or bound the 𝐻𝐻2 norm of the closed-loop system, 

resulting in a solution to the structured 𝐻𝐻2 state-feedback 

synthesis problem. This naturally includes the case of 

minimizing an LQ-type cost function, thus also offering a 

solution to the structured LQR problem. Unfortunately, 

adapting (19) directly to include the 𝐻𝐻2/LQR performance 

criterion is not straightforward, resulting in nonlinear terms. 

We therefore achieve the extension by using an alternative 

dilation of the Lyapunov inequality in the 𝐻𝐻2 formulation, due 

to Ebihara and Hagiwara (2004), and combining this with the 

structural constraints in Theorem 1. 

Consider a system 

𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 + 𝐸𝐸𝐸𝐸    (20a) 

𝑦𝑦 = 𝑆𝑆𝑥𝑥 + 𝐷𝐷𝑢𝑢     (20b) 

whose transfer function under state feedback 𝑢𝑢 = 𝐾𝐾𝑥𝑥 is  

𝐻𝐻(𝑠𝑠) = (𝑆𝑆 + 𝐷𝐷𝐾𝐾)[𝑠𝑠𝐼𝐼 − (𝐴𝐴 + 𝐵𝐵𝐾𝐾)]−1𝐸𝐸  (21) 

with 𝐻𝐻2 norm ‖𝐻𝐻(𝑠𝑠)‖2. The following result solves the 

structured state feedback control synthesis problem while 

bounding the 𝐻𝐻2 norm.   

Theorem 2. If for some 𝑏𝑏 > 0, there exists a 𝑃𝑃 ∈ 𝕊𝕊+𝑛𝑛 , an 𝑅𝑅 ∈𝒮𝒮, an 𝑋𝑋 ∈ Υ, and a 𝑍𝑍 ∈ 𝕊𝕊+𝑛𝑛  such that 

[0 𝑃𝑃 0𝑃𝑃 0 00 0 −𝐼𝐼] + He {[
𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑅𝑅 𝑏𝑏(𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑅𝑅) 0−𝑋𝑋 −𝑏𝑏𝑋𝑋 0𝑆𝑆𝑋𝑋 + 𝐷𝐷𝑅𝑅 𝑏𝑏(𝑆𝑆𝑋𝑋 + 𝐷𝐷𝑅𝑅) 0]} ≺ 0 

(22) 

[𝑍𝑍 𝐸𝐸T𝐸𝐸 𝑌𝑌 ] ≻ 0,     (23) 

trace(𝑍𝑍) < 𝛾𝛾,     (24) 

then 𝐾𝐾 = 𝑅𝑅𝑋𝑋−1 ∈ 𝒮𝒮 results in 𝐴𝐴 + 𝐵𝐵𝐾𝐾 Hurwitz with ‖𝐻𝐻(𝑠𝑠)‖2 <  𝛾𝛾. 

Proof. Re-writing the left-hand side of (22) as 

[0 𝑃𝑃 0𝑃𝑃 0 00 0 −𝐼𝐼]⏟        ℒ1
+ He

{  
  [𝐴𝐴 + 𝐵𝐵𝐾𝐾−𝐼𝐼𝑆𝑆 + 𝐷𝐷𝐾𝐾]𝑋𝑋[𝐼𝐼 𝑏𝑏𝐼𝐼 0]⏟              ℒ2 }  

  ≺ 0 

and defining the congruence transformation  

𝑇𝑇 ∶= [−𝐼𝐼 −(𝐴𝐴 + 𝐵𝐵𝐾𝐾) 00 𝑆𝑆 + 𝐷𝐷𝐾𝐾 𝐼𝐼],  (25) 

it follows that  

𝑇𝑇(ℒ1 + ℒ2 + ℒ2T)𝑇𝑇T = 𝑇𝑇ℒ1𝑇𝑇T  (26) 

since 𝑇𝑇ℒ2 = 0 and ℒ2T𝑇𝑇T = 0. Therefore, condition (22) is 

equivalent to 

[(𝐴𝐴 + 𝐵𝐵𝐾𝐾)𝑃𝑃 + 𝑃𝑃(𝐴𝐴 + 𝐵𝐵𝐾𝐾)T 𝑃𝑃(𝑆𝑆 + 𝐷𝐷𝐾𝐾)𝑇𝑇(𝑆𝑆 + 𝐷𝐷𝐾𝐾)𝑃𝑃 −𝐼𝐼 ] ≺ 0. 
This, when taken with (23) and (24), gives the standard LMIs 

for state feedback synthesis with bounded 𝐻𝐻2 norm. The block 

structure of 𝐾𝐾 = 𝑅𝑅𝑋𝑋−1 is assured by the constraints 𝐾𝐾 ∈ 𝒮𝒮 and 𝑋𝑋 ∈ Υ (Ferrante et al., 2020a). ∎ 

Theorem 2 is easily adapted to cover the minimization of the 

quadratic index (13), by setting 𝐸𝐸 = 𝐼𝐼, 𝑆𝑆 = [𝑄𝑄𝑥𝑥1 2⁄ 0]T and 𝐷𝐷 = [0 𝑄𝑄𝑢𝑢1 2⁄ ]T. 

Corollary 1. The LMI formulation that solves the structured 

LQ problem is 

min𝑃𝑃,𝑋𝑋,𝑅𝑅−trace(𝑃𝑃)    (27) 
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subject to 𝑃𝑃 ∈ 𝕊𝕊+𝑛𝑛 , 𝑅𝑅 ∈ 𝒮𝒮, 𝑋𝑋 ∈ Υ, and 

[0 𝑃𝑃 0 0𝑃𝑃 0 0 00 0 −𝐼𝐼 00 0 0 −𝐼𝐼] + He{ 
 
[ 
  𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑅𝑅 𝑏𝑏(𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑅𝑅) 0−𝑋𝑋 −𝑏𝑏𝑋𝑋 0𝑄𝑄𝑥𝑥1 2⁄ 𝑋𝑋 𝑏𝑏𝑄𝑄𝑥𝑥1 2⁄ 𝑋𝑋 0𝑄𝑄𝑢𝑢1 2⁄ 𝑅𝑅 𝑏𝑏𝑄𝑄𝑢𝑢1 2⁄ 𝑅𝑅 0] 

  
} 
 ≺ 0. 

4. APPLICATION TO HYBRID LFC PROBLEM 

The decentralized control synthesis method is demonstrated by 

application to the hybrid LFC problem depicted in Section 2. 

We consider a power system with the parameters, expressed 

relative to the based machine rating of 2000MVA 

𝑀𝑀𝑒𝑒𝑒𝑒 = 11.94 s,𝑀𝑀𝑣𝑣 = 2.24 s, 𝐷𝐷 = 0.3549, 𝐷𝐷𝑣𝑣 = 0.36 

𝑇𝑇𝑏𝑏 = 0.3 s, 𝑇𝑇𝑔𝑔 = 0.1 s, 𝑇𝑇𝑡𝑡 = 0.35 s, 𝑇𝑇𝑣𝑣 = 0.6 s 
𝑅𝑅 = 0.037 p. u. , 𝑅𝑅𝑣𝑣 = 15 p. u., 𝑃𝑃tie = 3 p. u. 

For the decentralized control design, the gain matrix has the 

desired form 

𝐾𝐾 =  [𝐾𝐾11 𝐾𝐾12 𝐾𝐾13 0 0 𝐾𝐾14 0 0 𝐾𝐾15 00 0 𝐾𝐾21 𝐾𝐾22 𝐾𝐾23 𝐾𝐾24 0 0 0 00 0 0 0 0 𝐾𝐾31 𝐾𝐾32 𝐾𝐾33 0 𝐾𝐾34] 
where each 𝐾𝐾𝑖𝑖𝑖𝑖 ∈ ℝ, leading to a 13-element basis for set 𝒮𝒮. Following the definition of the set Υ, a matrix 𝑋𝑋 ∈ Υ takes 

the form 

[ 
  
  
  
  
 𝑥𝑥1,1 𝑥𝑥1,2 𝑥𝑥1,3 0 0 𝑥𝑥1,6 0 0 𝑥𝑥1,9 0𝑥𝑥2,1 𝑥𝑥2,2 𝑥𝑥2,3 0 0 𝑥𝑥2,6 0 0 𝑥𝑥2,9 00 0 𝑥𝑥3,3 0 0 𝑥𝑥3,6 0 0 0 00 0 𝑥𝑥4,3 𝑥𝑥4,4 𝑥𝑥4,5 𝑥𝑥4,6 0 0 0 00 0 𝑥𝑥5,3 𝑥𝑥5,4 𝑥𝑥5,5 𝑥𝑥5,6 0 0 0 00 0 0 0 0 𝑥𝑥6,6 0 0 0 00 0 0 0 0 𝑥𝑥7,6 𝑥𝑥7,7 𝑥𝑥7,8 0 𝑥𝑥7,100 0 0 0 0 𝑥𝑥8,6 𝑥𝑥8,7 𝑥𝑥8,8 0 𝑥𝑥8,10𝑥𝑥9,1 𝑥𝑥9,2 𝑥𝑥9,3 0 0 𝑥𝑥9,6 0 0 𝑥𝑥9,9 00 0 0 0 0 𝑥𝑥10,6 𝑥𝑥10,7 𝑥𝑥10,8 0 𝑥𝑥10,10] 

  
  
  
  
 
 

where each 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ ℝ. The matrix 𝑅𝑅 has the same structure as 𝐾𝐾. 

Thus, 𝑋𝑋 has a structure that results in 𝑅𝑅𝑋𝑋−1 having the desired 

structure for 𝐾𝐾, but no structure is imposed on 𝑃𝑃. 

We design the structured 𝐾𝐾 to minimize the quadratic 

performance criterion (11) with 

𝑄𝑄𝑥𝑥 = diag(1,0.7,100,0.001,0.001,1,10,100,85,85), 
𝑄𝑄𝑢𝑢 = diag(0.0001,0.0001,1), 

thus penalizing most heavily the real and virtual frequency 

deviations and their integrated values. For comparison, we also 

design a centralized state feedback control law using LQR 

(using the same cost function matrices – omitting the final 

element in 𝑄𝑄𝑥𝑥 for reference tracking in real frequency 

deviation only) applied to the whole system, and a set of 

decentralized LQR control laws by considering the decoupled 

dynamics of each subsystem, i.e., 

𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑡𝑡 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖,   (28)  

such that interactions ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖≠𝑖𝑖  are ignored. Note that for 

decentralized LQR, only reference tracking of virtual 

frequency deviation was included for satisfactory system 

response.  

Fig. 2 shows the frequency response of the system following a 

load disturbance 𝑃𝑃𝐿𝐿 = 0.01 p. u. (20 MW) in CA1 at 𝑡𝑡 = 10 s. 
Figs. 3 and 4 show the corresponding generation asset outputs 

and BESS power output. The centralized LQR achieves the 

optimal response for this set of weighting matrices. The two 

decentralized schemes produce a longer settling time albeit 

with a smaller frequency nadir. All three control schemes 

engage the WG asset, but to differing amounts; the proposed 

LMI-based control law makes maximal use of the WG in 

steady state. The BESS supports the frequency only during the 

initial transient; however, the decentralized LQR scheme 

discharges the BESS most (𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 = 0 corresponds to a 

nominal initial charge) while the decentralized LMI scheme 

resembles the response from the centralized LQR scheme, 

despite the absence of communication between the subsystem 

controllers.  

Fig. 5 shows the frequency response of the system following a 

load disturbance 𝑃𝑃𝐿𝐿 = 0.01 p. u. (20 MW) in CA2 at 𝑡𝑡 = 10 s. 
Figs. 6 and 7 show the corresponding generation asset outputs 

and BESS power output. The proposed LMI-based control 

laws achieve the smallest frequency nadir but a settling time 

longer than the centralized control law, as was also observed 

for a disturbance in CA1. Both decentralized LQR and the 

proposed LMI-based control laws maximize the use of the 

VSG. However, both under-utilize the BESS. This is expected 

as there is no information exchange between the controllers 

(i.e. the controllers are acting on local information). In the case 

of the proposed LMI-based control laws, both the conventional 

generation and the BESS reduce their power output (charge in 

the case of the BESS) to accommodate the sharp increase in 

the power output of the VSG, as shown in Fig. 6 and 7.  

The closed loop cost was calculated for each of the above-

mentioned schemes using the same cost function matrices – 

omitting the final element in 𝑄𝑄𝑥𝑥 in the case of centralized and 

decentralized LQR. The results are in line with our intuition. 

That is, the centralized implementation has the lowest cost 

followed by the decentralized control laws.  

Table 1. Closed Loop Costs 

Control Scheme Disturbance in 

CA1 

Disturbance in 

CA2 

Centralized LQR 0.2486 0.3153 

Decentralized LQR 0.6334 12.2517 

Decentralized LMI 0.6724 2.7204 
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𝑃𝑃 ∈ 𝕊𝕊+𝑛𝑛 𝑅𝑅 ∈ 𝒮𝒮 𝑋𝑋 ∈ Υ
[0 𝑃𝑃 0 0𝑃𝑃 0 0 00 0 −𝐼𝐼 00 0 0 −𝐼𝐼] + He{ 

 
[ 
  𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑅𝑅 𝑏𝑏(𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑅𝑅) 0−𝑋𝑋 −𝑏𝑏𝑋𝑋 0𝑄𝑄𝑥𝑥1 2⁄ 𝑋𝑋 𝑏𝑏𝑄𝑄𝑥𝑥1 2⁄ 𝑋𝑋 0𝑄𝑄𝑢𝑢1 2⁄ 𝑅𝑅 𝑏𝑏𝑄𝑄𝑢𝑢1 2⁄ 𝑅𝑅 0] 

  
} 
 ≺ 0

𝑀𝑀𝑒𝑒𝑒𝑒 = 11.94 s,𝑀𝑀𝑣𝑣 = 2.24 s, 𝐷𝐷 = 0.3549, 𝐷𝐷𝑣𝑣 = 0.36
𝑇𝑇𝑏𝑏 = 0.3 s, 𝑇𝑇𝑔𝑔 = 0.1 s, 𝑇𝑇𝑡𝑡 = 0.35 s, 𝑇𝑇𝑣𝑣 = 0.6 s
𝑅𝑅 = 0.037 p. u. , 𝑅𝑅𝑣𝑣 = 15 p. u. 𝑃𝑃tie = 3 p. u.

𝐾𝐾 =  [𝐾𝐾11 𝐾𝐾12 𝐾𝐾13 0 0 𝐾𝐾14 0 0 𝐾𝐾15 00 0 𝐾𝐾21 𝐾𝐾22 𝐾𝐾23 𝐾𝐾24 0 0 0 00 0 0 0 0 𝐾𝐾31 𝐾𝐾32 𝐾𝐾33 0 𝐾𝐾34]
𝐾𝐾𝑖𝑖𝑖𝑖 ∈ ℝ𝒮𝒮. Υ 𝑋𝑋 ∈ Υ

[ 
  
  
  
  
 𝑥𝑥1,1 𝑥𝑥1,2 𝑥𝑥1,3 0 0 𝑥𝑥1,6 0 0 𝑥𝑥1,9 0𝑥𝑥2,1 𝑥𝑥2,2 𝑥𝑥2,3 0 0 𝑥𝑥2,6 0 0 𝑥𝑥2,9 00 0 𝑥𝑥3,3 0 0 𝑥𝑥3,6 0 0 0 00 0 𝑥𝑥4,3 𝑥𝑥4,4 𝑥𝑥4,5 𝑥𝑥4,6 0 0 0 00 0 𝑥𝑥5,3 𝑥𝑥5,4 𝑥𝑥5,5 𝑥𝑥5,6 0 0 0 00 0 0 0 0 𝑥𝑥6,6 0 0 0 00 0 0 0 0 𝑥𝑥7,6 𝑥𝑥7,7 𝑥𝑥7,8 0 𝑥𝑥7,100 0 0 0 0 𝑥𝑥8,6 𝑥𝑥8,7 𝑥𝑥8,8 0 𝑥𝑥8,10𝑥𝑥9,1 𝑥𝑥9,2 𝑥𝑥9,3 0 0 𝑥𝑥9,6 0 0 𝑥𝑥9,9 00 0 0 0 0 𝑥𝑥10,6 𝑥𝑥10,7 𝑥𝑥10,8 0 𝑥𝑥10,10] 

  
  
  
  
 

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ ℝ 𝑅𝑅 𝐾𝐾𝑋𝑋 𝑅𝑅𝑋𝑋−1𝐾𝐾 𝑃𝑃
𝐾𝐾

𝑄𝑄𝑥𝑥 = diag(1,0.7,100,0.001,0.001,1,10,100,85,85)
𝑄𝑄𝑢𝑢 = diag(0.0001,0.0001,1)

–𝑄𝑄𝑥𝑥

𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑡𝑡 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖≠𝑖𝑖

𝑃𝑃𝐿𝐿 = 0.01 p. u. 𝑡𝑡 = 10 s

𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 = 0

𝑃𝑃𝐿𝐿 = 0.01 p. u. 𝑡𝑡 = 10 s

–𝑄𝑄𝑥𝑥

 

Fig. 2. Frequency response to a load disturbance of ∆𝑃𝑃𝐿𝐿 =0.01 p. u. (20 MW) in CA1 at 𝑡𝑡 =  10 𝑠𝑠. 

 

Fig. 3. Power outputs of generators during a load disturbance 

of ∆𝑃𝑃𝐿𝐿 = 0.01 p. u. (20 MW) in CA1 at 𝑡𝑡 = 10 𝑠𝑠. 

 

Fig. 4. BESS power output and state of charge during a load 

disturbance ∆𝑃𝑃𝐿𝐿 = 0.01 p. u. (20 MW) in CA1 at 𝑡𝑡 =  10 𝑠𝑠. 

 

Fig. 5. Frequency response to a load disturbance of ∆𝑃𝑃𝐿𝐿 =0.01 p. u. (20 MW) in CA2 at 𝑡𝑡 =  10 𝑠𝑠. 

 

Fig. 6. Power outputs of generators during a load disturbance 

of ∆𝑃𝑃𝐿𝐿 = 0.01 p. u. (20 MW) in CA2 at 𝑡𝑡 = 10 𝑠𝑠. 

 

Fig. 7. BESS power output and state of charge during a load 

disturbance ∆𝑃𝑃𝐿𝐿 = 0.01 p. u. (20 MW) in CA2 at 𝑡𝑡 =  10 𝑠𝑠. 
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5.  CONCLUSION 

This paper has considered the secondary control design 

problem for a power system incorporating VSG-connected 

WG and BESS. We proposed an extension of a structured 

control synthesis method (Ferrante et al., 2020a) to formulate 

the optimal H2/LQR decentralized control design problem via 

LMIs. This achieves a systematic design of stable optimal 

decentralized control laws. We applied the results to design 

stable-decentralized control gains for a hybrid power system 

example. The performance of the LMI-based scheme was seen 

to out-perform that of an ad-hoc decentralized LQR scheme, 

with significant benefit of stability by design.  
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