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This article examines the three-way relationship between right 
coherency of a monoid S, solutions of equations over S-acts, 
and injectivity properties of S-acts. A monoid S is right 
coherent if every finitely generated subact of every finitely 
presented (right) S-act itself has a finite presentation. Purity 
properties of an S-act A may either be expressed in terms of 
solutions in A of certain consistent sets of equations over A, 
or in terms of injectivity properties. For example, an S-act 
A is absolutely pure (almost pure) if every finite consistent 
set of equations over A (in one variable) has a solution 
in A. Equivalently, A is absolutely pure (almost pure) if it 
is injective with respect to inclusions of finitely generated 
subacts into finitely presented (monogenic finitely presented) 
S-acts.
Our first main result shows that for a right coherent monoid S
the classes of almost pure and absolutely pure S-acts coincide. 
Our second main result is that a monoid S is right coherent if 
and only if the classes of mfp-pure and absolutely pure S-acts 
coincide: an S-act is mfp-pure if it is injective with respect to 
inclusions of finitely presented subacts into monogenic finitely 
presented S-acts. We give specific examples of monoids S that 
are not right coherent yet are such that the classes of almost 
pure and absolutely pure S-acts coincide. Finally we give a 
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condition on a monoid S for all almost pure S-acts to be 
absolutely pure in terms of finitely presented S-acts, their 
finitely generated subacts, and certain canonical extensions.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction and preliminaries

This article is a contribution to the study of coherency for monoids. Specifically, it 

concerns the relationship between coherency of a monoid and purity properties of its 

acts. Let S be a monoid with identity 1. Coherency of S may be defined in terms of its 

S-acts. A right S-act is a set A together with a map A × S → A, where (a, s) �→ as, 

such that for all a ∈ A and s, t ∈ S we have a1 = a and a(st) = (as)t. Left S-acts are 

defined dually; by ‘S-act’ we will mean by default ‘right S-act’, with the corresponding 

convention for R-modules over a ring R. An S-act is a representation of S by mappings 

of a set, analogously to the way in which an R-module is a representation of a ring R by 

homomorphisms of an abelian group. The theory of S-acts both intertwines with that of 

R-modules, and pulls apart from it, a phenomenon emphasised by this article.

A monoid S is right coherent if every finitely generated subact of every finitely pre-

sented S-act is finitely presented. This definition is analogous to that for a ring R, where 

the notion of S-act is replaced by that of R-module. For both monoids and rings, right 

coherency is an important finitary condition, that is, one certainly satisfied by all finite 

monoids or rings, and is strictly weaker than that of being right noetherian [18,19]. In 

fact, a ring R is right coherent if and only if every finitely generated right ideal of R

has a finite presentation [3]. The corresponding statement is not true for S-acts, the free 

inverse monoid providing a counter-example [11]. Essentially this split in the theories is 

due to the fact that for S-acts, congruences are not determined by subacts. Moreover, 

right coherency of R is equivalent to the property that products of flat left R-modules 

are flat [3]. Again, we do not have that tool to use for S-acts, although some partial 

results are known [8]. Here [2,20] are also relevant, since they consider closure properties 

of the classes of flat left S-acts, and use this to define a related notion of coherency.

Although a very natural property, it transpires that right coherency for monoids is 

difficult to pin down. Even with the aid of a Chase-type condition as in Theorem 2.5, it 

can be hard to ascertain whether or not a given monoid is right coherent. Nevertheless, 

right coherency (or not) of monoids in a number of important classes has been determined 

[8,10,11]. The interaction between coherency and standard algebraic properties is subtle 

[5].

Coherency for both monoids and rings is related to the model theory of their acts 

and modules. In 1976 Wheeler [22] defined a coherent theory for a first order language. 

A theory of S-acts or R-modules is coherent in Wheeler’s sense if and only if S or R is 

right coherent in our sense, and this is equivalent to their classes of existentially closed 

S-acts or R-modules being first order axiomatisable [7,22]. Existential closure refers to 
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the existence of solutions of finite consistent sets of equations and inequations. In this 

article we will be examining the relationship between right coherency and equations, the 

latter providing one approach to the properties we refer to as purity properties.

Given an S-act A an equation over A has one of the following three forms: xs =

xt, xs = yt or xs = a where x, y are variables, s, t ∈ S and a ∈ A is a constant. We will 

set up our notation for equations over A more formally in Section 3. A set Σ of equations 

over A is consistent if Σ has a solution in some S-act B containing A. We are concerned 

with the question of when a consistent set Σ of equations over A, of a particular form, 

has a solution in A. This leads us to so-called purity notions for an S-act. We now outline 

the main ones of our concern.

An S-act A is absolutely pure if every finite consistent set of equations with constants 

from A has a solution in A. An S-act A is almost pure if every finite consistent set of 

equations in one variable with constants from A has a solution in A. These and other 

notions of purity may equivalently be phrased in terms of completion of diagrams, as 

weak versions of injectivity, whence the terminology arises.

We recall that an S-act A is injective if any diagram of S-acts and S-morphisms of 

the form on the left

C B

A

θ

C B

A

θ
θ

may be completed via an S-morphism θ as on the right. It is known that an S-act A is 

absolutely pure (almost pure) if and only if any diagram on the left, where C is finitely 

presented (and monogenic) and B is finitely generated, can be completed as on the right 

(see [6, Proposition 3.8] and [9, Proposition 3.2]1). By imposing the condition that B and

C are finitely presented and C is monogenic we obtain the notion we call mfp-purity. 

We explain in Section 3 how mfp-purity may be correspondingly phrased in terms of 

equations. Analogous notions and similar observations are true for R-modules (see, for 

example, [21,17], and also [16]).

We denote by Afp
S (1), AS(1) and by AS(ℵ0) the classes of mfp-pure, almost pure and 

absolutely pure S-acts, respectively. Clearly, any absolutely pure S-act is almost pure 

and any almost pure S-act is mfp-pure, that is,

AS(ℵ0) ⊆ AS(1) ⊆ Afp
S (1).

The question of the converse inclusions motivates much of this paper; we demonstrate 

that the answers are intimately related to the notion of right coherency.

1 In the latter, empty acts were not allowed, hence the slightly different wording.
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Question 1.1. For which monoids S is:

(1) AS(ℵ0) = AS(1)?

(2) AS(1) = Afp
S (1)?

(3) AS(ℵ0) = Afp
S (1)?

It is pertinent to pose Question 1.1, for the following reasons. Concerning (1), we know 

that if all S-acts are almost pure, then all S-acts are absolutely pure [9]. Second, an 

S-act A is injective if and only if all consistent sets of equations over A have a solution in 

A [6, Proposition 3.10] and by the Skornjakov-Baer Criterion [13], this is equivalent to all 

consistent sets of equations in one variable over A having a solution in A. However, the 

proof of the Skornjakov-Baer Criterion uses arguments that do not work in our case of 

finite sets of equations. From the proof of [17, Theorem 4], for a right coherent ring any 

almost pure module is absolutely pure. However, the full solution to the corresponding 

question to (1) is still open for R-modules, as well as for S-acts. It is worth noting that for 

some other classes of algebras, with very different signatures, (1) has a positive answer. 

In particular, if a group G has the property that any finite consistent set of equations 

in one variable with constants from G has a solution in G, then it has the property that 

any finite consistent set of equations in any (finite) number of variables with constants 

from G has a solution in G; the same is true for semigroups [14,15]. These results for 

semigroups and groups use a property of extensions that does not hold for S-acts in 

general.

Concerning (2) and (3), by very definition, a right coherent monoid is such that 

AS(1) = Afp
S (1). The situation for rings gives us some pointers to the conjecture that 

only right coherent monoids will give this equality. The article [16] demonstrates that 

all IFP-injective R-modules are absolutely pure if and only if R is right coherent. Here 

the property of being IFP-injective is closely analogous to mfp-purity. We note that 

the classical work for rings, as may be found in [21,17,16], and other articles, use ring 

theoretic techniques and results, including the correspondence with flatness properties, 

that are not valid for monoids.

We do not fully answer Question 1.1(1) but we are able to show the class of monoids 

S such that AS(ℵ0) = AS(1) properly contains the class of right coherent monoids. It 

follows that the property of a monoid that AS(ℵ0) = AS(1) is a finitary property, that 

is, one satisfied by all finite monoids. On the other hand we fully answer Question 1.1(2) 

and (3), with the classes in question being precisely that of right coherent monoids. To 

prove our results, we establish and utilise two pieces of machinery. One enables us to 

pass smoothly between the equational approach to purity and weak injectivity properties. 

The other involves constructing, for any S-act A and a given purity property, a canonical 

extension of A having that property.

We proceed as follows. In Section 2 we set up our notation and give preliminary 

results that will be used throughout. In Section 3 we introduce the notion of a frame

F of a set of equations, of a frame set F , and of F -purity. This allows us to build the 
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aforementioned machinery to fully delineate the passage between purity properties of an 

S-act, and weak injectivity. The results above for almost and absolutely pure S-acts are 

special cases.

Section 4 contains our first main result, motivated by Question 1.1(1).

Result 1.2. (cf. Theorem 4.1). Let S be a right coherent monoid. Then AS(ℵ0) = AS(1).

To answer Question 1.1(2) in Section 5 we build, for a frame set F and an S-act A, 

an F -pure extension A(F ) of A that is canonical in the sense A is F -pure if and only if 

A is a retract of A(F ). This is our second promised piece of machinery. In Section 6 it 

is utilised to prove our second main result, which completely answers Questions 1.1(2) 

and (3).

Result 1.3. (cf. Theorem 6.1). A monoid S is right coherent if and only if AS(1) = Afp
S (1)

if and only if AS(ℵ0) = Afp
S (1).

An immediate question is whether or not right coherency is a necessary condition for 

AS(ℵ0) = AS(1)? The answer is no. It is easy to see that if S has the property that every 

finitely generated S-act embeds into a monogenic act, then again AS(ℵ0) = AS(1). Such 

monoids are somewhat special; in particular, they cannot have zeros. Our next result, 

in Section 7, hangs on delicate analysis of a particular monoid, named the Fountain 

monoid.

Result 1.4. (cf. Theorem 7.5) There exists a monoid S that is not right coherent, is such 

that not every finitely generated S-act embeds into a monogenic act, but AS(ℵ0) =

AS(1).

We believe our example is one of a broader class, and we pose the corresponding 

problem at the end of Section 7.

Finally, in Section 8, we use the machinery developed in Section 5 to give a condition 

on S for AS(ℵ0) = AS(1) in terms of finitely presented S-acts, their finitely generated S-

subacts, and their canonical extensions. The question of whether or not AS(ℵ0) = AS(1)

for all monoids S is still open, as it is for R-modules, although we conjecture the answer 

will be negative.

We attempt to keep this paper as self-contained as possible. For further details we 

refer the reader to [12] for background in semigroup theory, and to [13] for information 

on monoid acts.

2. Preliminaries

The aim of this section is to set up notation and then proceed to preliminary results, 

which will be used throughout the article.
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2.1. The category of S-acts

Let S be a monoid with identity 1. We recall that a right S-act is a set A together 

with a map

A × S → A, (a, s) �→ as

such that for all a ∈ A and s, t ∈ S we have a1 = a and a(st) = (as)t. Naturally, we may 

define left S-acts in a dual manner, but in this article all S-acts will be right S-acts, and 

for convenience we will refer to them simply as S-acts. Note that we allow A = ∅. If A

is an S-act, then there is a monoid morphism from S to the full transformation monoid 

TA on A, taking s to ρs, where aρs = as. Conversely, any morphism ϕ from S to the 

full transformation monoid TB on a set B makes B into an S-act by setting bs := b(sϕ). 

The study of S-acts is, therefore, that of representations of the monoid S by mappings of 

sets. Not surprisingly, in view of the natural way in which they arise, S-acts come under 

a plethora of names (S-sets, S-polygons, S-systems, to name a few). We note that any 

unary algebra may be regarded as an act, for example, over the free monogenic monoid.

For any monoid S the class of all S-acts forms a variety of universal algebras, where the 

basic operations are the unary operations {ρs : s ∈ S}. We refer to an algebra morphism 

in this variety as an S-morphism. It follows that a function φ : A → B, where A and 

B are S-acts, is an S-morphism if (as)φ = (aφ)s for all a ∈ A, s ∈ S. In the standard 

way we have a category, the objects of which are S-acts and the morphisms of which are 

S-morphisms. A subset B of an S-act A is a subact if bs ∈ B for all b ∈ B, s ∈ S. An 

S-morphism ϕ : A → B, where B is a subact of A, is a retraction if ϕ|B is the identity 

map 1B of B; the subact B is then called a retract of A. The set of subacts of A is well 

behaved in the sense it is closed under unions and intersections. In fact, a disjoint union 

of any S-acts is again an S-act in an obvious way. Any right ideal of S is a right S-act 

so S itself is a right S-act. That S is the free monogenic (i.e. single generated, or cyclic) 

S-act follows from the below.

An S-act F is free on a set X if there is a map ι : X → F such that for any S-act A

and map f : X → A there is a unique S-morphism ϕ : F → A such that ιϕ = f . Since 

S-acts form a variety the free S-act on X exists. It has a transparent structure, which 

we now describe. Put

FS(X) = X × S :=
⋃

x∈X

xs

where we make the (convenient) identifications (x, s) := xs and (x, 1) := x. Define an 

action of S on FS(X) by (xs)t = x(st). It is easily seen that FS(X) is the free S-act on 

X where xι = x. Note that for any s, t ∈ S and x, y ∈ X, we have that xs = yt if and 

only if x = y and s = t.

Morphic images of S-acts are obtained by factoring out by the appropriate notion of 

congruence. Let A be an S-act. A congruence ρ on A is an equivalence relation such that 
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for any a, b ∈ A with a ρ b and any s ∈ S we have as ρ bs. We refer to a congruence on 

S regarded as an S-act as a right congruence on S. Denoting the equivalence class of 

a ∈ A by [a] we have

A/ρ = {[a] : a ∈ A}

is an S-act under the action [a]s = [as]. It is called the quotient of A by ρ. The map 

ν : A → A/ρ is then the natural S-morphism with kernel ρ. For H ⊆ A × A the 

congruence generated by H, denoted by 〈H〉, is the least congruence on A containing H. 

Without further remark we assume that H is always symmetric. An explicit formula for 

〈H〉 is obtained as follows.

Lemma 2.1. [12] Let A be an S-act and let H ⊆ A × A. Then for any a, b ∈ A we have 

a 〈H〉 b if and only if a = b or there exists a sequence

a = c1t1, d1t1 = c2t2, · · · , dntn = b

where ti ∈ S and (ci, di) ∈ H for all 1 ≤ i ≤ n.

A sequence as above will be referred to as an H-sequence of length n. We interpret 

a = b as belonging to an H-sequence of length 0.

The next definitions are merely the translations of general algebraic notions to our 

context.

Definition 2.2. An S-act A is finitely generated if A is isomorphic to FS(X)/ρ for some 

finite set X and congruence ρ on FS(X).

It is clear that a non-empty act A is finitely generated if and only if for some n ∈ N

and ai ∈ A, 1 ≤ i ≤ n, we have A = a1S ∪ · · · ∪ anS. Similarly, A is monogenic if and 

only if A = aS for some a ∈ S.

Definition 2.3. An S-act A is finitely presented if A is isomorphic to FS(X)/ρ for some 

finite set X and finitely generated congruence ρ on FS(X).

We remark that being finitely presented is not dependent on the chosen set of gener-

ators.

2.2. Right coherency

The notion of coherency is a central one to this article. We recall from Section 1:

Definition 2.4. A monoid S is right coherent if every finitely generated subact of any 

finitely presented S-act is itself finitely presented.
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To test whether a specific monoid is right coherent we usually make use of the follow-

ing, which is reminiscent of the result of Chase for rings [3].

Theorem 2.5. [8] The following are equivalent for a monoid S:

(i) S is right coherent;

(ii) any finitely generated subact of S/ρ, where ρ is a finitely generated right congru-

ence on S, is finitely presented;

(iii) for any finitely generated right congruence ρ on S and any s, t ∈ S:

(1) the subact (sρ)S ∩ (tρ)S of the right S-act S/ρ is finitely generated;

(2) the annihilator

r(sρ) = {(u, v) ∈ S × S : su ρ sv}

is a finitely generated right congruence on S;

(iv) for any finite set X and finitely generated right congruence ρ on FS(X) and any 

a, b ∈ FS(X):

(1) the subact (aρ)S ∩ (bρ)S of FS(X)/ρ is finitely generated;

(2) the annihilator

r(aρ) = {(u, v) ∈ S × S : au ρ av}

is a finitely generated right congruence on S.

It is known that groups, monoid semilattices (regarded as commutative monoids of 

idempotents), Clifford monoids (monoid semilattices of groups), free commutative and 

free monoids are all (right) coherent [8,10]. Regular monoids for which every right ideal is 

finitely generated are right coherent [10], where a monoid S is regular if for all a ∈ S there 

exists x ∈ S such that a = axa. A monoid is inverse if it is regular and its idempotents 

commute. Groups, semilattices, and Clifford monoids are all inverse, but not all inverse 

monoids are right coherent; for example, the free inverse monoid on a set with more than 

one generator is not right coherent [11].

3. Equations over S-acts

As promised in Section 1, we now formally set up our notation for equations. We 

then build machinery that will allow us to pass between solutions of consistent sets of 

equations and weak injectivity properties of an act. In order that our techniques have 

the widest application, we take care over the exact forms of equations, introducing the 

notions of equation form, frame, and frame set.

In what follows X is a non-empty set, but we do not always mention X explicitly. The 

reason is that elements of X will ultimately correspond to variables, the exact labelling 

of which is usually unimportant.



Y. Dandan, V. Gould / Advances in Mathematics 429 (2023) 109182 9

Definition 3.1. An equation form (with variables from X) is an element f = fS(X) of

(

FS(X) × FS(X)
)

∪ FS(X).

If f ∈ FS(X) × FS(X) then we say f has type 2; if f ∈ FS(X) then we say f has type 1.

Definition 3.2. Let A be an S-act and let f = fS(X) be an equation form. An equation 

over A with equation form f (and variables from X) is an expression

xs = yt if f is (xs, yt)

xs = a where a ∈ A if f is xs.

Notice that an equation form of type 2 corresponds to a single equation, whereas a 

form of type 1 corresponds to different equations, which depend on a choice of an S-act 

A and a ∈ A. It is also worth emphasising that equations over A essentially come in 

three types:

xs = yt, xs = xt or xs = a

where x 
= y ∈ X, s ∈ S and a ∈ A. In expressions of this kind the roles of x, y, s, t, a etc. 

will be implicit. Note that at one and the same time we may regard x ∈ X as an element 

of the free S-act FS(X) and as a variable to be substituted by an element of an S-act.

If Σ = Σ(X) is a set of equations over an S-act A then we do not insist that every 

element of X appears in at least one equation, but this does not affect whether or not 

the set has a solution. We denote by c(Σ) the subset of X consisting of the variables 

appearing in equations in Σ.

Definition 3.3. Let Σ = Σ(X) be a set of equations over an S-act A. A solution (bx)x∈X

of Σ(X) in B consists of a subset {bx : x ∈ X} of B, where A is a subact of B, such that 

bxs = byt for all xs = yt ∈ Σ and bxs = a for all xs = a ∈ Σ.

In the above, if X = {x1, . . . , xn} then we may denote (bxi
= bi)1≤i≤n by (b1, . . . , bn), 

and say (b1, . . . , bn) is a solution of Σ or Σ(b1, . . . , bn) holds. Since we are only interested 

in when equations have solutions, we freely identify xs = yt with yt = xs and xs = a

with a = xs.

The following is essentially a result of universal algebra, but it is convenient to make 

it explicit. The proof is routine.

Lemma 3.4. Let Σ = Σ(X) be a set of equations over an S-act A and let

κΣ = {(xs, yt), (zu, a) : xs = yt, zu = a ∈ Σ}.

A solution (bx)x∈X of Σ in A corresponds exactly to a retraction ϕ : A ∪̇ FS(X) → A

such that κΣ ⊆ ker ϕ and bx = xϕ for each x ∈ X.
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Let Σ = Σ(X) be a set of equations over an S-act A. If A is a subact of B then we 

may regard Σ as a set of equations over B. As a consequence of Lemma 3.4 we have the 

following.

Lemma 3.5. Let Σ be a set of equations over A, where A is a retract of an S-act B. If Σ

has a solution in B, then Σ has a solution in A.

We now formally define consistency for a set of equations.

Definition 3.6. A set of equations Σ over an S-act A is consistent if it has a solution in 

some S-act B containing A.

We return to the form of equations, to establish the notions of purity we are concerned 

with in this article.

Definition 3.7. A frame (with variables from X) is a non-empty set F = FS(X) of 

equation forms. For a frame F we let

F2 = F2
S(X) = FS(X) ∩ (FS(X) × FS(X)

)

and F1 = F1
S(X) = FS(X) ∩ FS(X).

A frame set (with variables from X) is a set of frames F = F S(X).

In Definition 3.8 we use the notion of a multimap. If U and V are sets, then by a 

multimap φ : U → V we mean a subset φ of U × V , such that the projection onto the 

first co-ordinate is onto. This notion is chosen for convenience: if U = ∅, then φ = ∅, but 

if U 
= ∅, then uφ := {v : (u, v) ∈ φ} 
= ∅.

Definition 3.8. Let F be a frame, let A be an S-act and let φ : F1 → A be a multimap. 

Then

Σ = Σ(F , φ) = {xs = yt, zu = (zu)φ : (xs, yt) ∈ F2, zu ∈ F1}

is the set of equations over A with frame F and assignment φ.

Notice that a frame F with F1 
= ∅ can give rise to different sets of equations, 

depending on the choice of A and φ.

Definition 3.9. Let Σ be a set of equations over an S-act A. Then the frame F(Σ) of Σ

is defined by

F(Σ) = {(xs, yt), zu : xs = yt, zu = a ∈ Σ, a ∈ A}.

The multimap φ = φ(Σ) where φ : F1 → A is defined by

(zu)φ = a, where zu = a ∈ Σ.
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If Σ is a set of equations over an S-act A and F = F(Σ) and φ = φ(Σ) are defined as 

above, then Σ = Σ(F , φ). If Σ = Σ(F , φ) is consistent, then it can contain at most one 

equation with equation form xs for any xs ∈ FS(X); this corresponds to φ being a map 

(with possibly empty domain). Since we are almost always concerned with consistent 

sets of equations, almost always our multimaps will be maps.

Definition 3.10. Let F be a frame set. An S-act is F -pure if every consistent set of 

equations Σ over A with F(Σ) ∈ F has a solution in A.

There are some important special kinds of frame sets F , resulting in important special 

kinds of F -purity; we give the examples we need in this article in Definition 3.16 below.

Proposition 3.11. Let A be an S-act. Suppose that A is a retract of an F -pure S-act. 

Then A is F -pure.

Proof. Let B be F -pure and let ϕ : B → A be a retraction. Let Σ = Σ(X) be a 

consistent set of equations over A with F(Σ) ∈ F . Given that unions of S-acts are 

S-acts, it is easy to see that Σ may be regarded as a consistent set of equations over B, 

so has a solution (bx)x∈X in B. Since A is a retract of B, (bxϕ)x∈X is a solution of Σ in 

A. Hence A is F -pure. �

Much of what we do is to build towards a converse of Proposition 3.11 - for this we 

need to construct specific extensions of A of which A is a retract. We are interested in 

conditions on A such that a given set Σ of equations has a solution in A. We remark 

that it is irrelevant how the variables of such a Σ are labelled; for example, (b1, . . . , bn)

is a solution of Σ(x1, . . . , xn) if and only if it is a solution of Σ(y1, . . . , yn). To prevent 

complete explosion of notational complexity, we may change the labelling of the variables 

in a set Σ without comment.

One reason why equations over S-acts are amenable to study is that we have a criterion 

for consistency of a set of equations: this is such that, if S is finite, then it is decidable 

whether a set of equations is consistent. We now outline the relevant ideas, which will 

be useful throughout this article.

To any frame F = FS(X) we let

H(F) = F2, ρF = 〈H(F)〉, C(F) = FS(X)/ρF and B(F) = ∪xs∈F1 [xs]S.

If F1 = ∅ then B(F) = ∅. Correspondingly, if Σ = Σ(X) = Σ(F , φ) is a set of equations 

over A we let

H(Σ) = H(F), ρΣ = ρF , C(Σ) = C(F) and B(Σ) = B(F).

In addition, we define
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K(Σ) = {(xs, a) : xs = a ∈ Σ},

so that the congruence κΣ on A ∪̇ FS(X) may be defined by

κΣ = 〈H(Σ) ∪ K(Σ)〉.

Continuing, we define

A(Σ) = (A ∪̇ FS(X))/κΣ

and let

τΣ : A ∪̇ FS(X) → A(Σ)

be the natural map, with restriction denoted by

νΣ = τΣ|A : A → A(Σ)

so that aτΣ = aνΣ = [a]. The set of equations which we obtain from Σ by replacing each 

equation of the form xs = a by xs = [a] has a solution in A(Σ). Finally, we let

θΣ : B(Σ) → A

be defined by

([xs]u)θΣ = au, where a = (xs)φ, that is, xs = a ∈ Σ.

Notice that at this stage we are not claiming that θΣ is well defined.

The following three propositions, which we use frequently in our arguments, are im-

plicit in [7, Lemma 2.3], although not always stated there in full. For completeness we 

state the results in the form required here and provide outline proofs.

Proposition 3.12. Let Σ(X) be a consistent set of equations over an S-act A with solution 

(by)y∈X . Then for all ys, zt ∈ FS(X) we have

ys ρΣ zt ⇒ bys = bzt.

Proof. Suppose that ys ρΣ zt. There exists an H(Σ)-sequence

ys = c1t1, d1t1 = c2t2, · · · , dntn = zt

where n ∈ N
0, ti ∈ S and (ci, di) ∈ H(Σ) for all 1 ≤ i ≤ n. Notice that the equalities 

are in the free S-act FS(X). If n = 0 then ys = zt so that y = z, s = t and bys = bzt. 
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If n ≥ 1 then we have (c1, d1) = (yh, wk) ∈ H(Σ) so that yh = wk is an equation in Σ. 

Then as s = ht1 we have bys = byht1 = bwkt1 and

w(kt1) = c2t2, · · · , dntn = zt

is an H(Σ)-sequence of length n − 1 joining w(kt1) to zt. Induction now yields the 

result. �

Proposition 3.13. Let Σ = Σ(X) be a set of equations over A. Then the following condi-

tions are equivalent:

(1) Σ is consistent;

(2) for all xs = a, yt = b ∈ Σ and v, w ∈ S,

xsv ρΣ ytw ⇒ av = bw;

(3) θΣ : B(Σ) → A is well-defined (and is an S-morphism);

(4) νΣ is an embedding of A into A(Σ).

If any of these conditions hold, then ([x])x∈X is a solution of Σ in A(Σ).

Proof. Suppose that (1) holds and (bx)x∈X is a solution of Σ. If xs = a, yt = b ∈ Σ with 

xsv ρΣ ytw, then from Proposition 3.12 we have

av = bxsv = bytw = bw,

giving that (2) holds.

Suppose that (2) holds and [a] = [b] for a, b ∈ A: we show that a = b. We either have 

this immediately, or else there exists an H(Σ) ∪ K(Σ)-sequence

a = α1t1, β1t1 = α2t2, · · · , βntn = b

where ti ∈ S and (αi, βi) ∈ H(Σ) ∪K(Σ) for all 1 ≤ i ≤ n. Here we must have α1, βn ∈ A

and so (α1, β1) = (c, xs) and (αn, βn) = (yt, d) where c = xs, yt = d ∈ Σ. Assume that 

(αi, βi) ∈ H(Σ) for all 2 ≤ i ≤ n − 1. We then have that β1t1 = xst1 and αntn = yttn. 

By (2) we have that ct1 = dtn and so a = ct1 = dtn = b. Induction allows us to conclude 

that (4) holds.

If (4) holds then, given an earlier remark, identifying AκΣ with A yields (1). Finally, 

(2) and (3) are essentially reformulations of each other. �

Notice that, in the above, if B = ∅, which corresponds to there being no equations 

with constants, or equivalently F1 = ∅, then any such set of equations is consistent. 
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Indeed, any such set has a solution o in A ∪̇ {o} where {o} is a trivial (one-element) 

S-act.

If Σ is consistent, then in general, as above, it is convenient to identify A with AνΣ.

Proposition 3.14. Let Σ = Σ(X) be a consistent set of equations over A. Then the fol-

lowing conditions are equivalent:

(1) Σ has a solution in A;

(2) A is a retract of A(Σ);

(3) the S-morphism θΣ : B(Σ) → A lifts to an S-morphism θΣ : C(Σ) → A.

Proof. If Σ has a solution in A, then by Lemma 3.4 there is a retraction ϕ : A ∪̇ FS(X) →

A such that κΣ ⊆ ker ϕ. We may now define an S-morphism ϕ : A(Σ) → A by [t]ϕ = tϕ

which, since Σ is consistent, is a retraction by Proposition 3.13.

Conversely, if A is a retract of A(Σ) then as Σ(X) has a solution in A(X) it must 

have a solution in A. Therefore, (1) and (2) are equivalent.

To show (1) implies (3), we define a map θ′
Σ : FS(X) → A by yθ′

Σ = by where (by)y∈X

is a solution of Σ in A. Clearly, H(Σ) ⊆ ker θ′
Σ, and so θΣ : C(Σ) → A defined by 

[t]θΣ = tθ′
Σ is a well-defined morphism. Further, it is easy to check that θΣ|B(Σ) = θΣ. 

Conversely, suppose that (3) holds. Then ([y]θΣ)y∈X is a solution of Σ in A. Therefore, 

(1) and (3) are equivalent. �

We now give the promised connections between F -purity and weak injectivity prop-

erties.

Theorem 3.15. Let F be a frame set and let A be an S-act. Then A is F -pure if and 

only if every diagram of the form on the left, where F ∈ F and θ is an S-morphism,

C(F) B(F)

A

θ

C(F) B(F)

A

θ

θ

can be completed as in the diagram on the right, where θ is an S-morphism.

Proof. Suppose first that A is F -pure and F ∈ F is such that θ exists as given. For 

xs ∈ F1 we have [xs] ∈ B(F); put axs = [xs]θ and (xs)φ = [xs]θ. Now let Σ = Σ(F , φ). 

Then θ = θΣ is certainly well-defined, so by Proposition 3.13 we have that Σ is consistent. 

By assumption, Σ has a solution (bx)x∈X in A. By the proof of Proposition 3.14, θ =

θΣ : C(F) → A given by [xs]θ = bxs is a well-defined S-morphism extending θ.
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Conversely, suppose that any diagram of the given form can be completed. Let Σ =

Σ(F , φ) be a consistent set of equations over A with F ∈ F and let θ = θΣ : B(F) → A. 

By Proposition 3.13, θ is a well-defined S-morphism. By assumption, θ : B(Σ) → A lifts 

to an S-morphism θ : C(Σ) → A. The result now follows from Proposition 3.14. �

In the above, where B(F) = ∅, that is, F1 = ∅, completion of the diagram is inter-

preted as meaning the existence of a morphism C(F) → A.

We now define the various special frames and frame sets in which we will be interested.

Definition 3.16.

(1) A frame F = FS(X) is an fp-frame if F is finite and B(F) has a finite presentation. 

If F is the frame set of all fp-frames, then we refer to an F -pure act as being fp-pure.

(2) A frame F = FS(X) is an mfp-frame if |X| = 1 and it is an fp-frame. If F is the 

frame set of all mfp-frames, then we refer to an F -pure act as being mfp-pure.

(3) A frame F = FS(X) is an n-frame if F is finite and |X| ≤ n. If F is the frame set 

of all n-frames, then we refer to an F -pure act as being n-absolutely pure.

(4) If F is the frame set of all 1-frames over X, then we refer to an F -pure act as being 

almost pure.

(5) If F is the frame set of all finite frames over X, then we refer to an F -pure act as 

being absolutely pure.

Applying Theorem 3.15 to the frame sets in Definition 3.16 we have the following, 

which was known in the case of (4) and (5) [6, Proposition 3.8].

Corollary 3.17. Let A be an S-act. Then

(1) A is fp-pure if and only if it is injective with respect to inclusions of finitely presented 

subacts of finitely presented S-acts;

(2) A is mfp-pure if and only if it is injective with respect to inclusions of finitely pre-

sented subacts of finitely presented monogenic S-acts;

(3) A is n-absolutely pure if and only if it is injective with respect to inclusions of finitely 

generated subacts of finitely presented S-acts having no more than n generators;

(4) A is almost pure if and only if it is injective with respect to inclusions of finitely 

generated subacts of finitely presented monogenic S-acts;

(5) A is absolutely pure if and only if it is injective with respect to inclusions of finitely 

generated subacts of finitely presented S-acts.

Considering the frame set of all frames we immediately have:

Corollary 3.18. [6, Proposition 3.10] Let A be an S-act. Then A is injective if and only 

if every consistent set of equations over A has a solution in A.
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Definition 3.19. We denote by Afp
S (1), AS(1) and AS(ℵ0) the classes of mfp-pure, almost 

pure and absolutely pure S-acts, respectively.

Our terminology, referring to purity, comes from the completion of diagrams. Alter-

native terminology, focusing on the equations, is n-algebraically closed (for n-absolutely 

pure) and algebraically closed (for absolutely pure).

Sets of equations without any constants are rather special. In this regard we need the 

following definition.

Definition 3.20. Let A be an S-act. Then A has local zeros if for any finite set T ⊆ S

there is a a = aT ∈ A such that a = at for each t ∈ T .

Clearly, if A has local zeros, then any finite set of equations without constants is 

consistent over A and indeed has a solution in A. For a converse we have the following, 

which can be extracted from earlier works, for example [9], but which for convenience 

we prove explicitly.

Proposition 3.21. Let A be an F -pure S-act where F contains all finite frames in one 

variable contained in FS(X) × FS(X). Then A has local zeros.

Proof. Let T ⊆ S be finite and consider the set of equations Σ(x) = {x = xt : t ∈ T}. 

As remarked earlier, Σ(x) has a solution in A ∪̇ {o}. Since A is F -pure and F(Σ) ∈ F , 

we have that Σ(x) has a solution, say a ∈ A. Clearly a = at for each t ∈ T . �

4. Purity of S-acts over right coherent monoids

The aim of this section is to show that for any right coherent monoid S all almost 

pure S-acts must be absolutely pure, that is, AS(ℵ0) = AS(1). The very fact that S is 

right coherent, then yields that for such S it follows that AS(ℵ0) = AS(1) = Afp
S (1). As 

finite monoids are right coherent, we deduce that the condition that AS(1) = AS(ℵ0) is 

a finitary property for monoids.

Theorem 4.1. Let S be a right coherent monoid. Then an S-act A is almost pure if and 

only if it is absolutely pure.

Proof. Let Σ = Σ(X) be a finite consistent set of equations over A. If |X| = 1, then, 

as A is almost pure, Σ has a solution in A. Proceeding by induction, we suppose that 

|X| = n ≥ 2 and every finite consistent set of equations over A in at most n −1 variables 

has a solution in A.

From Proposition 3.21 A has local zeros. Thus, if Σ contains no equations with con-

stants, we can construct a solution to Σ in A, as commented before that proposition.

Suppose therefore that Σ contains at least one equation with a constant; suppose that 

the variable for that equation is x. Let (by)y∈X be a solution for Σ and for ease let bx = b.
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Let FS(X) be the free S-act on X and let ρΣ be defined as in Section 3.

We use Theorem 2.5 to build a new consistent set of equations Π(x) in the single 

variable x.

Step (a) For each xs ∈ FS(X), consider

r([xs]) = {(u, v) ∈ S × S : xsu ρΣ xsv}.

Since S is right coherent, Theorem 2.5 gives that r([xs]) is a finitely generated right 

congruence on S. We use H(xs) to denote a fixed finite generating set of r([xs]). Notice 

that for all (u, v) ∈ H(xs), or more generally, (u, v) ∈ r([xs]), we have xsu ρΣ xsv and 

so, by Proposition 3.12, bsu = bsv.

Step (b) For each pair of equations xs = yt, zu = d ∈ Σ(X) with y 
= x such that 

[xs]S ∩ [zu]S 
= ∅, then, again as S is right coherent, Theorem 2.5 yields [xs]S ∩ [zu]S is 

finitely generated as a subact of FS(X)/ρΣ. Let K = K(xs = yt, zu = d) denote a fixed 

finite subset of S such that

[xs]S ∩ [zu]S = ∪
k∈K

[x]kS.

For each k ∈ K, we use kxs and kzu to denote some fixed elements in S such that [xk] =

[xskxs] = [zukzu]. Then we have xk ρΣ xskxs ρΣ zukzu, so that bk = bskxs = bzukzu by 

Proposition 3.12. Notice that bzu = d ∈ A, so that certainly bzukzu ∈ A.

Step (c) For each pair of equations xs = yt, xu = zv ∈ Σ(X) with y, z 
= x such that 

[xs]S ∩ [xu]S 
= ∅, let L = L(xs = yt, xu = zv) be a fixed finite subset of S such that

[xs]S ∩ [xu]S = ∪
l∈L

[x]lS.

For each l ∈ L, let lxs, lxu ∈ S be fixed elements in S such that [xl] = [xslxs] = [xulxu]. 

Then xl ρΣ xslxs ρΣ xulxu and so bl = bslxs = bulxu by Proposition 3.12.

Let Σ(x) be the set of all equations of Σ(X) in which the only variable that occurs is 

x. Define

Π(x) = Σ(x) ∪ Σ1(x) ∪ Σ2(x) ∪ Σ3(x),

where

Σ1(x) = {xsu = xsv : xs = yt ∈ Σ(X), (u, v) ∈ H(xs), y 
= x},

Σ2(x) = {xskxs = bzukzu : xs = yt, zu = d ∈ Σ(X), [xs]S ∩ [zu]S 
= ∅,

y, z 
= x, k ∈ K(xs = yt, zu = d)},

Σ3(x) = {xslxs = xulxu : xs = yt, xu = zv ∈ Σ(X), [xs]S ∩ [xu]S 
= ∅,

y, z 
= x, l ∈ L(xs = yt, xu = zv)}.

It follows from the above Steps (a), (b) and (c) that Π(x) is a finite consistent set 

of equations with a solution b. As A is almost pure, Π(x) has a solution c in A. Notice 
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that for xs = yt ∈ Σ(X) with x 
= y and (u, v) ∈ H(xs), we have csu = csv by the 

construction of Σ1(x). Let (g, h) ∈ r([xs]). Then g = h, so that csg = csh, or there exists 

an H(xs)-sequence

g = u1t1, v1t1 = u2t2, · · · , vmtm = h

where (ui, vi) ∈ H(xs) and ti ∈ S for all 1 ≤ i ≤ m. In this latter case, csui = csvi for 

all 1 ≤ i ≤ m, giving

csg = csu1t1 = csv1t1 = csu2t2 = · · · = csvmtm = csh.

Now let Σ′(x) be the set of all equations of Σ(X) in which x appears, so that

Σ′(x) = Σ(x) ∪ {xs = yt : xs = yt ∈ Σ(X), x 
= y}.

Let Y = X \ {x}. Define

Σ = Σ(Y ) =
(

Σ(X) \ Σ′(x)
)

∪ {cs = yt : xs = yt ∈ Σ(X), y 
= x}.

We claim that Σ is consistent. To this end, let FS(Y ) be the free S-act on Y . Then

ρΣ = 〈(yt, zu) : yt = zu ∈ Σ(Y )〉 ⊆ ρΣ.

Let yt = a, zu = d ∈ Σ(Y ) with ytg ρΣ zuh for some g, h ∈ S. We must show that 

ag = dh. We consider the following three cases.

Case (i) yt = a, zu = d ∈ Σ(X) with y, z 
= x. Then ag = dh by the consistency of 

Σ(X).

Case (ii) yt = xs, zu = d ∈ Σ(X) with y, z 
= x, a = cs. We have

xsg ρΣ ytg ρΣ zuh

so that bsg = bytg = bzuh and also [xs]S ∩ [zu]S 
= ∅. Then for all k ∈ K we have 

xskxs = bzukzu ∈ Σ2(x) and so

cskxs = bzukzu.

Further, since

[zuh] ∈ [xs]S ∩ [zu]S = ∪
k∈K

[xk]S = ∪
k∈K

[xskxs]S = ∪
k∈K

[zukzu]S

there exists k ∈ K and p ∈ S such that



Y. Dandan, V. Gould / Advances in Mathematics 429 (2023) 109182 19

zuh ρΣ xkp ρΣ xskxsp ρΣ zukzup,

giving xsg ρΣ xskxsp, and so (g, kxsp) ∈ r([xs]). Now we have

ag = csg = cskxsp = bzukzup = bzuh = dh.

Case (iii) xs = yt, xv = zu ∈ Σ(X) with y, z 
= x, a = cs, d = cv. We have

xsg ρΣ ytg ρΣ zuh ρΣ xvh

giving [xs]S ∩ [xv]S 
= ∅. Then for all l ∈ L we have xslxs = xvlxv ∈ Σ3(x), and so

cslxs = cvlxv.

Further, since

[xsg] ∈ [xs]S ∩ [xv]S = ∪
l∈L

[x]lS = ∪
l∈L

[xslxs]S = ∪
l∈L

[xvlxv]S

there exists l ∈ L and q ∈ S such that

xvh ρΣ xsg ρΣ xlq ρΣ xslxsq ρΣ xvlxvq.

Notice that (h, lxvq) ∈ r([(xv)] and (g, lxsq) ∈ r([(xs)], so we have

ag = csg = cslxsq = cvlxvq = cvh = dh.

Therefore we have that Σ(Y ) is a finite consistent set of equations in |Y | = n − 1

variables over A, so by our inductive hypothesis, Σ(Y ) has a solution (cy)y∈Y in A. 

Putting cx = c it is easy to see that (cy)y∈X is a solution to Σ(X). This completes the 

proof. �

As shown in Theorem 7.5, the converse of Theorem 4.1 is not true, in general.

The next corollary confirms that AS(1) = AS(ℵ0) is indeed a finitary property for 

monoids. It follows from the fact that right coherency is a finitary property, and Theo-

rem 4.1.

Corollary 4.2. Let S be a finite monoid. Then every almost pure S-act is absolutely pure.

5. Canonical constructions

It is clear from Theorem 4.1 and its proof that right coherency of S is strongly related 

to the property that AS(1) = AS(ℵ0). The main results of the remaining sections, 
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Theorem 6.1 and Theorem 8.2, add to this evidence. The purpose of the current section 

is to provide the machinery to prove these theorems. Building on techniques established 

in Section 3, for any frame set F , we construct a canonical F -pure extension A(F ) of 

an arbitrary S-act A. Where F is the set of all mfp-frames (1-frames, finite frames) then 

we denote A(F ) by A(1)fp (A(1), A(ℵ0)), so that these are canonical mfp-pure (almost 

pure, absolutely pure) extensions of A. In Section 6 we use A(1)fp to prove Theorem 6.1, 

which states that all mfp-pure acts are almost pure, that is, Afp
S (1) = AS(1), if and 

only if S is right coherent. In Section 8 we explicitly use A(1) and A(ℵ0) to establish 

Theorem 8.2, which gives conditions for all almost pure S-acts to be absolutely pure, 

that is, AS(1) = AS(ℵ0), in terms of finitely presented S-acts, their finitely generated 

S-subacts and their canonical extensions.

The S-acts that we build are constructed from infinite towers of extensions of A: 

strictly speaking we cannot merely take their union as we do not have a universal S-

act of which they are all subacts. Rather, we are taking a direct limit where we are 

suppressing explicit notation for the embedding of one subact into another.

In what follows, it is convenient to say that Σ is a set of F -equations if F(Σ) ∈ F .

Definition 5.1. Let A be a subact of an S-act B. We say B is F -built from A = A0 if for 

some ordinal ξ we have

B =
⋃

0≤i≤ξ

Ai

where:

(i) for each 0 ≤ i < ξ, the subact Ai+1 = Ai(Σi) for some consistent set Σi of 

F -equations over Ai;

(ii) if ζ is a limit ordinal, then Aζ =
⋃

0≤i<ζ Ai.

For our next result we require a pair of technical lemmas.

Lemma 5.2. Let A be a subact of an S-act B. Suppose that θ : B → A is an S-morphism. 

Let Σ = Σ(X) be a consistent set of F -equations over B. Then Σθ, where Σθ is obtained 

from Σ by replacing each constant c by cθ, is consistent over A and is a set of F -

equations. Further, θ̄ : B(Σ) → A(Σθ) given by

[x]θ̄ = [x] and bθ̄ = bθ,

for x ∈ X and b ∈ B (with appropriate interpretation of equivalence classes) is an 

S-morphism extending θ.

Proof. By Proposition 3.13 the set Σθ is consistent; it follows from the definition that if 

Σ has frame in F , then so does Σθ. Again from their definitions, with an application of 

the first isomorphism theorem, it is easy to see that there is an S-morphism θ̄ : B(Σ) →

A(Σθ) with the required properties. �
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Lemma 5.3. Let A be a subact of an S-act B. Suppose that θ : B → A is an S-morphism. 

Let Σ = Σ(X) be a consistent set of F -equations over B. Then if A is F -pure there is 

an S-morphism from B(Σ) to A extending θ which is a retraction if θ is a retraction.

Proof. Following the notation and conclusion of Lemma 5.2 we have an S-morphism 

θ̄ : B(Σ) → A(Σθ) such that [x]θ̄ = [x] and bθ̄ = bθ. Since A is F -pure, Proposition 3.14

says there is a retraction ψ : A(Σθ) → A, so that certainly θ̄ψ : B(Σ) → A is an 

S-morphism extending θ. The final statement is then clear. �

Proposition 5.4. Let A be an F -pure S-act, and let B be F -built from A. Then A is a 

retract of B.

Proof. We show by transfinite induction that for each 0 ≤ i ≤ ξ there is a retraction 

ϕi : Ai → A, such that for i < j we have ϕj |Ai
= ϕi. This is clearly true for i = 0.

Suppose that ϕj has been defined with the required property for all 0 ≤ j < μ. If 

μ is a limit ordinal we simply define bϕμ = bϕi where b ∈ Ai and 0 < i < μ. On the 

other hand, if μ = i + 1 then we have that Ai+1 = Ai(Σi) for some consistent set Σi of 

F -equations over Ai. We apply Lemma 5.3 to construct the required ϕi+1.

It is immediate that ϕ : B → A given by bϕ = bϕi, where b ∈ Ai, is a retraction. �

We now proceed to build the promised canonical constructions. They are essentially 

based on the standard way to build an algebraically or existentially closed structure 

extending a given one, in any class closed under unions of chains. However, to use our 

constructions to extract results, a little care is required.

For any set of equations Σ = Σ(X), and any set YX = {yx : x ∈ X} of new symbols, 

we have another set of equations Σ(YX), with precisely the same consistency properties 

as the original. Our convention in what follows is that for any consistent set of equations 

Σ we choose and fix a set of variables, such that for any two different sets of equations, we 

choose different variables. The result of this is that if {Σi : i ∈ I} is a set of consistent sets 

of equations over A, then 
⋃

i∈I A(Σi) is an S-act, and for i 
= j we have A(Σi) ∩A(Σj) =

A; in other words, we can amalgamate {A(Σi) : i ∈ I} over A. Here, as elsewhere, we 

freely identify the image of A in A(Σ) with A.

Let A be an S-act and let F be a set of frames. Define

Θ(A, F ) = {Σ : F(Σ) ∈ F , Σ is consistent over A}

and then put

Ω(A, F ) =
⋃

Σ∈Θ(A,F)

c(Σ).

Now let

AF

1 = (A ∪̇ FS(Ω(A, F ))/κ(A, F )
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A = AF

0

AF

1

AF

2
... AF

n
... A(F)

Fig. 1. Building A(F).

where

κ(A, F ) = 〈H(Σ) ∪ K(Σ) : Σ ∈ Θ(A, F )〉.

The next result relies on a remark above, namely that, due to our labelling of variables, 

for distinct Σ, Σ′ ∈ Θ(A, F ) we have A(Σ) ∩ A(Σ′) = A.

Lemma 5.5. Let A be an S-act and let F and G be frame sets with F ⊆ G . Then

(1) The S-act AF
1 is the amalgamation of the S-acts A(Σ) where Σ ∈ Θ(A, F ) over A, 

in particular, A is embedded in AF
1 ;

(2) AF
1 ⊆ AG

1 ;

(3) every consistent set of F -equations over A has a solution in AF
1 and hence in AG

1 ;

(4) A is F -pure if and only if it is a retract of AF
1 .

Proof. (1)-(3) are clear, given our careful labelling of variables in sets of equations; (4) 

follows from Proposition 3.14. �

We cannot say, for example, that if F is the frame set of all finite frames, then AF
1 is 

absolutely pure, since we have not considered consistent sets of equations with constants 

in AF
1 \A. We need to iterate our construction to achieve the desired canonical extensions 

of A. Fig. 1 gives an illustration.

Again, let F be a frame set and put A = AF
0 . Suppose that for 1 ≤ i we have 

constructed the S-acts AF
i−1. We now let AF

i = (Ai−1)F
1 , where at each stage, in each 

set of equations, we always choose distinct variables. This gives us a sequence

AF

0 ⊆ AF

1 ⊆ AF

2 ⊆ . . . .

We let

A(F ) =
⋃

i∈N0

AF

i .
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Given the way we have labelled our variables, and our conventions on identification, 

we also have that, for any frame sets F and G with F ⊆ G , and any i, j ∈ N
0 with 

i ≤ j,

AF

i ⊆ AG

j

and consequently,

A(F ) ⊆ A(G ).

To avoid technical considerations of cardinality, we restrict our attention in Theorem 5.6

to finite frames. Indeed, for ease of application, we have in some sense been over generous 

with the nature of our extensions, so that what we have constructed for the set of all 

frames is not the injective hull [1].

Theorem 5.6. Let A be an S-act and let F be a set of finite frames. Then A(F ) is 

F -pure. Further, A is F -pure if and only if A is a retract of A(F ).

Proof. The first statement follows from the usual finiteness arguments: any finite con-

sistent set of equations over A(F ) must be consistent over AF
m for some m and hence 

have a solution in AF
m+1 ⊆ A(F ).

If A is a retract of A(F ), then Lemma 3.5 gives that A is F -pure. For the converse, 

we apply Proposition 5.4. �

6. A new characterisation of coherency

The aim of this section is to provide a so-called homological characterisation of co-

herency. That is, we characterise coherency of a monoid S in terms of two classes of 

S-acts (each defined using completion of diagrams) coinciding.

Before stating our result we set up some notation. Let F be the frame set of all mfp-

frames and let A be an S-act. We say an element ǫ of A(F ) has level L(ǫ) = n, where 

n ∈ N
0, if ǫ ∈ AF

n \ AF
n−1 and AF

−1 in interpreted as ∅.

We now state the main result of this section, and devote the remainder of the section 

to its proof.

Theorem 6.1. The following are equivalent for monoid S:

(1) S is right coherent;

(2) every mfp-pure S-act is almost pure;

(3) every mfp-pure S-act is absolutely pure.

Proof. If S is right coherent, then every mfp-pure act is almost pure, since the right 

coherency of S gives us by definition that every finitely generated subact of every finitely 
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presented monogenic S-act has a finite presentation. Thus (1) implies (2) and clearly, 

(3) implies (2). We show that (2) implies (1). The result that (2) implies (3) then follows 

from Theorem 4.1.

Assume that (2) holds. Let D be a finitely generated subact of a finitely presented and 

monogenic S-act C. By definition, we have that C = S/ρ where ρ is a finitely generated 

right congruence on S, so that ρ = 〈H〉 where H ⊆ S × S is finite. We aim to show that 

D has a finite presentation and then call upon Theorem 2.5 to deduce that S is right 

coherent.

Without loss of generality we may assume that D 
= ∅, so that

D =
⋃

b∈I

[b]S ⊆ S/ρ = C,

where I 
= ∅ is finite and [u] denotes the ρ-class of u ∈ S. Let Z = {zb : b ∈ I} be a set 

of symbols in bijective correspondence with I and consider ψ : FS(Z) → D given by

zbψ = [b].

To show that D is finitely presented, we must show that the congruence ker ψ on FS(Z)

is finitely generated.

As in Section 5 we build the mfp-pure extension Dfp(1) of D. Since D is embedded 

in both C and Bfp(1), and by assumption Dfp(1) is almost pure, the inclusion map 

ι : D → Dfp(1) extends to an S-morphism ι : C → Dfp(1).

Lemma 6.2. Let γ ∈ Dfp(1) have level n. Then γ lies in a subact of Dfp(1) built from

finitely many F -extensions, starting with D as the base S-act.

Proof. We proceed by induction. If γ ∈ D the result is clear. Suppose now that γ ∈

Dfp(1)n\Dfp(1)n−1. Then γ = (xs) where (xs) denotes the equivalence class of xs in 

(Dfp(1)n−1 ∪ xS)/ρΣ for some finite consistent set of equations Σ = Σ(F , φ) in one 

variable. Since Σ is finite, it certainly includes only finitely many equations with the 

form xt = tφ. Since the level of each tφ is strictly less than n, induction gives that the 

elements tφ each lie in subacts of Dfp(1) built from finitely many F -extensions of D. 

The union of all those subacts gives a subact A such that γ lies in the extension of A(Σ)

of A. The result follows by induction. �

Corollary 6.3. The element [1]ι lies in D, where D is a subact of Dfp(1) built from

finitely many F -extensions of D.

Let S denote the finite set of finite consistent sets of equations Σ used in building D

from D. We note that each Σ has a single variable, and all the variables are distinct. As 

much as possible, we suppress mention of the variable. In fact, we may in many cases 

omit it altogether in the sense that, for a set of equations Σ = Σ(x) in one variable 
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we may identify the congruence ρΣ on FS(x) with a right congruence ρ on S. For each 

Σ ∈ S we have by definition of D that B(Σ) is finitely presented. Since B(Σ) is a subact 

of C(Σ) = xS/ρΣ, we may drop mention of x and consider B(Σ) to be a subact of 

C = S/ρΣ.

For Σ ∈ S choose and fix a set of symbols {zΣ
t : t ∈ F1} and let

ψΣ :
⋃

t∈F1

zΣ
t →

⋃

t∈F1

(t),

where (u) is the ρΣ-class of u ∈ S, be given by

ztψΣ = (t).

Now let

ker ψΣ = 〈J(Σ)〉

where J(Σ) is finite by virtue of B(Σ) being finitely presented.

Lemma 6.4. Let C be an S-act and let Σ = Σ(F , φ) be a finite consistent set of equations 

in one variable over C. For an element (xu) of

C(Σ) = (C ∪ xS)/κΣ,

where (xu) denotes the κΣ-class of xu, we have that (xu) = (c) for some c ∈ C if and 

only if xu ρΣ xvℓ for some xv ∈ F1 and ℓ ∈ S.

Proof. Let c ∈ C. We have that (xu) = (c) if and only if xu κΣ c. Since xu 
= c that 

would necessitate an H(Σ) ∪ K(Σ)-sequence

xu = α1t1, β1t1 = α2t2, · · · , βntn = c

for some n ∈ N, (αi, βi) ∈ H(Σ) ∪ K(Σ) and ti ∈ S, for 1 ≤ i ≤ n. Clearly (αn, βn) ∈

K(Σ); let k be the least such that (αk, βk) ∈ K(Σ). Then (αk, βk) = (xv, vφ) for some 

xv ∈ F1, and xu ρΣ xvtk, completing the argument. �

We now suppress the mention of the variables in our sets of equations. A widget is a 

pair (γ, h) where γ ∈ D and h ∈ S; the level of a widget L = L(γ, h) is the level L(γ) of 

its first co-ordinate. If (γ, h) is a level n widget, where n ∈ N
0, then γh has level m for 

some 0 ≤ m ≤ n. We say that a widget (γ, h) is stable if γ has the same level as γh. If 

(γ, h) is not stable, then from Lemma 6.4 we must have that γ = (c), where (c) is the 

ρΣ-class of some Σ = Σ(F , φ) ∈ S, and ch ρΣ vk for some v ∈ F1 and k ∈ S. Putting 

δ = vφ we note that (δ, k) is itself a widget and in D we have γh = δk. We say that the 
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widget (γ, h) descends to the widget (δ, k) and write (γ, h) → (δ, k). A widget descent is 

a finite sequence of descents

(γ1, h1) → (γ2, h2) → · · · → (γℓ, hℓ)

where (γℓ, hℓ) is stable. Notice that each widget has a widget descent. We choose and fix 

a widget descent for each widget. Starting from level 0 widgets, we may do this in such 

a way that if

(γ1, h1) → (γ2, h2) → · · · → (γℓ, hℓ)

is the fixed widget descent for (γ1, h1), then for any 2 ≤ i ≤ ℓ we have that

(γi, hi) → (γi+1, hi+1) → · · · → (γℓ, hℓ)

is the fixed widget descent for (γi, hi).

We now define a finite set of widgets W which will be used to construct a set of 

generators of ker ψ. We do this by adding finitely many elements, in finitely many stages, 

to W, starting with the empty set.

Let σ = [1]ι. For each (u, v) ∈ H and b ∈ I we put

(σ, u), (σ, v), (σ, b) into W.

For each Σ = Σ(F , φ) ∈ S and each (zΣ
t h, zΣ

u k) ∈ J(Σ) we let

(tφ, h), (uφ, k) ∈ W.

For each of the widgets (γ, h) we have added to W, we now add to W all the widgets in 

the fixed, chosen, widget descent of (γ, h). This yields a finite set of widgets W. Let W0

be the set of level 0 widgets in W. For γ ∈ D we let

γ = [s(γ)qγ ],

where s(γ) ∈ I and qγ ∈ S.

Let

V1 = {
(

zs(γ)qγh, zs(δ)qδk
)

: (γ, h), (δ, k) ∈ W0, γh = δk}.

For any b ∈ I we have the fixed widget descent starting from (σ, b). Since

σb = [1]ιb = [b]ι = [b]ι = [b] ∈ D,

the widget (σ, b) has a widget descent terminating in a stable widget (γ(b), p(b)). In 

particular, [b] = σb = γ(b)p(b). We now let
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V2 = {(zb, zs(γ(b))qγ(b)p(b)) : b ∈ I}

and let

V = V1 ∪ V2.

Lemma 6.5. We have that V ⊆ ker ψ.

Proof. Let (zs(γ)qγh, zs(δ)qδk
)

∈ V1 be such that (γ, h), (δ, k) ∈ W0 and γh = δk. Then

(zs(γ)qγh)ψ = (zs(γ)qγ)ψh = [s(γ)qγ ]h = γh

and similarly,

(zs(δ)qδk
)

ψ = (zs(δ)qδ

)

ψk = [s(δ)qδ]k = δk

As γh = δk, we have (zs(γ)qγh, zs(δ)qδk
)

∈ ker ψ, so that V1 ⊆ ker ψ.

To show V2 ⊆ ker ψ, we let (zb, zs(γ(b))qγ(b)p(b)) ∈ V2 with b ∈ I. Then

(zs(γ(b))qγ(b)p(b))ψ = [s(γ(b))qγ(b)]p(b) = γ(b)p(b) = [b] = (zb)ψ

implying (zb, zs(γ(b))qγ(b)p(b)) ∈ ker ψ, so that V2 ⊆ ker ψ. Therefore, V ⊆ ker ψ, as 

required. �

Our aim now is to show the converse to Lemma 6.5, namely that ker ψ ⊆ 〈V〉. To this 

end we need some further terminology.

Definition 6.6. Let n ∈ N
0. A W-widget sequence connecting

(δ0, k0s0) to (γn+1, hn+1sn+1)

is a sequence

(δ0, k0s0) = (γ1, h1s1), (δ1, k1s1) = (γ2, h2s2), · · · , (δn, knsn) = (γn+1, hn+1sn+1)

where:

(δi, ki) are widgets in W, 0 ≤ i ≤ n

(γj , hj) are widgets in W, 1 ≤ j ≤ n + 1

δ0k0, γn+1hn+1 are elements of D

γihi = δiki 1 ≤ i ≤ n.

The level L of a W-widget sequence is the level of the greatest δi (where 0 ≤ i ≤ n) and 

the value of a W-widget sequence is (L, ℓ), where L is the level, and ℓ is the number 

indices i ∈ {0, · · · , n} such that δi has level L.
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Fig. 2. Reducing the value of a widget sequence.

In what follows, values of W-widget sequences are ordered lexicographically.

Lemma 6.7. Let (δ0, k0s0) and (γn+1, hn+1sn+1) be connected via a W-widget sequence as 

in Definition 6.6. Suppose that the level of this sequence is strictly greater than 0. Then 

there is a W-widget sequence of lower value connecting (δ′
0, k′

0s0) and (γ′
n+1, h′

n+1sn+1), 

where (δ′
0, k′

0) is in the fixed descent of the widget (δ0, k0) and (γ′
n+1, h′

n+1) is in the fixed 

descent of the widget (γn+1, hn+1) (including the possibility they are unchanged).

We begin by outlining the strategy of the proof. Let us abbreviate our W-widget 

sequence as

w0, w1, · · · , wn

where

wi = (δi, kisi) = (γi+1, hi+1si+1),

for 1 ≤ i ≤ n. We pick an i ≤ j such that wi, wi+1, · · · , wj have highest level, and either 

wi−1 has lower level, or i = 0, and either wj+1 has lower level, or j = n. We then ‘pull 

down’ the subsequence wi, · · · , wj to a sequence of widgets w′
i = vℓ, vℓ+1, · · · , vm = w′

j

such that we have a new W-widget sequence

w0, w1, · · · , wi−1, w′
i = vℓ, vℓ+1, · · · , vm = w′

j , wj+1, · · · , wn

with lower value. This is illustrated in Fig. 2.

Proof. Let L be the greatest level of δl occurring in the W-widget sequence: by assump-

tion, L > 0. Let i, where 0 ≤ i ≤ n, be the smallest such that the level of δi is L. We will 

construct a new W-widget sequence where, in particular, (δi, ki) is replaced by a new 



Y. Dandan, V. Gould / Advances in Mathematics 429 (2023) 109182 29

widget in its fixed descent, and where we involve no new elements of D of level higher 

than L − 1.

Consider γi+1hi+1. Since δi = γi+1, we have L(γi+1) = L so that L(γi+1hi+1) =

L(δi+1ki+1) ≤ L. If L(γi+1hi+1) = L, then we are forced to have L(δi+1) = L(γi+2) = L. 

Continuing in this manner, since L(γn+1hn+1) = 0, we arrive at j where i + 1 ≤ j ≤ n +1

such that

L = L(γl) = L(γlhl) = L(δl) = L(δlkl)

for i + 1 ≤ l < j but

L(γjhj) < L = L(γj).

We remark that in the degenerate case where n = 0 and so (δ0, k0s0) = (γ1, h1s1), then 

as L(δ0) = L(γ1) = L > 0, and L(δ0k0) = L(γ1h1) = 0, in this case, i = 0 and j = 1.

From above, we have that γi+1, together with

γi+1, δi+1 = γi+2, · · · , δj−1 = γj

and if i + 1 < j

γi+1hi+1 = δi+1ki+1, · · · , γj−1hj−1 = δj−1kj−1,

all have level L. Given the equalities, and the construction of Dfp(1), this can only 

happen if

γa = (ca), i + 1 ≤ a ≤ j

and

δb = (db), i + 1 ≤ b ≤ j − 1,

where (u) denotes the ρΣ-class of u ∈ S for some Σ = Σ(F , φ) ∈ S. It follows that

caha ρΣ daka, i + 1 ≤ a ≤ j − 1

and then, using the definition of a W-widget sequence,

ci+1hi+1si+1 ρΣ di+1ki+1si+1 ρΣ ci+2hi+2si+2 ρΣ dj−1kj−1sj−1.

If i > 0 then we notice that L(δi−1) = L(γi) < L and so L(δiki) = L(γihi) < L. Clearly 

0 = L(δiki) < L is immediately true if i = 0, by our assumptions on the end points of 

the W-sequence. Now from the fact L(δiki) < L(δi) = L and L(γjhj) < L = L(γj), we 

have widget descents, as the first steps in our fixed, chosen, widget descents
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(δi, ki) → (δ′
i, k′

i) and (γj , hj) → (γ′
j , h′

j).

The construction of W tells us that (δ′
i, k

′
i), (γ

′
j , h′

j) ∈ W. By choice of our descent 

sequences, (δ′
i, k

′
i) and (γ′

j , h′
j) are obtained from

diki ρΣ vk′
i and cjhj ρΣ wh′

j

where vφ = δ′
i and wφ = γ′

j for some v, w ∈ F1. This now gives us, together with earlier 

statements, that

vk′
isi ρΣ dikisi ρΣ ci+1hi+1si+1 ρΣ dj−1kj−1sj−1 ρΣ cjhjsj ρΣ wh′

jsj .

A consequence of this is that

(zΣ
v k′

isi)ψΣ = (zΣ
wh′

jsj)ψΣ

and so there is a J(Σ)-sequence

zΣ
v k′

isi = U1t1, V1t1 = U2t2, · · · , Vmtm = zΣ
wh′

jsj ,

where m ∈ N
0, (Ui, Vi) = (zΣ

u(i)ui, z
Σ
v(i)vi) ∈ J(Σ) and ti ∈ S for 1 ≤ i ≤ m. Notice that 

from our choice of W, we have that (u(i)φ, ui), (v(i)φ, vi) ∈ W for 1 ≤ i ≤ m, and these 

widgets all have level strictly less than L. If m = 0 we immediately have that v = w and 

k′
isi = h′

jsj . If m ≥ 0 we have the following sequences of equalities:

v = u(1), v(1) = u(2), · · · , v(m) = w

and

k′
isi = u1t1, v1t1 = u2t2, · · · , vmtm = h′

jsj .

Finally, since (Ui, Vi) ∈ J(Σ) we have

u(i)ui ρΣ v(i)vi

so that Proposition 3.12 gives us that

u(i)φ ui = v(i)φ vi

for 1 ≤ i ≤ m.

We observe that if m = 0, then δ′
i = vφ = wφ = γ′

j , and otherwise, δ′
i = vφ = u(1)φ

and v(m)φ = wφ = γ′
j . We can now write down our new W-widget sequence:

(δ0, k0s0) = (γ1, h1s1), (δ1, k1s1) = (γ2, h2s2), · · · , (δi−1, ki−1si−1) = (γi, hisi),



Y. Dandan, V. Gould / Advances in Mathematics 429 (2023) 109182 31

(δ′
i, k′

isi) = (u(1)φ, u1t1), (v(1)φ, v1t1) = (u(2)φ, u2t2), · · · , (v(m)φ, vmtm) = (γ′
j , h′

jsj),

(δj , kjsj) = (γj+1, hj+1sj+1), · · · , (δn, knsn) = (γn+1, hn+1sn+1).

If i = 0 or j = n + 1, then we have changed the end-points in the prescribed way. 

Notice that our new W-widget sequence has value strictly less than the original. �

Induction now yields the following.

Corollary 6.8. Let (δ0, k0s0) and (γn+1, hn+1sn+1) be connected via a W-widget sequence 

as in Definition 6.6. Suppose that the level of this sequence is strictly greater than 0. Then 

there is a W-widget sequence of level 0 connecting (δ′′
0 , k′′

0 s0) and (γ′′
n+1, h′′

n+1sn+1), where 

(δ′′
0 , k′′

0 ) is the final term of the fixed descent of the widget (δ0, k0) and (γ′′
n+1, h′′

n+1) is 

the final term of the fixed descent of the widget (γn+1, hn+1).

Proof. We begin by removing the widgets of highest level, until they are all removed. 

To lower the value of the sequence further, we must remove the widgets of the next 

highest value. We continue until the level of the W-widget sequence is 0. At that stage 

the endpoints have the required form. �

Lemma 6.9. We have that ker ψ = 〈V〉.

Proof. By Lemma 6.5, it only remains to show that ker ψ ⊆ 〈V〉. Let (zbr)ψ = (zct)ψ

where b, c ∈ I. Then [br] = [ct], so that br ρ ct and there exists H-sequence

br = u1s1, v1s1 = u2s2, · · · , vnsn = ct

where n ∈ N
0, (ui, vi) ∈ H and ti ∈ S for all 1 ≤ i ≤ n. Recall that σ = [1]ι and 

(σ, b), (σ, c), (σ, ui) and (σ, vi) ∈ W for 1 ≤ i ≤ n. Observe that for 1 ≤ i ≤ n we have 

that

σui = [1]ιui = [ui]ι = [vi]ι = [1]ιvi = σvi.

We therefore have the following W-widget sequence

(σ, br) = (σ, u1s1), (σ, v1s1) = (σ, u2s2), · · · , (σ, vnsn) = (σ, ct).

By induction, there exists a W-sequence

(γ(b), p(b)r) = (γ1, h1s1), (δ1, k1s1) = (γ2, h2s2), · · · , (δn, knsn) = (γ(c), p(c)t).

Then

zbr 〈V〉 zs(γ(b))qγ(b)p(b)r = zs(γ1)qγ1
h1s1 〈V〉 zs(δ1)qδ1

k1s1 = zs(γ2)qγ2
h2s2 〈V〉

· · · 〈V〉 zs(δn)qδn
knsn = zs(γ(c))qγ(c)p(c)t 〈V〉 zct. �
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We now have completed proof of Theorem 6.1. �

Conjecture 6.10. We conjecture that a further equivalent conditions could be added 

to Theorem 6.1, namely that the classes of fp-pure S-acts and absolutely pure S-acts 

coincide.

7. Monoids S that are not right coherent such that AS(1) = AS(ℵ0)

In light of Theorem 4.1, in particular the construction of its proof, one might wonder 

whether right coherency is necessary for AS(1) = AS(ℵ0). However, this is not the case.

7.1. Monoids with the fem-property

Definition 7.1. A monoid S satisfies the fem-property if every finitely generated S-act 

embeds into a monogenic act.

We begin with an easy observation. Note that the strategy is, in some sense, reminis-

cent of that of [14,15].

Proposition 7.2. Let S satisfy the fem-property. Then AS(1) = AS(ℵ0).

Proof. Let Σ = Σ(X) be a finite consistent set of equations over an almost pure S-act 

A. Let A′ be the subact of A generated by the constants appearing in the equations of Σ. 

Certainly Σ has a solution (bx)x∈X in some S-act B containing A and hence A′. Let B′

be the subact of B generated by A′ and {bx : x ∈ X}. By assumption B′ is a subact of 

a monogenic S-act C = cS. Let bx = csx for each x ∈ X and let Π = Π(w) be the set of 

equations in a single variable w obtained by replacing each xs = yt ∈ Σ by wsxs = wsyt

and each zu = a ∈ Σ by wszu = a. Then c ∈ C is a solution to Π. We may amalgamate 

A and C over A′; call the amalgamation D. So, we can regard Π as a set of equations 

in one variable over A with a solution in D. Since A is almost pure, Π has a solution 

d ∈ A. Clearly (dsx)x∈X is a solution to Σ in A. �

There are examples of right coherent monoids both with and without the fem-property. 

First, we characterise those monoids satisfying the fem-property.

Theorem 7.3. The following are equivalent for a monoid S:

(1) S satisfies the fem-property;

(2) every 2-generated S-act embeds into a monogenic S-act;

(3) FS(X) embeds into a monogenic S-act, where |X| = 2;

(4) FS(X) embeds into S, where |X| = 2;

(5) there exist left cancellable elements s, t ∈ S such that sS ∩ tS = ∅.
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Proof. It is clear that (1) and (2) are equivalent, that (2) implies (3), and that (4) and 

(5) are equivalent.

Suppose that (3) holds. Let X = {x, y} and FS(X) = xS ∪ yS such that there 

is an injective S-morphism θ : FS(X) → cS for some monogenic S-act cS. Consider 

ψ : S → cS, where 1ψ = c. If D = (xS∪yS)θ, then it is easy to see that Dψ−1 = x′S∪y′S, 

where xθ = x′ψ and yθ = y′ψ, is a subact of S isomorphic to FS(X). Thus (4) holds.

Finally, suppose that (5) holds and A = aS ∪ bS is a 2-generated S-act. Let θ :

sS ∪ tS → A be such that sθ = a and tθ = b. Let κ = ker θ ∪ ιS where ιS is the identity 

relation on S. It is clear that κ is a right congruence on S, and A embeds into S/κ. 

Hence (2) holds. �

It is clear from Theorem 7.3, by a simple counting argument, that if S is a finite 

monoid then S does not have the fem-property. Moreover, if S is any monoid for which 

the intersection of two principal right ideals is non-empty, then again S does not have 

the fem-property. Examples of monoids of the latter type are monoids with zero, and 

inverse monoids.

From [5, Corollary 5.6], a monoid is right coherent if and only if the monoid obtained 

by adjoining a zero has the same property. Thus, having a zero, or not, is not significant 

for coherency.

On the other hand, there are examples of monoids that are not right coherent monoid 

such that every finitely generated act embeds into a monogenic one. From [5] we know 

that if S = F3 × F3 where F3 is the free monoid on 3 generators, then S is not right 

coherent. Further, since F3 × F3 is cancellative, any two principal right ideals are iso-

morphic. It is then easy to see that S has property (4) in Theorem 7.3. For, if F3 is 

generated by {a, b}, we have (a, 1)S ∩ (b, 1)S = ∅.

7.2. Almost pure acts over the Fountain monoid

The main result of this section, Theorem 7.5, gives an example of a monoid that is 

not right coherent, does not have the fem-property, yet nevertheless AS(1) = AS(ℵ0). 

In fact, our example is almost as far from the fem-property as possible, in that it is a 

chain of length 5 of principal (right) ideals.

In choosing our example, we did not have a great deal of scope. As commented, 

many well-behaved monoids are known to be right coherent and, for those that are not, 

understanding the congruences on their finitely generated free acts would be hard. As 

mentioned above, it is known from [11] that free inverse monoids on more than one 

generator are not right coherent, but a full description of their right congruences is 

lacking. With this in mind we choose the following specific example, taken from [8] and 

due to Fountain: we present it in a slightly different way.

Example 7.4. [8] Let G be an abelian group which is not finitely generated. Let N =

{1, α, α2, α3, α4 = 0} be a 5-element monogenic monoid (with α having index 4 and 
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period 1). Let P = G × N and define the relation ∼ on P to be the union of equality 

with

{
(

(g, αk), (h, αk)
)

: g, h ∈ G, k ∈ {3, 4}}.

Notice that ∼ is a congruence on P . We let S = P/ ∼. For convenience, we may denote 

(g, αk) by gαk or αkg. We will also use Greek letters to denote elements of S, for example, 

β = α3g = α3. The element α4 is a zero for S and we will usually denote this by 0.

We call the monoid in Example 7.4 the Fountain monoid. As shown in [8], the Fountain 

monoid is not right coherent. However, it is easy to see that its only (right) ideals are:

{0} ⊂ α3S = {0, α3} ⊂ α2S ⊂ αS ⊂ S.

We define two maps

ψ : S\{0, α3} → {0, 1, 2} and φ : S\{0, α3} → G

by

βψ = i and βφ = g, where β = αig ∈ S\{0, α3}.

For each β ∈ S\{0, α3}, we therefore have β = αβψβφ. Effectively, ψ and φ are restric-

tions of the projection maps to the part of S consisting of singleton equivalence classes, 

and will behave as morphisms provided products do not fall into the ideal α3S.

Theorem 7.5. Let A be an S-act over the Fountain monoid S. Then A is almost pure if 

and only if it is absolutely pure.

Proof. Let A be an almost pure S-act and let Σ = Σ(X) be a finite consistent set of 

equations over A. We must show that Σ has a solution in A.

We proceed by induction. If |X| = 1, then Σ has a solution in A, since A is almost 

pure. We suppose that |X| = n ≥ 2 and every consistent set of equations over A in at 

most n − 1 variables has a solution in A.

The first part of our strategy is to reduce the question of solubility in A of Σ to that of 

some ‘simpler’ sets of equations obtained from Σ. Suppose that Σ(X) is not connected, 

that is, we can write Σ(X) as Σ(Y ) ∪ Σ(Z) where Y, Z are non-empty subsets of X such 

that X = Y ∪̇Z (so that also Σ(Y ) ∩ Σ(Z) = ∅). In this case, we could immediately call 

upon our inductive assumption to obtain a solution in A to Σ(Y ) and Σ(Z) and hence 

to Σ(X). Thus, at any stage, we may assume our sets of equations are connected.

Let (ȳ)y∈X be a solution to Σ(X) in some S-act B containing A. For each x ∈ X, let

K(x̄) = {γ ∈ S : x̄γ ∈ A}.
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Notice that K(x̄) is either empty or an ideal of S. Let L = {x ∈ X : K(x̄) 
= ∅}. Since 

each ideal of S is principal, for each x ∈ L we may fix some τ(x) ∈ S and a(x) ∈ A such 

that K(x̄) = τ(x)S and x̄τ(x) = a(x). It follows that x̄S ∩ A = a(x)S. In the rest of the 

proof, we will always take τ(x) to be a power of α.

Let Σc(X) be the set of all equations of Σ(X) involving constants, and Σnc =

Σ(X)\Σc(X). We put

Σ′(X) = Σnc(X) ∪ {xτ(x) = a(x) : x ∈ L}.

Certainly Σ′(X) is finite and consistent with a solution (ȳ)y∈X in B. We claim that 

any solution to Σ′(X) will be a solution to Σ(X). Suppose that (y∗)y∈X is a solution to 

Σ′(X). Notice first that for each xμ = b ∈ Σ(X), we have x̄μ = b so that K(x̄) 
= ∅ and 

then x ∈ L. Thus, τ(x) and a(x) exist with x̄τ(x) = a(x) and μ = τ(x)ν for some ν ∈ S. 

As (y∗)y∈X is a solution of Σ′(X) we have x∗τ(x) = a(x) and so

b = x̄μ = x̄τ(x)ν = a(x)ν = x∗τ(x)ν = x∗μ,

as required. We therefore focus on finding a solution for Σ′(X); relabelling Σ′(X) by 

Σ(X).

We proceed to eliminate some forms of Σ(X) that are easy to handle.

Suppose that Σ(X) contains no equations with constants. Since A is almost pure, it 

has local zeros, and so from a comment following Definition 3.20, Σ(X) has a solution 

in A. We suppose therefore that Σ(X) contains at least one equation with a constant.

Suppose that Σ(X) contains an equation of the form xg = a for some g ∈ G. Then 

x̄ = ag−1 ∈ A and K(x̄) = S. Replacing every x in Σ(X) by x̄ gives a finite consistent 

set of equations over A in n − 1 variables with a solution (ȳ)y∈Y , where Y = X\{x}, so, 

by our inductive hypothesis, it has a solution (¯̄y)y∈Y in A. Putting ¯̄x = x̄ = ag−1, we 

have that (¯̄y)y∈X is a solution to Σ(X) in A.

On the other hand, suppose that there exists yg = zγ ∈ Σ(X) for some y, z ∈ X

with y 
= z, g ∈ G and γ ∈ S. Then ȳ = z̄hg−1; replacing every y in Σ(X) by zhg−1

yields a consistent set of equations over A in n −1 variables with a solution (ȳ)y∈Z where 

Z = X \ {y}. Again, by induction, it has a solution (¯̄y)y∈Z in A. Putting ¯̄y = ¯̄zhg−1, we 

obtain a solution (¯̄y)y∈X to Σ(X) in A.

We assume therefore that Σ(X) contains at least one equation with a constant and 

there are no equations in Σ(X) with form xg = a or xg = yγ for any g ∈ G, γ ∈ S, a ∈ A

and x 
= y ∈ X. Clearly, with such assumption, K(x̄) 
= S for each x ∈ X. For use in the 

later parts of the proof, we define three disjoint copies of X as follows:

X0 = {x0 : x ∈ X}, X1 = {x1 : x ∈ X}, X2 = {x2 : x ∈ X}

and put Z = X0 ∪ X1 ∪ X2.
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Assume that for any x ∈ X with xτ(x) = a(x) ∈ Σ(X), we have a(x)0 = a(x). Let 

xτ(x) = a(x), yτ(y) = a(y) ∈ Σ(X) for some x, y ∈ X. Since Σ(X) is connected, it 

follows that x0 ρΣ y0 so that x̄μ = ȳν. Then

a(x) = a(x)0 = x̄τ(x)0 = x̄0 = ȳ0 = ȳτ(y)0 = a(y)0 = a(y).

Hence all constants appearing in Σ(X) are equal. Let a(x) be one such constant. Since 

a(x)t = a(x) for all t ∈ S, we deduce that (¯̄y)y∈X is a solution to Σ(X) where ¯̄y = a(x)

for all y ∈ X.

Suppose from now on that there exists some yτ(y) = a(y) ∈ Σ(X) where a(y)0 
= a(y). 

Let

W = {x ∈ X : K(x̄) 
= 0, a(x)0 
= a(x)}.

Pick x ∈ W such that K(x̄) = τ(x)S is the largest ideal within all ideals K(ȳ) where 

y ∈ W . Notice that τ(x) 
= 0 for all x ∈ K, for, if it did, then x0 = a(x) would give 

a(x) = a(x), a contradiction. Further, τ(x) 
= 0 and τ(x) 
= 1. We therefore consider 

the following three cases determined by the choice of τ(x), which themselves will require 

delicate argument. To simplify notation we let ρ = ρΣ(X).

Case τ(x) = α3. We therefore have xα3 = a(x) ∈ Σ(X) with a(x)0 
= a(x). We first 

point out some forbidden patterns.

We cannot have

xα2g ρ yαh, xα3 ρ yα2h or xα3 ρ yαh (7.1)

for any y ∈ X, g, h ∈ G. For, if we did, then we would have

x̄α2g = ȳαh, x̄α3 = ȳα2h or x̄α3 = ȳαh.

But this would give in the first two cases that a(x) = x̄α3 = ȳα2 and in the third that 

a(x) = x̄α3 = ȳα. If a(x) = x̄α3 = ȳα2, then τ(y) = α or α2, and if a(x) = x̄α3 = ȳα

then τ(y) = α. Since K(x̄) ⊂ K(ȳ) we must have a(y)0 = a(y). But, in addition, either 

a(x) = a(y) or a(x) = a(y)α, so that we obtain a(x)0 = a(x), a contradiction.

On the other hand, we cannot have

xαig ρ yαi+jh (7.2)

for y ∈ X, where 0 ≤ i ≤ 3, 1 ≤ j ≤ 4 − i, g, h ∈ G. Otherwise,

xα3 = xαiα3−ig ρ yαi+jhα3−i = y0

and so a(x) = xα3 = y0, implying a(x)0 = a(x), a contraction.
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From the above forbidden patterns, we deduce that the equations in Σ(X) involving 

x must have one of the following forms:

xαg = yαh, xα2g = yα2h, xα3 = yα3, x0 = yγ

xg = xh, xαg = xαh, xα2g = xα2h

where g, h ∈ G, γ ∈ S and x 
= y ∈ X.

Let Y = X\{x}, and let Σ(x) be the set of all equations in Σ(X) just involving x and 

Σ(Y ) the set of all equations in Σ(X) just involving variables in Y .

Suppose that the equations involving x and y 
= x ∈ X only have forms xα3 =

yα3, x0 = yγ, where γ ∈ S. As Σ(x) holds, it has a solution ¯̄x in A by assumption. 

Consider

Π(Y ) = Σ(Y ) ∪ {yα3 = ¯̄xα3, yγ = ¯̄x0 : yα3 = xα3, yγ = x0 ∈ Σ(X)}.

For all yα3 = xα3, yγ = x0 ∈ Σ(X),

ȳα3 = x̄α3 = a(x) = ¯̄xα3

and

ȳγ = x̄0 = x̄α30 = a(x)0 = ¯̄xα30 = ¯̄x0.

Thus, (ȳ)y∈Y is a solution to Π(Y ), and so it has a solution (¯̄y)y∈Y in A. It is easy to 

see that (¯̄y)y∈X is a solution of Σ(X) in A.

Suppose therefore that there exist equations in Σ(X) having form xαg = yαh or 

xα2g = yα2h for some g, h ∈ G and y 
= x ∈ X.

Let FS(Z) be the free S-act over Z, where Z consists of three disjoint copies of X, as 

defined earlier. We proceed by defining three binary relations H1, H2 and H3 on FS(Z)

as follows:

H1 = {(y0u, y0v), (y1u, y1v), (y2u, y2v) : yu = yv ∈ Σ(X), y ∈ X, u, v ∈ G},

H2 = {(y1u, z1v), (y2u, z2v) : yαu = zαv ∈ Σ(X), y, z ∈ X, u, v ∈ G},

H3 = {(y2u, z2v) : yα2u = zα2v ∈ Σ(X), y, z ∈ X, u, v ∈ G}.

Let H = H1 ∪ H2 ∪ H3 and σ̄ = 〈H〉. Since G is coherent by [8],

r([x1]) = {(u, v) ∈ G × G : x1u σ̄ x1v} = 〈W1〉

and

r([x2]) = {(u, v) ∈ G × G : x2u σ̄ x2v} = 〈W2〉
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where W1, W2 are two finite sets.

We now claim that x̄αu = x̄αv for any (u, v) ∈ W1. For this purpose, we define

θ : Z −→ B

by

y0θ = ȳ, y1θ = ȳα, y2θ = ȳα2, for all y ∈ X.

It is easy to check that H ⊆ ker θ, and so there exists

θ̄ : FS(Z)/σ̄ −→ B

defined by

[y0]θ̄ = ȳ, [y1]θ̄ = ȳα and [y2]θ̄ = ȳα2 for all y ∈ X.

Let (u, v) ∈ W1. Then x1u σ̄ x1v, so that

x̄αu = (x1u)θ̄ = (x1v)θ̄ = x̄αv.

Similarly, we can show x̄α2p = x̄α2q for any (p, q) ∈ W2.

To find a solution to Σ(X) in A, we now construct two finite sets of equations Π(x)

and Π(Y ) as follows. Let

Π(x) = Σ(x) ∪ {xαu = xαv : (u, v) ∈ W1} ∪ {(xα2u = xα2v : (u, v) ∈ W2)}.

Then Π(x̄) holds, so that Π(x) has a solution ¯̄x in A. Let

Π(Y ) = Σ(Y ) ∪ {yγ = ¯̄xδ : yγ = xδ ∈ Σ(X), y 
= x}.

Let ρ′ = ρΣ(Y ), and so ρ′ = ρΣ(Y ) ⊆ ρΣ(X) = ρ.

We now show that Π(Y ) is consistent by considering the following cases.

Subcase (i) yμ = ¯̄xκ, zν = ¯̄xη ∈ Π(Y ) with yμ = xκ, zν = xη ∈ Σ(X). Suppose that 

yμδ ρ′ zνε for some δ, ε ∈ S. Then xκδ ρ yμδ ρ zνε ρ xηε. We consider the following 

subcases.

Subcase (i)(a) κδ ∈ G. This implies κ ∈ G, a contradiction.

Subcase (i)(b) κδ ∈ αG. By the forbidden patterns (4.1) and (4.2), we deduce ηε ∈ αG. 

Let κδ = αg and ηε = αh for some g, h ∈ G. Then xαg ρ xαh, so that there exists n ∈ N

and an H(Σ)-sequence

xαg = y1u1t1, z1v1t1 = y2u2t2, · · · , znvntn = xαh
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where t1, · · · , tn ∈ S and

y1u1 = z1v1, · · · , ynun = znvn ∈ Σ(X).

Again, by the forbidden patterns 4.1 and 4.2, we have uiti, viti ∈ αG for all 1 ≤ i ≤ n, 

so that ui, vi ∈ G or ui, vi ∈ αG. Notice that ui, vi ∈ G happens only if yi = zi by 

assumption. Therefore, we have (y1
i (ui)φ, z1

i (vi)φ) ∈ H1 ∪ H2, implying

(y1
i (ui)φ(ti)φ, z1

i (vi)φ(ti)φ) ∈ σ̄

and so (y1
i (uiti)φ, z1

i (viti)φ) ∈ σ̄.

On the other hand, since the identities involving in the above H(Σ)-sequence holds 

in FS(Z), we have

x1g = y1
1(u1t1)φ, z1

1(v1t1)φ = y1
2(u2t2)φ, · · · , z1

n(vntn)φ = x1h

in FS(Z). Therefore, x1g σ̄ x1h and so (g, h) ∈ r([x1]). Then there exists n ∈ N and a 

W1-sequence such that

g = p1s1, q1s1 = p2s2, · · · , qnsn = h

where s1, · · · , sn ∈ G and (pi, qi) ∈ W1 for all 1 ≤ i ≤ n. By the construction of Π(x), 

we have ¯̄xαpi = ¯̄xαqi for all 1 ≤ i ≤ n, so that

¯̄xαg = ¯̄xαp1s1 = ¯̄xαq1s1 = · · · = ¯̄xαqnsn = ¯̄xαh

and so

¯̄xκδ = ¯̄xαg = ¯̄xαh = ¯̄xηε

as required.

Subcase (i)(c) κδ ∈ α2G. In this case, we must have ηε ∈ α2G. Let κδ = α2g and 

ηε = α2h for some g, h ∈ G. By similar argument to that of Subcase (i)(b), this time 

using the construction of σ2 and the fact that ¯̄xα2u = ¯̄xα2v for all (u, v) ∈ W2, we can 

show that ¯̄xκδ = ¯̄xα2g = ¯̄xα2h = ¯̄xηε.

Subcase (i)(d) κδ = ηε = α3 or κδ = ηε = 0. As κδ = ηε, ¯̄xκδ = ¯̄xηε.

Subcase (ii) zν = c ∈ Σ(Y ) and yμ = ¯̄xκ ∈ Π(Y ) with yμ = xκ ∈ Σ(X). Suppose 

that yμδ ρ′ zνε, and so xκδ ρ yμδ ρ zνε. Then x̄κδ = z̄νε = cε, so that κδ = τ(x)γ for 

some γ ∈ S. Notice that xτ(x) = a(x) ∈ Σ(x), so that x̄τ(x) = a(x) = ¯̄xτ(x), and hence

cε = x̄κδ = x̄τ(x)γ = ¯̄xτ(x)γ = ¯̄xκδ.

Subcase (iii) yμ = b, zν = c ∈ Σ(Y ). Let yμδ ρ′ zνε for some δ, ε ∈ S. Then yμδ ρ zνε, 

and so bδ = cε by Proposition 3.13.
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Therefore, Π(Y ) is consistent, so that it has a solution (¯̄y)y∈Y in A by induction, and 

hence (¯̄y)y∈X is a solution to Σ(X) in A.

Case τ(x) = α2. We therefore have xα2 = a(x) ∈ Σ(X) with a(x)0 
= a(x). We first 

point out some forbidden patterns.

We cannot have

xαig ρ xαi+jh (7.3)

for any 0 ≤ i ≤ 2 and any 1 ≤ j. For, if we did, then multiplying by a suitable power of 

α would give

xα2g ρ xα2+jh.

But then it follows that

xα2g ρ xα2+kjh(g−1h)k−1

for any 0 ≤ k. It follows that xα2 ρ x0, giving the contradiction that a(x)0 = a(x). Hence 

any equations of Σ(x) must have one of the following forms

xg = xh, xαg = xαh, xα2g = xα2h, xα3 = x0.

For y 
= x we cannot have

xαg ρ yα3, xαg ρ y0, xα2g ρ y0 (7.4)

for any g ∈ G, as it would give xα2g ρ y0 and then

a(x) = x̄α2 = x̄α2gg−1 = ȳ0

and so a(x)0 = a(x), a contradiction.

We cannot have any of the following:

xαg ρ yh ρ yαs, xαg ρ yh ρ yα2s or xαg ρ yαh ρ yα2s (7.5)

or

xα2g ρ yh ρ yαs, xα2g ρ yh ρ yα2s or xα2g ρ yαh ρ yα2s (7.6)

for some g, h, s ∈ G, as any of these would give xα2 ρ x0, yielding the contradiction that 

a(x)0 = a(x). However, notice that we are not ruling out xα2g ρ yα3 for some g ∈ G.
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We now define 4 binary relations on FS(Z) as follows:

P1 = {(y0g, y0h), (y1g, y1h), (y2g, y2h) : yg = yh ∈ Σ(X), g, h ∈ G},

P2 = {(y1g, z1h), (y2g, z2h) : yαg = zαh ∈ Σ(X), y, z ∈ X, g, h ∈ G},

P3 = {(y1g, z2h) : yαg = zα2h ∈ Σ(X), y, z ∈ X, g, h ∈ G},

P4 = {(y2g, z2h) : yα2g = zα2g ∈ Σ(X), y, z ∈ X, g, h ∈ G}.

Let P = P1 ∪ P2 ∪ P3 ∪ P4 and ρ̄ = 〈P 〉. Since G is coherent,

r([x1]) = {(u, v) ∈ G × G : x1u ρ̄ x1v} = 〈Q1〉

and

r([x2]) = {(u, v) ∈ G × G : x2u ρ̄ x2v} = 〈Q2〉

where Q1 and Q2 are finite.

We now claim that x̄αu = x̄αv for any (u, v) ∈ Q1 and x̄α2p = x̄α2q for any (p, q) ∈

Q2. Let θ be the map defined in Case τ(x) = α3. It is easy to check that P ⊆ ker θ, and 

so there exists

θ̄ : FS(Z)/ρ̄ −→ B

defined by

[y0]θ̄ = ȳ, [y1]θ̄ = ȳα, [y2]θ̄ = ȳα2, y ∈ X.

Let (u, v) ∈ Q1. Then x1u ρ̄ x1v, so that

x̄αu = (x1u)θ̄ = (x1v)θ̄ = x̄αv.

Similarly, we can show that x̄α2p = x̄α2q for any (p, q) ∈ Q2.

Let Y = X\{x}. Let

Π(x) = Σ(x) ∪ {xαu = xαv : (u, v) ∈ T1} ∪ {xα2u = xα2v : (u, v) ∈ T2}

∪ {xα3 = x0 : if x̄α3 = x̄0}.

Then Π(x̄) holds, so Π(x) has a solution ¯̄x in A. Let

Π(Y ) = Σ(Y ) ∪ {yγ = ¯̄xδ : yγ = xδ ∈ Σ(X)}.

Clearly ρ′ = ρΣ(Y ) ⊆ ρΣ(X) = ρ. We now show that Π(Y ) is consistent.

Subcase (i) yμ = ¯̄xκ, zν = ¯̄xη ∈ Π(Y ), where yμ = xκ, zν = xη ∈ Σ(X). Suppose that 

yμδ ρ′ zνε for some δ, ε ∈ S. Then xκδ ρ yμδ ρ zνε ρ xηε.
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Subcase (i)(a) κδ ∈ G. In this case, we have κ ∈ G and xκ = yμ ∈ Σ(X), contradicting 

the forms of equations in Σ(X).

Subcase (i)(b) κδ = α3. We know that ηε = α3 or 0. If ηε = α3 we are done. If ηε = 0, 

then xα3 ρ x0, so that x̄α3 = x̄0, and hence ¯̄xα3 = ¯̄x0 by the definition of Π(x).

Subcase (i)(c) If κδ = 0. Here ηε must be α3 or 0. Then by a similar argument to that 

of Subcase (i)(b), we have ¯̄xα3 = ¯̄x0.

Subcase (i)(d) κδ ∈ αG. In this case, we have ηε ∈ αG. Let κδ = αg and ηε = αh for 

some g, h ∈ G. Then xκδ ρ xηε, so that either xκδ = xηε, or there exists n ∈ N and an 

H(Σ)-sequence

xαg = y1u1t1, z1v1t1 = y2u2t2, · · · , znvntn = xαh

where t1, · · · , tn ∈ S and

y1u1 = z1v1, · · · ynuu = znvn ∈ Σ(X).

In the first case, clearly κδ = ηε so that ¯̄xκδ = ¯̄xηε. Suppose therefore we have an 

H(Σ)-sequence as given. By the forbidden pattern 4.4, we cannot have xαg ρ wα3 and 

xαg ρ w0 for any w ∈ X, so that uiti, viti ∈ S\{0, α3} for all 1 ≤ i ≤ n. For each 

1 ≤ i ≤ n, consider yiui = zivi ∈ Σ(X). Notice first that xαg ρ yiuiti ρ ziviti. If yi = zi, 

then by forbidden patterns 4.4, 4.5 and 4.6, we know (ui)ψ = (vi)ψ, so that

(y
(ui)ψ
i (ui)φ, y

(vi)ψ
i (vi)φ) ∈ P.

Also, as uiti, viti ∈ S\{0, α3}, we deduce

(y
(uiti)ψ
i (ui)φ, y

(viti)ψ
i (vi)φ) ∈ P

so that

(y
(uiti)ψ
i (ui)φ(ti)φ, y

(viti)ψ
i (vi)φ(ti)φ) ∈ ρ̄

If yi 
= zi, then neither (ui)ψ or (vi)ψ is 0 by our original assumptions on Σ(X). By 

the above analysis, (ui)ψ, (vi)ψ ∈ {1, 2}. Notice that (ui)ψ and (vi)ψ may not be equal.

It follows from the construction of P that

(y
(ui)ψ
i (ui)φ, z

(vi)ψ
i (vi)φ) ∈ P.

Also, as uiti, viti ∈ S\{0, α3}, we deduce

(y
(uiti)ψ
i (ui)φ, z

(viti)ψ
i (vi)φ) ∈ P

so that
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(y
(uiti)ψ
i (ui)φ(ti)φ, z

(viti)ψ
i (vi)φ(ti)φ) ∈ ρ̄.

On the other hand, as the identities involving in the above H(Σ)-sequence are from 

FS(Z),

z
(viti)ψ
i (vi)φ(ti)φ = y

(ui+1ti+1)ψ
i+1 (ui+1)φ(ti+1)φ

for all 1 ≤ i ≤ n − 1. Hence

x1g = y
(u1t1)ψ
1 (u1)φ(t1)φ ρ̄ z

(v1t1)ψ
1 (v1)φ(t1)φ = y

(u2t2)ψ
2 (u2)φ(t2)φ

ρ̄ · · · ρ̄ z(vntn)ψ
n (vn)φ(tn)φ = x1h

giving (g, h) ∈ r([x1]). Then either g = h or there exists n ∈ N and a Q1-sequence such 

that

g = p1s1, q1s1 = p2s2, · · · , qnsn = h

where s1, · · · , sn ∈ G and (pi, qi) ∈ Q1 for all 1 ≤ i ≤ n. Since ¯̄xαpi = ¯̄xαqi for all 

1 ≤ i ≤ n, we have

¯̄xαg = ¯̄xαp1s1 = ¯̄xαq1s1 = · · · = ¯̄xαqnsn = ¯̄xαh,

so that ¯̄xκδ = ¯̄xηǫ.

Subcase (i)(e) κδ ∈ α2G. In this case, we must have ηε ∈ α2G. Let κδ = α2g and 

ηε = α2h for some g, h ∈ G. Considering xκδ ρ xηε, if the H(Σ)-sequence connecting 

xκδ to xηε does not involve any wα3 ∈ S for any w ∈ X, then by a similar discussion 

to that of Subcase (i)(d), we can show ¯̄xκδ = ¯̄xηε. If xα2g ρ wα3, then xα2 ρ wα3 and 

x̄α2 = a(x) = w̄α3, and so a(x)s = a(x) for any s ∈ G. Therefore

¯̄xκδ = ¯̄xα2g = a(x)g = a(x) = a(x)h = ¯̄xα2h = ¯̄xηε.

Subcase (ii) yμ = ¯̄xκ ∈ Π(Y ) with yμ = xκ ∈ Σ(X), zν = c ∈ Σ(Y ). Suppose that 

yμδ ρ′ zνε for some δ, ε ∈ S. Then xκδ ρ zνε, giving x̄κδ = cε ∈ A, so that κδ = α2g

for some g ∈ G. Since ¯̄xα2 = a(x) = x̄α2, we have

cε = x̄κδ = x̄α2g = a(x)g = ¯̄xα2g = ¯̄xκδ.

Subcase (iii) yμ = b, zν = c ∈ Σ(Y ). If yμδ ρ′ zνε for some δ, ε ∈ S, then yμδ ρ zνε, 

giving bδ = cε by Proposition 3.13.

Therefore, Π(Y ) is consistent. By induction, Π(Y ) has a solution (¯̄y)y∈Y in A and 

hence (¯̄y)y∈X is a solution to Σ(X) in A.

Case τ(x) = α. We therefore have xα = a(x) ∈ Σ(X), a(x)0 
= a(x). Notice that, for 

any xαig ∈ S with g ∈ G and i ≥ 1,
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x̄αig = x̄ααi−1g = a(x)αi−1g ∈ A.

Let Y = X \ {x}. By replacing x by x̄ in all equations of Σ(X) involving x, we obtain a 

finite consistent set of equations Σ(Y ) with a solution (ȳ)y∈Y , and so it has a solution 

(¯̄y)y∈Y in A by our inductive hypothesis. Further, the set of equations Σ(x) of Σ(X)

which involve only the variable x has a solution ¯̄x ∈ A. We claim that (¯̄y)y∈X is a 

solution to Σ(X). To this end we need only check equations of the form xβ = yγ. By 

assumption, β = αδ for some δ ∈ S and then

x̄α = a(x) = ¯̄xα

so that ¯̄yγ = x̄β = ¯̄xβ, as required.

This concludes the proof that every almost pure S-act over the Fountain monoid is 

absolutely pure. �

Question 7.6. Let S be the monoid obtained by replacing the group G in Example 7.4

with any right coherent monoid T such that the universal right congruence ωT on T is 

not finitely generated (for example, any monoid semilattice without a zero [4]). For such 

an S, the same argument as in [8] gives that S is not right coherent. However, can we 

deduce AS(1) = AS(ℵ0)? What if we change the period of α? More speculatively, are 

all monoids such that AS(1) = AS(ℵ0) built in some way from right coherent monoids, 

and monoids satisfying the fem-property?

8. Condition for when almost pure acts are absolutely pure

Let G be a set of finite frames and let F ⊆ G . We first give a generic result that 

tells us when all F -pure acts are G -pure. We then specialise this to Theorem 8.2, which 

gives a condition for all almost pure S-acts to be absolutely pure entirely in terms of 

finitely presented S-acts, their S-subacts, and their canonical extensions. Recall that the 

canonical extensions are obtained via analysis of which sets of equations are consistent, 

which is itself described in terms of congruences on certain free S-acts and a ‘base’ 

S-act.

Theorem 8.1. Let S be a monoid and let F ⊆ G , where G is a set of finite frames. The 

following are equivalent:

(1) every F -pure S-act is G -pure;

(2) every S-act of the form A(F ) is G -pure;

(3) for any S-act A, we have that A(F ) is a retract of A(G ).

Proof. Clearly (1) implies (2). Suppose now that (2) holds. In view of our careful con-

structions, we may regard A(G ) as being built from A(F ). For, having constructed AG
i
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from A(F ), obtaining an amalgam AG
i ∪ A(F ), with AG

i ∩ A(F ) = AF
i , we construct 

AG
i+1 from this amalgam by making only those extensions that add in solutions to fi-

nite consistent sets of G -equations with frames in G \ F , or finite consistent sets of 

G -equations that have constants in AG
i ∩A(F ). The way in which we always choose new 

variables to build our extensions ensures no contradiction arises. Proposition 5.4 now 

gives that (3) holds.

Finally, suppose that (3) holds and A is an F -pure S-act. By Theorem 5.6 we have 

that A is a retract of A(F ), so that by (3), A is a retract of A(G ). A second application 

of Theorem 5.6 yields (1). �

Theorem 8.1 is to a certain extent a universal-type result. The following is saying 

something more, and highlights the connection between finitely generated subacts of 

finitely presented S-acts (hence, coherency), and the question of when every almost pure 

S-act is absolutely pure.

Let G be the set of all finite frames, and let F be the set of all finite 1-frames. For 

an S-act A we let A(ℵ0) := A(G ) and A(1) =: A(F ).

Theorem 8.2. The following are equivalent for a monoid S:

(1) every almost pure S-act is absolutely pure;

(2) every S-act of the form A(1) is absolutely pure;

(3) every S-act of the form A(1) where A is a finitely generated S-subact of a finitely 

presented S-act is absolutely pure;

(4) for any S-act A we have that A(1) is a retract of A(ℵ0);

(5) for any S-act A, where A is a finitely generated S-subact of a finitely presented 

S-act, A(1) is a retract of A(ℵ0).

Proof. The equivalence of (1), (2) and (4) follows from Theorem 8.1. Clearly (2) implies 

(3) and (4) implies (5). Proposition 3.11 and Theorem 5.6 give that (5) implies (3).

Suppose that (3) holds. Let A be an almost pure S-act and let θ : B → A be an 

S-morphism, where B is a finitely generated S-subact of a finitely presented S-act M . 

We follow the proof of Lemma 5.3 to obtain an S-morphism θ1 : B1
1 → A extending θ. 

But then we can iterate this process to obtain an S-morphism ϕ : B(1) → A extending 

θ.

Now, B is embedded in M where M is finitely presented. Suppose that M = FS(X)/ρ

where X is finite and ρ = 〈H〉 where H is finite. Let C be a set of generators for B and 

for each generator c ∈ C pick xcsc ∈ FS(X) so that c = [xcsc] and let

Σ = {xu = yv, xcsc = c : (xu, yv) ∈ H, c ∈ C}.

Clearly, Σ has a solution in M where we substitute [x] for x for each x ∈ X. Regard 

Σ as a set of equations over B(1). Our assumption is that B(1) is absolutely pure, so 
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that there exists a solution (cx)x∈X to Σ in B(1). A standard argument then gives that 

ψ : M → B(1) given by [x]ψ = cx is a well defined S-morphism. Let d ∈ B, so that 

d = cs for some c ∈ C. Then

dψ = (cs)ψ = (cψ)s = [xcsc]ψs = [xc]ψscs = cxc
scs = cs = d.

Now consider ψϕ : M → A. Clearly ψϕ is an S-morphism, and dψϕ = dϕ = dθ, for any 

d ∈ B. It follows from Theorem 3.15 that A is absolutely pure. This completes the proof 

of (3) implies (1). �

Given the results of this article one might ask whether it true that for any monoid S

we have AS(1) = AS(ℵ0)? We conjecture that this is not the case and would hope that 

Theorem 8.2 would help in constructing a counter-example.
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