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Abstract

Oral squamous cell carcinoma (OSCC) is amongst the most common cancers, with more than 377,000 new cases

worldwide each year. OSCC prognosis remains poor, related to cancer presentation at a late stage, indicating the need

for early detection to improve patient prognosis. OSCC is often preceded by a premalignant state known as oral

epithelial dysplasia (OED), which is diagnosed and graded using subjective histological criteria leading to variability

and prognostic unreliability. In this work, we propose a deep learning approach for the development of prognostic

models for malignant transformation and their association with clinical outcomes in histology whole slide images

(WSIs) of OED tissue sections. We train a weakly supervised method on OED cases (n = 137) with malignant

transformation (n = 50) and mean malignant transformation time of 6.51 years (±5.35 SD). Stratified five-fold

cross-validation achieved an average area under the receiver-operator characteristic curve (AUROC) of 0.78 for

predicting malignant transformation in OED. Hotspot analysis revealed various features of nuclei in the epithelium

and peri-epithelial tissue to be significant prognostic factors for malignant transformation, including the count of

peri-epithelial lymphocytes (PELs) (p < 0.05), epithelial layer nuclei count (NC) (p < 0.05), and basal layer NC

(p < 0.05). Progression-free survival (PFS) using the epithelial layer NC (p < 0.05, C-index = 0.73), basal layer NC

(p < 0.05, C-index = 0.70), and PELs count (p < 0.05, C-index = 0.73) all showed association of these features

with a high risk of malignant transformation in our univariate analysis. Our work shows the application of deep

learning for the prognostication and prediction of PFS of OED for the first time and offers potential to aid patient

management. Further evaluation and testing on multi-centre data is required for validation and translation to

clinical practice.

© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great

Britain and Ireland.
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Introduction

Oral cancer is amongst the most common cancers in the

world and is considered a major health problem due to its

significant associated morbidity and mortality [1]. The

5-year survival rate has not improved over the last few

decades regardless of improvements in surgical and

oncological treatments. A large majority of oral cancers

(>90%) are oral squamous cell carcinoma (OSCC), with

one of the biggest obstacles to improvement in prognosis

being the delayed presentation of disease, as evidenced

by the fact that survival for stage I OSCC is 80%, which

reduces to 20–30% for stage IV disease [2,3]. OSCC is

caused by a multitude of genetic and environmental

factors and is preceded in a majority of cases by a

potentially malignant state with proliferation of atypical

epithelium known as oral epithelial dysplasia (OED) [4].

Dysplastic lesions have been shown to have an increased

risk of progression to malignant transformation [5].

Unfortunately, at present, there are no specific clinical

tools or biological or molecular markers routinely used

or recommended in clinical practice for prognosticating

dysplastic lesions. Some clinical risk predictors have

been suggested to be helpful, including size, clinical site
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(e.g. floor of mouth, lower gums, lateral tongue), and

clinical appearance (e.g. leukoplakia, erythroplakia) and

can be found in a wide range of conditions collectively

referred to as oral potentially malignant disorders

(OPMDs) in clinical practice [6].

In practice, OED diagnosis and grading are performed

on a tissue biopsy using histological assessment and

light microscopy. The current gold standard grading

system (the 2017 WHO grading system that uses three

tiers of grading: mild, moderate, or severe dysplasia) is

subjective, taking into account more than 15 different

cytological and architectural features to determine the

OED grade, which guides treatment decisions [4].

However, the cytological and architectural features are

ill defined and lacking in prognostic value, e.g. mild or

moderate OED can progress to malignancy, whereas

severe OED may not [6]. In addition, OED grading

suffers from significant inter- and intra-observer varia-

tion due to its subjective nature, and interpretation can be

hugely dependent upon the observer’s experience and

training. To improve diagnostic reproducibility and

prognostication, Kujan et al. [7] introduced the idea of

a binary grading system, categorising cases as either low

or high risk depending on the number of architectural

and cytological features seen. Although reports have

suggested improvement of diagnostic agreement and

prognosis using the binary system, it also has shortcom-

ings and has not been widely adapted for clinical use,

highlighting the need for novel approaches [6,8] bring-

ing objectivity and better prognostic value to inform

patient management and aid treatment decisions [9].

With wider adaptation of digital pathology in clinical

practice, artificial intelligence (AI) algorithms have

also evolved and have shown promise for automated

detection and quantification of histological features for

classification [10–14], detection [15–18], segmentation

[19–21], and survival analysis [18,22]. Digitisation of his-

tology slides along with AI can be used to develop algo-

rithms to assist pathologists in diagnostic decision-making

and lead to better prognostication for improved patient

management. To the best of our knowledge, there has been

limited research on the computational analysis of OED

histology images for the prediction of malignant transfor-

mation. Existing methods in the literature have used rela-

tively small cohorts, manual elements, or region of interest

(ROI)-based analyses [14,23–30]. All these methods have

focused mainly on OED identification or grading and lack

predictive or prognostic ability. Limited computational

pathology work has been reported at the WSI level for

the predictive analysis of OED, including recurrence and

malignant transformation potential. Dost et al. [30] exam-

ined 368 OED patients where 7.1% progressed to carci-

noma and showed that there was no association of OED

grade with malignant transformation. Gilvetti et al. [31]

reported a study including 120 patients with mean follow-

up of 47.7 months (±29.9 SD) and showed that recurrence

rate was significant in high-grade OED patients with

erythroplakia, with p = 0.023 and mean time to recur-

rence of 62 months (±31.5 SD).Malignant transformation

was also shown to have significant association with age

(p = 0.034), clinical appearance (p = 0.030), lesion site

(P = 0.007) and some other clinical features with mean

transformation time of 50 months (±32.5 SD). A recent

study by Mahmood et al. [32] examined the correlations

between individual histological features and OED prog-

nosis. They examined OED biopsies from 108 patients

with a minimum of 5-year follow-up to analyse histolog-

ical features predictive of recurrence and malignant trans-

formation. Two different prognostic models based on the

presence of specific histological features (bulbous rete

processes, hyperchromatism, loss of epithelial cohesion,

loss of stratification, suprabasal mitoses, and nuclear pleo-

morphism, irrespective of grade) were proposed, with an

area under the receiver-operator characteristic curve

(AUROC) value of 0.77 for malignant transformation

and 0.72 for recurrence. This highlights the usefulness of

individual (grade-independent) histological features for

OED prognosis prediction. A significant proportion of

OED lesions can transform into malignancy (OSCC),

but at present there are no tools available for an objective

and reproducible prediction of malignant transformation.

Early prediction of malignant transformation is crucial to

aid patient care and inform appropriate treatment to

improve prognosis and reduce the need for radical and

disfiguring surgery later.

In this study, we investigated the effectiveness of deep

learning algorithms for prognostication from haematoxylin

and eosin (H&E) stainedWSIs.

Materials and methods

Data

The dataset used for this study comprised 163H&E stained

and scanned WSIs of control and OED cases between

2005 to 2016. WSIs were scanned at �20 magnification

using an Aperio CS2 scanner (Leica Biosystems,

Deer Park, Illinois, USA) (n = 66) and at �40 using a

Hamamatsu Nanozoomer scanner (Hamamatsu City,

Shizuoka Prefecture, Japan) (n = 97) after ethical approval

(REC Reference18/WM/0335, National Health Service

Health Research Authority West Midlands). Amongst

163 cases, 137 were OED cases with 50 transformed into

malignancy. The remaining cases were non-dysplastic oral

mucosal biopsies, including benign hyperkeratosis or mild

epithelial hyperplasia. The mean age in the dataset of OED

cases was 64.64 (range 25–97) with a mean age of men

(n = 84) of 66.3 andmean age of women (n = 53) of 64.5

The main clinical sites of involvement were the tongue,

floor of mouth, and buccal mucosa. The mean time to

malignant transformation was 6.51 years (±5.35 SD).

WSIs were included if the following conditions were

met: a histological diagnosis of OED, sufficient availabil-

ity of tissue (i.e. excluding tangentially cut sections, tissue

with artefacts), at least 5 years of follow-up data

(including treatment, recurrence, and transformation

information) from the initial diagnosis, and all cases were

independently seen by at least two certified/consultant

pathologists. The initial diagnoses were made by PMS,
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PMF, and DJB as part of their diagnostic workload

(seeAcknowledgements) using theWHOgrading system.

These cases were blindly seen/reported/graded by SAK.

The interobserver disagreement between the two

pathologists was assessed using Cohen’s kappa score,

which resulted in a value of 0.854. The score indicates a

high level of agreement between the two pathologists.

Cases with disagreement were resolved through discus-

sion within the team. More information about the cohort

is presented in Table 1. Epithelium masks were obtained

using HoVer-Net+ [9] and then refined manually for

some cases, whereas slide-level labels were obtained

for each case from patient records (i.e. clinical notes

and biopsies), including histological grades, recurrence

status, andmalignant transformation status (i.e. OED has

progressed into OSCC at the same diagnosed location

within the follow-up time). The WSIs were split into

training and testing sets using three different stratified

five-fold cross-validations on transformation status for

all experiments. Patches with dimensions 512�512

were extracted using the epithelium mask with an over-

lap of 50% from all theWSIs at 0.50 μm per pixel (mpp).

To extract the deep features, ResNet-50 [33] was used as

a feature extractor pretrained on ImageNet. A feature

vector of size 1,024 was extracted for each patch,

resulting in a bag of shape x�ℝ
n�1024 for all WSIs

(where n is the number of patches extracted).

Malignant transformation prediction

Figure 1 shows the overall pipeline, which involves

initially extracting X patches of size M�N with slide-

level labels Y from WSIs with an overlap of O using the

epithelium mask. Extracted patches were utilised for

training deep learning models for predicting malignant

transformation. In this study, we used iterative draw-

and-rank sampling (IDaRS) [34], which works by rank-

ing and selecting top and random patches from a WSI

assuming that not all patches are equally important and

predictive of the outcome. IDaRS selects two subsets of

patches for training including random patches r and top-

ranked patches k for each WSI. Both subsets are then

preprocessed using a standard set of augmentations and

train a convolutional neural network (CNN) with weak

labels. We also compared the IDaRS with other fully

supervised and weakly supervised algorithms, for exam-

ple multilayer perceptron (MLP), Attention-MIL

(A-MIL) [35], clustering constrained attention multiple

instance leaning (CLAM) [36], and CNN-based bench-

mark classification models (ResNet [33], DenseNet [37],

and Vision Transformers [38] with max pooling as an

aggregator for the final WSI label).

Cellular composition analysis

To further analyse and validate hotspots being identified

by the IDaRS model cellular compositions of top tiles

(i.e. hotspots and coldspots) from transformed and non-

transformed cases were analysed. Nuclear features were

extracted from each layer (i.e. keratin, epithelial, basal)

and associated connective tissue in an automatedmanner

using nuclear segmentation and classification. For this

purpose, input patches were first stain-normalised using

a sample from The Cancer Genome Atlas (TCGA)

cohort before being fed into HoVer-Net [15], which

was pretrained on the PanNuke dataset [21] for nuclear

instance segmentation and classification. For the seg-

mentation of the keratin, epithelial, and basal layers

within the epithelium, HoVer-Net+ [9] was used.

Table 2 shows a range of morphological and proximity

features extracted from the segmented image patches

and aggregated statistically using the minimum ^ , max-

imum _ , mean μ, median m, and standard deviation σ.

Here, ordinary least squares (OLS) was used with post

hoc t-tests for calculating statistical significance with

Benjamini–Hochberg adjustment [39]. Cellular compo-

sition helps in understanding/interpreting the results of

IDaRS and differentiating transformed cases from non-

transformed ones in an objective manner.

Peri-epithelial lymphocyte count

Elevated peri-epithelial lymphocyte (PELs) counts can

be linked to a higher risk of malignant transformation in

OED, and to further explore the role of PELs count in

transformed and non-transformed cases, a Wilcoxon

rank-sum test was performed, where p < 0.05 was con-

sidered significant. Moreover, we also analysed the

distributions of PELs counts in subgroups based on

two clinical features, gender and age. Gender was

divided into male and female groups, and the age sub-

groups were separated into ranges of 0–50, 51–70, and

71–100.

Table 1. Characteristics of cohort used in study with clinical and
demographic information on OED cases.

Characteristic Number (%)

OED cases 137

Cases with malignant transformation 50 (36.4%)

WHO grade

Mild 41 (29.9%)

Moderate 53 (38.6%)

Severe 43 (31.3%)

Binary grade

Low risk 80 (58.3%)

High risk 57 (41.6%)

Mean age [min–max] 64.64 [25–97]

Gender

Male 84 (61.3%)

Female 53 (38.6%)

Clinical (intra-oral) site

Tongue 53 (38.6%)

Floor of mouth 27 (19.7%)

Buccal mucosa 17 (12.4%)

Others 38 (27.7%)

Survival Mean (SD)

Survival (months) 84.75 (63.03)

Survival (years) 6.51 (5.35)

Peri-epithelial lymphocytes predict oral dysplasia malignancy 3
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Survival analysis

To investigate the prognostic significance of clinical,

pathological, and nuclear features for progression-

free survival (PFS), Kaplan–Meier (KM) curves

and Cox proportional hazard (CPH) models were

used for univariate and multivariate analysis. To

distinguish between high-risk (short-term survival)

and low-risk (long-term survival) groups, the opti-

mal cut-off value was calculated by taking the mean

of the hazard value for each instance using a CPH

model where the statistical significance was large

between the high- and low-risk groups. Further, a

log-rank test was performed to determine the

Figure 1. Overall workflow of the study is shown in different sections. (A) Process of obtaining tissue biopsies from dysplastic lesions and
corresponding WSIs with their associated labels assigned by a pathologist. (B) Patches of sizeM � N were extracted from epithelium region
of WSIs. (C) Fully supervised pipeline where patches were assigned the WSI level labels and trained using CNNs for downstream tasks.
(D) Weakly supervised pipeline where positive (+) and negative (�) batch of features/images was created and used for training. (E) Heatmaps
were generated using IDaRS to explore hotspot areas and their contribution to malignant transformation prediction using nuclear analysis.
Nuclear features from hotspots and coldspots were used for PFS.

Table 2. Nuclear features extracted from layer-wise nuclei and
their explanations.

Feature Explanation

Extent EXð Þ Ratio of bounding box pixels to total

region

Equivalent diameter EDð Þ Diameter of circle in bounding box

Eccentricity ECCð Þ Ratio of focal distance over major axis

Convex area CAð Þ Number of pixels in convex hull

Centroid (C) Centre location of bounding box

Major axis length MJLð Þ Length of major axis

Nuclei count NCð Þ Total number of nuclei in patch

Cellularity per micron ϕð Þ Nuclei density in patch per micron

Nearest-neighbour

distance (NNDÞ

Nearest nucleus distance from nucleus of

interest

4 RMS Bashir et al
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statistical significance, with p < 0.05 considered

statistically significant.

Experiments

For IDaRS, we set the random patches r¼ 30 and top

patches k¼ 5 and trained a pretrained ResNet-34 on

ImageNet with a batch size of 16 and input size of 256.

IDaRS was trained for 30 epochs with binary cross-

entropy loss and optimised using the Adam optimiser.

For training, MLP and CLAM deep features were then

fed as input to models for generating WSI-level outputs.

MLP and CLAM were trained for 1,000 epochs using

the default configurations from the CLAM [36]. For A-

MIL and CNNmodels the same input and configurations

as IDaRS were used for the training and test purposes.

All models were trained and tested on a system with two

Nvidia Titan-X GPUs with 12GB memory, dedicated

RAM of 128GB, and an Intel® Core i9 processor, where

an average epoch takes �10min and downstream anal-

ysis for a single WSI takes �1min.

To validate the results, stratified on transformation

status, five-fold cross validation was performed three

times with different random seeds. AUROC and F1

score (macro) were used as performance metrics and

are averaged across the folds. The F1 score can be

thought of as the weighted mean between the precision

and recall as

F1¼
2� Precision � Recallð Þ

Precision þ Recallð Þ
:

The F1 score (macro) computes the arithmetic mean

of the F1 score per class, treating all classes equally

regardless of their number. AUROC evaluates the binary

problems by plotting the true positive rate (TPR) against

the false positive rate (FPR) at various thresholds. It

measures the ability of the classifier to differentiate

between the two classes, where the TPR and FPR are

calculated as

TPR¼
True positives

True positives þ False negatives
,

FPR¼
False positives

False positives þ True negatives
:

Results

Malignant transformation

Our experiments, summarised in Table 3, indicate that

the performance of IDaRS is comparatively better than

that of other weakly and fully supervised algorithms

with an AUROC of 0.78 (±0.07 SD) and F1 score of

0.69 (±0.05 SD) compared toMLP, CLAM, and A-MIL.

It can also be observed from the ROC plots in Figure 2

that the standard deviation across different folds for

IDaRS is smaller compared to the other weakly super-

vised algorithms. The performance of CLAM was

competitive to IDaRS compared to the MIL in terms of

the F1 score. The fully supervised networks performed

worse than other weakly supervised models due to the

inherent nature of the problem, which introduces noise

in the labels and corrupts the model’s training.

Exploring visual patterns

To investigate the features learnt by the top performing

IDaRS, we explored the top tiles from the heatmaps of

the transformed and non-transformedWSIs. To correlate

hotspot/coldspots with the clinical features, heatmaps

were also analysed manually for corroboration purposes

by an expert pathologist (SAK). Figure 3 shows the

heatmap for a histologically high-risk case where red

(hotspot) represents a region with a higher probability of

malignant transformation, while blue (coldspot) corre-

sponds to a region with a low probability of transforma-

tion. Closer examination of hotpots shows evidence of

disordered stratification, dyskeratosis, and nuclear and

cellular pleomorphism with a dense lymphocytic infil-

trate in the adjacent peri-epithelial connective tissue. The

dense lymphocytic infiltrate is referred to as PELs for the

remainder of the analysis.

Cellular composition analysis

Following themanual analysis of the heatmaps, automated

cellular composition analysis was performed to uncover

significant hidden patterns/features in transformed versus

non-transformed cases. Table 4 shows the prognostic sig-

nificance of the extracted nuclear features for predicting

malignant transformation. For the epithelial layer,

variation in eccentricity (p = 0.048), bounding box

(p = 0.0487), and total nuclei count (p < 0.0001) showed

significance along with basal layer NC (p < 0.0001). An

increase in cell count (hyperplasia or crowding) is an

important feature observed in high-risk dysplasia in both

the central epithelium layer and specifically within the

basal layer. Other features in the epithelium, for example

variation in nuclei count (100 μm per pixel) and nearest

nucleus distance, correspond to congestion in the spatial

arrangements of the epithelial nuclei and requiremore data

for validation. Similarly, changes in basal layer nuclei’s

minor axis and equivalent diameter correspond to nuclear

pleomorphism and are observed in high-risk OED cases.

Interestingly, the nuclei count in the connective tissue area

Table 3. Performance of IDaRS model compared to other weakly
supervised and fully supervised models with deep features where
IDaRS achieves high performance in terms of AUROC.

Model Top-k AUC ± SD F1 score ± SD

MLP 1 0.65 ± 0.09 0.56 ± 0.11

5 0.64 ± 0.11 0.55 ± 0.01

Attention-MIL [35] - 0.54 ± 0.07 0.44 ± 0.03

CLAM [36] 1 0.65 ± 0.04 0.64 ± 0.04

5 0.65 ± 0.05 0.63 ± 0.01

IDaRS [34] 5 0.78 ± 0.07 0.69 ± 0.05

ResNet-50 [33] - 0.54 ± 0.10 0.43 ± 0.11

ViT [38] - 0.55 ± 0.01 0.45 ± 0.08

DenseNet [37] - 0.56 ± 0.05 0.44 ± 0.01

Peri-epithelial lymphocytes predict oral dysplasia malignancy 5
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also showed significance for predicting the transformation

(p = 0.0004),which corresponds to the previous observa-

tion regarding the dense lymphocytic infiltrate in the adja-

cent peri-epithelial connective tissue.

Peri-epithelial lymphocytes

Figure 4 shows example patches from both hotspot (red)

and coldspot (blue) regions of the transformed and non-

transformed cases with their corresponding layer-wise

cellular compositions. For most of the coldspots, the

epithelium and basal nuclei are dominant, whereas in

the hotspots (red), PELs are in abundance in the

transformed cases compared to non-transformed cases

(Figure 4). PELs were statistically significant (p = 0.02)

for differentiating between the transformed versus

non-transformed cases. Gender-based subgrouping

showed no significance between male and female

groups. However, for age, the 0–50 group showed prog-

nostic significance with respect to malignant transforma-

tion with p = 0.001. Figure 5 shows the boxen plots for

(A) the overall distribution of PELs ratios in transformed

cases versus non-transformed cases and (B) the distribu-

tion of PELs ratios in transformed cases versus non-

transformed cases including age subgrouping.

Survival analysis

Table 5 shows the univariate analysis of the aforemen-

tioned nuclear features mentioned in ‘Cellular composi-

tion analysis’ section, with clinical and pathological

features, where it can be seen that the clinical features,

Figure 2. ROC curve plots on five-fold cross validation for OED malignant transformation prediction using (A) MIL, (B) A-MIL, (C) CLAM, and
(D) IDaRS.
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age [p > 0.05, C-index = 0.59 (95%, 0.59–0.60)] and

gender [p > 0.05, C-index = 0.52 (95%, 0.52–0.53)],

are nonsignificant. Conversely, the pathological features

showed significance for binary grading [p = 0.004,

C-index = 0.68 (95%, 0.67–0.69)] and WHO-based

grading when moderate and severe cases were combined

against mild grade [p = 0.04, C-index = 0.68 (95%,

0.67–0.68)]. When mild and moderate cases were com-

bined and compared with severe cases, they showed

the same significance [p = 0.04, C-index = 0.68

(95%, 0.67–0.68)]. The nuclear features extracted from

the epithelial layer, basal layer, and connective tissue

area also showed significance for minimum number

of nuclei count (NC) in basal layer [p < 0.05,

C-index = 0.70 (95%, 0.69–0.71)], epithelial layer

[p < 0.05, C-index = 0.73 (95%, 0.73–0.74)], and in

PELs [p < 0.05, C-index = 0.73 (95%, 0.72–0.73)].

Figure 6B shows the KM curves for PELs count and

Figure 6C the epithelium layer NC, where both features

are statistically significant in differentiating high-risk

and low-risk lesions with a clear separation between

two groups. Figure 6A shows the hazard ratio

(HR) for variation in basal layer NC, and the epithe-

lium layer NC appears to be associated with improved

survival, whereas the minimum PELs count, epithe-

lium layer NC, and basal layer NC are predictors of

adverse PFS.

Table 6 shows a multivariate analysis of the most

significant nuclear and pathological features (i.e. binary

grading, ^ epithelial layer NC, ^ basal layer NC, and

^ PELs count) to examine their combined effect on

PFS. When these features are combined, the C-index

improves, reaching 0.79 (95%, 0.78–0.80), with binary

grading, epithelium layer NC, and PELs being the most

significant prognostic features for malignant transforma-

tion. In the absence of binary grading, the C-index

achieved using nuclear features only is competitive,

reaching 0.78 (95%, 0.77–0.78). Similarly, combined

Figure 3. Heatmap for malignant transformation prediction using IDaRS. The red region shows the high probability of malignant
transformation in those areas.

Table 4. Ordinary least-squares regression for malignant
transformation with t-test significance of nuclear features with
Benjamini–Hochberg [39] adjustment.

Feature P > jtj P > jtj (adjusted)

Tissue NC 0.0013 0.0481*

Tissue σ nuclei in 100 mpp 0.0289 0.2755

Tissue max eccentricity 0.0428 0.3491

Basal μ minor axis length 0.0436 0.3491

Basal σ ED 0.0090 0.1672

Basal NC <0.0001 <0.0001*

Epithelium μ eccentricity 0.0015 0.0487*

Epithelium μ NND 0.0099 0.1672

Epithelium μ nuclei in 100 mpp 0.0125 0.1273

Epithelium σ eccentricity 0.0028 0.0729

Epithelium σ bounding box 0.0010 0.0487*

Epithelium NC <0.0001 <0.0001*

Asterisk (*) indicates significant p value. σ= SD, μ=mean of a distribution.

Peri-epithelial lymphocytes predict oral dysplasia malignancy 7
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binary grading with PELs counts reached the same C-

index of 0.78 (95%, 0.77–0.78) compared to the other

two feature with binary grading, i.e. epithelium layer NC

0.76 (95%, 0.75–0.77) and basal layer NC 0.77 (95%,

0.76–0.77). This highlights the importance of using

PELs counts as a prognostic feature for predicting malig-

nant transformation. Further, the combined performance

of basal layer NC and epithelium layer NC with PELs

count also shows the significance of using PELs in

conjunction with other clinical and nuclear features.

Discussion and conclusions

In this study, we explored the potential of deep learning

for predicting malignant transformations from digitised

OED histology slides. We trained a weakly supervised

learning framework for malignant transformation pre-

diction and further analysed the predictive ‘hotspots’ in

epithelial and peri-epithelial tissue regions. We demon-

strated that deep learning-based weakly supervised

IDaRS could predict malignant transformation with an

AUROC of�0.78 (±0.07 SD) on stratified 5-fold cross-

validation using three different random seeds. The

higher performance of IDaRS compared to other MIL

algorithms is explained by the fact that it dynamically

learns important feature representations from patches

internally, compared to fixed patch feature representa-

tion as an input limiting the learning possibilities of a

model. Mahmood et al. [32] also reported an AUROC of

0.77 for transformation using a similar but smaller

cohort with the nuclear features subjectively assessed

by three pathologists.

We also explored the cellular compositions

(i.e. nuclear features) and their role in potentially malig-

nant areas (i.e. hotspots) of transformed cases and com-

pared them to non-transformed areas (i.e. coldspots).

Nuclear features from the epithelial layer and associated

connective tissue area were found to be the most

Figure 4. Patches extracted from hotspots (red) and coldspots (blue) of WSIs with their layer-wise nuclear
composition. Most coldspot regions have dominant epithelial nuclei compared to hotspots, where PELs can be seen dominating
the overall ratio.
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significant prognostic features for predicting malignant

transformation. Other important features found in the

epithelial and basal layers were variation in the number

of layer nuclei in 100 μm per pixel (mpp), standard

deviation in cell eccentricity, and mean major and minor

axis lengths, for example. These nuclear features also

correspond to nuclear aberration (i.e. variation in size of

nuclei captured as a variation in the minor axis of the

nuclei and convexity of the nuclear shape) and conges-

tion due to the proliferation of nuclei in the epithelial and

basal layers. However, to verify the significance of these

features, we require more data to test these features’

ability to indicate prognostic significance for malig-

nancy. It has also been reported in the literature that

PELs can play an important role in transforming dyspla-

sia into carcinoma [40]. There is a possible explanation

for transformation, that the epithelium is affected by the

PELs count. This can be due to the release of cytokines

linked with oxidative stress, transforming the epithelial

cells into premalignant ones [41–44], and we have seen

that PELs showed significance for predicting transfor-

mation with p < 0.05.

For PFS, we examined the clinical, pathological, and

nuclear features of oral epithelial dysplasia. Our findings

indicated that, in addition to binary grading, the variation

in basal layer NC and epithelial layer NC was associated

with improved PFS. On the other hand, we observed that

the minimum number of nuclei in the basal layer, epi-

thelial layer, and PELs were linked to a higher risk of

malignant transformation or poor survival. Gan et al.

[40] also investigated the potential role of lymphocytic

infiltration in malignant transformation by analysing the

RNA sequences of immune infiltration sites in moderate

and severe OED. The authors highlighted the impor-

tance of immune signatures established from oral cancer

to identify three distinct subtypes of moderate and

severe OED: immune cytotoxic, non-cytotoxic, and

Figure 5. (A) Boxenplot for ratio of PELs present in both transformed and non-transformed patches. (B) Further breakdown of PELs ratio into
age groups, where it can be seen that the 0–50 age group has a distinct difference in the PELs ratio compared to other groups. Asterisk (*)
indicates significant p value.

Table 5. Univariate analysis of clinical, pathological, and digital
parameters where P is calculated using log-rank method and
C-index is calculated using Cox proportional hazard model
bootstrapped 1,000 times for lower and upper confidence interval.

Feature Aggregation p C-index Lower

95%

Upper

95%

Clinical parameters

Gender - >0.05 0.52 0.52 0.53

Age - >0.05 0.59 0.59 0.60

Pathological parameters

WHO grading

(mild versus

mod + severe)

- <0.05 0.68 0.68 0.69

WHO grading

(mild + mod

versus severe)

- <0.05 0.68 0.68 0.68

Binary grading - <0.05 0.68 0.68 0.69

Nuclear features

PELs count μ >0.05 0.45 0.45 0.46

σ <0.05 0.60 0.59 0.60

m >0.05 0.57 0.56 0.58

^ <0.05 0.73 0.72 0.73

_ >0.05 0.53 0.52 0.54

Basal NC μ >0.05 0.45 0.44 0.46

σ <0.05 0.66 0.65 0.67

m >0.05 0.52 0.51 0.53

^ <0.05 0.70 0.69 0.71

_ >0.05 0.53 0.52 0.54

Epithelium NC μ <0.05 0.65 0.64 0.65

σ <0.05 0.72 0.71 0.73

m <0.05 0.66 0.65 0.67

^ <0.05 0.73 0.73 0.74

_ >0.05 0.46 0.45 0.47

σ= standard deviation, μ=mean, m=mode, ^ =minimum, _ =maximum of
a distribution.
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non-immune reactive from transcriptional data. Their

findings suggest that the lack of CD8 T-cells in non-

cytotoxic subtype and non-immune reactive subtype can

lead to progression in moderate and severe dysplasia.

In our study, we quantified the peri-epithelial lympho-

cytes in the malignant transformed cases using deep

learning. Our study identified binary grading as a signif-

icant indicator of malignant transformation in OED,

whereas the study by Dost et al. [30] did not find any

association between grading and transformation.

However, Mahmood et al. [32] demonstrated an associa-

tion between nuclear features used for OED grading

(e.g. bulbus rete pegs, loss of epithelial cohesion) and

malignant transformation. Similarly, Gilvetti et al. [31]

demonstrated the importance of various clinical fea-

tures, including age, in predicting outcomes for OED.

Our study also found age to be a significant prognostic

factor in one of the subgroups (0–50) with a p value of

0.001, corroborating the findings of Gilvetti et al. [31].

Our multivariate analysis, when we combined patho-

logical and nuclear features, improved prediction of

PFS, specifically due to the addition of epithelium

layer NC and PELs count. An interesting avenue in

future would be to analyse and investigate the associ-

ation of dysplasia infiltrating lymphocytes (DILs) in

malignant transformation. Although our cohort is

small and unicentric, the department is a regional and

national referral centre in the UK. Nonetheless, the

practical application and adaptation of these methods

in clinical practice will require substantially larger and

multi-center cohort data to allow for a more rigorous

validation of the proposed algorithms.

To the best of our knowledge, this is the first study to

propose and show the association of PELs count in

malignant transformation along with other digital bio-

markers, e.g. epithelium layer NC and basal layer

NC. Our multivariate feature analysis showed that

PELs and epithelial NC improve their prognostic value

in conjunction with binary OED grading for predicting

malignant transformation. Our proposed methodology

for predicting malignancy has the potential to play an

important role in precision medicine and personalised

Figure 6. (A) Univariate analysis of different features: (blue) pathological, (green) clinical, and (red) nuclear. For each feature the dot
represents the hazard ratio, and the filled line shows the lower and upper confidence intervals of 95%. P values are at right, calculated using
Wald test, where significant P values are in bold. (B) Kaplan–Meir curve for PFS of OED using PELs count. (C) KM curve using epithelium layer
nuclei count.
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patient management for early prediction of malignancy

risk with the potential to guide treatment decisions and

risk stratification.
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C-index = 0.78, 95% CI [0.77–0.78]

Binary grading <0.05 3.10 1.70 5.65

PELs count <0.05 1.81 1.50 2.18

C-index = 0.76, 95% CI [0.75–0.77]

Binary grading <0.05 2.76 1.44 4.93

Epithelium NC <0.05 1.84 1.27 2.66

C-index = 0.73, 95% CI [0.72–0.74]

Basal NC >0.05 1.13 0.84 1.52

PELs count <0.05 1.68 1.20 2.34

C-index = 0.77, 95% CI [0.77–0.78]

Epithelium NC <0.05 1.67 1.19 2.35

Basal layer NC <0.05 1.54 1.29 1.83

C-index = 0.78, 95% CI [0.77–0.78]

Epithelium NC <0.05 1.68 1.21 2.34

PELs count <0.05 1.83 1.50 2.25
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