
This is a repository copy of Deep learning optimisation of static malware detection with 
grid search and covering arrays.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200371/

Version: Published Version

Article:

ALGorain, F.T. orcid.org/0000-0003-0547-1402 and Alnaeem, A.S. orcid.org/0009-0007-
1432-9498 (2023) Deep learning optimisation of static malware detection with grid search 
and covering arrays. Telecom, 4 (2). pp. 249-264. 

https://doi.org/10.3390/telecom4020015

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Citation: ALGorain, F.T.; Alnaeem,

A.S. Deep Learning Optimisation of

Static Malware Detection with Grid

Search and Covering Arrays. Telecom

2023, 4, 249–264. https://doi.org/

10.3390/telecom4020015

Academic Editor: Philip Branch

Received: 8 March 2023

Revised: 23 April 2023

Accepted: 26 April 2023

Published: 4 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Deep Learning Optimisation of Static Malware Detection with
Grid Search and Covering Arrays

Fahad T. ALGorain 1,*,† and Abdulrahman S. Alnaeem 2,*,†

1 Department of Computer Science, University of Sheffield, Sheffield S10 2TN, UK
2 Department of Computer Science, University of Manchester, Manchester M13 9PL, UK

* Correspondence: ftalgorain1@sheffield.ac.uk (F.T.A.);

abdulrahman.alnaeem@postgrad.manchester.ac.uk (A.S.A.)

† These authors contributed equally to this work.

Abstract: This paper investigates the impact of several hyperparameters on static malware detection

using deep learning, including the number of epochs, batch size, number of layers and neurons,

optimisation method, dropout rate, type of activation function, and learning rate. We employed

the cAgen tool and grid search optimisation from the scikit-learn Python library to identify the

best hyperparameters for our Keras deep learning model. Our experiments reveal that cAgen is

more efficient than grid search in finding the optimal parameters, and we find that the selection of

hyperparameter values has a significant impact on the model’s accuracy. Specifically, our approach

leads to significant improvements in the neural network model’s accuracy for static malware detection

on the Ember dataset (from 81.2% to 95.7%) and the Kaggle dataset (from 94% to 98.6%). These results

demonstrate the effectiveness of our proposed approach, and have important implications for the

field of static malware detection.

Keywords: hyperparameter optimisation; static malware detection; neural network; deep learning;

grid search; cAgen; combinatorial testing; covering arrays

1. Introduction

Malware poses a persistent threat to software systems, and its detection is a critical
issue in modern cybersecurity. Machine learning (ML) has shown promise in detecting mal-
ware, particularly static malware detection, which examines harmful binary files without
executing them. However, the performance of ML algorithms is highly dependent on the
choice of hyperparameters, which can be challenging to determine. This study investigates
the use of hyperparameter-optimisation (HPO) techniques to improve the performance of a
deep learning-based model for static malware detection. Specifically, we aim to enhance
the performance of static malware detection using deep learning models by fine-tuning
hyperparameters. The selection of hyperparameters, such as the number of epochs, batch
size, number of layers, number of neurons, optimisation method, dropout relay, type of
activation function, and learning rate (LR), was motivated by their significant impact on
the efficacy of deep learning models in previous studies [1,2]. Our goal is to optimise
these hyperparameters to achieve better accuracy and generalisation performance of deep
learning models for static malware detection.

1.1. Malware and Its Detection

Malware is any code added, changed, or removed from a software system in order
to intentionally cause harm or subvert the intended function of the system [1]. For some
time now, malware detection research and development has been a consistent focus of
academic and commercial efforts. Malware continues to be one of the most critical issues in
modern cybersecurity [2]. Malware detection can be performed in three ways: statically,

Telecom 2023, 4, 249–264. https://doi.org/10.3390/telecom4020015 https://www.mdpi.com/journal/telecom



Telecom 2023, 4 250

dynamically, and hybrid. This study focuses on static malware detection, which examines
harmful binary files without actually running them. Dynamic malware detection identifies
malware by utilising characteristics of run-time execution behaviour. The two methods
are combined in hybrid detection. Researchers have investigated the prospect of utilising
machine learning (ML) to detect malware, and numerous corporations and universities have
made considerable investments in the development of novel techniques for recognising it [3].
The choice of static analysis for this research was motivated by the fact that static malware
detection can be performed without running the binary files, making it a safer approach.

1.2. Brief about HPO

When dealing with ML-based approaches, it can be challenging to determine their
true detection capabilities. For instance, the performance of ML algorithms often relies
on the parameters used, yet the literature often lacks a persuasive justification for the
specific choices made. In this study, we investigate a technique called hyperparameter
optimisation (HPO) for improving the performance of such algorithms. To address the
curse of dimensionality that arises from using the most popular systematic approach, grid
search, we explore the use of covering arrays (CAs).

1.3. Generating Covering Arrays

While this study focuses on using hyperparameter optimisation to improve the per-
formance of machine learning algorithms, it is important to provide a brief overview of
covering arrays, which will be used in our optimisation approach. Covering arrays have
been widely used in software testing to reduce the required number of tests compared to
comprehensive combinatorial testing [4]. This approach is particularly useful when dealing
with a system with multiple input parameters. The In-Parameter-Order-General (IPOG)
technique has gained traction as a way to generate covering arrays of variable strengths t.
Covering arrays can be generated with different methods, such as the automatic efficient
test generator (AETG) system [5], the deterministic density algorithm (DDA) [6,7], and
the advanced combinatorial testing system (ACTS) [5–9]. The IPO method expands the
covering array column by column, adding rows as necessary to achieve full t-way coverage.
Finding the ideal covering array is an NP-complete problem [10]. To decrease the size of
covering arrays, IPOG employs a greedy construction method. In our study, we used a tool
called cAgen [11] to generate covering arrays efficiently. The cAgen tool combines IPOG
with a genetic algorithm to generate high-quality covering arrays in a reasonable amount
of time. By using cAgen to explore the hyperparameter space, we aimed to improve the
performance of our deep learning model for static malware detection.

1.4. Brief about Grid Search and Covering Arrays

Grid search is a widely used tool for exploring parameter spaces to find optimal
parameter values for a given model. However, conducting a full grid search can be compu-
tationally expensive, making it necessary to have an efficient method of combinatorial space
exploration. Covering arrays are a well-established method for this purpose, and they can
be implemented at different “strengths” to customize the depth of the search space. In this
method, each test is represented as a row in the array, with different variables represented
in the columns. The Cartesian product of all parameter sets achieves full combinatorial
coverage. For any subset of t parameters, each conceivable t-tuple of values appears in
exactly one row in a covering array of strength t, also known as a CAD

t . An orthogonal
array (OA) is a covering array where each tuple occurs exactly once, making it the most
effective covering array. In practice, pairwise tests, where t = 2, are commonly used, but
low values of t can also yield excellent performance in fault-finding. The use of covering
arrays can significantly reduce the size of test sets compared to a full combinatorial grid
search, making it an efficient method for hyperparameter optimisation.



Telecom 2023, 4 251

1.5. Brief about Deep Learning

Deep learning (DL) is a widely used subset of machine learning (ML) that has had
particular success in fields such as computer vision, natural language processing, and
machine translation. DL is part of the artificial neural network (ANN) theory, and there
are several types of DL models, including deep neural networks (DNNs), feed forward
neural networks (FFNNs), and deep belief networks (DBNs), among others [12]. Most DL
models have similar traits and hyperparameters, and the performance of the trained model
significantly depends on the values of the parameters of the model [1–3,13–15].

1.6. Hyperparameter Optimisation for Deep Learning

Hyperparameter optimisation is crucial for improving the performance of machine
learning (ML) models [16–22]. The most common approach for hyperparameter optimisa-
tion is grid search, which requires the user to define a search space beforehand and perform
an exhaustive search over the discretised space to find optimal values. However, grid
search has limitations and may suffer from poor performance if the search space does not
include the best values [23].

To address this limitation, we explored the feasibility of using a tool called cAgen [11]
to implement covering arrays (CAs) in our study. CAs provide an efficient method of
combinatorial space exploration by customising the depth to which the search space is
probed. We compared the performance of grid search and cAgen in finding optimal
parameter choices for our deep learning models, aiming to improve the robustness and
accuracy of our models for static malware detection.

Our study shows that the time and efficiency of cAgen [11] in finding the best hyper-
parameters are superior to those of grid search. Furthermore, we demonstrate that the
choice of different hyperparameter values can significantly impact the model’s performance.
Finally, we show that our hyperparameter-optimisation choices significantly improve the
performance of the neural network model for static malware detection on two datasets:
Ember [24] and Kaggle [25]. The findings of our study have important implications for the
field of static malware detection, providing a framework for improving the performance of
deep learning models for malware detection through hyperparameter optimisation using
covering arrays.

1.7. Paper Contribution

1. The paper presents a novel approach to improving static malware detection using
deep learning models with hyperparameter optimisation through covering arrays.
The study demonstrates the feasibility of using cAgen in combination with grid search
to find the optimal hyperparameter values. The findings show that this approach
can significantly improve the accuracy of the baseline model for both the Ember and
Kaggle datasets.

2. The study provides insights into the effects of different hyperparameters and their
interactions on the performance of deep learning models for static malware detection.

3. It provides a framework for researchers and practitioners to improve the performance
of deep learning models for malware detection through hyperparameter optimisation
using covering arrays.

4. The results of this study have implications for the wider field of cybersecurity, where
accurate malware detection is critical in protecting computer systems and networks.

The targeted performance metric used in this work is accuracy. This follows many
malware detection research papers and is very common practice for many deep learning
applications. It is one of the major accepted performance criteria. To the best of our knowl-
edge, no one has attempted to study the effects of different deep learning hyperparameters
for malware detection. This is especially with both datasets Ember and Kaggle while
utilising covering arrays and grid search approaches.



Telecom 2023, 4 252

1.8. The Structure of the Paper

See Section 2 for related literature, Section 3 for our methodology, and Section 4 for
experiment setup and a brief of the datasets used. Section 5 presents the grid search versus
cAgen for NN hyperparameter-optimisation tasks. In Section 6 we have the results and
discussion. Finally, in Section 7 we conclude.

2. Related Literature

2.1. ML-Based Static Malware-Detection-Related Literature

Malware that runs on Windows and uses the portable execution (PE) format is partic-
ularly prevalent. To detect PE malware, several studies have investigated the feasibility of
using machine learning, such as [26–28].

Recently, the authors of [24] released a dataset known as the Ember dataset, along
with Python functions, to facilitate data accessibility. They also provided examples of how
various machine learning methods can be applied to their dataset as a baseline. The authors
of [29] developed a static detection technique based on a gradient-boosting decision tree
algorithm, which outperformed the baseline model with less time spent on training.

Another study [30] examined various machine learning models using a subset of
the Ember dataset, focusing on efficiency and scalability in identifying malware families.
Their work demonstrated an improvement in performance between the suggested random
forest model and the baseline model, with the random forest method achieving the highest
accuracy of 99.9%.

In [31], researchers presented an ensemble learning-based strategy for identifying
malicious software using a stacked ensemble of fully connected, one-dimensional convo-
lutional neural networks (CNNs) and compared 15 existing machine learning classifiers
to develop a meta-learner. The highest accuracy was achieved by an ensemble of seven
neural networks, where the ExtraTrees classifier was used in the final stage of classification.

Similarly, in [32], the authors attempted a novel method for detecting malware us-
ing four machine learning techniques tuned with cAgen, a tool for generating covering
arrays. Their results showed that cAgen is an efficient approach to achieving optimal
parameter choices for machine learning techniques with less time and iteration than grid
search. In [33], the authors have tried a new approach in which they utilised mixed-level
covering arrays to design and tune a Convolutional neural network (CNN) for audio
classification tasks.

To compare and contrast the proposed work with state-of-the-art literature, a table is
presented below.

From Table 1, it can be seen that although various studies have been conducted on
machine-learning-based static malware detection, only a few of them have utilised covering
arrays for hyperparameter optimisation. Moreover, most of the studies have been limited to
the evaluation of small datasets, and some have not compared their methods with covering
arrays for hyperparameter optimisation. It is noteworthy that hyperparameter optimisation
was not the focus of the previous literature.

In contrast, the proposed work introduces a novel approach to utilising covering
arrays for hyperparameter optimisation, which improves the performance of deep learning
models for static malware detection. Additionally, the proposed work comprehensively
evaluates the methodology on two datasets, Ember and Kaggle, and compares covering
arrays and grid search for hyperparameter optimisation.

Overall, the proposed work stands out from the previous studies by providing a more
robust and comprehensive analysis of the impact of covering arrays on hyperparameter
optimisation. By utilising covering arrays, the proposed work achieves better performance
with less computational resources, making it a promising avenue for future research in the
field of machine-learning-based static malware detection.



Telecom 2023, 4 253

Table 1. Comparison of ML-based static malware-detection techniques.

Reference Methodology Limitations Comparison with Proposed Work

[26] Machine learning applied to the PE format
Limited dataset size, performance varies with

dataset size and complexity

Early work in the field, smaller dataset used, does
not utilise covering arrays for
hyperparameter optimisation.

[27]
Machine-learning-based classification using

n-gram frequency counts
Reliance on feature engineering, performance

not evaluated on large-scale dataset
Older approach, less efficient feature engineering.

[29]
Gradient-boosting decision tree algorithm for

static detection
Limited evaluation on only one dataset

Methodology not compared with covering arrays
for hyperparameter optimisation.

[30]
Analysis of machine learning models using a

subset of the Ember dataset
Only used a subset of the Ember dataset, no

comparative analysis of covering arrays

Evaluates only a subset of the Ember dataset, no
comparison with covering arrays for

hyperparameter optimisation.

[31]
Stacked ensemble of fully connected,

one-dimensional CNNs

Large amount of computational resources
required, the selection of hyperparameters

still crucial

No comparison with covering arrays for
hyperparameter optimisation.

[32]
Novel method for detecting malware using four
machine learning techniques tuned with cAgen

Limited evaluation of only one dataset, less
efficient approach for covering array

generation (compatible with classical ML
techniques only)

Similar approach to the proposed work, but less
efficient method for covering array generation

(classical ML techniques only).

[33]
Utilisation of mixed-level covering arrays to

design and tune a CNN for audio classification
Limited to audio classification task, no

comparison with grid search
Different problem domain, no comparison with

grid search.

2.2. Covering-Array-Related Literature

The generation of optimal values is the most challenging component of many problems
for covering arrays [5]. Several approaches have been presented to generate covering arrays,
each with its own set of pros and cons, but they all share similarities with various systems,
including the automatic efficient test generator (AETG) system [5], the deterministic density
algorithm (DDA) [6,7], the in-parameter-order system [8], and the advanced combinatorial
testing system (ACTS) [5–9].

The IPO method expands the covering array column by column, adding rows as
necessary to achieve full t-way coverage. Different studies have been conducted to better
understand how the in-parameter-order technique can be used to generate covering arrays.
The in-parameter-order-general (IPOG) technique was developed to make it possible to
use the strategy to generate covering arrays of variable strength. A change to IPOG
in [34] allowed for shorter generating times and smaller covering arrays in some situations.
The number of possible permutations was reduced thanks to the recursive construction
method presented in [35]. The size of covering arrays can be decreased by employing
graph-colouring approaches, as suggested in [36].

It should be noted that while prior literature has explored the use of various methods
to optimise hyperparameters for deep learning models in the context of static malware
detection, the present study is the first to utilise cAgen, a covering-array tool, for this
purpose. Therefore, our work provides novel insights into the potential benefits of using
cAgen in improving the performance of deep learning models for static malware detection.
cAgen was chosen for its ability to efficiently explore the hyperparameter search space and
identify the best hyperparameter configurations.

3. Methodology

Overall Approach

This section provides an overview of the methodology used in this study. The overall
approach involved utilising deep learning models for static malware detection and opti-
mising their hyperparameters through covering arrays. The study aimed to compare the
performance of CAs and grid search in terms of efficiency and accuracy. The first step
was to preprocess the dataset and split it into training and testing sets with an 80:20 ratio.
The training set was used to train the deep learning models, and k-fold cross-validation
with a 3-fold configuration was used to ensure the robustness of the results. Next, the
hyperparameters of the deep learning models were optimised through both CAs and grid
search. CAs were found to be more efficient in terms of computational resources and time
complexity, and they outperformed grid search in terms of model accuracy.



Telecom 2023, 4 254

In summary, this study demonstrates the potential of utilising deep learning mod-
els and CAs to improve static malware detection. The use of CAs for hyperparameter
optimisation provides significant advantages over the conventional grid-search approach.

4. Experiment Details and Dataset Brief

4.1. Datasets

We utilised two datasets for our experiments. The first dataset, EMBER: An Open
Dataset for Training Static PE Malware Machine Learning Models [37], was used to train
our baseline model. Version 2018 of the dataset was used. The authors stressed that the
2018 version of the dataset would present a significant challenge to ML-based algorithms.
This dataset contains a total of 1 million samples, of which 200 k are unknown (not used in
our experiments), 300 k are benign, 300 k are malware samples for training, and 200 k are
reserved for testing. The second dataset, obtained from Kaggle.com, was produced by [25]
and uses PE files from [38]. This dataset contains 19,611 malicious and benign samples, and
75 features represent each sample. The dataset was partitioned into 80% training and 20%
testing sets. All experiments were performed using a Jupyter Notebook version 6.1.0 and
analysed using Python version 3.6.0.

4.2. Experiment Setup

DL models were based on scikit-learn [39]. The experiments were performed using
iMac (Retina 5K, 27-inch, 2017, 4.2 GHz Quad-Core Intel Core i7, 16 GB 2400 MHz DDR4
RAM, and a Radeon Pro 580 8 GB graphics card) and Windows OS 11, with 11 Gen Intel Core
i7-11800H, with 2.30 GHz processor, and 16 GB RAM. Inputs were subject to normalisation
via the scikit-learn library’s StandardScaler function [40]. A 3-fold validation was used
throughout. Our work concerns supervised learning only.

4.3. Baseline Model

The flowchart in Figure 1 shows the sequential steps taken in the study, starting with
the baseline model for Ember, which had a 3-layer neural network with 12, 8, and 1 neurons
and achieved an accuracy of 81.2%. The next step was to train another baseline model for
Kaggle with the same architecture, which achieved an accuracy of 94%. These results in
Table 2 provided the foundation for exploring hyperparameter optimisation, which was
the next step in the study.

Baseline

Ember Kaggle

Hyperparameter optimisation

Figure 1. Workflow for neural network experiments.

Table 2. Baseline model results.

Dataset Architecture Accuracy

Ember 3-layer neural network 81.2%
Kaggle 3-layer neural network 94%



Telecom 2023, 4 255

4.4. Performance Evaluation

To assess the effectiveness of our approach, we evaluated the accuracy and efficiency
of the deep learning models using two popular hyperparameter-optimisation techniques,
covering arrays and grid search. We compared the performance of the baseline models
against the optimised models, considering both accuracy and efficiency metrics. Specifically,
we focused on optimising the selected hyperparameters. To ensure that the models are
not overfitted during the tuning process, we employed several techniques, such as early
stopping, which stops the training process when the model performance on the validation
set starts to deteriorate, and regularisation techniques, such as dropout relay. Additionally,
the model’s performance was evaluated on a separate test set to ensure that it generalises
well to unseen data.

5. Grid Search versus cAgen for NN Hyperparameter-Optimisation Tasks

We explored two methods for hyperparameter optimisation, grid search and cAgen.
There are structural and behavioural representations for each method described below.

5.1. Grid Search

The four primary phases of grid search include searching through the defined values
in the search space, utilising the training set, performing cross-validation (in this study,
we utilised three folds), and using the validation set to determine the optimal values
that will improve model performance. Structurally, grid search involves defining a set of
hyperparameters and their respective values to search through. This creates a search space
for possible combinations of hyperparameters, which is explored systematically. The steps
involved in the grid search process are:

1. Define the search space for hyperparameters and their respective values;
2. Split the data into a training set and a validation set;

For each combination of hyperparameters in the search space:
3. Train a model on the training set using the current hyperparameters;
4. Evaluate the model’s performance on the validation set;
5. Select the hyperparameters that result in the best performance on the validation set.

Behaviourally, grid search can be described as a brute-force method of hyperparameter
optimisation, as it exhaustively searches through all possible combinations of hyperparam-
eters. While this method can be effective, it can also be computationally expensive and
time consuming, especially for large search spaces. Figure 2 below depicts the flow of the
grid search experiment.

Search through defined values in search space

Utilise training set

Perform cross-validation (3 folds)

Use validation set to determine optimal values

Figure 2. Flowchart for grid search hyperparameter-optimisation process.



Telecom 2023, 4 256

5.2. cAgen

To use cAgen for hyperparameter optimisation, certain parameters need to be defined
beforehand. Firstly, a workspace needs to be created to prepare the model. Next, the input
parameter (IPM) is selected to modify the model’s parameters. The final step is to set the
value of t, which determines the strength of the covering array. Due to the large size of the
Ember dataset, we only investigated covering arrays of strengths 1 and 2. However, for the
Kaggle dataset, we explored covering arrays of strengths 1, 2, and 3.

Structurally, cAgen involves creating a covering array, a matrix representing a set of
parameter configurations. Each row in the matrix represents a unique configuration of
hyperparameters, and the columns represent the individual hyperparameters. The steps
involved in the cAgen process are:

1. Create a workspace to prepare the model;
2. Select the input parameter (IPM) to modify the model’s parameters;
3. Set the value of t, which determines the strength of the covering array;
4. Generate a covering array of hyperparameter configurations using the IPM and t-value;

For each configuration in the covering array:
5. Train a model on the training set using the current hyperparameters;
6. Evaluate the model’s performance on the validation set;
7. Select the hyperparameters that result in the best performance on the validation set.

Behaviourally, cAgen can be described as an optimisation method that uses a covering
array to explore a subset of the search space rather than exhaustively searching through
all possible combinations of hyperparameters. This approach can be more efficient than
grid search for large search spaces, as it reduces the number of configurations needing
exploration. However, the quality of the covering array depends on the strength value
and the choice of input parameters, which can affect the effectiveness of the optimisation
process. The implementation details for using cAgen with neural networks are shown
below in Figures 3 and 4.

Create Workspace

Select Input Parameter

Set t-value

Ember Kaggle

Strength 1 Strength 2 Strength 3

Figure 3. Flowchart for cAgen implementation details.



Telecom 2023, 4 257

Figure 4. cAgen implementation detail for both the Ember and the Kaggle datasets.

5.3. Hyperparameter Grid Search Configurations

As the hyperparameters of a deep learning model significantly impact its performance,
our study aims to explore the effects of various hyperparameter choices on the accuracy of
the model in static malware detection. Therefore, we selected a range of hyperparameters,
including the number of epochs, batch size, number of neurons, optimisation method,
dropout relay, type of activation function, and learning rate, to evaluate their impact on
the performance of the model. By examining the effects of different parameter choices, we
aimed to identify the optimal configuration of hyperparameters that leads to improved
model accuracy. This will provide valuable insights into the impact of hyperparameter
choices in the domain of static malware detection. The following Tables 3 and 4 show the
hyperparameter configurations for each DL model parameter.

Table 3. DL model hyperparameter configurations (Ember dataset).

Hyperparameter Grid Search Space

Number of neurons (per layer) [1200, 1400, 1800, 2000, 2200, 2400]

Number of epochs [20, 40,60, 80, 100]

Batch size [16, 32, 48, 64, 80]

Optimiser Adam or SGD

Drop-out relay [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Learning rate [0.001, 0.01, 0.1, 0.11, 0.12, 0.113, 0.114, 0.2]

Activation function (per layer) softmax, softplus, softsign, relu, tanh, sigmoid, hard_sigmoid, linear



Telecom 2023, 4 258

Table 4. DL model grid search configuration space (Kaggle dataset).

Hyperparameter Grid Search Space

Number of neurons (per layer) [55, 60, 65, 70, 75, 80]

Batch size [48, 64, 80, 100, 128]

Number of epochs [20, 40, 60, 80, 100]

Optimiser Adam or SGD

Drop-out relay [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Learning rate [0.001, 0.01, 0.1, 0.11, 0.12, 0.113, 0.114, 0.2]

Activation functions (per layer) softmax, softplus, softsign, relu, tanh, sigmoid, hard_sigmoid, linear

6. Results and Discussion

6.1. cAgen Tool Hyperparameter Versus Grid Search Results

Below are the results from cAgen tool for both the Kaggle Table 5 and Ember datasets
Table 6.

Tables 5 and 6 illustrate the results of our study, and below are the key findings:

1. Both the grid search and cAgen tool were effective in finding optimal hyperparameters
for the deep learning models.

2. The cAgen tool was particularly useful for finding optimal hyperparameters for the
Ember dataset, which had a larger number of features and samples.

3. The optimised deep learning models achieved significantly higher accuracy than the
baseline models for both datasets.

4. The optimised deep learning models achieved higher accuracy than the previous
benchmark model for the Ember dataset (it was at 92%).

5. The choice of hyperparameters significantly impacted the accuracy of the models,
particularly for the learning rate and number of neurons.

6. The results highlight the potential of using hyperparameter-optimisation techniques
for improving the performance of deep learning models in static malware detection

Table 5. DL Model cAgen results comparison (Kaggle dataset).

ML Algorithm Optimal Values Found t-Strength Values/Grid Search Time to Complete Number of Combinations Searched Score (Accuracy)

DL

75, 150, 1
SGD

tanh, sigmoid
0.0
20

128
0.0112

T2 7 min 36 s 60 0.9814

75, 150, 1
Adam

tanh, sigmoid
0.0
20
80

0.0001

T3 49 m 1 s 361 0.9840

75, 80, 1
SGD

tanh, relu
0.1
20
80

0.0112

T4 3 h 17 min 14 s 1452 0.9842

75, 80, 80
Adam

softsign, tanh
0.2
60
80

0.0112

Full grid search ∼4 days 3 h 6 min all 0.9862



Telecom 2023, 4 259

Table 6. DL Model cAgen results comparison (Ember dataset).

ML Algorithm Optimal Values Found t-Strength Values/Grid Search Time to Complete Number of Combinations Searched Score (Accuracy)

DL

2400, 1200, 1200
Adam

softplus, relu, sigmoid
0.0
20
64

0.00001

T1 15 h 31 min 10 0.9562

1200, 1200, 1200
Adam

sofplus, relu, sigmoid
0.5
40

128
0.0001

T2 4 d 23 h 5 min 47 s 60 0.9575

2400, 1200, 1200
Adam

hard_sigmoid, relu, sigmoid
0.1
40
64
0.0

Full grid search ∼29 days 15 h all 0.9542

It is important to carefully choose and tune all relevant hyperparameters when training
deep learning models for malware detection.

Table 7 shows the results of the optimised models for the Ember and Kaggle datasets.
The table lists the dataset name, the neural network architecture, and the accuracy achieved
by the model. The optimised model for Ember is a 6-layer neural network, which achieved
an accuracy of 95.7%. On the other hand, the optimised model for Kaggle is a 5-layer neural
network, which achieved an accuracy of 98.6%. It is important to note that in the new
optimised model, two dropout layers were added for regularisation to avoid overfitting.
Dropout layers randomly ignore some of the neurons in the neural network during training,
which helps to prevent the model from relying too heavily on any single feature. This
ensures the model generalises well and does not overfit the training data. Below, Figure 5
displays the final structure for both models side by side.

Table 7. Optimised model results.

Dataset Architecture Accuracy

Ember 6-layer neural network 95.7%
Kaggle 5-layer neural network 98.6%

6.2. Discussion

The discussion presents the findings of the study, which aims to optimise deep learning
models using covering arrays (CAs) for static malware detection. We analysed the effects
of different hyperparameters on the performance of the deep learning models.

6.3. Tuning the Number of Neurons

The number of neurons is a critical factor in determining the effectiveness of a neural
network, as demonstrated in previous studies such as [2]. To determine the optimal number
of neurons for our deep learning model, we performed a comprehensive grid search process,
varying the number of neurons from 1200 to 2400. Our results, as shown in Tables 3 and 4,
revealed a significant correlation between the number of neurons and the performance of
our model. We observed a gradual increase in accuracy, with the peak of 84.5% (Kaggle
92%) achieved with 2400 neurons (Kaggle 80 neurons). Interestingly, this number is slightly
higher than the number of features in both the Ember and Kaggle datasets, highlighting
the importance of tuning this hyperparameter. Our findings emphasise the crucial role that
diligent hyperparameter tuning plays in improving the efficacy of deep learning models
for static malware detection.



Telecom 2023, 4 260

Input Layer
(2400)

Dropout (0.1)

Dense (1200, relu)

Dense (1200,
sigmoid)

Dropout (0.1)

Output Layer
(1, sigmoid)

Input Layer (75)

Dropout (0.1)

Dense (75, tanh)

Dropout (0.1)

Dense (80, relu)

Output Layer
(1, sigmoid)

Ember Kaggle

Figure 5. Optimised deep learning models for the Ember and Kaggle datasets.

6.4. Tuning the Number of Layers

The process of determining the optimal number of layers in our model was a journey
of experimentation and discovery. Utilizing cAgen and grid search, we explored the
potential of our search space, starting with a simple foundation of one dense layer and
linear activation function. At first, our primary focus was not on the accuracy, but rather
on ensuring that the model produced a plausible result. Through the process of iteration,
we experimented with different configurations, observing varying accuracy results from
35% to 45%. Finally, through trial and error, we arrived at a good architecture—one dense
layer with a vector size of 2381, a second dense layer of 1200, a third dense layer of 1200,
and a final dense layer that provided the binary output.

Our results suggest that the optimal number of layers for our deep learning model is
four, with three intermediate dense layers. This finding is consistent with previous studies
on deep learning models for static malware detection, which have typically used three or
four dense layers [41–43]. However, the exact architecture and number of neurons in each
layer can vary significantly depending on the specific dataset and model configuration. By
carefully tuning the number of layers and neurons, we were able to improve the accuracy
of our model, demonstrating the importance of diligent hyperparameter tuning.

6.5. Tuning of Activation Functions

The activation functions in neural network design are of paramount importance as they
greatly impact the model’s performance [44]. Our experimentation with various activation
functions including Softmax, Softplus, Softsign, Relu, Tanh, Sigmoid, Hard_sigmoid and
Linear, through a grid search using scikit-learn grid search CV, revealed differential results
across the selected functions for both datasets. The results were analysed and four activation
functions were chosen based on their accuracy for both Ember and Kaggle. Hard_sigmoid,
Relu, Sigmoid, and Sigmoid were selected for Ember, while Sigmoid, Tanh, Relu, and
Sigmoid were selected for Kaggle. These diverse activation functions, when combined,
played a crucial role in elevating the accuracy of our model. The results of our experiment
demonstrate the significant impact that the choice of appropriate activation functions has
on the success of the neural network model.



Telecom 2023, 4 261

6.6. Tuning the Dropout Relay

The dropout relay is a crucial mechanism in preventing the over-complexity of neural
networks by regularising it through approximation. It allows for parallel exploration of
diverse network architectures during the training process, thereby enhancing the general-
isability of the model. To the best of our knowledge, previous studies on static malware
detection using deep learning did not explicitly consider the impact of dropout-relay tun-
ing on model performance. Our empirical experimentation found that a range of values
between 0.1 and 0.5 for the dropout relay resulted in an optimal increase of 1 to 3% in
model accuracy. However, exceeding this range could decrease the accuracy, as evidenced
by a drop from 93% accuracy to 88% when the value was set to 0.6. The placement of
the dropout relay within the hidden layers also plays a significant role in determining
the performance of the network, as noted by Dahl and Srivastava in their studies [3,13].
Thus, our study sheds light on the importance of dropout-relay tuning for improving the
performance of deep learning models for static malware detection.

6.7. Choice of Optimisers

The significance of choosing the appropriate optimiser cannot be overstated. After
thorough consideration, we opted to compare the performance of two optimisation tech-
niques: SGD and Adam. Each optimiser has its unique set of dependencies and challenges.
For instance, with SGD, determining the optimal learning rate requires experimental tri-
als, as determining its value beforehand can be challenging, as demonstrated in prior
studies [1]. Our experiments indicated that both SGD and Adam optimisers can yield high
accuracy scores for our model. Our experimentation with SGD showed that the learning
rate (LR) hyperparameter had a significant impact on the model’s accuracy. Thus, we
conducted a grid search with a learning rate range from 0.0001 to 0.5. Our findings revealed
that a learning rate above 0.2 negatively impacted the model’s accuracy score, with a value
of 0.4 yielding an accuracy of 65%. Based on these findings, we refined our search space
for the learning rate, as reflected in Table 3. On the other hand, the accuracy of the Adam
optimiser was found to be dependent on the number of epochs and batch size.

It is worth noting that while previous studies on deep learning for static malware
detection have explored the use of optimisers such as SGD and Adam [45,46], few have
investigated the impact of hyperparameters on their performance. Our study provides
valuable insights into the effects of hyperparameter tuning on the efficacy of these optimis-
ers, thereby contributing to the development of more robust deep learning models for static
malware detection. Furthermore, our comparison of the performance of SGD and Adam in
our study highlights the importance of careful consideration of optimiser selection in deep
learning models, particularly when it comes to static malware detection.

6.8. Tuning the Number of Epochs and Batch Size

The number of epochs and batch size are two critical parameters in the training of
a machine-learning model. The batch size determines the number of samples processed
before the model is updated, while the number of epochs represents the total number of
complete cycles through the entire training dataset. These parameters play a vital role in
shaping the performance of the model and are essential to be set before the training process
begins. Finding the optimal values of these parameters is a matter of experimentation,
where different combinations are tested until the best outcome is achieved.

In our case, we conducted a grid search to determine the best values for our specific
problem. Our results showed that increasing the number of epochs would lead to overfitting
and decrease the model’s accuracy, while a low batch size would also impact the model’s
accuracy. We experimented with different values for both parameters and found that for
the Ember dataset, the best number of epochs was 40, and the optimal batch size was 64.
Our findings align with previous studies [15], as well as with the Kaggle dataset, which
had the best number of epochs as 40 and the best batch size as 60. Our study confirms the
importance of carefully tuning the number of epochs and batch size to achieve optimal



Telecom 2023, 4 262

performance in the neural network model for static malware detection. The results of our
experiments are documented in Tables 3 and 5.

7. Conclusions

After conducting a comprehensive study on the feasibility of utilising deep learning
models to improve static malware detection through hyperparameter optimisation using
covering arrays, our findings indicate a highly promising approach. The performance
of our optimised deep learning models using covering arrays outperformed the baseline
model on both the Ember and Kaggle datasets. Specifically, our optimised model achieved
an accuracy of 95.7% on the Ember dataset and 98.6% on the Kaggle dataset, highlight-
ing the potential of this approach to significantly enhance the performance of malware
detection systems.

Moreover, our study provides evidence that incorporating hyperparameter optimi-
sation through covering arrays can be a highly effective technique for enhancing the
performance of deep learning models in the field of malware detection. Our results indicate
that fine-tuning deep learning models using covering arrays significantly outperformed
the traditional grid search method in terms of time and computational resources required.
This finding is particularly significant as it demonstrates that the use of covering arrays is
not only more efficient, but also leads to improved accuracy.

It is worth noting that the optimal configuration of hyperparameters, such as the
number of neurons, layers, activation functions, dropout relay, number of epochs, and
batch size, was carefully determined through a rigorous and comprehensive experimen-
tation process. The use of covering arrays allowed for the exploration of a wide range of
hyperparameter configurations, enabling us to fine-tune our models to achieve the highest
accuracy possible.

In conclusion, our study provides further evidence that deep learning models, com-
bined with hyperparameter optimisation using covering arrays, can significantly enhance
the performance of static malware-detection systems. The results of our study suggest
that this approach has the potential to be widely adopted in the field of cybersecurity,
leading to more efficient and accurate malware-detection systems. Future work could
investigate the application of this approach to other domains, and it has the potential for
further optimisation techniques.

Author Contributions: Conceptualization, F.T.A. and A.S.A. Authors Contributed equally. All au-

thors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The Ember Dataset can be found on (https://github.com/elastic/ember,

accessed 23 April 2023) and the Kaggle dataset can be found on (https://www.kaggle.com/datasets/

amauricio/pe-files-malwares, accessed 23 April 2023) .

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern.

2019, 50, 3668–3681. [CrossRef] [PubMed]

2. Shafi, I.; Ahmad, J.; Shah, S.I.; Kashif, F.M. Impact of varying neurons and hidden layers in neural network architecture for a

time frequency application. In Proceedings of the 2006 IEEE International Multitopic Conference, Islāmābād, Pakistan, 23–24

December 2006. [CrossRef]

3. Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving deep neural networks for LVCSR using rectified linear units and dropout. In

Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,

26–31 May 2013; pp. 8609–8613.

4. Lei, Y.; Kacker, R.; Kuhn, D.R.; Okun, V.; Lawrence, J. IPOG: A general strategy for t-way software testing. In Proceedings of the

14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’07), Tucson,

AZ, USA, 26–29 March 2007; pp. 549–556.



Telecom 2023, 4 263

5. Cohen, D.M.; Dalal, S.R.; Fredman, M.L.; Patton, G.C. The AETG system: An approach to testing based on combinatorial design.

IEEE Trans. Softw. Eng. 1997, 23, 437–444. [CrossRef]

6. Bryce, R.C.; Colbourn, C.J. The density algorithm for pairwise interaction testing. Softw. Test. Verif. Reliab. 2007, 17, 159–182.

[CrossRef]

7. Bryce, R.C.; Colbourn, C.J. A density-based greedy algorithm for higher strength covering arrays. Softw. Test. Verif. Reliab. 2009,

19, 37–53. [CrossRef]

8. Lei, Y.; Tai, K.C. In-parameter-order: A test generation strategy for pairwise testing. In Proceedings of the Third IEEE International

High-Assurance Systems Engineering Symposium (Cat. No. 98EX231), Washington, DC, USA, 13–14 November 1998; pp. 254–261.

9. Torres-Jimenez, J.; Izquierdo-Marquez, I. Survey of covering arrays. In Proceedings of the 2013 15th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 23–26 September 2013; pp. 20–27.

10. Seroussi, G.; Bshouty, N.H. Vector sets for exhaustive testing of logic circuits. IEEE Trans. Inf. Theory 1988, 34, 513–522. [CrossRef]

11. Group, M.R. Covering Array Generation. 2022. Available online: https://matris.sba-research.org/tools/cagen/#/about

(accessed on 21 July 2022).

12. Yin, W.; Kann, K.; Yu, M.; Schütze, H. Comparative study of CNN and RNN for natural language processing. arXiv 2017,

arXiv:1702.01923.

13. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

14. Jason, B. How to Configure the Number of Layers and Nodes in a Neural Network. Available online: https://machinelearningmastery.

com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/ (accessed on 23 April 2023).

15. Kandel, I.; Castelli, M. The effect of batch size on the generalizability of the convolutional neural networks on a histopathology

dataset. ICT Express 2020, 6, 312–315. [CrossRef]

16. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.

17. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst. 2011,

24, 1–9.

18. Bengio, Y. Gradient-based optimization of hyperparameters. Neural Comput. 2000, 12, 1889–1900. [CrossRef]

19. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. arXiv 2012, arXiv:1206.2944.

20. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Proceed-

ings of the International Conference on Learning and Intelligent Optimization, Rome, Italy, 17–21 January 2011; pp. 507–523.

21. Karnin, Z.; Koren, T.; Somekh, O. Almost optimal exploration in multi-armed bandits. In Proceedings of the International

Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1238–1246.

22. Injadat, M.; Moubayed, A.; Nassif, A.B.; Shami, A. Systematic ensemble model selection approach for educational data mining.

Knowl.-Based Syst. 2020, 200, 105992. [CrossRef]

23. Claesen, M.; Simm, J.; Popovic, D.; Moreau, Y.; De Moor, B. Easy hyperparameter search using optunity. arXiv 2014,

arXiv:1412.1114.

24. Anderson, H.S.; Roth, P. Elastic/Ember. 2021. Available online: https://github.com/elastic/ember/blob/master/README.md

(accessed on 23 April 2023)

25. Mauricio. Benign Malicious. 2021. Available online: https://www.kaggle.com/amauricio/pe-files-malwares (accessed on 10

November 2021).

26. Schultz, M.G.; Eskin, E.; Zadok, F.; Stolfo, S.J. Data mining methods for detection of new malicious executables. In Proceedings of

the 2001 IEEE Symposium on Security and Privacy, S&P 2001, Oakland, CA, USA, 14–16 May 2001; pp. 38–49.

27. Kolter, J.Z.; Maloof, M.A. Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 2006, 7, 2721–2744.

28. Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro, B.; Nicholas, C.K. Malware detection by eating a whole exe. In

Proceedings of the Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7

February 2018.

29. Pham, H.D.; Le, T.D.; Vu, T.N. Static PE malware detection using gradient boosting decision trees algorithm. In Proceedings

of the International Conference on Future Data and Security Engineering, Ho Chi Minh City, Vietnam, 28–30 November 2018;

pp. 228–236.

30. Fawcett, C.; Hoos, H.H. Analysing differences between algorithm configurations through ablation. J. Heuristics 2016, 22, 431–458.

[CrossRef]

31. Azeez, N.A.; Odufuwa, O.E.; Misra, S.; Oluranti, J.; Damaševičius, R. Windows PE Malware Detection Using Ensemble Learning.

Informatics 2021, 8, 10. [CrossRef]

32. ALGorain, F.T.; Clark, J.A. Covering Arrays ML HPO for Static Malware Detection. Eng 2023, 4, 543–554. [CrossRef]

33. Pérez-Espinosa, H.; Avila-George, H.; Rodriguez-Jacobo, J.; Cruz-Mendoza, H.A.; Martínez-Miranda, J.; Espinosa-Curiel, I.

Tuning the parameters of a convolutional artificial neural network by using covering arrays. Res. Comput. Sci. 2016, 121, 69–81.

[CrossRef]

34. Forbes, M.; Lawrence, J.; Lei, Y.; Kacker, R.N.; Kuhn, D.R. Refining the in-parameter-order strategy for constructing covering

arrays. J. Res. Natl. Inst. Stand. Technol. 2008, 113, 287. [CrossRef]

35. Lei, Y.; Kacker, R.; Kuhn, D.R.; Okun, V.; Lawrence, J. IPOG/IPOG-D: Efficient test generation for multi-way combinatorial

testing. Softw. Test. Verif. Reliab. 2008, 18, 125–148. [CrossRef]



Telecom 2023, 4 264

36. Duan, F.; Lei, Y.; Yu, L.; Kacker, R.N.; Kuhn, D.R. Improving IPOG’s vertical growth based on a graph coloring scheme. In

Proceedings of the 2015 IEEE Eighth International Conference on Software Testing, Verification and Validation Workshops

(ICSTW), Graz, Austria, 13–17 April 2015; pp. 1–8.

37. Anderson, H.S.; Roth, P. Ember: An open dataset for training static pe malware machine learning models. arXiv 2018,

arXiv:1804.04637.

38. Carrera, E. pefile. 2022. Available online: https://github.com/erocarrera/pefile (accessed on 15 January 2022).

39. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

40. sklearn. sklearn-StandardScaler. 2022. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler (accessed on 6 July 2022).

41. Saxe, J.; Berlin, K.; Vishwanathan, S. EXPOSE: A character-level convolutional neural network for predicting malware behavior.

arXiv 2015, arXiv:1510.07391.

42. Rajaraman, S.; Huang, Y.H.; Kim, H. Malware detection using deep neural network with multiple learning rates. In Proceedings of

the 2018 IEEE International Conference on Electro Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 679–683.

43. Seo, H.; Lee, J.; Lee, J. Malware detection using a hybrid convolutional neural network and long short-term memory model.

Inf. Sci. 2020, 516, 423–436.

44. Hayou, S.; Doucet, A.; Rousseau, J. On the impact of the activation function on deep neural networks training. In Proceedings of

the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 10–15 June 2019; pp. 2672–2680.

45. Huang, Y.; Xu, X.; Zhou, X.; Wu, G. Deep learning-based malware detection: A review. Comput. Secur. 2020, 92, 101716.

46. Shafiq, M.; Mustafa, K.; Yaqoob, I.; Saleem, K.; Makhdoom, I.; Abbas, H. Automated malware classification using ensemble with

feature selection. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies

(iCoMET), Sukkur, Pakistan, 3–4 March 2018; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Malware and Its Detection
	Brief about HPO
	Generating Covering Arrays
	Brief about Grid Search and Covering Arrays
	Brief about Deep Learning
	Hyperparameter Optimisation for Deep Learning
	Paper Contribution
	The Structure of the Paper

	Related Literature
	ML-Based Static Malware-Detection-Related Literature
	Covering-Array-Related Literature

	Methodology
	Experiment Details and Dataset Brief
	Datasets
	Experiment Setup
	Baseline Model
	Performance Evaluation

	Grid Search versus cAgen for NN Hyperparameter-Optimisation Tasks
	Grid Search
	cAgen
	Hyperparameter Grid Search Configurations

	Results and Discussion
	cAgen Tool Hyperparameter Versus Grid Search Results
	Discussion
	Tuning the Number of Neurons
	Tuning the Number of Layers
	Tuning of Activation Functions
	Tuning the Dropout Relay
	Choice of Optimisers
	Tuning the Number of Epochs and Batch Size

	Conclusions
	References

