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Abstract-The quotient of two multivariate Gaussian densities 
can be written as an unnormalized Gaussian density, which 
has been applied in some recently developed multiple-model 
fixed-interval smoothing algorithms. However, this expression is 
invalid if instead of being positive definite, the covariance of 
the unnormalized Gaussian density is indefinite (i.e., it has both 
positive and negative eigenvalues) or undefined (i.e., computing 
it requires inverting a singular matrix). This paper considers 
approximating the quotient of two Gaussian densities in this case 
using two different approaches to mitigate the caused numerical 
problems. The first approach directly replaces the indefinite 
covariance of the unnormalized Gaussian density with a positive 
definite matrix nearest to it. The second approach computes 
the approximation through solving, using the natural gradient, 
an optimization problem with a Kullback-Leibler divergence­
based cost function. This paper illustrates the application of 
the theoretical results by incorporating them into an existing 
smoothing method for jump Markov systems and utilizing the 
obtained smoothers to track a maneuvering target. 

I. INTRODUCTION 

Consider the multivariate Gaussian density N(x; µ, :E) in 

x E Rnx 1 with meanµ and covariance :E. n is the dimension­

ality of x. The quotient of two multivariate Gaussian densities 

N(x; µe, :Ee) and N(x; µa, :Ea) can be written as [l]-[3] 

N(x; µe, :Ee) l:Eal N(x; µb, :Eb) (l) 

N(x; µa, :Ea) l:Ea - :Eel . N(µa; µe, :Ea - :Ee)' 

where 

:Eb = (:E;::- 1 - :E; 1)-1 =:Ee+ :Ee(:Ea - :Ee)-1:Ee, (2a) 

µb = :Eb(:E;::- 1 µe - :E; 1 µa)· (2b) 

It can be seen that the term on the right hand side of (1) is an 

unnormalized Gaussian density. The expression (1) has been 

used in distributed target tracking to decorrelate the informa­

tion before fusion in order to avoid producing overconfident 

estimates [2], [4], [5]. It is also employed to remove the factor 

to be updated from the current approximation of the posterior 

and compute the updated factor in Gaussian expectation prop­

agation (EP) for approximate Bayesian inference [1], [6], [7]. 

Recent work on fixed-interval smoothing for jump Markov 

systems [3], [8]-[11] utilizes the quotient of two Gaussian 

densities as well. The considered smoothing problem aims at 

finding the joint posterior p(xt, M/ lzl:k) for 1 :S t :S k using 

all the k measurements collected within the interval [12]-[14]. 

Here, Xt is the system state at time t. M/ represents that the 

system follows the jth state-space model in the time interval 

(t - 1, t], where j = 1, 2, ... ,rand r is the number of models 

admitted by the jump Markov system. 

To obtain low-complexity algorithms, the joint posterior 

p(xt, M/ lzl:k) is computed recursively from t = k-1 tot = 1 

through approximating the optimal backward-time smoothing 

equation. For example, in [11], we evaluate 

( Mj I ) _ ~ p(xt IM/, zu)p(xt IMf+i, zl:k) . hji 
p Xt, t Z1:k - ~ ( IMi ) tik' 

i=l p Xt t+l, Z1:t 

(3) 

where h~jk is a factor depending on the model probabilities. 

All the densities in Xt in the summands of (3) are Gaus­

sian if Gaussian filtering [15] is adopted in the algorithm 

implementation. Thus, by exploring the product rule [12] and 

quotient rule (1) of Gaussian densities, we can express these 

summands as weighted Gaussian densities for merging to 

achieve multiple-model smoothing. [3] follows the same idea 

but tries to approximate a different form of (3). In [8]-[10], the 

quotient of two Gaussian densities in (3), p(xt IMf+i, zl:k) and 

p(xtlMf+i, z1:t), is needed to calculate the smoothed mixing 

probabilities to achieve model interaction in retrodiction. 

The expression (1) is valid only if the covariance :Eb of 

the unnormalized Gaussian density is positive definite (i.e., 

:Eb >- 0), or equivalently, :Ea - :Ee is positive definite 

(see (2a)). However, this may not always be satisfied in the 

backward-time recursion of the multiple-model smoothers [3], 

[8]-[11]. Empirical results show that both :Eb and :Ea - :Ee 

could be indefinite, causing 1/N(µa; µe, :Ea - :Ee) in (1) to 

be a complex number. Besides, :Eb may be undefined when 

:Ea - :Ee is singular. These numerical problems can render the 

smoothing output meaningless. We cannot simply discard the 

affected results at the current time as in [2] either, because 

this would completely interrupt the backward-time recursion. 

To address the above problem, [10] considers the Gaussian 

density obtained by combining the result from (1) to be a flat 

prior to avoid the propagation of numerical problems. In [3], 

[11], we apply the uncertainty-injection (UI) technique [16], 

[17], where we keep increasing a factor >. > 1 to scale up :Ea 



until the approximation to :Eb in (2a), 

(:E;;-1 _(.A. :Ea)-1)-1, (4) 

becomes positive definite. Despite of their effectiveness in the 

empirical studies, these methods appear to be ad hoe. 

This paper carries out further studies on approximating, for 

multiple-model smoothing, the quotient of two multivariate 

Gaussian densities when :Eb is indefinite or undefined. We 

consider two approaches and focus on finding approximations 

that either have closed-form solutions or can be found through 

simple iterative search. In the first approach, ~e calculate :Eb 

using (2a) and find a positive definite matrix :Eb nearest to it. 

Next, µ,b in (2b) and the scaling factor in (1) are computed 

using ±b in place of :Eb to achieve the approximation. 

The second approach attempts to find a Gaussian density 

N(x; µb, :Eb) such that multiplying it with N(x; µ,a, :Ea) and 

normalizing the result yield a Gaussian density closest in the 

sense of Kullback-Leibler divergence (KLD) to N(x; µ,e, :Ee)­

We impose appropriate constraints on :Eb when minimizing 

the KLD, and natural gradient is applied to derive a simple 

interative solution. Interestingly, we show that the UI techique 

in (4) is a special case of this approximation approach, which 

justifies, to some extent, the effectiveness of the UI technique 

seen in empirical studies. We incorporate the results of the the­

oretical developments into an existing multiple-model fixed­

interval smoother [11] to demonstrate their performance in 

tracking a maneuvering target. 

The rest of this paper is organized as follows. Section II 

gives methods for computing the positive definite matrix ap­

proximation to :Eb. Section III derives the KLD minimization­

based approximation using natural gradient. Section IV gives 

some numerical results. Section V concludes the paper. 

II. POSITIVE DEFINITE MATRIX APPROXIMATION 

A. Problem Fonnulation 

By exploiting the product rule of Gaussian densities [12], 

we obain an alternative but equivalent form for the quotient 

rule in (1), which is [2], [3] 

N(x; µ,e, :Ee) N(x; µ,b, :Eb) 

N(x; µ,a, :Ea) = N(µ,a; µ,b, :Ea+ :Eb)' 
(5) 

where µ,b and :Eb are defined in (2). Thus, a straightforward 

idea for approximating the expression (1) is to directlr replace 

:Eb in (5) and (2b) with a positive definite matrix :Eb when 

:Eb is indefinite. To establish a meaningful ap:eroximation and 

improve numerical stability, we expect that :Eb is nearest to 

:Eb under certain criterion and may have its condition number 

cond(±b) = .Amax(±b)/.Amin(±b) upper-bounded by r;,. Here, 

.Amax(X) and .Amin(X) denote the maximum and minimum 

eigenvalues of X, and r;, is a user-specified positive number. 

Mathematically, with the above approach, when the co­

variance :Eb is indefinite, the quotient for two multivariate 

Gaussian densities in (1) is approximated using 

N(x; µ,e, :Ee) ~ N(x; Jl,b, ±b) 

N(x; µ,a, :Ea) ~ N(µ,a; Jl,b, :Ea+ ±b)' 
(6) 

where 

(7) 

±b is found by solving the following optimization problem: 

ll!in £(±b, :Eb) 
:Eb (8) 

subject to ±b >-- 0 and other constraints. 

The cost function £(±b, :Eb) quantifies the difference between 

:Eb in (2a) and ±b. Besides the positive definiten~ss constraint 

±b >-- 0, the condition number constraint cond(:Eb) s:; r;, may 

be incorporated into (8) as well. 

B. Low-Complexity Approximations 

The problem of finding the nearest positive definite matrix 

approximation probably originates from finance [18]. For 

instance, the covariance to be approximated could be the 

sample covariance S = i I::f=1(Yi - y)(Yi - y)r, where 

y = i I::f=1 Yi· Some elements in S are modified to _make 

them consistent with prior knowledge such as two vanables 

usually being positively correlated. This may render the co­

variance indefinite and thus, approximation is needed. 

There are a number of methods available for nearest positive 

definite matrix approximation. Many of them are not suitable 

for the problem considered in this paper, where the covariance 

:Eb to be approximated is obtained algebraically (see (2a)), 

rather than from a set of data samples. As an example, when 

:Eb is indefinite, we may denote its eigenvalue decomposition 

as :Eb = Udiag(.A1, .A2, ... , .An)ur, where 

.A1 2'. .A2 2'. ... 2'. .Am > 0 > .Am+l 2'. .Am+l 2'. ··· 2'. An, (9) 

and U is orthonormal. In words, :Eb has m positive eigen­

values and n - m negative eigenvalues, where m < n. The 

Stein's estimator [19] approximates :Eb using 

(10) 

where ~1 2: ~2 2: .. . 2: ~n > 0. The eigenvalues ~i 

are found by applying the isotonic regression [20] to Ai/Ii, 

and Zi = i (p- n + 1 + 2.Ai LJ#i >-.,~>-.j ). Evaluating li 

requires knowledge on p, the number of samples used to 

generate :Eb, which is not known in our case. Tl;_e Ledoit­

Wolf (LW) estimator [21] finds the eigenvalues of :Eb in (10) 

using ~i = (1 - a).Ai + °'1'· This corresponds to restraining 

±b to be ±b = (1 - a):Eb + a1'I. The coefficients a and 

1' are computed by approximating the optimal solution that 

minimizes an expected quadratic loss function, which still 

requires using data samples unavailable in our problem . 

In the following, we shall present several simple positive 

definite matrix approximations to :Eb when it is indefinite. 

Each of them is obtained via solving an associated optimiza­

tion problem with its generic formulation given in (8), and the 

resulting approximations all take the form in (10). In other 

words, they are found by manipulating the eigenvalues .Ai of 

the original covariance :Eb with different techniques. 



1) Approximation based on diagonal loading: We adopt 

the idea of the LW estimator [21] and set :Eb to be :Eb = 
(1 - a)~b + ,BI, where 0 ::; a < l and ,B > 0. From (9), 

the minimum eigenvalue of :Eb is >-n = (l - a)An + ,B. This 

converts the positive definiteness constraint in (8) into >-n > 0 

or equivalently, ,B > -(1 - a)An. Besides, we also include 

the condition number constraint cond(:Eb) ::; "' in (8), which 

requires ((1 - a)A1 + ,B)/((1 - a)An + ,B) ::; "'· Combining 

these inequalities with ,B > 0 yields 

(11) 

Finally, applying the cost function £(:Eb, ~b) = 11:Eb - ~bi I} 

transforms the optimization problem (8) into one with two 

variables a and ,B: 

n 

min :~::),B - aAi) 2 

a,(3 i=l (12) 

. ( ) A1 - tiAn 
subject to O ::; a < 1 and ,B ~ 1 - a "' _ 1 . 

Here, I IXI IF = Jtr(XXT) and tr(X) denote the Frobenius 

norm and trace of X, and we have applied 11:Eb - ~bll} = 
ll,BI-a~bll} = I:~=1 (,B- aAi) 2 , where the third equality 

comes from the orthogonal invariance of the Frobenius norm. 

A suboptimal solution to (12) is a= 0 and ,B = >-. 1,;~;n. It 
is a good solution when the minimum eigenvalue of ~b has a 

relatively small magnitude (i.e., A1 » IAnl). As a result, the 

obtained positive definite matrix approximation is 

:E _ ~ A1 - tiAn I 
b- b+ l , 

K, -
(13) 

which has the form of diagonal loading. 

2) Approximation by lower-bounding >-n: This method 

replaces the positive definiteness constraint in (8) with n 

J?OSitive lower bounds on the eigenvalues of :Eb, which are 

Ai ~ 1 > 0, i = 1, 2, ... , n. We continue to employ the squared 

Frobenius norm of the difference matrix :Eb - ~b as the cost 

function such that the approximation to ~b is found by solving 

A 2 
ll}in ll~b - ~bi IF 
:Eb (14) 

subject to >.i ~ 1 , i = 1, 2, ... , n. 

The above problem is an extension of the one in [22] 

formulated to compute the nearest positive semidefinite matrix 

to an arbitrary symmetric matrix. We can follow the same 

argument in [22] to show that the cost function in (14) satisfies 

n 

(15) 

The two inequalities in (15) would become equalities if :Eb 
takes the form in (10) with its eigenvalues equal to 

>.i = {Ai, ~f Ai ~ 1 
,, 1f Ai< 1 

(16) 

which is the optimal solution to (14). In words, this approx­

imation :Eb is obtained by increasing the eigenvalues of the 

original covariance ~b that are lower than the threshold, to 

, while keeping other eigenvalues intact. 

3) Spectral norm-based approximation: The approxima­

tion :Eb given in (10) and (16) implicitly assumes that only 

the small eigenvalues of ~b need to be corrected when 

it is indefinite. To simultaneously account for the possible 

overestimation of the large eigenvalues of ~b, [23] finds 

:Eb via solving (8) with the cost function chosen to be the 

spectral norm max IAi(:Eb - ~b)I- Here, Ai(X) denotes the 
i 

ith largest eigenvalue of X. The constraints adopted are the 

positive definiteness constraint :Eb >--- 0 and condition number 

constraint cond(:Eb) ::; "'· The obtained approximation :Eb still 

takes the form in (10), whose eigenvalues are [23] 

{

<5, if Ai< <5 

>.i = Ai, if c5 ::; Ai ::; ti6 

ti6, if Ai > ti6 

(17) 

where c5 = >-.~t~v. It is evident from (17) that this estimator 

clips the large eigenvalues of ~b if they are bigger than ti6. 

4) Trace norm-based approximation: The approximation 

:Eb may also be found through solving the same optimization 

problem as in the spectral norm-based case but with its cost 

function replaced by the trace norm I:~=l IAi(:Eb - ~b) I [23]. 

The optimal :Eb is again given in (10) and (16), where the 

threshold , in (16) is now equal to , = Ai/"'· 

5) Maximum-likelihood approximation: In [24], ~b is 

assumed to be the sample covariance of the data samples 

drawn independently from a zero-mean Gaussian density with 

unknown covariance :Eb. The problem of approximating ~bis 

thus cast into the maximum likelihood estimation of :Eb under 

the positive definiteness and condition number constraints. The 

associated optimization problem is 

ll}in tr (t; 1~b) - log I t; 1
1 

:Eb (18) 

subject to :Eb >--- 0 and cond(:Eb) ::; "'· 

IX I denotes the matrix determinant of X. 

An efficient method has been developed in [24] to solve 

(18) when ~bis positive semidefinite. We shall extend it to the 

scenario in consideration where ~b may be indefinite. In this 

case, we can show by following [24] and utilizing the results 
A -1 

in Chapter 14.2 of [25] that the cost function tr(~b ~b) -
A -1 

logl~b I attains its lower bound L~=l AiUi - log(ui) when 

:Eb is given in (10) and ui = 1/.>.i. With the introduction of 

an auxiliary variable u, (18) can be transformed into [24] 

n 

min ~ AiUi - log(ui) 
u>O,ui ~ 

i=l 

subject to u ::; ui ::; tiU. 

(19) 

Note that the condition number constraint on :Eb is now 

imposed on the inverse of its eigenvalues ui = 1 /.>.i. 



To solve (19), we first observe that >.iui - log( ui) is convex 

with respect to ui, and it has a critical point 1 />.i. Besides, 

if >.i s 0, >.iui - log(ui) would decrease monotonically as 

ui increases. Therefore, given u > 0, the ith summand of the 

cost function in (19) reaches its minimum value 

{
Ail'iU - log(tiu), if >.i SO or i > tiU 

Ji(u) = 1 + log(>.i), if us is tiu , (20) 

>.iu - log(u), if i < u 

when the optimization variable ui is equal to 

if >.i s O or J, > tiu 

if U S J, S tiU 

if J, < u 

(21) 

With the above results, (19) reduces to a univariate optimiza­

tion problem: min L~=l Ji(u). 
u>O 

To find the minimizer for L~=l Ji(u) under u > 0, we 

note that Ji(u) can take different forms (see (20)), depending 

on the relationship between u, 1/>.i and 1/(ti>.i), but they 

are still convex with respect to u. Therefore, we can sort in 

an ascending order 1/>.i and 1/(ti>.i), i = 1,2, ... ,m, which 

are proportional to the inverse of the positive eigenvalues of 

:Eb (see (9)), and obtain O < b1 S b2 S ... S b2m- In this 

way, 2m - 1 intervals (bj, bH1], j = 1, 2, ... , 2m - 1, are 

generated. We then minimize the cost function L~=l Ji(u) 

over each interval and output the minimizer that produces the 

smallest function value as the optimal solution u*. Finally, u* 

is substituted back into (21) to find .\, which is put into (10) 

to generate the positive definite matrix approximation tb. 

III. KLD MINIMIZATION-BASED APPROXIMATION 

A. Problem Formulation 

The alternative expression for the quotient of two multivari-

ate Gaussian densities in (5) can be further re-written as 

N( . ~ ) = N(x; µa, :Ea)N(x; µb, :Eb) (22) 
x,µe,~e N( ) . 

µa; µb, :Ea+ :Eb 

The term on the right hand side of (22) can be considered as 

the measurement update stage of a linear Kalman filter, with 

N(x; µa, :Ea) being the likelihood, N(x; µb, :Eb) being the 

prior and N(x; µe, :Ee) being the posterior [12]-[14]. 

Thus, another approach for approximating (5) or the original 

expression (1) when :Eb is not positive definite can be estab­

lished. In particular, we aim at finding the prior N(x; µb, tb) 

such that multiplying it with the likelihood N(x; µa, :Ea) 

and normalizing the result as in (22) produce the posterior 

N(x; µd, :Ed) closest in terms of KLD to N(x; µe, :Ee)- This 

approach is different from the methods in Section II as it 

utilizes KLD minimization to reduce the amount of distortion 

when approximating the quotient of two Gaussian densities. 

The corresponding optimization problem with positive defi­

niteness and condition number constraints on tb is 

mi_!l V(N(x; µd, :Ed) I IN(x; µe, :Ee)) 
ji,b,'Eb (23) 

subject to tb >- 0 and cond(tb) s ti, 

where by the product rule of Gaussian densities [12], we have 

-1 - -l -1 -1 - -l -
:Ed= (:Ea + :Eb ) , µd = :Ed(:Ea µa+ :Eb µb). (24) 

V(N(x; µd, :Ed) I IN(x; µe, :Ee)) is the reverse KLD between 

N(x; µd, :Ed) and N(x; µe, :Ec) 1, which is [26] 

V(N(x; µd, :Ed) I IN(x; µe, :Ee)) 

JN 
N(x; µd, :Ed) 

= (x; µd, :Ed)log N( . :E ) dx 
x,µe, e 

(25) 

ex tr (:E;:-1((µd - µc)(µd - µc)T + :Ed)) - logl:Edl-

The desired KLD minimization-based approximation to the 

quotient of two multivariate Gaussian densities given in (1) 

can thus be achieved by solving (23) for µb and tb, and 

putting them into (6) in place of µb and tb. 

Note from (25) that the cost function reaches the lower 

bound when µd = µe. We immediately have that the optimal 

µb is given by, according to (24), 

Jl,b = jjb ( (:E;;:- 1 + t; 1)µe - :E;;:- 1 µa) . (26) 

We can substitute (26) into (25) and convert the optimization 

problem (23) into one with a single variable tb. However, es­

timating the covariance tb from this newly obtained problem 

is still cumbersome. 

In the remaining of this section, we shall first simplify the 

problem in (23) and then derive a simple iterative method to 

find an estimate of tb to accomplish the KLD minimization­

based approximation. 

B. Problem Simplification 

The theoretical development begins with noticing that the 

multivariate Gaussian density is a member of the exponential 

family, and the density function N(x; µ, :E) can be expressed 

as [26], [27] 

N(x; µ, :E) = exp (1JT </J(x) -A(17)), (27) 

where 17 is the natural parameter and </J(x) is the sufficient 

statistic for 17. With slight abuse of notations, we have [28] 

1JT </J(x) = tr ( ( 17< 1) f </J1 (x) + 11<2) </J2 (x)) , 

where 

r,<1l = :E-1 µ, 

</J1 (x) = x, 

[ 
17(1) ] 

11 = vec( 17<2)) ' 

(28a) 

(28b) 

(28c) 

and vec(X) is the column-vectorised version of the matrix X. 

A( 1J) in (27) is the cumulant function, which is equal to 

A(17) = ½logl2w:EI + ½µT:E- 1 µ. It has two useful properties. 

1The forward KLD 'D(N(x; µ,c, :Ec)IIN(x; µ,d, :Ed)) [26] may be used 
as the cost function in (23) as well. Developing a gradient-based solution for 

this newly formulated optimization problem and investigating its performance 

when being incorporated into multiple-model fixed-interval smoothers will be 

subject to future study. 



Specifically, its first-order and second-order partial derivatives 

with respect to the natural parameter 'T/ are equal to [27] 

a~~'TJ) = E(</J(x)), (29a) 

82A('TJ) 
a,,,a,,,r = cov(</J(x)), (29b) 

where cov( </J(x)) = E( </J(x)</JT (x)) - E( </J(x) )E( </JT (x)) is 

the covariance of the sufficient statistic </J(x). 

The Fisher information matrix (FIM) [29] of the natural 

parameter 'T/, denoted by FIM('TJ), is equal to 82 A('TJ)/8'T/8'T/T· 
This can be verified by noting that 

FIM('TJ) = E (8logJ\f(x; µ, ~) . 8logJ\f(x; µ, ~)) 
a,,, a,,,r 

= E ( ( </J(x) - a~~'TJ)) ( </J(x) - a~~'TJ)) T) 

= cov(</J(x)) = 82 A('TJ)/8'T/a'T/r, 
(30) 

where (27) and (29) have been substituted to arrive at the 

last three equalities. We would like to point out that the two 

properties of A('TJ), given in (29) and (30), are valid for any 

member of the exponential family as long as its distribution 

function is written in the form exp('TJT </J(x) - A('TJ)). 

We explore these results to simplify the optimization prob­

lem (23). Let "Id and "le denote the natural parameters of 

Gaussian densities N(x; µd, ~d) and N(x; µe, ~c). We then 

apply (27) and (29) to transform the cost function in (25) into 

V(N(x; µd, ~d) I IN(x; µe, ~e)) 

= J N(x; µd, ~d) (("Id - 'TJe)T </>(x) - A('TJd) + A('TJe)) dx 

raA(,,,d) 
= ("Id - "le) a - A('TJd) + A('TJe)-

'TJd 
(31) 

Besides, from the definition of N(x; µd, ~d) given above 

(23) and in (24), the natural parameter "Id can be expressed in 

terms of "la a~d i}b, the natural parameters of N(x; µa, ~a) 

and N(x; ji,b, ~b), as 

(32) 

In other words, "Id is just a shifted version of ilb. 

Finally, note from (28) that the mean µ and covariance ~ 

of a Gaussian density N(x; µ, ~) can be deduced from its 

natural parameter 'T/ uniquely via 

(33a) 

(33b) 

As a result, through applying (33), (28) and (32), we are able 

to express the covariance of N(x; ji,b, :Eb) in terms of "Id as 

:E __ ! (-(2))-l _ ! ( (2) (2))-l 
b - 2 'TJb - 2 'T/a - "Id · (34) 

With (31), (32) and (34), the optimization problem (23) 

could be transformed into an equivalent one given by 

min C('TJd) = ("Id - "lef 8~('TJd) - A('TJd) + A('TJe) 
'rid 'TJd (35) 

subject to :Eb >-- 0 and cond(:Eb) ::; r;,. 

C. Natural Gradient-based Approximation 

We shall develop a simple gradient algorithm to solve (35) 

for the covariance :Eb. For this purpose, the gradient of the 

cost function e('TJd) can be shown to be 

v e( ) - ae(,,,d) - a2 A(,,,d) ( - ) (36) 
'rid 'TJd - a,,,d - a,,,da'TJJ 'TJd 'T/e . 

Evaluating (36) is difficult due to the presence of the second­

order partial derivative 82 A( "Id)/ a,,,da,,,J. To circumvent this 

difficulty, we resort to the natural gradient defined as [30], [31] 

V ,,,de( "Id) = (FIM( "Id) )- 1 v' ,,,de( "Id) = "Id - "le, (37) 

where (30) and (36) have been applied. The natural gradient 

incorporates the FIM of "Id, FIM('TJd), to define a Riemannian 

metric so that the information geometry of N(x; µd, ~d) pa­

rameterized over "Id is taken into account [31], [32]. Note that 

(37) can also be established using expectation parameter-based 

reparameterization [32], [33], and it has been adopted in [32]­

[35] to develop scalable Bayesian deep learning techniques. 

We can obtain a simple rule from (37) for estimating "Id 
iteratively based on natural gradient descent, which is 

'TJd,k+l = 'TJd,k-pkVTJd,ke('TJd) = 'TJd,k-Pk('T/d,k-'TJe), (38) 

where Pk > 0 is the step size and 'TJd,k is the estimate of "Id 
in the kth iteration. Putting (32) and (28) reveals that (38) 

estimates simultaneously the two components of the natural 

parameter ilb, iib1) and iib2), using 

- ( i) _ ( l ) - ( i) ( ( i) ( i)) . 
"lb,k+l - - Pk 'TJb,k + Pk 'T/e - 'T/a , Z = 1, 2, (39) 

where fib:~ is the estimate of iibi) in iteration k. 

Through substituting (33) and (34) into (39) with i = 2, 

we obtain the following rule for updating the estimate of the 

desired covariance :Eb 

(40) 

Here, :Eb,k denotes the estimate of :Eb in iteration k. 

According to (2a), ~;;- 1 - ~;;:- 1 would not be a positive 

definite matrix when ~b in the original expression (1) for the 

quotient of two multivariate Gaussian densities is not positive 

<!_efinite. Thus, the necessary condition for the updated estimate 

~b,k+l in (40) to satisfy the positive definiteness constraint in 

(35) is O < Pk < 1, since Pk ~ 1 will lead to an indefinite or 

even negative definite result. 

Under the condition O < Pk < 1, the update rule (40) indeed 

keeps shrinking the estimate of :E~1 toward the fixed target 

matrix ~;;- 1 - ~;;:- 1. As such, it can be shown by mathematical 

induction that the output of ( 40) is always able to be expressed 



~ -1 
as the linear combination of the initial guess for :Eb , denoted 

by t;~, and :E~1 - :E~1, which is 

t;! = (1- p):E;~ + p(:E~1 - :E~ 1), 0 < p < l. (41) 

If p = l, the estimator (41) reduces to the algebraic solution 

in (2a). This corresponds to setting Pk = l in (38), which 

results in the unconstrained optimal solution to (35). In this 

case, we have that 'T/ d = 'T/ c and the cost function, which is 

indeed the KLD, attains its lower bound of 0 [26], [27]. 

With the theoretical results derived so far, a simple iterative 

method for finding an estimate of :Eb using (41) is developed. 

It starts with an initial guess :Eb,o and keeps increasing the 

value of p within (0,1) until the output of (41) no longer satis­

fies the positive definiteness and condition number constraints 

in (35). The purpose of searching for the maximum possible 

p is to decrease the KLD-based cost function and improve the 

chance of producing a good solution. This can be carried out 

efficiently by using e.g, the bisection technique with an upper 

bound on the number of allowed iterations. 

The obtained estimate of :Eb will be substituted into (26) 

to compute the mean µ. They together serve as a suboptimal 

solution to the original optimization problem (23). Applying 

them in (6) in place ofµ, and tb yields the KLD minimization­

based approximation of the quotient of two multivariate Gaus­

sian densities when :Eb in (2a) is indefinite or undefined. 

Two important observations can be made by carefully 

examining (41). First, if the initial guess :Eb,o is set to be 

:Ee, the covariance of the Gaussian density in the numerator 

of the quotient rule (see (1)), (41) becomes 

:E-1 _ (:E-1 _ ( -1:E )-1) 
b,k - c P a · (42) 

This estimate has the same functional form as the one in (4), 

which indicates that the DI-based approximation adopted in 

our previous work [3], [11] is in fact a special case of the KLD 

minimization-based approximation developed here. The main 

difference is that the former tends to scale up :Ea to guarantee 

the positive definiteness of the output. On the contrary, the 

latter tries to maximize p (or equivalently, minimize 1/ p) in 

(42) so as to reduce the deviation of the estimated covariance 

from the algebraic solution (2a). This is due to the use of KLD 

as the cost function (see (24) and (25)). 

Besides, setting the initial guess :Eb,o to be El, where 

E is sufficiently large, reduces the KLD minimization-based 

approximation (41) to the nearest positive definition matrix 

approximation in Section II. But this is a poor choice. This can 

be justified by considering the scenario where :Eb is indefinite 

and its eigenvalues are given in (9). According to (2a), the 

eigenvalues of :E~1 - :E~1, Ui, satisfy Um+i S Um+2 S 
... < Un < 0 < u1 S u2 S ... S Um, where Ui = 1/>..i, 

i = 1, 2, ... , n. Therefore, we have from (41) that the largest 

eigenvalue of the estimated :E b would be 1 / ( ( 1-p) E + pum+ 1), 

which depends on a negative eigenvalue of :Eb, rather than 

the largest eigenvalue >..1. This is not desired, as :Eb will be 

significantly different from the original covariance :Eb. 

IV. NUMERICAL RESULTS 

A. Simulation Setup 

The simulation scenario is very similar to the one used 

in [3], [11]. We shall give a brief description here. For 

more details, readers are referred to Sections IV of [3], [11]. 

Specifically, a stationary sensor is deployed at the origin to 

estimate the smoothed trajectory of a moving target using 200 

pairs of bearing and range measurements. The measurements 

are obtained with a sampling period of 3s (i.e., they are 

collected within an interval of 600s). The standard deviations 

of bearing and range noises are 0.5° and 50m. 

At the beginning of the tracking process, the target is 250km 

away from the sensor with a true bearing of 70°. It moves in 

the southwest direction with an initial speed of 200m/s. Its 

trajectory has four segments. The first segment (0s to 200s) 

and third segment (219s to 479s) follow a constant velocity 

(CV) model whose process noise has a standard deviation of 

lm/s2. The target makes two turns, one in the second segment 

(201s to 218s) with an acceleration of lg and the other in the 

fourth segment (480s to 599s) with an acceleration of 0.5g. 

Both turns are modeled by the constant tum (CT) model with 

process noise having a standard deviation of lm/s2. 

B. Smoothing Algorithm Implementation 

We incorporate the proposed approximations to the quotient 

of two multivariate Gaussian densities into the fixed-interval 

smoother developed in [11] for jump Markov nonlinear sys­

tems. The resulting smoothers are applied to identify the target 

trajectory described in the previous subsection. 

At sampling index t, the considered multiple-model smooth­

ing algorithm evaluates (3), where every density in Xt in the 

summand is approximated using the Gaussian density found 

by the cubature Kalman filter (CKF) [36]. The summand in 

(3) can be written as an unnormalized Gaussian density by 

applying the product rule [12] to its numerator and (1) to the 

resulting quotient of two multivariate Gaussian densities. The 

approximation to the quotient rule ( 1) will be invoked once the 

covariance :Eb computed using (2a) is indefinite or undefined. 

To cope with the presence of target maneuvers, we employ 

r = 7 motion models, one CV model and six CT models with 

different tum rates, in the simulated smoothing algorithm [11]. 

The state Xt is composed of the target position and velocity 

at sampling index t, t = 1, 2, ... , 200. The model index Mi 
indicates that the target follows the jth assumed motion model 

during (t - 1, t]. See Sections IV of [11] for more details on 

the smoothing algorithm realization. 

C. Approximation Algorithm Implementation 

When implementing the proposed approximations to the 

quotient of two multivariate Gaussian densities, we need to 

select ti, the bound on the condition number of the covariance 

of the approximated unnormalized Gaussian density, tb or :Eb. 

In particular, we set ti to be the maximum of cond(:Ec) and 

cond(:Ea) for the approximations based on diagonal loading 

('DL'), spectral norm ('SN'), trace norm ('TN') and KLD 

minimization ('KLD') (see Sections 11.B and 111.C). Besides, 



we set the initial guess :Eb,o in the KLD minimization-based 

approximation to be ~c- The number of allowed iterations 

is 5, which is equivalent to performing a grid search for the 

shrinkage factor p with a resolution of 1/32 (see (42)). 

There exist occasions where the smallest eigenvalue of the 

original covariance ~b, An, is negative but with a magnitude 

larger than the biggest eigenvalue >.1 (l>-nl > >. 1). As a result, 

the spectral norm-based approximation cannot yield a positive 

definite matrix approximation to ~b, because the threshold 

8 = >-~~~" , also the smallest eigenvalue of the approximation 

:Eb, would be negative (see (17)). We avoid this problem by 

setting 8 = >.iJ K (i.e., the spectral norm-based approximation 

reduces to the trace norm-based one in this case). 

For the maximum-likelihood approximation ('ML') pre­

sented in Section II.B, K is configured to be 0.95 ; 1 [24], 

the down-scaled ratio of the largest and smallest positive 

eigenvalues of the original covariance ~b-

D. Results and Discussions 

The performance of the smoothers with different approx­

imations to the quotient of two Gaussian densities is quan­

tified using the target position estimation root mean square 

error (RMSE) and target velocity estimation RMSE. The 

estimation RMSEs from three benchmark techniques are given 

for comparison. They include the forward-time interacting 

multiple model (IMM) filter ('IMM Filter'), the smoother in 

Algorithm 1 of [10] ('Method from [10]') and the original 

smoothing algorithm in [11] with VI-based approximation 

('VI') to the quotient rule (see (4)). The results are obtained 

through averaging over 2000 ensemble runs. 

The simulation study is conducted on a desktop running 

MATLAB® and Windows® 10 with a 3GHz Intel® Core i7-

9700 CPU and 32GB RAM. The implemented fixed-interval 

smoothers with different techniques for approximating the 

quotient of two Gaussian densities have similar CPU run time. 

They all take about 0.72s to achieve fixed-interval smoothing 

using the collected 200 bearing and range measurements. 
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Fig. 1. Comparison of target position estimation RMSEs. 

Figs. 1 and 2 plot as function of time the estimation RMSEs 

for the target position and velocity. It can be observed that as 
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Fig. 2. Comparison of target velocity estimation RMSEs. 

expected, the smoothing algorithms such as the ones from [l 0] 

('Method from [10]') and [11] ('UI') provide better estimation 

accuracy over the forward-time IMM filter. 

More importantly, the approximations developed in Section 

11, which try to find the nearest positive definite matrix 

to replace the indefinite covariance in the quotient of two 

Gaussian densities when it is present, perform poorly. For the 

sake of clarity, we only include in the figures the results from 

the trace norm-based ('TN') and maximum likelihood ('ML') 

approximations. The performance of the diagonal loading­

based ('DL') and spectral norm-based ('SN') approximations 

have similar trend. In this simulation, they all suffer from 

divergence near the time instant 201s when the target starts 

making its first sharp turn (see Section IV.A). The underlying 

reason is probably that the approximations derived using this 

approach focus on finding, under different analytical criteria, 

the nearest positive definite matrix approximation :Eb to the 

original covariance ~b only. The approximation error in :Eb 
may lead to significantly deviated estimate of the mean P,b (see 

(7)), which leads to large and greatly fluctuating estimation 

RMSEs observed in Figs. 1 and 2. 

On the contrary, the proposed KLD minimization-based 

approximation ('KLD') and its special case ('VI' from [11]) 

offer the best estimation accuracy over the whole tracking 

interval. They are numerically stable as well. The greatly 

improved performance could be due to two aspects. First, 

these approximations indeed utilize a KLD-dependent cost 

function to calculate the approximation covariance :Eb (see the 

discussion under (26), and Sections 111.B and 111.C). Second, 

they compute the mean µb using (26), and µc is now weighted 

by (~;; 1 + t;\ rather than ~;;- 1 as in (7), which also 

comes from minimizing the KLD in (25). In other words, 

the KLD minimization-based approach considers the impact 

of the approximation error on µb and :Eb simultaneously by 

exploring the relationship between the product rule [12] and 

quotient rule (1) of Gaussian densities (see (22)). 

Last, the proposed KLD minimization-based approximation 

('KLD') given in (41) has similar performance as the VI-based 

technique ('UI') originally adopted in [3] and [11]. The reason 



may be found by examining (3). As each summand in (3) is 

an unnormalized Gaussian density, the term on the right hand 

side of (3) can be roughly considered as a Gaussian mixture 

model (GMM) with r components. To maintain computational 

tractability, the smoothing algorithm in [11] merges these 

Gaussian components into a single Gaussian density, subject to 

certain scaling, using the method of moment matching [29]. 

As a result, the difference between the KLD minimization­

based and DI-based approximations can no longer be easily 

observed in the simulation results. 

V. CONCLUSIONS 

In recently proposed multiple-model smoothing algorithms, 

the quotient of two multivariate Gaussian densities was em­

ployed in realizing the backward-time recursion. It is ex­

pressed as an unnormalized Gaussian density if the latter has 

a positive definite covariance. Otherwise, approximations are 

needed to avoid numerical problems. This paper presented 

several low-complexity approximations derived using two ap­

proaches. The first approach replaces the indefinite covariance 

with the positive definite matrix nearest to it. The second 

approach finds the approximation through solving a KLD 

minimization problem using natural gradient. We proved that 

the UI technique adopted in our previous work on multiple­

model smoothing is a special case of the second approach. 

The obtained approximations were integrated into an existing 

smoother to estimate the trajectory of a maneuvering target. 

The KLD minimization-based approach was shown to be able 

to provide the best empirical performance. This is because it 

achieves the approximation by attempting, through minimizing 

the KLD, to conform to the relationship between the product 

and quotient rules of Gaussian densities as a whole. 
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