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ABSTRACT

Clustering in high-dimensions poses many statistical challenges. While traditional distance-based clustering
methods are computationally feasible, they lack probabilistic interpretation and rely on heuristics for
estimation of the number of clusters. On the other hand, probabilistic model-based clustering techniques
often fail to scale and devising algorithms that are able to effectively explore the posterior space is an
open problem. Based on recent developments in Bayesian distance-based clustering, we propose a hybrid
solution that entails defining a likelihood on pairwise distances between observations. The novelty of the
approach consists in including both cohesion and repulsion terms in the likelihood, which allows for cluster
identifiability. This implies that clusters are composed of objects which have small dissimilarities among
themselves (cohesion) and similar dissimilarities to observations in other clusters (repulsion). We show how
this modeling strategy has interesting connection with existing proposals in the literature. The proposed
method is computationally efficient and applicable to a wide variety of scenarios. We demonstrate the
approach in simulation and an application in digital numismatics. Supplementary Material with code is
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1. Introduction

Multidimensional clustering has been a fruitful line of research
in statistics for a long time. The surge in the availability of
data in recent years poses new challenges to clustering methods
and the scalability of the associated computational algorithms,
particularly in high dimensions. There are two main classes
of clustering methods: those based on probabilistic models
(model-based clustering), and constructive approaches based on
dissimilarities between observations (distance-based clustering).
The first class of methods includes popular tools such as mixture
models (Mclachlan and Basford 1988; Dasgupta and Raftery
1998), product partition models (PPMs) (Hartigan 1990; Barry
and Hartigan 1992), and nonparametric models like the Dirich-
let process or more general species sampling models (Pitman
1996; Ishwaran and James 2003). An overview can be found in
the article by Quintana (2006). The second class of methods
includes the popular hierarchical clustering, k-means, and its
variants like k-medoids.

Distance-based clustering algorithms, although computa-
tionally accessible and scalable to high dimensions, are often
less interpretable, and do not quantify clustering uncertainty
because of the lack of a probabilistic foundation. Out-of-sample
prediction is challenging with these algorithms, and inference
on the number of clusters relies on heuristics such as the elbow
method. Moreover, there are theoretical limitations to the results
produced by any distance-based clustering algorithm; in par-
ticular, they cannot simultaneously satisfy constraints about

scale-invariance and consistency while also exploring all possi-
ble partitions (Kleinberg 2002). On the other hand the draw-
backs of model-based clustering methods are their analytic
intractability and computational burden arising when working
with high dimensional observations. To add to this, a fundamen-
tal difficulty with both types of clustering methods is that there is
no consensus on what constitutes a true cluster (Hennig 2015),
and that the aims of clustering should be application-specific.

The focus of this article is high dimensional clustering, in
particular when point-wise evaluation of the likelihood is com-
putationally intractable and posterior inference is infeasible.
Our approach builds on recent proposals by Duan and Dunson
(2021) and Rigon, Herring, and Dunson (2023) that bridge the
gap between model-based and distance-based clustering. The
main idea behind this research is to specify a probability model
on the distances between observations instead of the observa-
tions themselves, reducing a multidimensional problem to a
low-dimensional one. An early reference for Bayesian clustering
based on distances can be found in Lau and Green (2007).

Let p, = {Ci,...,Cxk} denote a partition of the set [n] =
{1,...,n}, and let X = {x1,...,x,} be a set of observations
in R’ It is convenient to represent a clustering through cluster
allocation indicators z;, where z; = j when i € C;. Rigon, Her-
ring, and Dunson (2023) reformulate the clustering problem in
terms of decision theory. They show that a large class of distance-
based clustering methods based on loss-functions, including k-
means and k-medoids, are equivalent to maximum a posteriori
estimates in a probabilistic model with appropriately defined
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likelihood on the distances. Explicitly, they consider product
partition models where the likelihood decomposes into cluster-
wise cohesions

K
71X | % pn) = [ Jexp | =2 ) DG, Co)

k=1 ieCy

where D(x;, C) measures the dissimilarity of observation i from
cluster Cx and A is a parameter that controls the posterior
dependence on the distances between observations. A major
drawback in this approach is that the number of clusters K must
be pre-specified, whereas K is an object of inference in many
practical scenarios. Inference on K is also problematic in the
method proposed by Duan and Dunson (2021). This is due
to identifiability issues that arise when working with distances.
The starting point of their approach is an overfitted mixture
model. By noting that in high dimensions the contribution of
the cluster centers to the likelihood is negligible compared to
the contribution from pairwise distances within the cluster, they
specify a partial likelihood on the pairwise distances between
observations

K

X | pma ) =[] [ gdeixse p)!/™

k=11,jeCy

where g is a Gamma(w, 8) density and ny is the size of the kth
cluster. Although this approach allows for estimation of K, it
often relies on the specification of the maximum number of
clusters in the sense that the clustering allocation significantly
changes with this parameter.

We propose a model for high-dimensional clustering based
on pairwise distances that combines cluster-wise cohesions with
arepulsive term that imposes a strong identifiability constraint in
the likelihood by penalizing clusters that are not well-separated.
To this end, we borrow ideas from machine learning such as the
cross-cluster penalty in the calculation of a silhouette coefficient,
and from the literature on repulsive distributions. The idea
of repulsive distributions has been previously studied in the
context of mixture models (Petralia, Rao, and Dunson 2012; Xu,
Miiller, and Telesca 2016; Quinlan, Quintana, and Page 2017)
to separate the location and scale parameters of the mixture
kernels. We discuss the connection of repulsive distributions to
our model in more detail in Section 2.1.

There are other instances of model-based clustering methods
which exploit pairwise distances for cluster estimation. One
example is the framework of Voronoi tesselations, a partition
strategy that has found application in Bayesian statistics and
partition models (Denison and Holmes 2001; Moller and Skare
2001; Corander, Sirén, and Arjas 2008). In this approach a set
of centers is sampled from a prior and the sample space is par-
titioned into the associated Voronoi cells. When the centers are
chosen from the observations themselves, the implied prior on
partitions depends on the pairwise distances between the obser-
vations. In the Bayesian random partition model literature, there
have been various proposals to include covariate information in
cluster allocation probabilities. Most notably, Miiller, Quintana,
and Rosner (2011) use a similarity function defined on sets of
covariates belonging to all experimental units from a given clus-
ter to modify the cohesions of a product partition model. Their
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similarity function is the marginal density of the covariates from
an auxiliary probability model, which can also be interpreted as
the marginal density on the distances of the covariates from a
latent center in the auxilliary probability space. This approach
incorporates information about the distances between covari-
ates into the partition prior. In high-dimensional settings, that
is, when the number of covariates is large, the covariate informa-
tion dominates the clustering and the influence of the response is
relatively inconsequential. See for example the work by Barcella,
De Iorio, and Baio (2017). Alternatively, Dahl (2008), and Dahl,
Day, and Tsai (2017) propose random partition models through
different modifications of the Dirichlet process cluster allocation
probability: in the first case of the full conditional Pr(z; | z—;),
and in the second case of the sequential conditional probabilities
Pl‘(Zi | Z15en- ,Z,‘_l).

All these methods are linked through the use of pairwise
dissimilarities, often in the form of distances, to define a parti-
tion prior for flexible Bayesian modeling. Here, we use the same
strategy to define the likelihood on pairwise distances while
using standard partition priors such as the Dirichlet process
or the recently proposed microclustering priors (Zanella et al.
2016; Betancourt, Zanella, and Steorts 2022). In this respect,
our model is strongly related to composite likelihood methods
which will be discussed in Section 2.1.

The article is structured as follows. In Section 2 we introduce
the model and the computational strategy. In Section 3 we apply
the proposed methodology to a problem from digital numismat-
ics. We conclude the article in Section 4. In supplementary mate-
rial we present details of the computational algorithm, extensive
simulation studies, and further results from the data application.

2. Model

In this section we describe the pairwise distance-based likeli-
hood, and we present a justification for our modeling approach.
The proposed strategy can accommodate different partition pri-
ors. In particular, we discuss a microclustering prior (Betan-
court, Zanella, and Steorts 2022) as it is the most relevant for
our application in digital numismatics. We conclude the section
with a discussion on the choice of hyperparameters, and of the
MCMC algorithm.

2.1. Likelihood Specification

We specify the likelihood on pairwise distances between obser-
vations instead of directly on the observations. This strategy falls
naturally into the framework of composite likelihood. In its most
general form, a composite likelihood is obtained by multiplying
together a collection of component functions, each of which is a
valid conditional or marginal density (Lindsay 1988). The utility
of composite likelihoods is in their computational tractability
when a full likelihood is difficult to specify or computationally
challenging to work with. In this context, the working assump-
tion is the conditional independence of the individual likelihood
components. Key examples of composite likelihood approaches
include pseudolikelihood methods for approximate inference in
spatial processes (Besag 1975), posterior inference in population
genetics models (Li and Stephens 2003; Larribe and Fearnhead
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2011), pairwise difference likelihood and maximum composite
likelihood in the analysis of dependence structure (Lele and
Taper 2002), and the use of independence log-likelihood for
inference on clustered data (Chandler and Bate 2007). See Varin,
Reid, and Firth (2011) for an overview. Other approaches to
overcome likelihood intractability include specifying the likeli-
hood on summary statistics of the data (Beaumont, Zhang, and
Balding 2002), or comparing simulated data from the model
with the observed data (Fearnhead and Prangle 2012). Both
these ideas underlie approximate Bayesian computation (Marjo-
ram et al. 2003).

Combining ideas from composite likelihood methods and
distance-based clustering, our strategy is to specify a likelihood
on the distances that decomposes into a contribution from
within-cluster distances and cross-cluster distances:

K
a@ 0,000 =[] []f@s120 || TT []&®@s! 0k

k=11,jeCy (k,t)eA ieCy

i<j jeCr
(1)
where D = [d(x;, xj)];; is the matrix of all pairwise distances,
A = {(k;t) : 1 < k <t < K}, and f and g are probability
densities. Note that this formulation does not result in a valid
probability model on the data, but rather on a space X that is
obtained as follows: let G be the group of isometries of R (with
respect to the chosen distance metric), andlet H = {(g,...,g) €
G" : g € G} be the diagonal subgroup of G”. Then X is the orbit
space R>*"/H (for a reference see Klaus 1995). In Section 2.3
we discuss the choice of f and g in (1). The first term in (1)
is similar to the cohesions of Duan and Dunson (2021) and
Rigon, Herring, and Dunson (2023) and quantifies how similar
the observations within each cluster are to each other; we call

this the cohesive part of the likelihood.

The second multiplicative term in the likelihood, which we
call the repulsive term, is related to the idea of repulsive mixtures.
Typical mixture models associate with each cluster a location
parameter ¢);, and these are assumed to be iid from a fixed prior.
Petralia, Rao, and Dunson (2012), and Quinlan, Quintana, and
Page (2017) relax the iid assumption and use a repulsive joint
prior of the form

m(¢) o [ [ nd(gi ) 2)

ij

where d is a distance measure and h decays to 0 for small values
of its input. They do this to penalize clusters that are too close to
each other, inducing parsimony. We generalize this idea by using
a repulsive distribution on the observations themselves, that is,
by setting g in (1) to a density that decays as its input approaches
0. This form of repulsion is important to our application because
it encourages the formation of clusters from points that are
not only close to each other but also have similar distances to
points in other clusters. Moreover the repulsion allows for inter-
cluster distances of different magnitude for different pairs of
clusters. Consequently, this strategy allows for estimation of the
number of clusters. Using repulsion on the observations instead
of the cluster centers is also a viable strategy when the location
parameters are not of interest or when posterior inference on the
location parameters is computationally difficult, as is usually the

case in high-dimensional clustering (Johnstone and Titterington
2009). In doing so, we relax the assumption of conditional inde-
pendence between clusters given their cluster-specific parame-
ters. In supplementary material we further investigate the role
of the repulsion term, showing its importance in identifying the
number of clusters. This is consistent with the work by Fuquene,
Steel, and Rossell (2019) that shows that repulsion leads to faster
learning of K in model-based settings.

2.2. Posterior Uncertainty

The distance based likelihood in (1) has sharper peaks and flatter
tails than the model-based likelihood from the raw data, as
is typical in composite likelihood or pseudo-likelihood frame-
works due to the artificial independence assumption. Intuitively,
our model assumes O(n?) independent pieces of informa-
tion whereas the data generation process may only produce
O(n) independent pieces of information. Consequently, well-
separated clusters are associated to high posterior probabil-
ity with corresponding underestimation of uncertainty, while
poorly separated clusters will often be split into smaller clusters
due to the artificially increased uncertainty. Although the esti-
mation of uncertainty is inaccurate, localization of modes in the
posterior is satisfactory (as is typically the case for composite
likelihood methods) and the model is able to provide some
measure of uncertainty even when direct approaches fail to
recover the clustering structure. This is demonstrated in our
simulations in supplementary materials. Moreover, our model
can be used to guide more direct model-based approaches with
better prior information. We believe that the major drawback
of our approach is its dependence on a choice of dissimilarity
measure, as we remark in the discussion section. Finally we
note that a common strategy in composite likelihood models to
counteract the underestimation of uncertainty is to artificially
flatten the likelihood, raising it to the power 1/xn. We cannot
employ the same approach as this would flatten both the within-
cluster terms and the cross-cluster terms, making them overlap
significantly and making the clusters unidentifiable. We have
nevertheless tried this approach, and as expected we obtained
poor inference results (not shown).

2.3. Choice of Distance Densities

The likelihood in (1) results in a monotonically decreasing den-
sity on the within-cluster distances if the cohesive term is chosen
as the exponential of a loss function, as suggested by Rigon,
Herring, and Dunson (2023). This choice might be too restric-
tive in application, as more flexible distributions are required
to accommodate the complexity in the data. As a consequence
of such a restrictive choice, more dispersed clusters may be
broken up into smaller clusters. Rigon, Herring, and Dunson
(2023) alleviate this problem by fixing the number of clusters.
We instead propose a more flexible choice of f and g motivated
by the following commonly encountered scenario.

Assume that the original data have a multivariate Normal
distribution such that each cluster is defined by a Normal kernel

yil zi = ko 0f ~ N (g, o)



Hence, the within-cluster differences are distributed as
N0, 20,(21 1) and the corresponding squared Euclidean distances
have a Gamma(l/2,1/ (Zokz)) distribution. On the other hand,
inter-cluster squared distances are distributed as a three-
parameter noncentral XZ:

g(I— %13 1z =kg =tk #160 = (65.67))
e

1
-5 V), o amag)

m=0

where 9( ) is the noncentrality parameter and corresponds to the

squared distance between the cluster centers uy and 1y, Glgt)

a scale parameter related to the within-cluster variances of the
two clusters, / is the dimension of the original data, and h(:; a, b)
is a Gamma(a, b) density. This setup would cover many real
world applications, but posterior inference on the parameters
of a noncentral x? is unnecessarily complicated. Moreover the
noncentral x? is defined on the squared Euclidean distance,
which will lead to a noncentral x distribution on the distances.
Indeed when we know that the data generation process coincides
with a Normal mixture, we should use the correct distribution
but this is not often the case. As such when the data generating
process is unknown we work with Gamma distributions on the
distances mainly for computational convenience. We propose
setting f to be a Gamma(d;, Ax) as in Duan and Dunson (2021):

Ail %0171 exp(—Agx)

I'(61)

where x is a pairwise distance and §; is a fixed shape param-
eter that controls the cluster dispersion. When §; < 1, f is
a monotonically decreasing density. We set g in (1) to be a
Gamma(8,, Ox;) density, where §, > 1 is a fixed shape parameter
that controls the shape of the decay of g toward the origin. We
note that the constraint §; > 1 ensures that g is a repulsive
density by forcing g(0 | 6k;) = 0. An appropriate choice
of §; and &, is application-specific, and we discuss possible
alternatives in Section 2.4.

In our experiments we find that using a Gamma distribution
directly on the distances does not have an appreciable effect on
posterior inference, suggesting that the methodology is robust.
This strategy is also followed by Duan and Dunson (2021) but
for different reasons.

flxlap) =

2.4. Prior Specification

Here we discuss the choice of priors for the cluster-specific
parameters and the partition.

2.4.1. Prior Cluster-Specific Parameters
For computational convenience, we choose conjugate Gamma

priors Ak i Gamma(w, 8) and Oy i Gamma(¢, y). To
set 81,82, ¢, 8,¢, and y, we follow a procedure in the spirit
of empirical Bayes methods, as straightforward application of
empirical Bayes is hindered by an often flat marginal likelihood
of the parameters in question. We summarize our method in
Algorithm 1.

The range for K in step 1 of the algorithm can be chosen to be
quite broad, for example from one to n — 1. When only pairwise
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Algorithm 1 Choosing o, 8, ¢, y, 61, and 8,

1. Compute a heuristic initial value for K, say Kepow, via the
elbow method, fitting k-means clustering for a range of values
of K and with the within-cluster-sum-of-squares (WSS) score
as the objective function.

2. Use k-means clustering with Kejpow to obtain an initial clus-
tering configuration.

3. Split the pairwise distances into two groups A and B that
correspond to the within-cluster and inter-cluster distances
in this initial configuration.

4. Fit a Gamma distribution to the values in A using maximum
likelihood estimation and set ; to be the shape parameter of
this distribution.

5. Seta = 8ingand B = ), a, where ny is the cardinality
of the set A. This corresponds to the conditional posterior of
A obtained by specifying an improper prior w(A) o I(A >
0) and treating A as a weighted set of observations from a
Gamma(d;, A) distribution.

6. Repeat Steps 4 and 5 to obtain values for 8, ¢ and y by
considering the values in B.

distances or dissimilarities are available and not the raw data,
k-medoids and the within-cluster-sum-of-dissimilarities can be
used instead.

The proposed method depends on the choice of K obtained
by the elbow method. In supplementary material we show that
posterior inference is robust to the choice of K obtained, as long
as this choice lies within a sensible range. We also propose an
alternative method to fit the prior that results in a mixture prior
on possible values for K.

2.4.2. Prior on Partitions

The model can accommodate any prior on partitions of the
observations, which is equivalent to specifying a prior on the
partitions of [n] = {1,...,n}. Let p, = {Ci,...,Ck} denote
a partition of [n] where the C; are pairwise disjoint and K < n.
A common choice is to use a product partition model (PPM) as
the prior for p,; see for example the paper by Hartigan (1990)
or Barry and Hartigan (1992). In a PPM there is a nonnegative
function ¢(C;), usually referred to as a cohesion function, which
is used to define the prior

K
Pr(p) =M ] [ e(C)

j=1

where M is a normalizing constant. This prior includes as special
cases the Dirichlet Process (Quintana and Iglesias 2003) as
well as Gibbs-type priors. Alternatively one can consider the
implied prior on partitions derived from a species sampling
model (Pitman 1996); in this case it can be shown that Pr(p,, =
{C1,...,Ck}) = p(n1,...,ng) where nj = |Cj| is the number
of elements in C; and p is a symmetric function of its arguments
called the exchangeable partition probability function (EPPF).

In our application, we opt for a prior that has the microclus-
tering property (Miller et al. 2015; Zanella et al. 2016; Betan-
court, Zanella, and Steorts 2022); that is, cluster sizes grow
sublinearly in the number of observations n. This property is
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appropriate for die analysis in numismatics where each die is
represented by a very limited number of samples. We use a class
of random partition models described in Betancourt, Zanella,
and Steorts (2022) called Exchangeable Sequence of Clusters
(ESC). In this model a generative process gives rise to a prior on
partitions, which we describe briefly. A random distribution v is
drawn from the set P of distributions on the positive integers;
v is distributed according to some P,. The cluster sizes n; are
sampled from v, conditional upon the following event

K
there exists K € N such that Z nj =n
j=1

E, =

We require that v(1) > 0 for all v in the support of P, to ensure
that Pr(E, | v) > O for all v. A random partition with cluster
sizes {ny,...,nk} is drawn by allocating cluster labels from a
uniform permutation of

1,...,1,2,...,2,..,K,...,K).
e e N e’ ~———
ny times  ny times ng times

The resulting partition model is denoted ESC,, (P, ). Here we give
details on the clustering structure implied by the microclustering
prior in (3) and (4), as well as on the prior predictive distribution
of the cluster label for a new observation in (5). Betancourt,
Zanella, and Steorts (2022) derive the conditional and marginal
EPPF for the class of microclustering priors as well as the con-
ditional allocation probabilities. Let (z3,...,z,) be the cluster
allocation labels for p, ~ ESC,(P,). Then for any i € [n]
Betancourt, Zanella, and Steorts (2022) show that:

Pr(pp | v) = Pr(ny,...,ng | v) = 'Pr(E ]_[ njlv(nj)
(3)
1 Kl
Pr(on) = Pr(m,....nx) = g Euer, Eﬂ njlv(n))
(4)
v(ni_;+1
) (nj,_i+1)M j=1... K
w(zi=j|z—jV) X v(nj,—;)
(K + Du(1) j=Koi+1
(5)
where z_; is the set of cluster labels excluding z;, n;—; is the
numerosity of Cj _; = C; \ {i}, and K_; is the number of clusters

in the induced partition of [#n] \ {i}. Betancourt, Zanella, and
Steorts (2022) suggest setting v to a negative binomial truncated
to the positive integers and show that the resulting model, which
they call the ESC-NB model, exhibits the microclustering prop-
erty. We use a variant of the ESC-NB model by setting v to a
shifted negative binomial as it aids the choice of hyperparame-
ters. We set v = NegBin(r, p) + 1 where r ~ Gamma(#, o) and
p ~ Beta(u,v). To set the hyperparameters o, 1, u, and v, one
can use the conditional distribution on the number of clusters K
and a prior guess on the number of clusters. In general posterior
inference is not sensitive to the choice of the hyperparameters in
the prior for  and p. Nevertheless, the marginal and conditional
distributions of K can be analytically calculated or approximated

as in the following proposition. The proposition can be used for
setting the hyperparameters in the priors for r and p, especially
when relevant prior information on K is available.

Proposition 1. The conditional distribution on the number of
clusters K in the ESC model with a shifted negative binomial is
given by

rK ,n—K
1 d=pp K<n
7K |rp) = By [ 1p) (n — K)B(rK,n — K)
n > (l _p)rn K =n
(6)

where B(:, -) is the Beta function. The marginal distribution of
K is approximated by

I'n—K+u)
'h—K+1)
o"T'(n+v)K"(n—K)T™"
X Ywv+nn—u+lo/wg) K<n (7)
o'T'(n —uw)K™* K=n
where W(, -, -) is the confluent hypergeometric function of the

second kind. If 4 = v = 1, the marginal distribution of K is
exactly given by

—n o - o
7(K) x wg "V - — lgkenmyog W e (8)
K

7(K) ~ 7 (K)

where wg = VEK and wj = WLKH
Proof. See supplementary material. O

In our simulation studies and real data analyses, we opt for
an empirical Bayes approach (see Algorithm 2) to set the hyper-
parameters for r and p, which is consistent with our method for
setting the hyperparameters for A and 6.

Algorithm 2 Choosing values for 1, o, 4, and v.

1. Fix the cluster labels at the initial clustering configuration
obtained in Step 2 of Algorithm 1.

2. Sample r and p from their conditional posteriors in the model
using a Gamma(l, 1) prior for r and Beta(1, 1) prior for p.

3. Use MLE to fit a Gamma(n, o) distribution to the posterior
samples of r and a Beta(u,v) distribution to the posterior
samples of p.

We conclude this section by noting that the model lends
itself to any choice of partition prior. Particular choices could
favor a different clustering structure and should be tailored to
the application in question. For instance, Pitman-Yor (Pitman
and Yor 1997) or Gibbs-type priors (Gnedin and Pitman 2006)
could be used as drop-in replacements for the microclustering
prior and cover a wide range of partition priors such as mixture
with random number of components (Miller and Harrison 2018;
Argiento and De Iorio 2022). When prior information on the
partition is available a more direct approach could be employed;
see for example Paganin et al. (2021). We also note that as the
number of observations n grows larger than the number of
clusters K (i.e., when not all clusters are singletons), posterior
inference quickly becomes less sensitive to the choice of partition
prior as the likelihood will dominate the posterior.



2.5. Posterior Inference

Posterior inference is performed through an MCMC scheme.
Cluster allocations can be updated either through a Gibbs update
of individual cluster labels, or through a split-merge algorithm
as proposed by Jain and Neal (2004). The split-merge algorithm
is more efficient for large n as it leads to better mixing of the
chain. In our applications we combine a Gibbs step and a split-
merge step in each iteration as suggested by Jain and Neal (2004).
In supplementary material we show that the time complexity
of the cluster reallocation step is O(n?). We note that the pre-

computation of the pairwise distances is typically not a

bottleneck, as the distances are computed only once. Posterior
inference for r and p are performed through a Metropolis step
and a Gibbs update, respectively. We do not sample the A and
Okt as we marginalize over them. If required, they can be sampled
by conditioning on the cluster allocation and sampling from a
Gamma-Gamma conjugate model. See supplementary material
for derivations of the posterior conditionals and the full details
of the Gibbs and split-merge algorithms.

We note that the MCMC scheme can be modified as neces-
sary to accommodate different choice of partition priors, as effi-
cient algorithms are available for most Bayesian nonparametric
processes.

3. Application to Digital Numismatics
3.1. Description of the Data

Die studies determine the number of dies used to mint a discreet
issue of coinage. With almost no exceptions, dies were destroyed
after they wore out, which is why die studies rely on an analysis
of the coins struck by them. From a statistical viewpoint the first
task to be accomplished is clustering the coins with the goal of
identifying if they were cast from the same die.

Die studies are an indispensable tool for pre-modern his-
torical chronology and economic and political history. They
are used for putting coins (and by extension rulers and events)
into chronological order, to identify mints, and for estimating
the output of a mint over time. While digital technology has
made large amounts of coinage accessible, numismatic research
still requires meticulous and time-consuming manual work.
Conducting a die study is time consuming because each coin
has to be compared visually to every other coin at least once to
determine whether their obverse (front face) and their reverse
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(back face) were struck from the same dies. For example, a study
of 800 coin obverses would require more than 300,000 visual
comparisons and could take an expert numismatist approxi-
mately 450 hours from scratch. This makes it practically impos-
sible to conduct large scale die studies of coinages like that of
the Roman Empire, which would be historically more valuable
than the small-scale die studies done today. The practical dif-
ficulties of manual die-studies calls for computer-assisted die
studies.

We consider here silver coins from one of several issues
minted between late 64 C.E and mid 66 C.E., immediately after
the great fire of Rome. Pressed for funds, Nero reduced the
weight of gold and silver coins by c. 12%, so that he could
produce more coinage out of the available bullion stock. Deter-
mining the number of dies used to strike this coinage will make
it possible to come up with reasonable estimates of how many
gold and silver coins Nero minted during this period, and help
to determine how much bullion he may have saved in the imme-
diate aftermath of the great fire. This type of numismatic work
would require time-consuming effort by highly trained experts
if performed manually. Here we demonstrate the potential in
digital numismatics of our strategy by clustering a dataset of
81 coins, which requires a few hours for pre-processing of the
images and a few minutes to fit our model. The distance com-
putation is straightforward to parallelize, further speeding up
computation. The data consists of 81 high-resolution images of
obverses taken from a forthcoming die study on Nero’s coinage.
To test the performance of our model, die analysis is first per-
formed by visual inspection by a numismatic expert to provide
the ground truth. This analysis identifies 10 distinct die groups.
The images were standardized to 380 x 380 pixels to compute
the pairwise distances.

3.2. Computing Pairwise Distances

Fitting the model in (1) requires the definition of a distance
between images that has the potential to differentiate between
images of coins minted from different dies and to capture the
similarity of images of coins minted from the same die. The
pixelwise Euclidean distance between the digital images cannot
be used to obtain such information about the semantic dissimi-
larity of images. Due to the high dimensionality of the ambient
image space the dataset of images is sparse, with little separation
between the largest and smallest pairwise Euclidean distances in
the dataset (Beyer et al. 1999). Figure 1(a) illustrates this for our
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(a) Pixelwise distances

Figure 1. Coin data: Histogram of within-cluster distances (orange) and inter-cluster
conducted by an expert numismatist.

(b) Distances computed using our method

(c) Distances after MDS embedding

distances (blue). The clusters correspond to the true clusters obtained by a die study
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(a) Matched landmarks on coins belonging to the same die group.

(b) Matched landmarks on coins belonging to different die groups.

Figure 2. Matched sets of landmarks are used to construct a dissimilarity measure between images of coins. The number of landmarks is one of the components of this
dissimilarity measure. Original unprocessed images are courtesy of the American Numismatic Society (n.d.) (leftimage in (a) and (b)), the Classical Numismatic Group (n.d.)

(right image in (a)), and Gerhard Hirsch Nachfolger (2013) (right image in (b)).

dataset. In contrast, numismatists rely on domain knowledge
and often years of experience to identify few key feature points
in images of coins to aid comparisons. This essentially coincides
with disregarding irrelevant features and performing dimension
reduction. When defining the distance between images, our goal
is to automate expert knowledge acquisition and focus on extrac-
tion of key features. This is a common strategy in many tasks in
computer vision (Szeliski 2010) and, more generally, in statistical
shape analysis (Dryden and Mardia 2016; Gao et al. 2019a).
Taylor (2020) uses landmarking to define a distance between
images of ancient coins with the ultimate goal of die-analysis
using simple hierarchical clustering. They do not provide an
estimate of the number of dies represented in the sample or an
overall subdivision of coins into die groups.

To identify comparable key features across pairs of coin
images, we find sets of matched landmark pairs between images
by exploiting the Scale-Invariant Feature Transform (SIFT)
(Lowe 2004) and a low-distortion correspondence filtering pro-
cedure (Lipman et al. 2014). We use the landmark ranking
algorithm of Gao, Kovalsky, and Daubechies (2019b) and Gao
et al. (2019a), which we extend for ranking pairs of landmarks.
We define a dissimilarity score between images using these
ranked landmark pairs. Figure 2 shows an example of matched
landmark sets for images from the same die group and from
different die groups. Details of the pipeline are provided in the
supplementary material. These dissimilarity scores are used as
input for our algorithm. The pairwise dissimilarities are shown
in Figure 1(b), and in supplementary material we compare the
prior predictive distribution on dissimilarities as implied by
our data-driven prior specification process to the kernel density
estimate of the dissimilarities.

3.3. Results

We run our model on the coin data for 50,000 iterations, dis-
carding the first 10,000 iterations as burnin. We compare our
model to the Mixture of Finite Mixtures (MFM) model pro-
posed by Miller and Harrison (2018) and a Dirichlet Process
Mixture (DPM), both as implemented in the Julia pack-
age BayesianMixtures.jl (Miller 2020), using Normal
mixture kernels with diagonal covariance matrix and conju-
gate priors. For the purposes of the comparison, we embed

the coins as points in Euclidean space by applying Multi-
Dimensional Scaling (Kruskal 1964) (as implemented by the
MultivariateStats.jl package in Julia) to the dis-
similarity scores between the coins. We run the MFM and DPM
samplers on the MDS output, which is 80-dimensional.

To evaluate algorithm performance, we compute the co-
clustering matrix whose entries s;; are given by s; = Pr(z; =
zj | X). Each s;; can be estimated from the MCMC output and
its estimate is not affected by the label-switching phenomenon
(Stephens 2000; Fritsch and Ickstadt 2009). In Figure 4 we
compare the true adjacency matrix to the co-clustering matrices
obtained by our model, MFM, and DPM. In Figure 3 we show
the marginal prior predictive distribution on the number of
clusters K implied by our choice of prior hyperparameters, as
well as the posterior distribution on K for each method. In
Supplementary Material we show the posterior co-clustering
matrix for our model without repulsion, the posterior distribu-
tions of  and p, and we provide convergence diagnostics for the
sampler.

For each method a clustering point-estimate is obtained via
the SALSO algorithm (Dahl, Johnson, and Miiller 2022). This
algorithm takes as its input the posterior samples of cluster
allocations and searches for a point estimate that minimizes
the posterior expectation of the Variation of Information dis-
tance (Meild 2007; Wade and Ghahramani 2018). Point esti-
mates are also obtained via k-means (on the MDS output)
and k-medoids (on the dissimilarities), as implemented in the
Clustering.jl package in Julia, using the value of K
obtained by the elbow method as in Section 2.4.1. Table 1
shows the Binder loss, Normalized Variation of Information
(NVI) distance, Adjusted Rand Index (ARI), and Normalized
Mutual Information (NMI) of these point estimates with respect
to the true clustering. In supplementary material we show the
adjacency matrices for the various point estimates.

The findings from this application suggest that clustering
with our model on the distances alone can produce sensi-
ble results in terms of the original data, providing a viable
strategy for high-dimensional settings. We further demonstrate
the effectiveness of our model through simulation studies in
supplementary material. These studies (a) show the effect of
dimensionality and cluster separation on posterior inference, (b)
demonstrate the robustness of our method to choice of prior
hyperparameters, and (c) demonstrate the importance of the
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Figure 4. Coins data: Posterior co-clustering matrices.

repulsion term in our likelihood. We remind the reader that our
model underestimates uncertainty as discussed in Section 2.2.

4. Discussion

It is the curse of dimensionality, a malediction that has plagued

the scientist from the earliest days.

— Richard Bellman, 1961

(d) DPM

When clustering in large dimensions, the main statistical chal-
lenges include (i) accommodating for the sparsity of points
in large dimensions, (ii) capturing the complexity of the data
generating process in high-dimensions, including the interde-
pendence of features which might be cluster-specific, (iii) esti-
mating model parameters, (iv) developing methods which are
robust to different underlying generative processes and cluster
characteristics, (v) devising computational algorithms that are
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Table 1. Coins data: Comparison of point estimates with the true clustering.

Our Model MFM DPM k-means k-medoids
Binder loss 0.04 0.12 0.12 0.08 0.10
NVI distance 0.12 0.19 0.19 0.28 0.38
ARI 0.78 0.52 0.52 0.52 0.41
NMI 0.88 0.79 0.79 0.74 0.64
K 17 7 7 12 12

NOTE: We highlight the best value for each measure in bold.

scalable to large datasets, (vi) producing interpretable results,
(vii) assessing the validity of the cluster allocation, and (viii)
determining the degree to which different features contribute to
clustering.

We propose a hybrid clustering method for high-dimensional
problems which is essentially model-based clustering on pair-
wise distances between the original observations. This method
is also applicable in settings where the likelihood is not compu-
tationally tractable. The strategy allows us to overcome many of
the aforementioned challenges, bypassing the specification of a
model on the original data. The main contribution of our work is
to combine cohesive and repulsive components in the likelihood,
and we provide theoretical justifications for our model choices.
Our method is robust to different generative processes, and
computationally more efficient than model-based approaches
for high dimensions because it reduces the multi-dimensional
likelihood on each data point to a unidimensional likelihood on
each distance. Our method also leads to interpretable results as
clusters are defined in terms of the original observations. The
model can be easily extended to categorical variables by con-
sidering (for example) the Hamming distance or cross entropy
and specifying appropriate distributions f and g in (1). The
main drawbacks of our methodology is that the role of each
feature is embedded in the distances and model performance is
dependent on the definition of the distances. We do not advise
the use of a distance-based approach when the dimension is
small because in that case standard model-based approaches
work well, and using distances as a summary of the data causes
loss of information.

From our application in digital numismatics, it is clear that
the definition of the distances plays a crucial role and a future
direction of this work is to develop landmark estimation meth-
ods better able to capture the distinguishing features of images.

Finally, there is an interesting connection between the like-
lihood in (1) and the likelihood for a stochastic blockmodel in
the p1 family (Snijders and Nowicki 1997; Nowicki and Snijders
2001; Schmidt and Morup 2013) where every block of nodes can
be thought of as a cluster of similar objects. This connection is a
topic of further research.

Supplementary Materials

Additional results: Proof of Theorem 1, detailed description of the
MCMC algorithm, computational complexity of the MCMC algorithm,
details of the method to compute distances between coin images,
additional plots and results from the numismatic example, alternative
method to choose prior hyperparameters, and simulation studies are
available online in a supplementary PDF document.

Code: Julia code to perform posterior inference is available on Github at
https://github.com/abhinavnatarajan/RedClust.jl, and also as a package

in the default Julia package registry (“General”). The code used to run
the numismatic and simulated examples and generate the corresponding
figures is available at https://github.com/abhinavnatarajan/RedClust jl/
tree/examples.
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