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Decoupling Multimodal Transformers for Referring

Video Object Segmentation
Mingqi Gao, Jinyu Yang, Student Member, IEEE, Jungong Han, Member, IEEE, Ke Lu, Senior Member, IEEE,

Feng Zheng∗, Member, IEEE, Giovanni Montana

Abstract—Referring Video Object Segmentation (RVOS) aims
to segment the text-depicted object from video sequences. With
excellent capabilities in long-range modelling and information
interaction, transformers have been increasingly applied in ex-
isting RVOS architectures. To better leverage multimodal data,
most efforts focus on the interaction between visual and textual
features. However, they ignore the syntactic structures of the
text during the interaction, where all textual components are
intertwined, resulting in ambiguous vision-language alignment.
In this paper, we improve the multimodal interaction by DE-
COUPLING the interweave. Specifically, we train a lightweight
subject perceptron, which extracts the subject part from the
input text. Then, the subject and text features are fed into two
parallel branches to interact with visual features. This enables
us to perform subject-aware and context-aware interactions,
respectively, thus encouraging more explicit and discriminative
feature embedding and alignment. Moreover, we find the de-
coupled architecture also facilitates incorporating the vision-
language pre-trained alignment into RVOS, further improving
the segmentation performance. Experimental results on all RVOS
benchmark datasets demonstrate the superiority of our proposed
method over the state-of-the-arts. The code of our method is
available at: https://github.com/gaomingqi/dmformer.

Index Terms—Decoupled multimodal transformers, Referring
video object segmentation, Vision-language pre-training.

I. INTRODUCTION

Segmenting the object of interest in videos is a fundamental

procedure in video analysis and editing [1], thus has spawned

several relevant tasks and attracted much attention in the

community. Based on the ways specifying the target objects,

existing Video Object Segmentation (VOS) approaches can

be mainly categorised into three folds: semi-supervised (also
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Fig. 1. Comparison of the RVOS works with different interaction strategies.
Given an input video and a text referring to the target object, (a) intertwines
all textual components to interact with visual features; (b) decouples the inter-
action into subject-aware and context-aware, based on subject perception from
the text. Such decoupling encourages more discriminative and comprehensive
vision-language interaction. Bounding boxes in the left column indicate the
ground truth objects. Red masks in the right column are the predictions. Best
viewed in colour.

termed as one-shot) VOS, interactive VOS, and referring VOS

(RVOS). The first two approaches rely on the target objects

specified by human annotations [2]. In contrast, the object of

interest in RVOS is described by language expressions. This

renders RVOS more user-friendly and compatible with human-

computer interaction applications.

Apparently, RVOS is essentially under the multimodal set-

ting, in which the key challenge is how to effectively inter-

act between vision and language features. Existing methods

achieve this via dynamic convolution [3], [4], crossmodal

attention [5]–[13], or transformers [14]–[19], making remark-

able progress. Theoretically, these methods are designed to

attend to all multimodal elements and perform comprehensive

interactions, which, however, is hard to achieve in practice.

This is mainly because they ignore the syntactic structures

of the text and intertwine all textual components during the

interaction. In most training samples, the text-referred object

is the only object in its category such that RVOS methods

tend to focus more on the subject rather than other valuable

descriptions in the text. Therefore, explicit vision-language
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interaction remains unexplored to current RVOS works, thus

performing unsatisfactorily in practical scenarios where mul-

tiple distractors and complex scenes coexist.

To tackle the challenge, our idea is to DECOUPLE multi-

modal interactions. As shown in Fig. 1, given a video and a

text referring to the target, we first locate the subject part from

the text, via a lightweight subject perceptron. Then, with the

separation, two parallel multimodal interactions are performed:

Subject-aware interaction and Context-aware interaction. The

former focuses on subject objects, and the latter is encouraged

to mine discriminative features from the description part of

the text. Unlike existing RVOS methods, which interact visual

features with all textual elements, our decoupled strategy as-

signs explicit tasks to different interaction branches. Therefore,

the excessive focus can be effectively mitigated to achieve

discriminative feature embedding and interaction.

As the foundation for multimodal interaction, feature align-

ment between different modalities is also critical to RVOS.

Most existing works achieve this implicitly by minimising the

segmentation loss on RVOS datasets [3], [20], [21]. However,

limited by annotation efforts, these datasets cannot provide

sufficient video-text pairs for alignment learning. In addition,

such insufficiency significantly restricts the RVOS methods’

generalisability to the visual or textual concepts that are

rare/unseen in the training set.

Our method improves the alignment by incorporating

the vision-language pre-trained knowledge. Recently, Vision-

Language Pre-training (VLP) has boosted many vision and

multi-modal applications due to its rich semantic correspon-

dence and impressive transferability [22]. However, such ad-

vances have not yet been explored in RVOS since there are

differences in targets between current VLP works (image-

level [23] or object-level [24]) and RVOS (pixel-level), which

hinders effective knowledge transfer. This paper makes the

first attempt to address this challenge. Specifically, we incor-

porate the knowledge from an object-level VLP model [24]

to boost our multi-modal encoder. Despite our ultimate goal

being pixel-level prediction, we found the proposed decoupling

mechanism coincidentally enables part of our architecture

(subject-aware interaction) to have a similar purpose as the

VLP model [24]. This way, our architecture can better benefit

from VLP knowledge to align vision and language elements.

Our contributions can be summarised as follows:

• We propose a novel transformer-based RVOS architec-

ture, termed Decoupled Multimodal Transformer (DM-

Former), which explicitly interacts visual features with

different syntactic components from the text. This would

ultimately encourage more explicit and comprehensive

feature interactions for RVOS.

• With the decoupled architecture, we explore an effec-

tive strategy to transfer knowledge from large-scale pre-

trained vision-language alignment to RVOS.

• Our proposed DMFormer consistently outperforms the

state-of-the-arts on all existing RVOS benchmarks, in-

cluding Ref-YouTube-VOS [21], Ref-DAVIS [20], A2D-

Sentence [3], and J-HMDB-Sentence [3].

II. RELATED WORKS

A. Referring Video Object Segmentation

Given the input video and text, the goal of RVOS is to

segment and associate the text-referred object on all video

frames. The task is firstly proposed by Gavrilyuk et al. [3] and

further extended by Khoreva et al. [20] and Seo et al. [21] via

broading the intput text from action-orient to unconstrained

descriptions. To well link textual clues with visual objects,

current RVOS methods mainly use three techniques to interact

between multimodal elements: dynamic convolution, cross-

modal attention, and transformers.

Dynamic convolution is firstly applied to RVOS by Gavri-

lyuk et al. [3], where text features are encoded as kernels to

convolve visual features. Wang et al. [4] improve this idea by

modulating textual kernels based on the visual context to be

convolved, bringing more robustness against visually similar

distractors. Despite being effective, the information interaction

via convolution is not sufficient to handle complex scenes and

language expressions.

Crossmodal attention is a widely used technique in RVOS as

it can build the fine-grained and semantic correspondence be-

tween vision and language elements. Earlier work [5] leverages

such properties to refine visual contexts and reduce language

variations. To utilise the text more sufficiently, several works

incorporate specific language components into attention-based

interaction. These components could be semantic words (e.g.,

entities, attributes, or relations) [6], [7] or the adaptively ex-

tracted text elements [8], [10]. More recently, attention-based

RVOS works tend to take temporal information into account.

For example, CSTM [9] and LBDT [12] interact language

features with visual features from both intra- and inter-frames.

MMVT [11] measures optical flow from adjacent frames and

fuses flow maps with visual and language features. Besides

temporal features, object-level features are also considered in a

recent work [13], achieving multi-granularity and multi-modal

attention for RVOS.

Transformers’s success in both Natural Language Process-

ing (NLP) [25] and Computer Vision (CV) [26] encourages

relevant applications for multimodal analysis. Unlike the above

works, transformer-based RVOS achieves vision-language in-

teraction entirely based on the attention mechanism. Earlier

methods [14]–[16] segment each video frame individually

and only leverage transformers to fuse multimodal features.

Inspired by the application of DETR [27], [28] in video

instance segmentation [29], the recently proposed works resort

to DETR-like architectures for RVOS [17]–[19]. Specifically,

transformers are leveraged for multimodal feature fusion and

object localisation across all video frames. Therefore, tempo-

rally consistent interaction and segmentation can be achieved

in an end-to-end manner, which enables such design to out-

perform others in both accuracy and efficiency and forms a

new baseline for future RVOS works.

Albeit achieving good performance, it is still challenging for

existing RVOS works to perform comprehensive multimodal

interaction. This is mainly because these works consider all

textual components during the interaction. Since most training

samples have no distractors with the same category as the
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target object, the interaction is implicitly driven to focus more

on the subject part of the text. As a result, current RVOS

works are vulnerable to same-category backgrounds, as shown

in Fig. 1 (a). In contrast, our method decouples multimodal

interaction into two processes: subject-aware interaction and

context-aware interaction, which can effectively raise more

attention on the description part of the text, thereby enhancing

the robustness of RVOS methods.

B. Vision-Language Pre-training

More recently, Vision-Language Pre-training (VLP) [22]

has achieved significant advances and attracted much atten-

tion in the community. The basic idea of VLP is to learn

vision-language feature alignment from large-scale image-

text pairs. One of the most representative VLP methods is

CLIP (Contrastive Language-Image Pre-training) [23], which

collects 400M image-text pairs and formulates a contrastive

objective to learn the alignment. The following-up experiments

validate that the learned knowledge by CLIP has a strong

transferability and can boost several downstream tasks such

as visual captioning [30] and visual question answering [31].

Besides CLIP, there are several VLP works leveraging large-

scale image-text pairs for vision-language alignment. The

main difference between them lies in the data granularity.

For example, CLIP encodes image-level and sentence-level

representations. X-VLM [32] considers multi-grained visual

concepts (ranging from object-level to image-level) to align

with sentences. FILIP [33] and GLIP [24], [34] focus on patch-

word and region-phrase alignment, respectively. All these

works have shown their impressive capabilities to transfer to

downstream tasks.

Despite VLP being popular in multimodal applications, it

remains blank in RVOS, as there is a task gap between current

VLP works and RVOS. Since the key to a successful transfer

is the consistency between source and target tasks. Such a

gap significantly blocks the knowledge flowing from VLP

to RVOS. In this paper, we found the decoupled multimodal

interaction implicitly reformulates RVOS closer to one of VLP

works (GLIP [24]), whose knowledge could be incorporated

into our proposed architecture seamlessly, enabling better

vision-language alignment.

III. METHOD

We first present the overview of our Decoupled Multimodal

Transformers (DMFormer) for RVOS in section III-A. In

section III-B, we introduce how to perceive the subject from

the input text. Then we illustrate the decoupled multimodal

interaction and the incorporation of VLP knowledge in sec-

tions III-C and III-D, respectively. Finally, the optimisation

and implementation details are provided in section III-E.

A. Overview

Fig. 2 illustrates the pipeline of our proposed Decoupled

Multimodal Transformers (DMFormer) for RVOS. Analogous

to existing RVOS works, the pipeline consists of three main

procedures: feature encoding, multimodal feature interaction,

and feature decoding. Albeit various strategies have been

implemented to improve the interaction, they fail to utilise

multimodal features comprehensively due to the involvement

of intertwined textual components.

To mitigate this issue, we propose to decouple the sub-

ject and context during the interaction. Specifically, we first

encode visual and text features individually. Then, a subject

perceptron is formed to separate the subject from the encoded

text features. Next, the subject features and sentence features

are fed into the decoupled multimodal interaction module,

which consists of two parallel branches: (1) Subject-aware

interaction and (2) Context-aware interaction. Each branch

sequentially performs inter-modal feature fusion and intra-

modal feature refinement. Finally, we concatenate the outputs

of both branches and utilise them to generate masks for the

text-referred objects.

B. Subject Perceptron

From the pipeline, it is evident that subject extraction is

crucial to our RVOS architecture. In this paper, we achieve this

via a subject perceptron, based on self-attention over token-

level text features. As shown in Fig. 3 (a), given the encoded

text features {el}
L
l=1, el ∈ R

C , the subject perceptron assigns

each token a probability sl ∈ R
2 that belongs to the subject

of the text:
{

{e′l}
L
l=1 = LN(MHSA({el}

L
l=1) + {el}

L
l=1),

{sl}
L
l=1 = Pred(LN(FFN({e′l}

L
l=1) + {e

′

l}
L
l=1)),

(1)

where L and C are the number of word tokens and feature

channels. Note that L usually does not reflect the length of

the input sentence since some words would be parsed into

several tokens during tokenisation. Specifically, given an input

text, we first utilise a tokeniser to convert it to a sequence

of smaller semantic units (tokens), which are then fed into

the text encoder for {el}
L
l=1, el ∈ R

C . MHSA, LN , FFN ,

and Pred define the modules for multi-head self-attention,

linear normalisation, feed-forward network, and prediction,

respectively. To facilitate probability generation, the prediction

module is built by concatenating a linear layer and a softmax

layer. During training, the above modules are optimised by

minimising a cross entropy loss:

LSub =
1

L
ΣL

l=1LCrossEntropy(sl, sGT,l), (2)

where sGT,l ∈ {0, 1} is the ground truth label for the lth word

token. The positive labels indicate the location of the subject

part in the text. Since the subject information is not provided

in current RVOS datasets, we utilise the existing annotations

(pixel-level masks-sentence pairs) and a pre-trained vision-

language model (GLIP [24]) to generate pseudo labels.

As shown in Fig. 3 (b), given a sentence and a video frame

with pixel-level masks, we leverage the powerful alignment

between object-level and phrase-level features of GLIP [24]

to extract the subject part from the sentence. At first, we

generate the object region (red bounding box) from the mask

and divide the input sentence into noun phrases (via Spacy).

Then, we embed object-level features o ∈ R
C and phrase-

level features {nl}
Ln

l=0 ∈ R
C with GLIP vision and text
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Fig. 2. Pipeline of our proposed Decoupled Multimodal Transformers (DMFormer) for RVOS. The red box highlights the target object referred to by the
input text. The blue box with dotted boundary details the basic module in subject-aware and context-aware interactions. * refers to the convolution operation.

encoders, respectively. C and Ln denote the number of feature

channels and the parsed noun phrases. Next, we compute the

similarities between o and {nl}
Ln

l=0, achieving {pl}
Ln

l=0. With

the powerful capabilities for feature alignment, high-quality pl
can be achieved via GLIP. This way, the subject part can be

extracted by selecting the phrase with the highest similarity.

Finally, we generate the pseudo labels sGT,l:

sGT,l =

{

0, l /∈ P,

1, l ∈ P,
(3)

where P refers to the token set of the phrase that aligns the best

with the target object. Note that we only employ Equations 2

and 3 and GLIP vision and text encoders during training.

For each iteration, we perform referring segmentation on a

synthesised video, which consists of 3 frames sampled from

image/video datasets. To generate accurate pseudo labels, we

consider the correspondence between noun phrases and object

regions from all 3 video frames. For inference, we directly

predict sl from the input sentence and then select the segment

corresponding to the highest probability.

C. Decoupled Multimodal Interaction

With the subject perception, our method can selectively

align visual features with different textual components, achiev-

ing the decoupled multimodal interaction. This is under-

explored in current RVOS works. As shown in Fig. 2, our de-

coupled architecture mainly consists of two parallel branches:

subject-aware interaction and context-aware interaction. Each

branch has two concatenated basic modules. The main dif-

ference between the two branches lies in the text input. The

subject-aware interaction takes subject features {esub,l}
Ls

l=1 to

interact with visual features. By contrast, the context-aware

interaction considers all text features (or context features,

{econ,l}
Lc

l=1), leveraging the relationship between the subject

and other components during the interaction. Ls and Lc are

the number of subject and all word tokens.

Here we introduce the feed-forward procedure of one basic

interaction module, which is highlighted with the blue box in

A person has landed 

on the ground after 

parachuting

Subject

Perceptron
0.7 0.8 0.2 0.1(a)

Noun Phrase

Extraction

[A person] [the ground]

Alignment

Cross Entropy

Loss
(b)

1 1 0 0

[A person]

[the ground]

GLIP Text

Encoder

GLIP Vision

Encoder

GLIP Text

Encoder

Fig. 3. Illustration of the subject perceptron. (a) A feed-forward example of
the subject perceptron; (b) Pseudo label generation from the given text and
ground truth object box. Note that the probabilities of all text components are
individual and we only generate pseudo labels in the training stage.

Fig. 2. Given the text features {el}
L
l=1, el ∈ R

C (el could be

the subject or context features) and a set of multi-scale visual

features {vi}
I
i=1, vi ∈ R

T×Hi×Wi×C (encoded from the input

video sequence including T frames), the module first performs

inter-modal feature fusion:

vi = LN(MHCA(vi, {el}
L
l=1) + vi), (4)

where I and C are the number of spatial scales and feature

channels. Hi × Wi represents the spatial dimension on the

ith scale. MHCA denotes multi-head cross attention, where

keys and values come from textual features {el}
L
l=1. They are

queried by different scales of visual features vi. After this, LN
is performed for linear normalisation. During this stage, visual

features are aggregated under the guidance from the subject

and context components from the text, respectively. Since the

aggregation is performed on spatial-temporal visual features,

both static and motion clues relevant to the text can be mined

implicitly, facilitating the localisation of the target object in

the input video sequence.
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After feature aggregation, {vi}
I
i=1 and {el}

L
l=1 are fed into

the self-attention modules to mine their intra-modal properties.

Specifically, we handle visual and text features using the

same attention mechanism as Equation 1 (besides the Pred
module). The self-attention results are the outputs of one basic

interaction module, which have the same dimensions as the

input visual and text features. Therefore, multiple modules

could be concatenated for decoupled and deep multimodal

interactions. The main goal of alternate intra-modal and inter-

modal modules is to interact between multimodal features

while simultaneously keeping their intra-modal properties.

Both the subject-aware and context-aware interaction branches

in our DMFormer consist of two basic modules for a better

trade-off between accuracy and efficiency.

With the output features from both subject- and context-

aware interaction branches: {vsub,i}
I
i=1 ∈ R

T×Hi×Wi×C ,

{esub,l}
Ls

l=1 ∈ R
Ls×C , {vcon,i}

I
i=1 ∈ R

T×Hi×Wi×C , and

{econ,l}
Lc

l=1 ∈ R
Lc×C , we have achieved the decoupling of

multimodal interactions. After this, we decode the outputs to

generate the spatial-temporal object masks. At first, we form

a post-processor to resize and concatenate the outputs:

{

vdec,i = O(D(vsub,i), D(vcon,i)),

edec = O(P (D({esub,l}
Ls

l=1)), P (D({econ,l}
Lc

l=1))),
(5)

where D, P , and O define resizing, pooling, and concatenation

operations, respectively. D is implemented by an MLP mod-

ule, which down-samples feature channels by half. P denotes

the average pooling and operates on text features only. Given

the resized token-level subject features D({esub,l}
Ls

l=1) ∈
R

Ls×C/2 or context features D({econ,l}
Lc

l=1) ∈ R
Lc×C/2,

P performs average pooling along the token dimension,

achieving a single vector with the dimension of C/2. O
concatenates subject and context features along channels.

After this, the decoupled features can be achieved, achieving

vdec,i ∈ R
T×Hi×Wi×C and edec ∈ R

C , to facilitate the

following mask generation. Note that albeit the outputs from

different branches are integrated, the decoupled properties are

not disturbed so they still benefit the overall architecture.

Upon feature integration, we generate object masks for the

text-referred object throughout the video. Analogous to the

previous works based on DETR architectures [17]–[19], we

build our decoder with the deformable decoder and dynamic

convolution. During inference, we first feed the integrated

visual features {vdec,i}
I
i=1 and text features edec into the de-

formable decoder, where the former conveys spatial-temporal

clues of the input video. The latter is repeated and concate-

nated with fixed-number of learnable vectors and serves as

queries to generate object-level outputs across frames. Next,

the outputs are further decoded with the object head, box

head, and mask head, respectively. The first two measures the

probabilities that belong to the target and object locations.

The mask head predicts parameters for a set of kernels, which

convolve multi-scale visual features to generate pixel-level

masks. After filtering with the probabilities from the object

head, the final predictions can be achieved as the RVOS results.

GLIP Vision

Encoder

Block 1

stride=4

GLIP Vision

Encoder

Block 2

stride=8

GLIP Vision

Encoder

Block 3

stride=16

GLIP Vision

Encoder

Block 4

stride=32

GLIP

Text

Encoder
Frozen modules Learnable RMHCA

Fig. 4. Illustration of VLP knowledge incorporation, based on the vision
and text encoders from GLIP [24]. To better interact multimodal features, we
perform RMHCA after each block since they have different output dimensions
(1/4, 1/8, 1/16, and 1/32 of the resolutions of the input frame), implicitly
encoding different semantic levels. More details about the learnable RMHCAs
are formulated in Equation 6.

D. Incorporation of VLP knowledge

To better align visual and text features during the inter-

action, we leverage a large-scale pre-trained vision-language

model (GLIP [24]) to implement and initialise our visual and

text encoders. Despite GLIP and our architecture considering

different tasks (phrase grounding and referring segmentation),

the proposed decoupling can mitigate such a gap. This is

because, in the training stage, the decoupled multimodal

interaction implicitly decomposes RVOS into two separate

tasks: subject phrase grounding and discriminative feature

embedding. Such a decomposition enables the targets of GLIP

and ours closer and thus facilitates the knowledge transfer

between them. To improve the transfer, we insert the residual

multi-head cross-attention (termed as RMHCA) layers into the

late stages of the visual encoder, further aligning visual and

text features and facilitating the interaction between them. The

main idea of RMHCA is shown in Fig. 4.

Given the intermediate visual features vi ∈ R
T×Hi×Wi×Ci

and the encoded text features {el}
L
l=1, el ∈ R

C , our RMHCA

updates vi as follows:

vi = Lout,i(LN(RMHCA(Lin,i(vi), {el}
L
l=1) + Lin,i(vi))),

(6)

where i indicates different feature levels. T , Hi, Wi, and Ci

denote the temporal, height, width, and channel dimensions

on the ith level. LN is the linear normalisation module. To

align channel dimensions between visual and textual features,

we employ two linear layers: Lin,i and Lout,i, which map the

number of channels of vi from Ci to C, and from C to Ci for

seamless integration of RMHCA.

E. Implementation Details

The proposed DMFormer consists of four trainable mod-

ules: (1) residual multi-head cross-attention (RMHCA), (2)

subject perceptron, (3) decoupled multimodal interaction, and

(4) decoder. We fix visual and text encoders to maintain the

transferred knowledge. During training, all these modules are

trained end-to-end, by minimising the following loss:

L = λSubLSub + λClsLCls + λBoxLBox + λMaskLMask. (7)

Following previous works [17], [18], we compute LCls,

LBox, and LMask by evaluating the pixel-level, box-level, and

class-level similarities between the predictions and ground
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truth. LSub evaluates the predictions from the subject percep-

tron. More details can be found in Equation 2. Besides the

outputs from the last decoder layer, the intermediate decoding

results are also considered. Specifically, these results are also

decoded to pixel-level masks and compared with the ground

truth, using LCls, LBox, and LMask. This way, more consistent

predictions can be achieved for the target object. In this paper,

we set λSub, λCls, λBox and λMask as 2, 2, 5, and 2.

For the overall architecture, we consider Swin-Transformer

(Tiny/Large) [35] and BERT (Base) [36] as visual and text

encoders, which come from the GLIP model [24] and remain

frozen during training and inference to keep the powerful

capabilities for vision-language alignment. All multi-head at-

tention modules have 8 heads and the input/output feature

dimensions are 256. We utilise four deformable decoders to

form the multimodal decoder. We implement DMFormer with

PyTorch [37] and perform training and evaluation on Nvidia

RTX A6000 GPUs. The inference details of our DMFormer

is illustrated in Algorithm 1.

The model is first pre-trained on image datasets for referring

segmentation, including RefCOCO [38], RefCOCO+ [38], and

RefCOCOg [39]. Then, following previous works, we fine-

tune the model on A2D Sentence [3] for the evaluation on

A2D Sentence [3] and J-HMDB Sentence [3]. When testing on

Ref-YouTube-VOS [21] and Ref-DAVIS-17 [20], the model is

fine-tuned on Ref-YouTube-VOS [21]. During pre-training, we

optimise the model for 10 epochs, with a learning rate of 1e-4

(multiplied by 0.1 from the 6th and 8th epoch). During fine-

tuning, we optimise the model for 6 epochs, with a learning

rate of 1e-4 (multiplied by 0.1 from the 3rd and 5th epoch).

As for the subject perceptron, it is learnable during both

pre-training and fine-tuning. To generate high-quality pseudo

labels, we employ GLIP [24] with the largest scale of pre-

trained architecture (with Swin-Transformer-Large and BERT-

base) to embed and align visual and text features.

IV. EXPERIMENTS

A. Datasets and Metrics

1) Datasets: We evaluate our method on four bench-

mark datasets for RVOS: A2D Sentences [3], J-HMDB Sen-

tences [3], Ref-DAVIS-17 [20], and Ref-YouTube-VOS [21],

which respectively contain 3782, 928, 90, and 4519 videos,

with 6656, 928, 1544, and 12913 language expressions. Each

expression refers to one target object. Among the datasets,

A2D Sentences and J-HMDB Sentences are characterised by

action-orient descriptions since their videos are collected from

the datasets for actor and action segmentation. By contrast,

Ref-DAVIS-17 and Ref-YouTube-VOS describe target objects

with unconstrained words. As for the expression length, Ref-

YouTube-VOS has more words on average (9.75) than others

(A2D Sentences: 6.94, J-HMDB Sentences: 6.15, Ref-DAVIS-

17: 7.03), making it more challenging. Therefore, the compar-

ison results and ablations in this section are mainly achieved

on Ref-YouTube-VOS to illustrate better the performance

improvement brought by the proposed idea.

2) Evaluation metrics: Following current RVOS works, we

apply different evaluation metrics on different benchmarks.

Algorithm 1 Decoupled Multimodal Transformer for RVOS.

INPUT: A video sequence V and a language expression E
referring the target object.

OUTPUT: Target object masks M on all video frames.

# Vision and text feature embedding

{el}
L
l=1 ← TextBackbone(E)

{vi}
I
i=1 ← VisionBackbone({el}

L
l=1, V)

# Subject perception and separation

{pn}
N
n=1 ← FindNounPhrase(E)

{sl}
L
l=1 ← SubjectPerceptron({el}

L
l=1)

{esub,l}
Ls

l=1←Separation({el}
L
l=1,{pn}

N
n=1,{sl}

L
l=1)

{econ,l}
Lc

l=1←{el}
L
l=1

# Subject-aware Interaction

{vsub,i}
I
i=1 ← {vi}

I
i=1

for itr ← 1 to 2 do

{vsub,i}
I
i=1 ← MHCA({vsub,i}

I
i=1,{esub,l}

Ls

l=1)

{vsub,i}
I
i=1 ← MHSA({vsub,i}

I
i=1)

{esub,l}
Ls

l=1 ← MHSA({esub,l}
Ls

l=1)

# Context-aware Interaction

{vcon,i}
I
i=1 ← {vi}

I
i=1

for itr ← 1 to 2 do

{vcon,i}
I
i=1 ← MHCA({vcon,i}

I
i=1,{econ,l}

Lc

l=1)

{vcon,i}
I
i=1 ← MHSA({vcon,i}

I
i=1)

{econ,l}
Ls

l=1 ← MHSA({econ,l}
Lc

l=1)

# Feature integration

{vdec,i}
I
i=1 ←

[Resize({vsub,i}
I
i=1),Resize({vcon,i}

I
i=1)]

edec ← [AvgPool(Resize({esub,l}
Ls

l=1)),

AvgPool(Resize({econ,l}
Lc

l=1))]

# Mask Generation

K ← DETRDecoder{vdec,i}
I
i=1,edec)

{vfpn,i}
I
i=1 ←

CrossModalFPN{vdec,i}
I
i=1,{vi}

I
i=1,{el}

L
l=1)

M ← Sigmoid(Convolution(K, {vfpn,i}
I
i=1))

For A2D Sentences and J-HMDB Sentences, three metrics

are considered: Precision@K, mAP (mean Average Preci-

sion), overall IoU (Intersection over Union), and mean IoU.

Specifically, Precision@K measures the percentage of test

samples whose overlap values are higher than the threshold

K (0.5:0.1:0.9). mAP is measured over 0.50:0.05:0.90. The

overall IoU is measured over all test samples and mean IoU

averages the IoU of each sample. When evaluating on Ref-

DAVIS-17 and Ref-YouTube-VOS, we employ Jaccard-Index

(J ) and F-measure (F) to evaluate the segmentation quality

in IoU and boundary, respectively. Their mean J&F denotes

the overall performance.

B. Comparison with State-of-the-art Methods

1) Ref-YouTube-VOS & Ref-DAVIS-17: We first compare

our proposed DMFormer with the state-of-the-arts on Ref-

YouTube-VOS [21] and Ref-DAVIS-17 [20]. The quantitative

results are shown in Table I. Since GLIP [24] only provides

the knowledge on Swin Transformer-Tiny/Large [35], we
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Object 1: A white car to the right of another white car Object 2: A white car on the left of another

MTTR

ReferFormer

Ours

Input

0% 25% 50% 75% 100%

Object 1: A tortoise second from the front all the way to the left Object 2: A turtle on the bottom, to the middle of the frame

MTTR

ReferFormer

Ours

Input

0% 25% 50% 75% 100%

Fig. 5. Qualitative results on two video sequences from Ref-YouTube-VOS [21]. For each sequence, we show the input frames in the top row, with the
bounding boxes of the text-referred (target) objects. The percentage indicates the position of each frame in the sequence.

report the RVOS performance with these backbones. To better

validate our performance improvement, we focus on the results

of the previous SoTA model (ReferFormer [18]), which em-

ploys the same backbones as ours. With respective backbones,

DMFormer outperforms ReferFormer on both Ref-YouTube-

VOS and Ref-DAVIS-17 in all evaluation metrics, validating

its effectiveness and consistent improvement. In addition, al-

though MTTR [17] is built on a larger visual backbone (Video

Swin-Transformer-Tiny), the proposed DMFormer with Swin-

Tranformer-Tiny achieves better performance, which implicitly

demonstrates that DMFormer can learn spatial-temporal clues

from input videos and interact well with input texts.

Fig. 5 and Fig. 6 compare the qualitative results from

our DMFormer (Swin-Ttransformer-Tiny), ReferFormer [18]

(Swin-Ttransformer-Tiny), and MTTR [17] (Video-Swin-

Ttransformer-Tiny) on Ref-YouTube-VOS [21]. As shown in

Fig. 5, our model performs more robustly against the videos

with multiple distractors, showing the proposed decoupled

interaction can better leverage text clues than previous works.

With the VLP knowledge, our model can perceive more vision-

language alignments to facilitate RVOS. As a result, better

performance can be achieved on videos with complex scenes
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MTTR

ReferFormer

Ours

Input

0% 25%

50%

75% 100%

Object 1: A shower curtain hanging in a bathroom Object 2: A white toilet

MTTR

ReferFormer

Ours

Input

0% 25% 50% 75% 100%

Object 1: A person sitting on the boat explaining about cloth use by her 

hand
Object 2: A cloth is explained by a person to how to handle it

Fig. 6. Qualitative results on two video sequences from Ref-YouTube-VOS. For each sequence, we show the input frames in the top row, with the bounding
boxes of the text-referred (target) objects. The percentage indicates the position of each frame in the sequence.

and language expressions, as shown in the first row in Fig. 6.

In addition, the VLP knowledge brings excellent performance

on unseen/rare objects in the RVOS training data. For example,

the “curtain” in the bottom video sequence in Fig. 6, where

both MTTR and ReferFormer entirely ignore the curtain area

since the relevant vision-language alignments rarely appear in

the training data.

2) A2D Sentences & J-HMDB Sentences: Tables II and III

show the comparison results on A2D Sentences [3] and J-

HMDB Sentences [3], respectively. It is observed that the

performance gaps between the state-of-the-arts and ours are

marginal. This is mainly because the involved datasets are less

challenging than Ref-YouTube-VOS and Ref-DAVIS-17. Still,

DMFormer outperforms others on almost all evaluation met-

rics (besides the overall IoU on A2D Sentences). This shows

that ReferFormer performs favourably on several big objects

but not most ones since DMFormer outperforms ReferFormer

in the mean IoU. Therefore, the performance improvement

brought by our proposed idea is consistent.
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TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON REF-YOUTUBE-VOS [21] AND REF-DAVIS-17 [20]. THE TOP 2 SCORES ARE HIGHLIGHTED

IN RED AND BLUE.

Method Backbone
Ref-YouTube-VOS Ref-DAVIS-17

J&F J F J&F J F

URVOS [21] ResNet-50 47.2 45.3 49.2 – – –
CMPC-V [7] I3D 47.5 45.6 49.3 – – –
YOFO [10] ResNet-50 48.6 47.5 49.7 53.3 48.8 57.8
LBDT [12] ResNet-50 49.4 48.1 50.6 54.5 – –
LOCATOR [16] Transformers 50.0 48.8 51.1 – – –
MTTR [17] V-Swin-T 55.3 54.0 56.6 – – –
ReferFormer [18] Swin-T 58.7 57.6 59.9 55.8 53.2 58.3
ReferFormer [18] Swin-L 62.4 60.8 64.1 60.5 57.6 63.4
VLT [15] V-Swin-B 63.8 61.9 65.6 61.6 58.9 64.3

DMFormer Swin-T 61.4 60.1 62.7 57.4 54.9 59.9
DMFormer Swin-L 64.9 63.4 66.5 62.3 59.5 65.1

TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON A2D SENTENCES [3]. THE TOP 2 SCORES ARE HIGHLIGHTED IN RED AND BLUE.

Method Backbone
Precision IoU mAP

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 Overall Mean 0.5:0.95

CMSA-V [8] ResNet-101 48.7 43.1 35.8 23.1 5.2 61.8 43.2 –
CMPC-V [7] I3D 65.5 59.2 50.6 34.2 9.8 65.3 57.3 40.4
CSTM [9] I3D 65.4 58.9 49.7 33.3 9.1 66.2 56.1 39.9
LBDT [12] ResNet-50 73.0 67.4 59.0 42.1 13.2 70.4 62.1 47.2
MMVT [11] ResNet-101 64.5 59.7 52.3 37.5 13.0 67.3 55.8 41.9
LOCATOR [16] Transformers 70.9 64.0 52.5 35.1 10.1 69.0 59.7 46.5
MTTR [17] V-Swin-T 75.4 71.2 63.8 48.5 16.9 72.0 64.0 46.1
ReferFormer [18] Swin-T 80.9 77.6 70.7 54.1 19.4 75.9 68.0 52.7
ReferFormer [18] Swin-L 83.5 80.6 74.3 58.2 22.0 78.8 70.5 55.4

DMFormer Swin-T 81.3 78.8 71.9 55.2 20.3 76.0 68.3 54.3
DMFormer Swin-L 83.7 81.8 75.7 60.0 24.3 78.4 70.9 58.2

C. Ablation Studies

To validate the contributions of the proposed idea on the

overall architecture, we conduct a series of ablation studies.

At first, we analyse the role of the subject perceptron. Then,

the effectiveness of the decoupled multimodal interaction is

given via both quantitative and qualitative results. Finally, we

illustrate the performance gain brought by VLP incorporation.

In this section, we consider Swin-Transformer-Tiny [35] and

BERT-Base [36] as vision and language backbones, respec-

tively. All models are first pre-trained on RefCOCO [38],

RefCOCO+ [38], and RefCOCOg [39], and then fine-tuned

on Ref-YouTube-VOS [21]. The experimental results are eval-

uated on Ref-YouTube-VOS [21].

1) Subject Perceptron: This module is critical to the overall

architecture as it determines the way we decouple multimodal

interactions. In this paper, we propose a self-attention-based

module to locate the subject part from the input text. The mod-

ule is optimised with other modules in DMFormer, achieving

end-to-end training. To validate the effectiveness of the subject

perceptron, we keep other modules in DMFormer unchanged

and implement a non-trainable method (based on the NLTK

tookit [40]) to perform subject perception. The comparison

results is shown in Table IV. From the table, the model in the

first row is ReferFormer [18], which serves as the baseline. The

second model employs the decoupled multimodal interaction

but no subject perceptron. In this case, both subject- and

context-aware interactions take all word tokens. Despite this,

better results can be achieved than the baseline, showing

the excellent potential of the decoupled interaction. When

equipped with the non-trainable tool, we found the overall

performance drops significantly due to the texts with diverse

structures. This illustrates that the proposed subject perceptron

can handle better the input texts and adapt well with the

decoupled interaction.

2) Doupled Multimodal Interaction: Next, we show the ef-

fectiveness of the decoupled multimodal interaction. As shown

in Table IV, the decoupled interaction brings better results even

without a subject perceptron. Despite taking the same textual

inputs, we conjuncture that the decoupled structure can still be

trained to focus on different and complementary multimodal

interactions. With the well-trained subject perceptron, the

RVOS performance is further improved, which shows that the

syntactic structure of the text indeed benefits the decoupled

multimodal interaction.

To demonstrate the impact of the decoupled multimodal

interaction more intuitively, we select some hard samples

with multiple distractors from Ref-YouTube-VOS [21], where

we perform RVOS using the DMFormer with/without the

decoupled interaction (both with the VLP initialised knowl-

edge). The qualitative comparison results between the vari-

ants are shown in Fig. 7. From the figure, it is observed
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TABLE III
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON J-HMDB SENTENCES [3]. THE TOP 2 SCORES ARE HIGHLIGHTED IN RED AND BLUE.

Method Backbone
Precision IoU mAP

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 Overall Mean 0.5:0.95

CMSA-V [8] ResNet-101 76.4 62.5 38.9 9.0 0.1 62.8 58.1 –
CMPC-V [7] I3D 83.1 65.7 37.1 7.0 0.0 61.6 61.7 34.2
CSTM [9] I3D 78.3 63.9 37.8 7.6 0.0 59.8 60.4 33.5
LBDT [12] ResNet-50 86.4 74.4 53.3 13.2 0.0 64.5 65.8 41.1
MMVT [11] ResNet-101 79.9 71.4 49.0 12.6 0.1 61.9 61.3 38.6
LOCATOR [16] Transformers 89.3 77.2 50.8 10.6 0.2 67.3 66.3 45.6
MTTR [17] V-Swin-T 93.9 85.2 61.6 16.6 0.1 70.1 69.8 39.2
ReferFormer [18] Swin-T 94.7 87.3 65.2 18.6 0.3 71.6 70.4 41.5
ReferFormer [18] Swin-L 96.9 90.0 70.1 21.7 0.3 73.3 72.1 42.7

DMFormer Swin-T 95.2 88.5 66.4 20.1 0.3 71.9 70.5 42.5
DMFormer Swin-L 97.2 92.5 72.1 23.4 0.3 73.9 72.8 44.7

TABLE IV
THE EFFECTIVENESS OF THE SUBJECT PERCEPTRON AND THE DECOUPLED

MULTIMODAL INTERACTION. THE FIRST AND SECOND COLUMNS

INDICATE THE USAGE OF THE SUBJECT PERCEPTRON AND DECOUPLED

MULTIMODAL INTERACTION, RESPECTIVELY.

Subject perceptron Decouple J&F J F

✗ ✗ 58.7 57.4 60.1
✗ ✓ 59.1 57.7 60.5

NLTK tools ✓ 54.0 51.1 54.9
Ours ✓ 59.7 58.5 60.9

TABLE V
THE EFFECTIVENESS OF VLP INCORPORATION. THE FIRST, SECOND, AND

THIRD COLUMNS INDICATE THE USAGE OF THE VLP KNOWLEDGE,
RESIDUAL MULTI-HEAD CROSS-ATTENTION, AND DECOUPLED

MULTIMODAL INTERACTION, RESPECTIVELY.

VLP RMHCA Decouple J&F J F

✗ ✗ ✗ 58.7 57.4 60.1
✓ ✗ ✗ 60.5 59.2 61.7
✓ ✓ ✗ 60.9 59.7 62.1
✓ ✓ ✓ 61.4 60.1 62.7

that the variant without the decoupled interaction struggles

with complex language expressions and distractors. This is

mainly because the model focuses more on the subject and

ignores other descriptions, which are crucial for suppressing

distractors, especially the ones with the same categories. In

contrast, with the decoupled subject-aware and context-aware

multimodal interactions, DMFormer fairly considers different

textual components. This way, more focus can be made on the

discriminative information, which facilitates the robust RVOS

on these challenging samples.

3) VLP knowledge: Finally, we illustrate the performance

improvement brought by the large-scale pre-trained vision-

language alignment [24]. More details are shown in Table V,

where the first row is the baseline (ReferFormer [18]). From

the second row, it is observed that even with the task gap

between referring segmentation and phrase grounding (where

the VLP knowledge are pre-trained), the large-scale pre-

trained vision-language alignment can improve the RVOS

performance of the baseline. This illustrates the vast poten-

tial of the application of VLP knowledge to RVOS. The

Object: A person floating in the water to the left of a surfer wearing a 

white shirt

Object: A jellyfish second from the left

0% 50% 100%

0% 50% 100%

w/o Decoupling

Input

Input

w/o Decoupling

w/ Decoupling

w/ Decoupling

Fig. 7. Visualised ablations for the decoupled multimodal interaction. For
each sample, the top row shows the input video sequences and highlights the
text-referred (target) objects (red boxes). Note the frame without boxes means
the target object does not appear. The red masks in the middle and bottom
rows are the segmentation results. The percentage indicates the position of
each frame in the video.

performance can be improved by incorporating the residual

multi-head attention (RMHCA) modules in the encoding stage,

which further solidates the alignment between vision and

language modalities. The results in the bottom row show

that the RVOS performance can be further boosted, under

the decoupled multi-modal interaction. This shows that the

decoupled interaction can implicitly shrink the task gap so

that the large-scale pre-trained vision-language alignment can

be better incorporated into the RVOS architecture.
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V. CONCLUSION

In this paper, we presented the decoupled multimodal

transFormer (DMFormer) for RVOS. Given the input video

sequence and text, we first perceived the subject part from the

text, via a learnable subject perceptron. Then, the separated

text features were fed into two parallel branches for subject-

and context-aware multi-modal interactions. Finally, we de-

coded the interaction results for the final predictions. With the

decoupled interactions, our RVOS architecture is encouraged

to focus on more comprehensive relationships among features.

In addition, it also facilitates the incorporation of large-scale

pre-trained vision-language alignment. Experimental results

show that the proposed method outperforms the state-of-the-

art on all RVOS benchmarks. We hope that the proposed

decoupling idea and VLP knowledge incorporation can inspire

future contributions.
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