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Abstract—Federated learning is proposed as an alternative
to centralized machine learning since its client-server structure
provides better privacy protection and scalability in real-world
applications. In many applications, such as smart homes with
Internet-of-Things (IoT) devices, local data on clients are gener-
ated from different modalities such as sensory, visual, and audio
data. Existing federated learning systems only work on local data
from a single modality, which limits the scalability of the systems.

In this paper, we propose a multimodal and semi-supervised
federated learning framework that trains autoencoders to extract
shared or correlated representations from different local data
modalities on clients. In addition, we propose a multimodal
FedAvg algorithm to aggregate local autoencoders trained on
different data modalities. We use the learned global autoencoder
for a downstream classification task with the help of auxil-
iary labelled data on the server. We empirically evaluate our
framework on different modalities including sensory data, depth
camera videos, and RGB camera videos. Our experimental results
demonstrate that introducing data from multiple modalities into
federated learning can improve its classification performance.
In addition, we can use labelled data from only one modality
for supervised learning on the server and apply the learned
model to testing data from other modalities to achieve decent F1

scores (e.g., with the best performance being higher than 60%),
especially when combining contributions from both unimodal
clients and multimodal clients.

Index Terms—collaborative work, semisupervised learning,
edge computing, multimodal sensors

I. INTRODUCTION

In recent years, we have witnessed a rapid growth in per-

sonal data generated from many different aspects in people’s

daily lives, such as mobile devices and IoT devices. Powered

by the enormous amount of personal data, machine-learning

(ML) techniques, especially Deep Neural Networks (DNN),

have shown great capabilities of conducting complex tasks

such as image recognition, natural language processing, human

activity recognition, and so forth. Traditionally, ML systems

are centralized and need to collect and store personal data on

a server to train DNN models, which causes privacy issues.

The long-debated privacy issues in centralized ML systems

have motivated researchers to design and implement machine

learning in decentralized fashions. Federated learning (FL) [1],

which allows different parties to jointly train DNN models

without releasing their local data, is a system paradigm that

has gained much popularity in both research communities and

real-world ML applications.

In FL systems, DNN models are trained on clients at the

edge of networks instead of on servers in the cloud. This

makes FL systems specifically suitable for privacy sensitive

applications such as smart home [2]–[4] based on IoT tech-

nologies. For example, Wu et al. [5] propose an FL framework

that uses personalization to address the device, statistical and

model heterogeneity issues in IoT environments. Pang et al. [6]

propose an FL framework using reinforcement learning to

adjust the model aggregation strategy on models trained with

IoT data. As a distributed system paradigm, FL provides a

feasible and scalable solution for realizing ML on resource-

constrained IoT devices [7].

IoT applications often deploy different types of sensors

or devices that generate data from different modalities (e.g.,

sensory, visual, and audio) [8]. For example, in one smart

home, activities of a person can be recorded by body sensors in

a smartwatch worn by the person, and also by a video camera

in the room at the same time. Meanwhile, for smart homes with

different device setups, some of them may have multimodal

local data (i.e., multimodal clients) while the others may

have unimodal local data (i.e., unimodal clients). One way to

apply FL to these IoT applications is to implement individual

services for different modalities. However, many centralized

ML systems [9]–[13] have shown that combining data from

different modalities can improve their performance. Therefore,

it is necessary to design and implement FL systems in a way

that supports multimodal IoT data and different device setups.

To work on multimodal data, one approach in existing FL

systems uses data fusion [14] to mix representations from

different modalities before a final decision layer into a new

representation space. This requires all the data (i.e., training

and testing) in the system to be aligned multimodal data,

which means that all the clients need to have data from all

modalities in the system. In addition, the labelled data in the

system also need to be from all modalities, in order to support

supervised learning on the new representation space. This does

not work on systems with unimodal clients and increases

the complexity of data annotation. Another approach [15]

extracts representations from different modalities locally and

requires the clients to send the representations to the server in

order to align different modalities. This may break the privacy

guarantee provided by FL since the representations can be used

to recover local data, especially when the server has taken part

in the training of the model that extracts the representations.

Allowing FL to work on clients with arbitrary data modalities

(i.e., unimodal or multimodal) and with labelled data that come

from single modalities, however, still remains a challenge.
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In this paper, we propose a multimodal FL framework

that takes advantage of aligned multimodal data on clients.

Although acquiring alignment information for multimodal data

across different clients is challenging, our assumption is that

data from different modalities (e.g., sensory data and visual

data) on a multimodal client inherently have some alignment

information (e.g., through synchronized local timestamps of

sensory data samples and video frames on that client), based

on which we can train models to extract multimodal represen-

tations from the data. We utilize multimodal autoencoders [9],

[10] to encode the data into shared or correlated hidden

representations. To enable the server in our framework to

aggregate trained local autoencoders into a global autoencoder,

we propose a multimodal version of the FedAvg algorithm [1]

that can combine local models trained on data from both

unimodal and multimodal clients.

As it is difficult to have adequate labels on clients in real-

world FL systems [14], [16], we focus on semi-supervised

scenarios wherein local data on the clients are unlabelled

and the server has an auxiliary labelled dataset. We use the

global autoencoder and the auxiliary labelled dataset on the

server to train a classifier for activity recognition tasks [17],

[18] and evaluate its performance on a variety of multimodal

datasets (e.g., sensory and visual). Compared with existing

FL systems [14], [15], our proposed framework does not share

representations of local data to the server. Additionally, instead

of requiring the clients and the server to have aligned data from

all modalities, our framework conducts local training on both

multimodal and unimodal clients, and only needs unimodal

labelled data on the server. Our experimental results indicate

that our proposed framework can improve the classification

performance (F1 score) of FL systems in comparison to

unimodal FL, and allows us to use unimodal labelled data

to train models that can be applied to multimodal testing data.

We make the following contributions in this paper:

• We propose a multimodal FL framework that works on

data from different modalities and clients with different

device setups, and a multimodal FedAvg algorithm.

• Complementing the existing knowledge on the benefit of

using multimodal data in centralized ML, we find that

introducing data from more modalities into FL also leads

to better classification performance.

• We show that classifiers trained on labelled data on the

server from one modality can achieve decent classifica-

tion F1 scores on testing data from other modalities.

• We show that combining contributions from both uni-

modal and multimodal clients can further improve the

classification F1 scores.

II. RELATED WORK

A. Federated learning

McMahan et al. [1] propose federated learning (FL) as

an alternative system paradigm to centralized ML. In an FL

system, a server acts as an coordinator to select clients and

to send a global DNN model to the clients. The clients use

their own data to locally train the model and then send the

resulting models back to the server, on which these models

are aggregated into a new global model. The system repeats

this process for a number of rounds until the performance of

the global model on a given task converges. The privacy of the

clients’ data is protected since the data are never shared with

others. Given its decentralized feature, FL is especially suitable

for edge computing [19], [20], which moves computation to

the place where data are generated.

Canonical FL systems focus on supervised learning that

requires all local data on FL clients to be labelled. In edge

computing, data generated from IoT devices can only be

accessed by the data subjects, since FL clients do not share

data to third parties. These data subjects (i.e., end users of an

FL system) may not have time or abilities to annotate their

data with labels of a given task, especially when the task

requires expert knowledge (e.g., labelling timer-series sensory

data with clinical knowledge). Therefore, one key challenge

of deploying FL in real-world IoT environments is the lack

of labelled data on clients for local training. In order to

address this issue, recent research in FL has been focusing

on unsupervised and semi-supervised FL frameworks through

data augmentation [16], [21]–[29] to generate pseudo labels

for local data, or through unsupervised learning to extract

hidden representations from unlabelled local data [17], [18].

For example, van Berlo et al. [17] propose to learn hidden

representations through convolutional autoencoders from un-

labelled local data on FL clients. Their results show that the

learned representations can empower downstream tasks such

as classifications. Zhao et al. [18] propose a semi-supervised

FL framework for human activity recognition and compared

the performance of different autoencoders. Their framework

shows better performance than data augmentation schemes

do. Our work in this paper follows the path of the latter

category. Compared with the existing research, we enable

semi-supervised FL to learn from multiple data modalities.

B. Heterogeneity in federated learning

Heterogeneity is one of the most challenging issues [30],

[31] in FL because models are locally trained on clients.

Different clients may vary in terms of computational capa-

bilities, model structures, distribution of data, or distribution

of features. Among all these issues, the heterogeneity in

distribution of data (i.e., non-IID local data) has attracted most

research efforts [32]–[35]. Smith et al. [32] apply multi-task

learning to addressing the issue of training on non-IID data in

FL. Instead of training one global model for all clients, they

treat each client as a different task and train separate models

for them. Similarly, Li et al. [34] extend federated multi-task

learning to an online fashion and allow new clients to join

the system. To address the heterogeneity in the distribution of

features when shifting FL from one domain to another, Chen et

al. [35] propose to use transfer learning to align the features

in lower-stream layers (e.g., fully connected layers before final

output layers). In order to learn from heterogeneous models

(i.e., DNN models with different structures), Lin et al. [36]



propose to use knowledge distillation [37] to train global

models of FL based on the output probability distribution from

local models, instead of directly averaging the parameters of

them. Existing research, however, neglected the heterogeneity

in data modalities in FL, which is commonplace in many

scenarios such as edge computing, IoT environments, and

mobile computing.

The recent study by Liu et al. [15] applies FL on data from

two modalities (i.e., images and texts) and treats each modality

individually, which is the same as running two individual FL

instances. In the study, to align the two modalities on a server,

representations of local data need to be uploaded to the server.

This breaks the privacy guarantee of FL because the server

has the global model that generates the representations from

raw data and could recover the raw data if it has those repre-

sentations. The framework proposed by Liang et al. [14] can

work on multimodal data only when the clients’ local data, the

server’s labelled data, and testing data are all aligned data from

both modalities. Instead of aligning the representations from

different modalities, it conducts early fusion (i.e., element-

wise multiplication) on the representations. Thus unimodal

data cannot contribute to the local training and the trained

model cannot be used on unimodal data. Compared to the

existing work, we use the alignment information in local data

to learn to extract shared or correlated hidden representations

from multiple modalities. Our scheme does not require sending

representations of local data to the server, which contradicts

the motivation of using FL. In addition, it allows models to

be trained and used on unimodal data.

C. Multimodal deep learning

When training deep learning models for a certain task, the

used data can be generated from a variety of modalities (e.g.,

recognizing human activities from IoT sensory data or videos).

In order to utilize these data, multimodal deep learning has

attracted much attention from researchers. Ngiam et al. [9]

propose to use deep autoencoders [38] to learn multimodal

representations from audio and visual data. The alignment

between the two modalities is done by reconstructing the

output for both modalities from the hidden representation gen-

erated by either modality. Wang et al. [10] compare different

multimodal representation learning techniques and propose to

combine both deep canonical correlation analysis [39] and

autoencoders to map data from different modalities into highly

correlated representations instead of one common represen-

tation. These techniques have demonstrated that data from

different modalities can complement each other when learning

representations and improve the overall performance of an

ML system. Many applications such as audio-visual speech

recognition [9], activity and context recognition [12], [13],

and textual description generation for images [40], have been

implemented based on multimodal deep learning. The recent

survey by Baltrušaitis et al. [41] provides a detailed analysis

and taxonomy of multimodal deep learning. In this paper, we

apply multimodal representation learning to FL to address the

heterogeneity issue in local data modalities.

III. METHODOLOGY

Our goal is to enable FL to work on clients that have

different local data modalities. We first introduce the overall

design of our framework. We then describe the key techniques

that we use to extract representations from multimodal data

and the algorithms that we designed to aggregate local models

trained on both unimodal and multimodal clients.

A. Framework overview

A canonical FL system, as shown in Fig. 1a, only works

on clients that have local data from the same modality and

requires the data to be labelled for supervised learning.

We propose an FL framework wherein clients’ unlabelled

local data can be from either one single modality or multiple

modalities. In our framework, as shown in Fig. 1b, unimodal

clients (e.g., Clients 1 and 3) only deploy one type of devices

due to reasons such as budget or privacy. Multimodal clients

(e.g., Client 2) deploy both types of devices and thus have

multimodal local data. On a multimodal client, we assume

that there is alignment information between the data from

two modalities, based on which we can align the hidden

representations of two modalities. For example, a person’s

activity can be captured by the accelerometers in a smartwatch

and by an IP camera in the room at the same time. A record

of video call contains both the visual information and audio

information of a speech. This kind of matching information is

the key to align the hidden representations of multimodal data

since they describe the same underlying activities or events.

To address the lack of labelled data in FL systems using

IoT devices, similar to existing semi-supervised FL frame-

works [17], [18], on clients we assume that no labelled local

data are available. Thus we learn to extract hidden represen-

tations from unlabelled data. On multimodal clients, we train

local models to extract shared or correlated representations

between different modalities since we have aligned pairs of

multimodal data. On unimodal clients, we train models to

extract representations from one single modality. Local models

from both types of clients are sent to the server and are

aggregated into a global model by using a multimodal version

of the FedAvg algorithm [1]. The server uses the global

model to encode a labelled dataset from either modality into

a labelled representation dataset, based on which a classifier

is trained through supervised learning. We believe that, as

the service provider, the server can provide such an auxiliary

dataset with labels that requires expert knowledge about the

task of the service. For example, in many existing human

activity datasets, labelling activities with sensory data can be

done through controlled laboratory trials with the assistance

from video cameras and pre-defined trial scripts [42]. The

clients receive both the global model and the classifier from

the server during each communication round and can use them

on their local data for classifications. Alg. 1 describes the the

process of multimodal federated learning.
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(a) Canonical federated learning
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Encode

h Y
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𝑤௧ାଵ௦

(b) Multimodal federated learning

Fig. 1: In canonical federated learning (a), during round t, a server sends a global model wg
t to selected clients that have data

from the same modality. Client k conducts supervised learning to generate a local model wk
t+1. Local models are aggregated on

the server by using the FedAvg algorithm. In multimodal federated learning (b), a server sends a global model w
ag

t to selected

clients to learn to extract multimodal representations (Sec. III-B) on unlabelled local data. The server uses multimodal FedAvg

(Sec. III-C) to aggregate local models into a new global model w
ag

t+1 and uses it to encode a labelled dataset (modality A or

B) to a labelled representation dataset (h, Y ). A classifier ws
t+1 is then trained on (h, Y ), which can be used by all clients.

Algorithm 1 Multimodal Federated Learning

Require: K: number of clients; C: fraction of clients to

choose; D = (X,Y ): labelled dataset from either modality

(A or B)

1: initializes w
ag

0 , ws
0 at t = 0

2: for all communication round t do

3: St ← randomly selected K · C clients

4: Wt ← ∅
5: for all client k ∈ St do

6: wak

t+1 ←Multimodal Local Training(k,w
ag

t ) ⊲
on client k

7: Wt ←Wt ∪ wak

t+1

8: end for

9: w
ag

t+1 ←Multimodal FedAvg(Wt) ⊲ on the server

10: h← w
ag

t+1.encoder(X) ⊲ using the encoder for the

modality of X
11: D′

t ← (h, Y )
12: ws

t+1 ← Cloud Training(D′

t, w
s
t ) ⊲ on the server

13: end for

B. Learning to extract representations

The key part of the local training in our proposed framework

is how to learn representations from unlabelled unimodal

data or multimodal data. We first introduce canonical autoen-

coders, which we train to extract hidden representations from

unimodal data. Then we introduce two types of multimodal

autoencoders, which learn to extract shared and correlated

Encoder Decoder

𝑋 𝑋′
ℎ𝑓 𝑔

Fig. 2: A simple autoencoder structure. An encoder f maps

input data X into a hidden representation h. A decoder g maps

h into a reconstruction X ′.

hidden representations from different modalities.

1) Autoencoders: Autoencoders [38] are one of the most

commonly used DNNs in unsupervised ML. A typical autoen-

coder, as shown in Fig. 2, has two building blocks, which

are an encoder (f ) and a decoder (g). The encoder maps

unlabelled data (X) into a hidden representation (h). The

decoder tries to generate a reconstruction (X ′) of the input

data from the representation. When training an autoencoder,

the objective is to minimize the difference between X and
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(a) Split autoencoder

𝐿𝐵
𝑋𝐵
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𝐿𝐴
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(b) Canonically correlated autoencoder

Fig. 3: In split autoencoders (a), for aligned input (XA, XB) from two modalities, data from one modality are input into

its encoder to generate an h, which is then used to reconstruct the data for both modalities through two decoders. Each

single modality has a loss function (i.e., LA and LB) and the overall objective of training is to minimize LA + LB . In a

canonically correlated autoencoder (b), data from both modalities are input into their encoders to generate two representations.

Two parameter matrices are used to maximize the canonical correlation between the paired representations hA and hB . The

overall objective of the training is to minimize λ(LA + LB) + LC , where λ is a trade-off parameter and LC is the negative

value of the canonical correlation.

X ′, which is measured by a loss function L(X,X ′), such

as the mean squared error (MSE). The assumption is that

if the reconstruction error is small, then it means that the

hidden representation contains the most useful information in

the original input. Therefore, minimizing the error will make

the encoder to learn to extract such useful information.

2) Split autoencoders: Canonical autoencoders only work

on data from the same modality. In order to extract shared

representations from multimodal data, Ngiam et al. [9] propose

a split autoencoder (SplitAE) that takes input data from

one modality and encode the data into a shared h for two

modalities. With the shared h, two decoders are used to

generate the reconstructions for two modalities. Fig. 3a shows

the structures of SplitAEs for two data modalities. The premise

is that the data from two modalities have to be matching pairs,

which means that they present the same underlying activities

or events. Since the encoders for both modalities aim to extract

hidden representations, we want the representations to be not

only specific to an individual modality. Instead, we hope that

the extracted representations from both encoders can reflect

the general nature of the activities or events in question.

For modalities A and B, given a pair of matching samples

(XA, XB) (e.g., accelerometer data and video data of the same

activity), the SplitAE (fA, gA, gB) for input modality A is:

argmin
fA,gA,gB

LA(XA, X
′

A) + LB(XB , X
′

B) (1)

X ′

A and X ′

B are the reconstructions for two modalities. LA

and LB are the loss functions for two modalities, respectively.

By minimizing the compound loss in Eq. 1, the learned

encoder fA will extract representations that are useful for

both modalities. Similarly, for input modality B, its SplitAE

is (fB , gA, gB).
3) Deep canonically correlated autoencoders: In order to

combine deep canonical correlation analysis [39] and autoen-

coders together, Wang et al. [10] propose a deep canonically

correlated autoencoder (DCCAE). Instead of mapping mul-

timodal data into shared representations, DCCAE keeps an

individual autoencoder for each modality and tries to maximize

the canonical correlation between the hidden representations

from two modalities. Fig. 3b shows the structure of a DCCAE

for two modalities.

For modalities A and B, given aligned input (XA, XB), the

DCCAE (fA, gA, fB , gB) is:

argmin
fA,gA,fB ,gB ,U,V

λ(LA + LB) + LC (2)

LC = −tr(U⊺fA(XA)fB(XB)
⊺V ) (3)

Parameter matrices U and V are canonical correlation anal-

ysis directions. Similarly to SplitAE, one of the objectives of

DCCAE is to minimize the reconstruction losses. In addition,

it uses another objective to increase the canonical correlation

between the generated representations from two modalities

(i.e., minimizing its negative value LC). The two objectives

are balanced by a parameter λ. By this means, DCCAE maps

multimodal data into correlated representations rather than

shared representations.

C. Multimodal federated averaging

During each round t, the server sends a global multimodal

autoencoder w
ag

t to selected clients. A selected client is either

unimodal or multimodal and the local training on w
ag

t depends
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Fig. 5: Multimodal FedAvg on the server. Only the updated

parts of each local model will be aggregated.

on the modality of data on the client. As shown in Fig. 4, a

multimodal client (e.g., Client 2) locally updates the encoders

and decoders for both modalities. A unimodal client (e.g.,

Client 1 or 3) only updates the encoder and decoder for its data

modality through standard autoencoder training. The encoder

and decoder for the other modality will be frozen during the

local training.

We propose a multimodal FedAvg (Mm-FedAvg) algorithm

to aggregate autoencoders received from both unimodal clients

and multimodal clients. Fig. 5 shows which parts of different

local autoencoders are used when generating a new global

model. Given a global multimodal autoencoder w
ag

t at round

t represented as (fA, gA, fB , gB)t, (fA, gA)t is the encoder

and decoder for modality A. Similarly, a local multimodal

autoencoder updated by client k is wak

t and the client’s

modality mk is one of A, B and AB. The Mm-FedAvg

algorithm is shown in Alg. 2.

When aggregating local models from multimodal clients and

unimodal clients, the contribution from multimodal clients is

controlled by a weight parameter α. Increasing α can give

more weights to multimodal clients because they play a key

role in aligning two modalities, which helps unimodal clients

benefit from the data from another modality.

Algorithm 2 Multimodal FedAvg (Mm-FedAvg)

Require: Wt: local multimodal autoencoders at round t; α:

multimodal weight parameter; nk: number of samples on

client k; mk: data modality of client k;

1: WA
t ← {w

ak |wak ∈Wt ∧mk = A}
2: WB

t ← {w
ak |wak ∈Wt ∧mk = B}

3: WAB
t ← {wak |wak ∈Wt ∧mk = AB}

4: nA ←
∑

wak∈WA
t
nk + α

∑
wak∈WAB

t
nk

5: nB ←
∑

wak∈WB
t
nk + α

∑
wak∈WAB

t
nk

6: (fA, gA) ←
∑

wak∈WA
t

nk

nA
(fA, gA)

k +

α
∑

wak∈WAB
t

nk

nA
(fA, gA)

k

7: (fB , gB) ←
∑

wak∈WB
t

nk

nB
(fB , gB)

k +

α
∑

wak∈WAB
t

nk

nB
(fB , gB)

k

8: w
ag

t+1 ← (fA, gA, fB , gB)

IV. EVALUATION

We evaluate our proposed framework on different multi-

modal datasets including sensory data, depth camera data, and

RGB camera data through simulations. The research questions

that we want to answer are as follows:

• Q1. Does introducing data from multiple modalities into

FL improve its performance?

• Q2. Does a classifier trained on labelled data from one

modality work on testing data from other modalities?

• Q3. Does learning from both unimodal and multimodal

clients provide better performance than only learning

from multimodal clients?

A. Datasets

As human activity recognition (HAR) is a domain that often

relies on multimodal data, we used three HAR datasets that

contain IoT data from different modalities in our experiments.

Table I shows the modalities, X sizes, h sizes, and the number

of classes in the datasets.

1) Different sensory modalities: The Opportunity (Opp)

challenge dataset [42] contains 18 short-term and non-repeated

kitchen activities including opening & closing doors, fridges,

dishwashers, and drawers, cleaning tables, drinking from cups,



TABLE I: USED MULTIMODAL DATASETS

Dataset Modality X size h size Classes

Opp
Acce
Gyro

24
15

10 18

mHealth

Acce
Gyro
Mag

9
6
6

4 13

UR Fall

Acce
RGB
Depth

3
512

8
2,4 3

toggling switches, and null activities. Its multimodal data

are measured by on-body sensors including accelerometers,

gyroscopes, and magnetic sensors. We use the accelerometer

data (Acce) measured in milligrams and gyroscope data

(Gyro) measured in degrees/s as the two modalities in

our experiments. Following the experimental setup used by

Hammerla et al. [43], we use the runs ADL4 and ADL5

of subjects 2 and 3 as testing data (118k samples) and the

remaining runs (except for ADL2 of subject 1) as training

data (525k samples). For NaN data in a sequence, we use

their previous value in the sequence to replace them [42]. As

the training data are from 15 runs, when generating local data

for a client, the size of the randomly sampled sequence is 1/15
of the training data.

The mHealth dataset [44] contains 13 daily living and

exercise activities including standing still, sitting & relaxing,

lying down, walking, climbing stairs, waist bending forward,

frontal elevation of arms, knees bending, cycling, jogging,

running, jumping front & back, and null activities. The activ-

ities are measured by multimodal on-body sensors including

accelerometers, ECG sensors, gyroscopes, and magnetometers.

We use the accelerometer data (Acce) measured in meters/s2

, gyroscope data (Gyro) measured in degrees/s, and magne-

tometer data (Mag) measured as local magnetic field in our

experiments and test the combinations of each two of them.

For each replicate of our simulations, we use the Leave-One-

Subject-Out method to randomly choose one participant and

use her data as testing data. The other 9 participants’ data are

used as training data. The average number of samples from a

participant is 122±18k (mean±std). The size of the randomly

sampled sequence for a client is 1/9 of the training data.

2) Sensory-Visual modalities: The UR Fall Detection

dataset [45] contains 70 video clips recorded by a RGB

camera (RGB) and a depth camera (Depth) of human activities

including not lying, lying on the ground, and temporary

poses. Each video frame is labelled and paired with sensory

data from accelerometers (Acce) measured in grams. We

use this dataset for our experiments on sensory-visual and

visual-visual modality combinations. For the modality RGB,

similar to the work by Srivastava et al. [46], we use a pre-

trained ResNet-18 [47] to convert each frame into a feature

map. For the modality Depth, we use the extracted features

including HeightWidthRatio, MajorMinorRatio, BoundingBox-

Occupancy, MaxStdXZ, HHmaxRatio, Height, Distance, and

P40Ratio, which are provided in the dataset. The size of

h is 2 with Acce and is 4 without it. For each replicate

of our simulations, we randomly sample 1/10 data (i.e., 7

video clips) as testing data and use the rest as training data.

The average number of frames in a video clip is 164 ± 82
(mean± std). From the training data, the size of a randomly

sampled sequence for a client is 1/9 of the training data.

B. Simulation setup

In each replicate of our simulation, the server conducts at

most 100 communication rounds with the clients and selects

10% clients for local training (2 epochs with a 0.01 or a 0.001

learning rate, whichever provides better performance) in each

round, after which the cloud training (5 epochs with a 0.001

learning rate) is conducted. The labelled dataset on the server

is randomly sampled from the training dataset and its size is

the same as the size of a client’s local data. For DCCAE, we set

λ = 0.01 as suggested by Wang et al. [10]. For the multimodal

weight parameter α, we tested {1, 2, 10, 50, 100, 500} and

found that α = 100 provides the best performance. For each

individual simulation setup, we use different random seeds to

run 64 replicates.

1) Baselines: To answer Q1, we consider a system in which

clients have multimodal data and a server has two labelled

unimodal datasets. Without multimodal representation learn-

ing, a baseline scheme can only use data from one modality,

which we refer to as UmFL (30 unimodal clients, 1 label

modality). Comparing UmFL with our multimodal scheme

(30 multimodal clients, 2 label modalities) will reveal whether

introducing more modalities in FL improves its performance.

We test both of them on the data from the modality of UmFL.

To answer Q2, we consider a system wherein clients have

multimodal data and a server has a labelled dataset from

one modality. A baseline scheme trains a global unimodal

autoencoder for each modality with the same size of h. The

classifier of the baseline is trained on the labelled data from

one modality with the help from the autoencoder on that

modality. We directly test the classifier on data from the other

modality, since the sizes of h from two modalities are the

same. This baseline does not use the alignment information

to do any multimodal local training. It is for the ablation

study on the multimodal local training and multimodal FedAvg

component. We refer to this baseline as Abl (30 unimodal

clients for each modality, 1 label modality). Comparing Abl

with our scheme (30 multimodal clients, 1 label modality)

will indicate whether the multimodal component brings any

improvement to the performance.

To answer Q3, we consider a system that has both unimodal

clients and multimodal clients. The server in the system has

a labelled dataset from one modality. A baseline scheme only

chooses multimodal clients (30 clients) to update the global

autoencoders. Comparing it with other schemes that use both

multimodal and unimodal clients for local update will show

whether our proposed Mm-FedAvg improves the performance

of the system.
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Fig. 6: Comparison between UmFL and MmFL. MmFL schemes have higher or same level of converged F1 scores on UR

Fall datasets than UmFL schemes do. On all three datasets, MmFL converges faster than UmFL does.

2) Models: We implement all the deep learning components

through the PyTorch library [48]. For training autoencoders on

time-series data, we use long short-term memory (LSTM) [49]

autoencoders [46] in our experiments for local training and

use the bagging strategy [50] to train our models with random

batch sizes and sequence lengths. An LSTM autoencoder takes

a time-series sequence (e.g., sensory data, video frames) as its

input. The hidden states generated by the LSTM encoder unit

are used as the hidden representations of the input samples in

the sequence. On the server side, we use a simple classifier that

has one multilayer perceptron (MLP) layer connected to one

LogSoftmax layer as the model for supervised learning. On

the mHealth dataset, we introduce a Dropout layer (rate=0.5)

before the MLP layer of the classifier to prevent overfitting.

C. Metrics

We test the classifier on the server against a labelled testing

dataset. We use a sliding time window with length of 2,000

to extract time-series sequences (without overlap) from the

testing dataset. We use the encoder of wag for the modality of

the testing data to convert the sequences into representations

and test them on the classifier ws. We calculate the F1 score

of each class within a sequence as:

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(4)

TP, FP, and FN are the numbers of true positive, false

positive, and false negative classification results, respectively.

The weighted average F1 score of all classes within the

sequence (with the number of ground truth samples of a class

being its weight) is the F1 score on the sequence. And the

average F1 score of all sequences is the F1 score of the

classifier. We evaluate the F1 score of the classifier every

other communication round until it converges and calculate

its average value and standard error from 64 replicates. On

each dataset, we evaluate both SplitAE and DCCAE and keep

the one that has better F1 scores.

V. RESULTS

We find that by using data from multiple modalities, the F1

score of the classifier is higher than that by using data from one

single modality. With the help of multimodal representations,

the classifier trained on labelled data from one modality can be

used on the data from another modality and achieve acceptable

F1 scores. In addition, combining local autoencoders from

both unimodal and multimodal clients can achieve higher F1

scores than only using multimodal clients.

A. Multimodal data improve F1 scores

On the Opp dataset, as shown in Fig. 6a, the F1 scores

of multimodal schemes (MmFL) that are trained on labelled

datasets from two modalities (LAB) converge faster than

UmFLA and UmFLB do when being tested on each modality

(TA and TB). Although the converged F1 scores are the same

for both UmFL and MmFL, using multimodal data speeds up

the convergence.
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Fig. 7: F1 scores of MmFL with labelled data from one modality (e.g., LB) and test data from the other modality (e.g., TA).

MmFL schemes achieve higher converged F1 scores or faster convergence than baselines (i.e., Abl schemes) in most cases.

Combining contributions from both unimodal and multimodal clients (e.g., MmFLABA) can further improve the F1 scores.

On the mHealth dataset (Fig. 6b– 6d), the results on three

modality combinations show similar trends. On each testing

modality, the converged F1 scores of MmFL schemes are

similar to those of their unimodal counterparts. However, the

F1 scores of MmFL schemes converge faster than UmFL

schemes do.

On the UR Fall dataset, the sizes of X from Acce and RGB

are 3 and 512, respectively. Thus h = 2 is the largest repre-

sentation size that we can use for the modality combination

Acce & RGB and it is not large enough to encode useful

representations from RGB data. Therefore we only show the

results from the other two modality combinations (Fig. 6e &

6f). The F1 scores of MmFL schemes are higher than those of

UmFL schemes when the schemes are tested against Acce data

or RGB data. When being tested against Depth data, MmFL

schemes converge faster than UmFL schemes do. Even the

modalities of data in UR Fall are more heterogeneous (i.e.,

sensory & visual) than those in Opp or mHealth (i.e., sensory

& sensory), multimodal FL can still align their representations,

thereby introducing more data to improve the F1 score of the

FL system.

Similar to the results of existing studies on centralized ML

systems, our results demonstrate that, in FL systems, com-

bining different modalities through multimodal representation

learning can achieve higher F1 scores or faster convergence

than only using unimodal data. Compared with existing work

using early fusion [14], the labelled data source on the server

in our framework does not have to be aligned multimodal

data. It can be individual unimodal datasets that are collected

separately. This suggests that we can scale up FL systems

across different modalities by utilizing the alignment informa-

tion contained in local data on multimodal clients.



B. Labels can be used across modalities

To answer Q2, we use labelled data from one modality for

supervised learning on the server and test the trained classifier

on the other modality that does not have any labels in the

system. Fig. 7 shows the F1 scores of MmFL with different

modalities for labelled data (e.g., LB) and testing data (e.g.,

TA), in comparison with a baseline scheme (Abl) for the

ablation study and a unimodal scheme for the modality of

the testing data (e.g., UmFLA).

On the Opp dataset with DCCAE (Fig. 7a), using only

multimodal clients (i.e., MmFLAB) achieves higher converged

F1 scores than baseline schemes do, which means that the

multimodal representation learning on clients indeed aligns

two modalities. When training classifiers on labelled Gyro

data and testing them on Acce data (i.e., MmFLAB-LB-TA),

the F1 score is close to that of a unimodal scheme using Acce

data (i.e., UmFLA), which demands labelled Acce data on the

server.

On the mHealth dataset (Fig. 7b–7d), the converged F1

score of baseline schemes and unimodal schemes is close to

each other. This means that the different modalities may be

correlated even without being aligned (similar to the findings

reported by Malekzadeh et al. [51]). This might be due to

the fact that except for 1 accelerometer on the chest, 6

sensors for different modalities in the mHealth dataset were

attached to 2 body parts (e.g., left-ankle and right-lower-arm).

Thus the readings of different modalities from the same body

part might be correlated. MmFLAB schemes still improve the

converged F1 scores compared to Abl schemes and have faster

convergence in two modality combinations (i.e., Acce & Gyro,

Acce & Mag).

On the UR Fall dataset (Fig. 7e–7f), MmFLAB schemes have

higher F1 scores than baselines do. It is worth to note that,

when using labelled Depth data (i.e., LB), the test F1 scores on

Acce and RGB data (i.e., MmFLAB-LB-TA schemes in Fig. 7e

& 7f) are even higher than those when using labelled data

from these two testing modalities (i.e., UmFLA). In Sec. V-A,

results in Fig. 6e & 6f show that the unimodal schemes using

Depth data have higher F1 scores than those using Acce or

RGB data. Therefore, for MmFL with SplitAE, using labelled

Depth data for the supervised learning on the server leads to

higher F1 scores than those using Acce or RGB data’s own

labels.

Our results show that, with the help of multimodal repre-

sentation learning on FL clients, we can use the trained global

autoencoder to share the label information from one modality

to other modalities by mapping them into shared or related

representations. The test F1 scores on the other modalities can

be close to or even better than those of unimodal FL schemes

using labels from the modalities. This allows us to scale up FL

systems even with limited source of unimodal labelled data. In

addition, we can potentially improve the testing performance

of a modality by aligning it with other modalities that have

labels, instead of directly mapping it to labels.

C. Training on mixed clients

To understand how mixed clients with different device

setups (i.e., unimodal clients and multimodal clients), which is

a more realistic scenario for FL systems, affect the F1 scores,

for each MmFLAB scheme with 30 multimodal clients, we run

one mixed-client scheme that has 10 more clients for modality

A (i.e., MmFLABA), one that has 10 more clients for modality

B (i.e., MmFLABB), and one that has 10 more clients for each

modality (i.e., MmFLABAB). We compare them and keep the

one that has the highest F1 scores.

In Fig. 7a, the MmFLABA-LB-TA scheme on the Opp dataset

further speeds up the convergence of test F1 scores compared

to MmFLAB, which means that combining contributions from

both unimodal and multimodal clients by using Mm-FedAvg

is better than using only multimodal clients. On the mHealth

dataset (Fig. 7b & 7c), the mixed-client schemes slightly

improve the test F1 scores in two experiments. Similarly,

on the UR Fall dataset (Fig. 7e), MmFLABA and MmFLABB

schemes show improved F1 scores in the experiments of the

Acce & Depth combination.

The results indicate that using Mm-FedAvg to combine

models from both multimodal (with higher weights) and

unimodal clients can provide higher F1 scores or faster con-

vergence than only using multimodal clients. Thus, when there

are a limited number of multimodal clients in a mixed-client

FL system, we can utilize unimodal clients to boost the local

training.

VI. DISCUSSIONS

In this paper, we have proposed a multimodal FL framework

on IoT data. We now discuss how the framework can be used

in real-world FL systems and what potential research topics

are in the space of multimodal FL.

A. Heterogeneity beyond data distributions

Training in FL is mainly conducted on clients. In a real-

world FL system, each client’s local data are generated on an

individual level rather than a population level, which means

that heterogeneity between clients is commonplace. Some

heterogeneity such as data distributions has been well studied

and solving it can help keep the performance of FL systems

stable across different clients. Other heterogeneity, such as data

modalities, is also an important issues in implementing FL

systems. As shown in our results, solving such heterogeneity

can make FL systems scalable across different modalities,

thereby increasing the amount of available data. In an FL

system using IoT devices, it is difficult to force all clients to

deploy devices that have the same data modality, because users

may have different budgets for devices or privacy concerns on

the devices installed in their homes. Therefore, multimodal FL

plays an important role in realizing those promised FL systems

that aim to work with hundreds of thousands of clients. In this

paper, we focused on the modality heterogeneity issue and the

other types of heterogeneity are out of our scope, which is

the limitation of this paper. For future research, we plan to

investigate how multimodal FL performs with the influence



from the other types of heterogeneity in aspects such as data

distributions and DNN model structures.

B. Sharing label information across modalities

The lack of labelled data on FL clients has recently mo-

tivated researchers to design semi-supervised FL systems. In

many cases, only the service provider (i.e., the FL server) has

the ability and expertise to provide labelled data. The existing

research on semi-supervised FL assumes that the labelled data

on the server and the local data on clients are from the same

modality. In this paper, we have shown that our framework

allows label information from one modality to be used by other

modalities. This can potentially contribute to reducing the cost

of data annotation on the server when implementing real-world

semi-supervised FL systems. Some modalities (e.g., sensory

data) may not be easy to directly annotate on. However, by

using the matching information on FL clients, we can align

these modalities with other modalities that are easy to acquire

annotations (e.g., visual data) on the server. By this means, we

can enable clients from all modalities in the system to utilize

the label information through multimodal representations. It

may also allow us to deploy fewer privacy-intrusive devices

(e.g., cameras) in people’s homes since we only need some

clients to have multimodal data for alignment.

C. Utilizing mixed FL clients

One of our contributions in this paper is the Mm-FedAvg

algorithm that combines locally updated autoencoders from

both unimodal and multimodal clients. By giving multimodal

clients more weights, combining contributions from mixed

clients has higher F1 scores than only using multimodal

clients. Thus only a part of the clients in the system needs

to be multimodal clients. Currently, all the multimodal clients

in the framework use the same type of autoencoder (i.e., either

all SplitAE or all DCCAE) and the unimodal clients’ can

directly update a part of the autoencoders. In reality, this

assumption may need to be changed due to different local

data distributions or computational capabilities. Therefore, we

suggest that more flexible multimodal averaging algorithms

using techniques such as knowledge distillation [36] should

be investigated. It would allow FL systems to use different

local autoencoders for multimodal representation learning. In

addition, mechanisms that can evaluate the quality of models

trained on different data modalities and can dynamically adjust

the weights of multimodal clients are necessary, which will

allow us to optimise the combined contributions.

VII. CONCLUSIONS

As a new system paradigm, federated learning (FL) has

shown great potentials to realize deep learning systems in

the real world and protect the privacy of data subjects at

the same time. In this paper, we propose a multimodal and

semi-supervised framework that enables FL systems to work

with clients that have local data from different modalities and

clients with different device setups (i.e., unimodal clients and

multimodal clients). Our experimental results demonstrate that

introducing data from multiple modalities into FL systems can

improve their classification F1 scores. In addition, it allows us

to apply models trained on labelled data from one modality

to testing data from other modalities and achieve decent F1

scores. It only requires a part of the clients to be multimodal

in order to align different modalities. We believe that our

contributions can help machine-learning system designers who

want to implement FL in complex real-world scenarios such

as IoT environments, wherein data are generated from dif-

ferent modalities. For future research, we plan to investigate

broader applications of our framework in domains apart from

multimodal human activity recognition.
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