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Analytical Methods for High-Rate Global Quantum Networks

Cillian Harney∗ and Stefano Pirandola†

Department of Computer Science, University of York, York YO10 5GH, United Kingdom

The development of a future, global quantum communication network (or quantum internet) will
enable high rate private communication and entanglement distribution over very long distances.
However, the large-scale performance of ground-based quantum networks (which employ photons
as information carriers through optical-fibres) is fundamentally limited by fibre quality and link
length, with the latter being a primary design factor for practical network architectures. While
these fundamental limits are well established for arbitrary network topologies, the question of how
to best design global architectures remains open. In this work, we introduce a large-scale quantum
network model called weakly-regular architectures. Such networks are capable of idealising network
connectivity, provide freedom to capture a broad class of spatial topologies and remain analytically
treatable. This allows us to investigate the effectiveness of large-scale networks with consistent
connective properties, and unveil critical conditions under which end-to-end rates remain optimal.
Furthermore, through a strict performance comparison of ideal, ground-based quantum networks
with that of realistic satellite quantum communication protocols, we establish conditions for which
satellites can be used to outperform fibre-based quantum infrastructure; rigorously proving the
efficacy of satellite-based technologies for global quantum communications.

I. INTRODUCTION

Advancements in quantum information science will
have a profound impact on society [1–4]. In particular,
the overarching trajectory of quantum communication
technologies is towards a global quantum communication
network: A quantum internet [5–8]. This will facilitate
high rate, provably secure communication and globally
distributed quantum information processing with radical
implications for science, technology and beyond.
The current, most promising point-to-point quantum

communication protocols (where two parties are con-
nected directly via a quantum channel) are based on
continuous variable (CV) quantum systems [3, 9, 11, 12]
(such as bosonic modes). CV protocols achieve high per-
formance and are compatible with current telecommu-
nication infrastructure based upon optical-fibre connec-
tions, emphasising their near-term feasibility. However,
the laws of quantum mechanics prohibit the ability to
simultaneously achieve high rates and long distances, a
fundamental law captured by the Pirandola-Laurenza-
Ottaviani-Banchi (PLOB) bound [4]. This describes the
absolute maximum rate that two parties may transfer
quantum states, distribute entanglement, or establish
secret-keys over a bosonic lossy channel (optical-fibres)
equal to − log2(1 − η) bits per channel use, where η is
the channel transmissivity [4, 14].

Overcoming this point-to-point limitation requires the
use of quantum repeaters or more generally the construc-
tion of quantum networks. Combining tools from classi-
cal network theory [15–18] with the PLOB bound, ul-
timate limits have also been established for the end-to-
end capacities of quantum networks [19]. These results
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confirm that the PLOB bound can be beaten via quan-
tum networking, facilitating high rate communication at
longer ranges. While such bounds are easily expressed
in full generality for arbitrary network topologies, their
practical assessment requires the specification of an ar-
chitecture. Questions of network topology have been re-
cently considered via the statistical study of complex,
random quantum networks [5, 20, 21, 23], which reveal
insightful phenomena associated with large-scale network
properties. Studies of this kind are extremely valuable
and help to unveil important guidelines for the develop-
ment of future quantum networks.

Nonetheless, such analyses are not easy and require sig-
nificant numerical effort in order to reveal key network
properties, e.g. critical network densities or maximum
fibre-lengths. There is a demand for versatile, analyti-
cal tools which allow for the efficient benchmarking of
quantum networks and can motivate the construction of
large-scale topologies.

Meanwhile, ground-based fibre channels are not the
only conduits available for global quantum communi-
cations. A rival infrastructure that may prove supe-
rior to fibre-based networks at global distances is Satel-
lite Quantum Communication (SQC) [24–31]. SQC
exploits ground-to-satellite communication channels to
overcome the fundamental distance limitations offered
by fibre/ground-based mechanisms. A satellite in or-
bit around the Earth may act as a dynamic repeater
that physically passes over ground-based users and dis-
tributes very long-range entanglement/secret-keys. The
ability to exploit a free-space connection with a satellite
also carries the possibility of substantially more trans-
missive channels than optical-fibre, making it ideal for
global communication protocols.

The following critical questions emerge: Can we de-
velop analytical tools which allows us to place limits on
the end-to-end performance of large-scale quantum net-
works? And are fibre-based networks truly the best way
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to achieve long-distance quantum communication? The
goal of this work is to make progress with these chal-
lenges.
Utilising ideas from quantum information theory, clas-

sical networks and graph theory [32], we investigate ideal
architectures based on the property of weak-regularity.
Weakly-Regular Networks (WRNs) simultaneously (i)
idealise network connectivity, (ii) provide sufficient free-
dom to capture a broad class of spatial topologies and
(iii) remain analytically treatable so that critical net-
work properties can be rigorously studied. This results
in a design with desirable qualities which can efficiently
and effectively provide insight for realistic structures. We
show that quantum WRNs employing multi-path rout-
ing admit remarkably accessible and achievable upper-
bounds on the end-to-end network capacity. This allows
for a characterisation of the ideal performance of a fibre-
based quantum internet with respect to essential proper-
ties such as maximum channel length and nodal density.
Our exact, analytical results provide an immediate

pathway to perform comparisons of SQC with global
ground-based quantum communications. We study the
average number of secret bits per day that can be dis-
tributed between two remote stations, using large-scale
quantum fibre-networks or a single satellite repeater sta-
tion in orbit. Our findings rigorously prove the superior-
ity of satellite-based quantum repeaters for global quan-
tum communications, reveal the constraints associated
with fibre-based networks and the enormous resource de-
mands required to overcome achievable rates offered by a
single satellite. These results further motivate the study
of SQC and its key role within a future quantum internet.
The remainder of this paper is structured as follows:

In Section II we introduce preliminary notions of quan-
tum networks, optimal end-to-end performance and ideal
properties of large-scale network designs. In Section I we
discuss how the optimal performance of quantum WRNs
can be analytically bounded with respect to network
properties and apply these methods to bosonic lossy-
networks. Section IV then compares the performance
of global fibre-networks with rates that are achievable
by SQC, assessing the advantages associated with each
infrastructure, followed by concluding remarks.

II. QUANTUM NETWORK DESIGN

A. Basics of Quantum Networks

A quantum network can be described as a finite, undi-
rected graph N = (P,E) where P = {xi}i is a set
of all nodes (points/vertices) on the graph and E =
{ei}i collects valid connections between pairs of nodes
(edges). A network node refers to either a user-node,
such as a potential end-user pair Alice a and Bob b,
or a repeater/relay-node. Each node xi possesses a lo-
cal register of quantum systems which can be altered
and exchanged with connected neighbours. Any two

nodes x,y ∈ P are connected via an undirected edge
e := (x,y) ∈ E if there exists a quantum channel Exy
through which they may directly communicate. Since
each edge is undirected, this may be a forward or back-
ward channel.

In the context of quantum networks, it is important to
make a distinction between physical flow and logical flow.
The logical flow of a quantum communication channel de-
scribes the direction in which entanglement, secret-keys,
or quantum states are distributed from a node x to node
y (or vice versa). The physical flow of quantum commu-
nication refers to the actual direction of quantum system
exchange, i.e. if quantum systems are physically sent in
the direction x → y or y → x. In a quantum network,
these concepts can be completely decoupled. This may
be due to the fact that the communication task has a
symmetric objective i.e. if Alice and Bob with to share
a secret-key, they do not care who initiates the exchange
of quantum systems. However, it may also be thanks
to quantum teleportation; it is always possible to “re-
verse” the logical direction of communication by means
of a teleportation protocol between Alice and Bob.

The independence of physical and logical flow helps us
to reliably describe a quantum network as an undirected
graph. Any pair of connected network nodes can choose
the physical direction in which they wish to exchange
quantum systems and may always choose that which has
the largest capacity. As a result, we never need to distin-
guish between forward or backward channels and repre-
sent each edge (x,y) ∈ E by the best choice of quantum
channel [19].

In a point-to-point communication setting, the logical
flow of quantum information has a clear and obvious set
of choices; Alice to Bob a → b or Bob to Alice a ← b.
However, within a quantum network, a vast array of op-
tions emerge due to the various interconnections and pos-
sible paths that information may follow. To address this,
users can devise an end-to-end routing strategy that fa-
cilitates communication between end-users. The two key
classes of strategy are single-path and multi-path routing.

Single-path routing is the simplest network communi-
cation method, which utilises point-to-point communi-
cations in a sequential manner. An end-to-end route,
ω, is defined as a sequence of network edges which are
able to connect a pair of end-users a, b ∈ P , that is
ω := {(a,x1), (x1,x2), . . . , (xN , b)}. Quantum systems
can be exchanged from node-to-node along this route,
followed by LOCC operations after each transmission un-
til eventually communication is established between the
end-users. This kind of strategy is analogous to the use of
a repeater-chain and network performance is determined
by the strength of each link along an optimal end-to-
end route. Yet, quantum information is significantly less
robust than classical information and single-path rout-
ing may not be sufficiently resilient to network errors, or
provide high enough rates.

A more powerful strategy is multi-path routing, which
properly exploits the multitude of possible end-to-end
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routes available in a quantum network. In multi-path
protocols, users may simultaneously utilise a number of
unique routes {ω1, ω2, . . . , ωM} in an effort to enhance
their end-to-end rate. A user may exchange an initially
multi-partite quantum state with a number of neighbour-
ing receiver nodes, who may each then perform their own
point-to-multi-point exchanges along its unused edges.
The exchange of quantum systems can be interleaved
with adaptive network LOCCs in order to distribute se-
cret correlations and this process continues until a multi-
point interaction is carried out with the end-user.
The optimal multi-path routing strategy operates in

such a way that all channels in the network are used
once per end-to-end transmission. This is known as a
flooding protocol [17–19]; each node in the network per-
forms quantum systems exchanges along all its available
edges, resulting in non-overlapping point-to-multipoint
exchanges between all network nodes. The ability to
flood an entire network means that every possible end-
to-end route between the end-users are fully explored, al-
lowing them to achieve the optimal end-to-end rate. This
greatly enhances the end-to-end performance of quantum
networks.

B. Optimal Performance and Flooding Capacities

As discussed, the optimal end-to-end performance of a
network is defined by its ability to perform flooding by
using every edge in the network to achieve communica-
tion between a pair of end-users [19]. Any communica-
tion protocol which does not flood the network utilises
less resources and thus fewer end-to-end paths; hence no
protocol can achieve a better end-to-end rate than flood-
ing. This optimal performance is quantified by a flooding
capacity Cm(i,N ), which describes the optimal number
of target bits (such as secret-bits or entanglement-bits)
that can be transmitted between end-users per use of a
flooding protocol.
An important graph-theoretic concept for quantifying

network performance is that of cuts and cut-sets. Con-
sider a network N = (P,E) with two remote end-users
a, b ∈ P . We may collect this end-user pair into its own,
compact object i = {a, b}, which is simply a two-element
subset of the collection of all network nodes. We define
a cut C as a bipartition of all network nodes P into two
disjoint subsets of nodes (Pa, Pb) such that the end-users
become completely disconnected, a ∈ Pb and b ∈ Pb,
where Pa ∩ Pb = ∅. A cut C generates an associated
cut-set; a collection of network edges C̃ which enforce
the partitioning when removed,

C̃ := {(x,y) ∈ E | a ∈ Pa, b ∈ Pb}. (1)

Under the action of a cut, a network is successfully par-
titioned

N = (P,E)
Cut: C−−−−→ (P,E \ C̃) = (Pa ∪ Pb, E \ C̃), (2)

so that there no longer exists a path between a and b.
Network cuts play a key role in the derivation of end-to-
end network rates and many network optimisation tasks
can be reduced to an optimisation over all cuts with re-
spect to single-edge/multi-edge properties.
Each channel in a network is associated with a single-

edge capacity Cxy := C(Exy) which describes the point-
to-point communication quality between nodes. Hence,
all networks have a single-edge capacity distribution
{Cxy}(x,y)∈E which informs the weights of the network
graph. Consequently, the flooding capacity can be de-
rived by solving the classical maximum-flow minimum-
cut problem according to a single-edge capacity distri-
bution. The flooding capacity is found by locating the
minimum-cut Cmin, which minimises the multi-edge ca-
pacity over all cut-sets [19],

Cm(i,N ) := min
C

∑

(x,y)∈C̃

Cxy. (3)

For general quantum networks with arbitrary capacity
distributions and network structures, this problem re-
quires a numerical treatment by solving the well known
max-flow min-cut problem [33–35] to find Cmin. How-
ever, it is possible to express an intuitive, simpler upper-
bound. Let us define the nodal-neighbourhood of a node
x as

Nx := {y | (x,y) ∈ E}. (4)

Then Nx is the collection of nodes to which x is con-
nected. We can also define an edge-neighbourhood of x
as all the edges which connect x to its neighbours,

Ex := {(x,y) | y ∈ Nx}. (5)

It follows that one can always successfully partition the
users a and b by collecting all of the edges in Ea or Eb

into a cut-set. This effectively disconnects either of the
nodes from the rest of the network, resulting in a valid
cut and is true regardless of the network architecture.
We may call this form of network cut user-node isolation,
denoted Ciso.
Since this form of cut always exists, the multi-edge

capacity associated with Ciso can be used to upper-bound
Eq. (3). By performing nodal isolation on the end-user
in i = {a, b} which minimises its multi-edge capacity, we
can write the bound

Cm(i,N ) ≤ CmNi
:= min

j∈i

∑

(x,y)∈Ej

Cxy. (6)

Here we have defined CmNi
as the min-neighbourhood ca-

pacity which is generated by Ciso. Since Ciso is a valid
network-cut, the min-neighbourhood capacity is achiev-
able.

C. Ideal Properties of Large-Scale Networks

An overarching goal of quantum network design is to
achieve end-to-end distance independence. That is, given



4

a pair of end-users, the rate achievable between them
is independent from their physical end-to-end separa-
tion and instead encoded into some properties of net-
work link-lengths or nodal density. In quantum net-
works, distance independence is especially important
as it bypasses the fundamental rate limitations asso-
ciated with point-to-point communications imposed by
the PLOB bound. Recent studies have shown that ran-
dom fibre-network architectures which are explicitly con-
scious of link-lengths are capable of obtaining distance
independence, e.g. Waxman networks which are suffi-
ciently dense [5, 36]. These studies simultaneously sug-
gest the shortcomings of classically-inspired network ar-
chitectures (such as scale-free structures) to achieve dis-
tance independence in a quantum setting, even with large
resources.
It is imperative that quantum networks are con-

structed using quantum-motivated design choices. To fa-
cilitate end-to-end distance independence, ground-based
quantum network architectures will need to be especially
conscious of two main features; maximum link-length
(which is often encoded into nodal density) and network
connectivity (how well connected each node is within the
structure). When appropriate restrictions are placed on
permitted link-lengths, this can help to ensure strong
end-to-end rates. Until now, the behaviour of maxi-
mum link-lengths with respect to network architecture
has been excluded to numerical studies. For example, in
Refs. [5, 21] the authors study the necessary nodal den-
sities required to ensure effective end-to-end rates; the
higher the network density, the more likely that end-to-
end communication can be mediated by shorter links,
resulting in reliable rates. In this work, we reveal novel
analytical tools which help to uncover the necessary re-
sources for high performance quantum fibre-networks.

III. WEAKLY-REGULAR QUANTUM
NETWORKS

A. Weakly-Regular Networks

The generality of complex architectures such as Wax-
man, Erdős-Rényi and scale-free networks render analyti-
cal investigation very difficult. For this reason, the inves-
tigation of quantum repeater technologies/protocols of-
ten relies heavily on numerics in order to study complex
network performance. Otherwise, one is limited to the
simpler setting of linear networks which can be assessed
analytically, i.e. repeater chains. The development of a
common ground between these scenarios, where large-
scale, highly-connected networks can be studied analyti-
cally is thus highly desirable.
Here, we propose the use of weakly-regular (WR) net-

work architectures. Weak-regularity is a graph-theoretic
concept which infers particular connectivity properties
onto undirected graphs, N = (P,E). Most prominently,
each node x ∈ P in a WRN has the same degree, i.e. if

Figure 1. A WRN cell can be concatenated many times to
construct a large-scale network which is WR within some
nodal boundary. Alternatively, outer edges can be looped
in order to close the network so to satisfy weak-regularity
everywhere (so there is no nodal boundary). In this ex-
ample, k = 6 and there is only one unique adjacent com-
monality multi-set λ = {2}∪6 (we employ a superscript
union notation to describe the repeated union of a single set,
e.g. {x}∪3 = {x} ∪ {x} ∪ {x} = {x, x, x}).

x ∈ P is connected to k other nodes, then every node in
the network is connected to exactly k nodes. This infers
regularity and provides the core simplification from com-
plex graphical designs (where regularity is seldom held).
The weak element of weak-regularity is less obvious,

but is similarly integral to our analyses. By definition,
a strongly-regular graph is a structure which adheres to
very strict rules; it consists of n nodes which are all k
regular, any pair of adjacent nodes (nodes which share an
edge) share exactly λ common neighbours and any pair
of non-adjacent nodes (don’t share an edge) share exactly
µ neighbours. We call these positive, integer parameters
λ, µ ∈ Z

+ the adjacent and non-adjacent commonalities
respectively of any two nodes on the graph and are used
to characterise how a graph is connected. The notion of
strength in strong-regularity resides in the consistency of
the values λ and µ for all nodes across the graph. When
strong-regularity is upheld, all of these requests result in
a relatively small graph with impractical properties for
large-scale network design. Consequently, if λ and µ are
allowed to take on a broader range of values, then the
graph is weakly-regular. Hence, weakness infers a looser
characterisation of neighbour sharing between nodes.
In this work, we consider WR graphs for which the

neighbour-sharing (commonality) properties of any net-
work node can obey some spectrum of values. In the
context of studying end-to-end performance, it turns out
that the most important commonality property is the ad-
jacent commonality. Consider a node x ∈ P on a k-WR
graph and its neighbourhood of adjacent nodes,

Nx := {y | (x,y) ∈ E}. (7)

Then Nx is the collection of k nodes to which x is con-
nected. For any node on the network, we can define a
bespoke adjacent commonality multi-set (a modified set
which can contain degenerate elements) which counts the
number of neighbours shared between x and all its neigh-
bours y ∈ Nx. More precisely, the adjacent commonality
multi-set can be defined as

λx :=
{

|Nx ∩Ny|
∣

∣ (x,y) ∈ E
}

= {λy
x}y∈Nx

, (8)
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where we denote λy
x := |Nx ∩Ny| as the number of com-

mon neighbours shared between the connected nodes x

and y. In our analyses, we consider graphs which are
defined by a non-degenerate super-set of permitted adja-
cent commonality multi-sets,

Λ := {λx | x ∈ P}, (9)

so that the adjacent commonality multi-set of any node
in the network x ∈ P belongs to the set λx ∈ Λ.

In summary, we are able to define a (k,Λ)-WRN as
a class of network for which all nodes have a constant
degree equal to k and for which their neighbour-sharing
properties satisfy λx ∈ Λ. While k and Λ impose con-
nectivity constraints, WRNs that belong to this class are
free to adopt a vast range of topological or spatial con-
figurations. Furthermore, we avoid explicit references to
the number of network nodes n. Instead, n is encoded
into properties of the network such as the nodal density
ρN which defines the average number of network nodes
per unit of area.
While these definitions may seem overly abstract, they

introduce a remarkably versatile way to analytically de-
scribe interesting and useful network structures. For ex-
ample, it is easy to construct a WR network cell ; a collec-
tion of nodes connected a particular graphical structure,
which when concatenated (or “stitched”) together will re-
sult in a large-scale network which obeys weak-regularity
within some nodal boundary. This permits the analytical
investigation of networks consisting many nodes which
display highly-connected, yet realistic properties. This
concatenation process is visualised in Fig. 1 where it is
shown how a k = 6 regular cell can be used to generate a
larger WRN. Furthermore, Fig. 2(a) depicts a number of
examples of these network cells. For more precise details
and discussions, see the Supplementary Material.

B. Optimal Performance of Weakly-Regular
Networks

As a network becomes more highly connected, it
becomes easier to locate end-to-end routes between
any pair of nodes. As a result, performing network
cuts requires the collection of more and more edges in
a cut-set, C̃, in order to restrict flow along the many
potential connective paths between the end-users. In
a spatial network, this initiates a relationship between
cut-set cardinality, |C̃|, and distance from an end-user.
Performing cuts with edges further away from a user
node requires the collection of many more edges to
consolidate the partition. The further from the user
nodes we begin the cut, the greater the number of
potential end-to-end paths we must restrict (since we
have permitted a larger flow from the user node) and
thus the more edges we must collect. We call this
phenomenon network cut growth.

When the quality of point-to-point links in a network is
consistent (link-lengths are close to the overall average),

then cut-set cardinality |C̃| plays a significant role in the
characterisation of minimum cuts. Indeed, for dense net-
works with distance constrained edges, the minimum cut
is often achieved by nodal isolation. This is thanks to
network cut growth and consistent single-edge rates; cuts
performed further away from the user-node will generate
a larger multi-edge capacity since they will reliably con-
tain more edges with similar single-edge rates. This kind
of behaviour has been observed with respect to multi-
path capacities in Waxman networks, and may exist in
other very popular random network models [5, 36]. This
form of network cut behaviour is indicative of a well con-
nected network and one that will achieve high rates.
This logic motivates the main theoretical tool utilised

in this paper. WRNs also undergo network cut growth
with respect to distance from end-users, thanks to their
reliable and consistent connective properties. Consider a
large-scale (k,Λ)-WR quantum fibre-network, and a pair
of end-users i = {a, b} located within it. Then the cut
which collects the fewest edges is that which performs
user-node isolation, i.e. collects the k neighbouring edges
of either end-user, generating CmNi

defined in Eq. (6). Ev-
ery other cut in the network will necessarily collect more
than k edges in order to successfully partition the end-
users. When the flooding capacity saturates Eq. (6) it is
user-node isolation achieves the minimum cut.
Unlike more complex, random network models, it is

possible to analytically study network cut growth within
WRNs. Here, we sketch the basic technique, and point
the reader towards more sophisticated, precise arguments
in the Supplementary Material. The basic idea is to use
the quantities k, and Λ to determine how much larger a
cut-set will grow when one is not permitted to cut user-
neighbourhood edges. If we know how much a cut-set
will grow in size with respect to distance from an end-
user node, we can identify a relationship between cut-set
cardinality and the link quality requirements necessary
to achieve the minimum cut. Ultimately, this helps us to
derive a minimum, single-edge threshold capacity Cmin.
This reveals a minimum link-quality which when imposed
upon all edges in the network will ensure that the optimal
performance between end-users is guaranteed to be equal
the min-user neighbourhood capacity, Cm(i,N ) = CmNi

.
This technique proves to be powerful and versatile. In-

deed, given the quantum channel description of single-
edges in the network, Cmin can be used to relate thresh-
old properties of point-to-point quantum channels, and
end-to-end performance. In the following, we employ this
technique to reveal maximum link-lengths for quantum
networks connected by bosonic lossy channels.

C. Bosonic Lossy Quantum Networks

When considering fibre-based networks, point-to-point
links are described by bosonic pure-loss (lossy) chan-
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Figure 2. (a) Examples of network cells that can be used to construct quantum WRNs, where k denotes regularity and λ∗

is the adjacent commonality multi-set which minimises the quantity in Eq. (11). These quantities characterise the network
cell and larger WRNs that they can construct. (b) Relationship between the optimal end-to-end flooding capacity (equal to
the min-neighbourhood capacity Cm

Ni
) and the maximum link-length dmax

N required to guarantee it for bosonic lossy quantum
networks according to Eq. (48). Plots are colour coordinated with the network cells. Greater network regularity leads to larger
permissible ranges of channel lengths. Panel (c) depicts this relationship between minimum nodal density ρmin

N with respect
to optimal performance for bosonic lossy quantum networks, colour coordinated with the network cells. The grey dotted line
relates the nodal density to the average flooding capacity between any pair of nodes in a Waxman Network, as in Eq. (18) [5].

nels. A lossy channel L with transmissivity η ∈ (0, 1)
is a phase-insensitive Gaussian quantum channel, which
transforms input quadratures x̂ = (q̂, p̂)T according to
x̂ 7→ √ηx̂ +

√
1− η x̂env (where the environment is in a

vacuum state) describing the interaction of bosonic mode
with a zero-temperature bath [3].
For lossy quantum networks, the most important prop-

erty is channel length, or from a network perspective,
inter-nodal separation. For a given edge (x,y) ∈ E con-
necting two users in a network, the inter-nodal separation
is simply the distance dxy between them. All two-way
assisted quantum and private capacities of the lossy chan-
nel are precisely known via the PLOB bound [4],

CL(dxy) = − log2
(

1− 10−γdxy
)

, (10)

where the inter-nodal separation is related to the trans-
missivity via ηxy = 10−γdxy . For current, state of the
art fibre-optics the loss rate is γ = 0.02 per km (which
equates to a loss rate of 0.2 dB/km). Since these separa-
tions directly dictate the channel quality between nodes
they must be precisely engineered and distributed in or-
der to guarantee strong end-to-end performance.
For WR bosonic lossy fibre-networks, one can use the

technique sketched in the previous section to reveal a
maximum fibre-length allowed within the network to
guarantee optimal end-to-end performance. Consider an
end-user pair i = {a, b} and a desired min-user neigh-
bourhood capacity, CmNi

. Let us define the quantities δ
and ω as

δ := min
λ∈Λ

∑

λ∈λ

(k − λ− 1), ω :=
2(k − 1)

δ
, (11)

which are characteristic quantities of any (k,Λ)-WR net-

work. Then there exists a maximum fibre-length

dmax
N := − 1

γ
log10

(

1− 2−
1

δ
Cm

Ni

)

, (12)

for all edges in the network (x,y) ∈ E so that the end-
to-end flooding capacity is guaranteed to satisfy

ωCmNi
≤ Cm(i,N ) ≤ CmNi

. (13)

If the maximum link-length is not obeyed for all edges,
CmNi

remains an upper-bound on end-to-end performance.
The parameter ω can be considered as a confidence

measure on this performance guarantee. It arises out of
a very worst case scenario in which all edges surrounding
the neighbourhood of an end-user may be of maximum
length dmax

N . This may compromise the minimum cut,
potentially introducing a minor degradation of the flood-
ing rate. Fortunately, ω is typically of order 10−1 − 1
providing tight bounds in Eq. (49). For example, given
the WRN cells in Fig. 2(a) we find a worst-case value of
ω = 15/64 ≈ 0.23 for k = 16, while for k = 3 it is exactly
ω = 2/3.
In general this worst-case scenario will not be true and

the upper-bound in Eq. (49) will nearly always be sat-
urated. Nonetheless, it is possible to provide equality
by imposing a slightly stricter distance constraint on the
network edges connected to end-users. That is, addition-
ally enforcing that any edge (x,y) ∈ Ea ∪ Eb is shorter
than

dmax
Ni

:= − 1

γ
log10

(

1− 2−( 1

k−1
− 1

δ
)Cm

Ni

)

≤ dmax
N , (14)

we can guarantee that the end-to-end flooding capacity
satisfies

Cm(i,N ) = CmNi
. (15)
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Throughout our investigation we focus on this more prob-
able performance guarantee that the end-to-end flooding
capacity satisfies Cm(i,N ) = CmNi

granted that Eq. (48)
is respected throughout the entire network. This allows
us to effectively characterise true optimal performance
for WR quantum fibre-networks.
Full details and derivations of these results can be

found in the Supplementary Material. Clearly, the quan-
tity δ in Eq. (11) is vital to our developments. Precisely,
δ represents the smallest cut-set cardinality that can be
achieved without cutting user connected edges. In more
intuitive terms, it is used to monitor the network cut
growth of a WRN, and allows us to derive critical quanti-
ties such as the maximum fibre-length above. Note that
in Fig. 2(a) each of the WR cells are characterised by
their regularity k and the adjacent commonality multi-
set which achieves the minimisation in δ, denoted by
λ∗. Fig. 2(b) then illustrates the relationship between
flooding capacity and maximum fibre-length for a num-
ber of example WRNs. The limiting separation dmax

N is
inexorably linked with the regularity of the WRN; net-
works with high connectivity possess a greater tolerance
for longer distance channels since the enhanced multi-
path capabilities of the network outweigh the effect of
poor quality channels. This is clear from the examples
shown in Fig. 2, where a WRN with degree k = 16 can
tolerate channels of ∼ 60 km longer than one with k = 3.
Note that the

D. Nodal Density

We have discussed how WRNs can be used to describe
realistic large-scale networks while maintaining analyt-
ical understanding of their optimal end-to-end perfor-
mance and critical properties, e.g. maximum link-length.
We may take this analysis a step further in order to
understand the relationship between end-to-end perfor-
mance and network nodal density. The nodal density is
defined as the number of nodes n per unit area A of the
network,

ρN := n/A. (16)

Via the previous section, we may derive a maximum fibre-
length dmax

N that is necessary to guarantee some opti-
mal end-to-end performance Cm(i,N ) = CmNi

. We may
then ask the question: Is there a corresponding mini-
mum nodal density in which the (k,Λ)-WRN can be con-
structed while remaining compliant with the maximum
fibre-length? It is not so easy to answer this question
for completely general WR architectures. Nonetheless,
for the networks studied in this work this challenge is
readily tackled.
In the Supplementary Material we show that via the

concept of sparse constructions (the least dense way to
construct a network given connectivity rules and link-
length constraints) it is possible to derive a minimum

nodal density ρmin
N required to achieve optimal end-to-

end flooding capacity. The consistency of WRN cells in
Fig. 2(a) reduce this to a geometric problem which is
solvable. In summary, we can find a lower-bound on the
nodal density required to achieve optimal performance
Cm(i,N ) = CmNi

given by

ρN ≥ ρmin
N := ξγ2

[

log10

(

1− 2−
1

δ
Cm

Ni

)]−2

. (17)

Here, ξ is a characteristic quantity of the WR network,
found by studying its sparse construction. The tightness
of this lower-bound depends on the manner in which the
sparse construction is solved or approximated.
Figure 2(c) depicts the connection between flooding ca-

pacity and minimum nodal density for a number of types
of WRNs. It is clear that there is a trade off between
end-to-end performance and regular nodal degree. At low
flooding rates (10−2−10−1 bits per network use) the WR
structures with lower degrees k = 3 and 6 demand fewer
resources to achieve the same performance as those with
higher degrees k = 8 and 16. In this regime, high degrees
are not necessary everywhere in the network to achieve
the flooding rates; indeed, the consistent connectivity in-
voked by WR designs help to maintain performance at
low densities. Yet, as the flooding capacity transitions to-
wards 1−10 bits per network use this behaviour changes;
WRNs with low degrees demand shorter and shorter links
to achieve the high rates and the inability to involve more
connections at each node becomes costly. As can be seen
for k = 3 the required minimum nodal density rapidly
increases, shortly followed by k = 6 and 8. Contrar-
ily, the regime of high end-to-end rates is well suited to
WRNs with greater regularity, k = 16, for which the
greater number of connections at each node facilitate a
lower overall density.
Simultaneously, we plot an approximation of the av-

erage flooding capacity between any pair of nodes on a
Waxman network with respect to nodal density (dashed
grey line) as derived in Ref. [5]. This defines an expected
flooding capacity between any pair of users, such that

Ei [Cm(i,N )] ≈ ζ(ρN − ρcrit)− 1, (18)

where ρcrit ≈ 4.25×10−4, ζ ≈ 4358 and the average Ei[·]
is taken over all possible end-user pairs in the network.
We identify a kinship between the necessary ρmin

N pre-
dicted by WRNs and that derived for Waxman networks.
As one may expect, the order and consistency of WRNs
is able to promise lower resource demands at lower-rates;
resulting in smaller critical nodal density predictions for
the necessary density to achieve 1 bit per network use.
However, as the flooding performance increases, the flexi-
bility of the Waxman design (its ability to utilise variable
nodal degrees) renders it superior to the lower degree WR
structures. In summary, there is good behavioural agree-
ment between these models, corroborating the utility of
WR structures as a valuable analytical tool for quantum
network design.
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IV. COMPARISON WITH SATELLITE
QUANTUM COMMUNICATIONS

A. Satellite Quantum Communications

Here, we briefly review key results which facilitate a
comparison of SQC with idealised, ground-based quan-
tum networks. For more detailed derivations and discus-
sions of these results, please refer to Refs. [24, 26].

Consider two users (Alice and Bob), who choose to
communicate by means of an orbiting satellite (a dy-
namic repeater). Here we consider a ground station G
at approximately sea-level, and a satellite S which is in
orbit at an altitude h ≥ 100 km and variable zenith
angle θ. Given that the radius of the Earth is RE ≈
6371 km, the slant distance between G and S is z(h, θ) =
√

h2 + 2hR2
E +R2

E cos2(θ) − RE cos(θ), describing the
true distance that an optical beam must travel from
G to/from S. We may consider two unique configura-
tions for information transmission; uplink, which refers
to when G is the transmitter and S is the receiver,
and downlink, where the converse is true. Both config-
urations will identically admit the effects of free-space
diffraction (beam-spot size widening) and atmospheric
extinction (caused by molecular/aerosol absorption as
the beam propagates). However additional loss/noise ef-
fects emerge with respect to uplink and downlink proto-
cols, which invokes an asymmetry in their communication
performance.
The effects of turbulence (caused by fluctuations in the

atmospheric refractive index) and pointing errors (align-
ment of the optical signal with the receiver) are responsi-
ble for beam wandering, which instigates a fading process
for the communication channels. For uplink protocols,
turbulence is a significant factor for loss properties of the
ground-satellite channel since it impacts the propagating
beam immediately after transmission. However, point-
ing errors can be reduced thanks to the ability to easily
access and optimise adaptive optics at ground level. In
downlink these effects are reversed. Turbulence is not
a factor until the beam reaches low altitudes, at which
point the beam has already spread via diffraction. Hence
turbulence can be neglected for downlink, but pointing
errors mut be considered due to limited onboard access
and resources.
Considering each of these physical effects characteris-

ing the lossy free-space channel, it is possible to present
an ultimate limit on the secret-key capacity K for SQC
[26],

K ≤ −∆(η, σ) log2 (1− η) . (19)

Here ∆ (η, σ) is a correction factor to the PLOB bound,
where η := η(h, θ) is an effective transmissivity which is
a function of geometric position, encompassing all the
effects of diffraction, extinction, and optical imperfec-
tions/inefficiencies. Meanwhile, σ2 = σ2

turb + σ2
point is

the variance of the Gaussian random walk of the beam

centroid caused by beam wandering, with contributions
from turbulence and/or pointing-errors.
This bound can be further modified to account for

the presence of thermal noise, which is highly dependent
upon time of day (day or night-time) and weather condi-
tions (cloudy or clear skies). For night-time communica-
tions, background noise is practically negligible, and the
above bound requires little modification. However, for
day-time operations this is generally not the case and the
free-space lossy channels must be described as thermal-
loss channels which account for additional noise.

B. Practical Key-Rates for Satellite Quantum
Communications

The bound in Eq. (19) is an ultimate upper-bound
on the capacity of a ground-to-satellite communication
channel, it is important to provide an assessment of re-
alistic and practical protocols which embody achievable
lower-bounds for SQC. These lower-bounds will facilitate
comparisons with global quantum networks, and help de-
duce the conditions for which we can expect satellite ad-
vantage for long-distance quantum communications.
Here we summarise some achievable rates for dif-

ferent satellite configurations. We consider practical,
composably-secure secret key-rates achievable from the
pilot-guided and post-selected CV-QKD protocol stud-
ied in Refs. [24, 26]. The main concept of this protocol
is to encode information into Gaussian-modulated coher-
ent states, randomly interleaved by highly energetic pi-
lot pulses used to monitor the transmissivity and fading
properties of the free-space channel in real time (facili-
tating the use of classical post-selection). This protocol
has been comprehensively extended to account for the
physical scenario of satellite quantum communications,
resulting in realistic and practical rates.
We may consider the employment of such a protocol

in conjunction with a near-polar sun-synchronous satel-
lite used to communicate between two ground stations.
This type of orbit ensures a consistent fly-over time for
any point on the Earth’s surface, such that the satellite
passes over any point at the same local mean solar time
each day. This provides the possibility of stable condi-
tions for satellite communications at around the same
time each day. Let us assume that the stations lie along
the orbital path such that the satellite crosses both of
their zenith positions (which happens once per day). We
further assume a worst-case scenario such that the sta-
tions only interact with the satellite when the zenith po-
sitions are crossed, and that both stations assume similar
operational conditions.
It is possible to quantify the performance of satellite

communications by considering a daily key rates, i.e. the
number of secret-bits that may be shared per day. This
allows us to utilise an average orbital rate Rorb asso-
ciated with up/downlink operations in day/night-time,
representing an average secret-key rate per link usage.
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Thanks to the dynamic nature of SQC, and the fact that
we consider communication with both stations only once
per day, this daily rate will be constant with respect
to ground based end-to-end distances. The number of
secret-bits that can be shared in a zenith-crossing passage
is then given by the effective transit time for the quantum
communications tQ(h) as a function of the altitude, and
a typical clock frequency which we set as α = 10 MHz.
The average daily-rate in a given configuration is thus

Rsat
daily ≈ α tQ(h)R

i
orb, (20)

for which i labels the up/downlink and day/night-time.
For downlink operations at altitude h = 530 km, initial

beam-spot-size ω0 = 40 cm, receiver aperture aR = 1 m,
these setup parameters lead to the night-time/day-time
rates [26],

Rdown
orb ≈

{

3.066× 10−2 bits/use (night),

3.041× 10−2 bits/use (day).
(21)

For uplink, we consider and altitude h = 103 km and
similar setups (but now with a spot-size ω0 = 60 cm and
wider aperture aR = 2 m) leading to the rate,

Rup
orb ≈

{

4.244× 10−2 bits/use (night),

2.737× 10−2 bits/use (day).
(22)

Notice that in both configurations the day and night
time rates are very similar. This is thanks to effective
noise-filtering that can be performed with this kind of
CV-QKD protocol. Such protocols are able to realisti-
cally exploit CV quantum systems and interferometric
measurements in order to achieve much narrower fre-
quency filters than is possible with DV protocols (see
Ref. [26] for more details). As a result, the increased
background thermal noise experienced at the receiver in
day time does not significantly deteriorate the rate.

C. Comparison with Ground-Based Networks

As we have established in previous sections, end-to-
end distance independence is a critical design feature for
the construction of effective quantum networks. It is a
feature that can be achieved, provided that one care-
fully monitors link-length, nodal density and the limits of
quantum communication rates. Yet, as shown in the pre-
vious section, it can be very resource intensive and costly
to promise strong end-to-end rates between long-distance
end-users if we choose to solely utilise ground-based fibre
networks. For this reason, it is important to understand
the limits of large-scale quantum networks for long-range
communication. Moreover, it is invaluable to determine
when SQC may be superior and offer a feasible, cost-
efficient route to global quantum communication.
Determination of when SQC is advantageous requires

a strict, quantitative comparison with ground-based fi-
bre networks. In this section we aim to benchmark the

optimal performance of global quantum fibre networks
against practical, near-term SQC capabilities. More pre-
cisely, we compare daily secret key-rates obtained be-
tween globally distant end-users via:

(i) A global-scale (k,Λ)-WR fibre network with capac-
ity achieving links.

(ii) A single, sun-synchronous satellite operating at the
achievable rates in Eqs. (20)-(22) using realistic de-
vices and the practical CV-QKD protocol discussed
in Section IVB.

Clearly, the resources accessed by an ideal (k,Λ)-WR fi-
bre network are significantly greater than the single satel-
lite, and a fairer comparison would be to consider a con-
stellation of satellites; but that is the point. If a single,
sun-synchronous satellite, operating at realistic rates is
able to outperform a global fibre network within a mean-
ingful resource regime, this offers clear evidence for the
superiority (and necessity) of SQC for global quantum
communications. Using the tools developed throughout
this paper, our comparison can be carried out expediently
and analytically.
Assume two globally distant end-users, Alice and Bob.

We need not consider a specific end-to-end distance, since
the (k,Λ)-WRNs are end-to-end distance independent.
By considering a daily key rate and the operational setup
explained in Section IVB, SQC is also end-to-end dis-
tance independent. We are left to compute the daily
capacity of the WR fibre network. We consider that the
fibre network operates constantly for a day using capacity
achieving links with maximum link length dmax

N . Given
tdaily = 8.64 × 104 s as the number of seconds in a day,
and again assuming α = 10 MHz, it can be shown the
average number of secret-key bits per day satisfies

R
(k,Λ)
daily (d

max
N ) . −α tdaily

δ
log2(1− 10−γdmax

N ), (23)

where δ is defined in Eq. (11). Repeater-chains can be
considered in a similar manner. The repeater-chain ca-
pacity is equal to the single-edge capacity associated with
the longest inter-nodal separation in the chain. Hence,
the average daily secret-key rate of a repeater-chain is
[19]

Rchain
daily (d

max
N ) . −α tdaily log2(1− 10−γdmax

N ). (24)

In order to perform a quantitative comparison between
satellite and ground-based quantum communications, we
can compute the log-ratio between their daily-rates,

∆Kdaily := 10 log10

(

R
(k,Λ)
daily

Rsat
daily

)

, (25)

which determines a daily-rate advantage in decibels (dB).
An analogous quantity can be derived for the repeater
chain. By studying the daily-rate advantage as a function
of maximum inter-nodal separation and nodal density, we
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Table I

Time Night/Day Night Day
Link Down Up Up
h 530 km 103 km 103 km
ω0 40 cm 60 cm 60 cm
aR 1 m 2 m 2 m

Figure 3. The daily secret-key-rate advantage ∆Kdaily in Eq. (25) achieved by fibre-based quantum WRNs and repeater-chains
with capacity achieving links over a single, sun-synchronous satellite-based repeater operating at practical, achievable rates
from Eqs. (21) and (22). The architecture of each WRN is shown inside of Panels (d) to (f), such that vertically aligned
panels use the same architecture. Panels (a) to (c) plot ∆Kdaily with respect to maximum fibre-length permitted within each
structure, dmax

N . Panels (d) to (f) plot the relationship between the daily rate advantage ∆Kdaily and minimum nodal density
required in each WRN to achieve it. Satellite-based advantage can be achieved when ∆Kdaily ≤ 0. All considered satellite
setup parameters are shown in the table describing the operation time, direction, altitude h, spot-size ω0, receiver aperture aR.

can then determine conditions for which SQC begins to
outperform the global, ground-based networks. That is,

∆Kdaily > 0 =⇒ Fibre-Network Advantage,

∆Kdaily = 0 =⇒ Equal Performance,

∆Kdaily < 0 =⇒ Satellite Advantage.

(26)

Hence, there exists a critical inter-nodal separation d∗N
and a critical nodal density ρ∗N for which ∆Kdaily = 0.
Beyond d∗N or below ρ∗N , a single, sun-synchronous satel-
lite quantum repeater is more effective than a global
fibre-network.
Fig. 3 illustrates results for the daily-rate advantage

over SQC for a repeater-chain, and a number of quan-
tum WRNs with various connectivity properties. In par-
ticular, we compare the resource demands of SQC with
k = 6, 8 and 16 WRNs based on the network-cells shown
in Fig. 2(a). Each architecture will possess its own unique
critical values, defining a limiting property of the net-
work. This comparison involves the consideration of a
number of SQC operational setups and conditions which
are summarised in Table I in Fig. 3; regarding the time
of operation (night or day), physical direction of commu-
nication (uplink or downlink), satellite altitude, initial
beam spot-size and receiver aperture radius. It is im-
portant to note that we can always exploit the superior
communication direction (downlink) for the purposes of
QKD between end-users, thanks to the independence of
physical and logical flow (as discussed in Section ??).
Therefore the critical properties ρ∗N and d∗N are com-

puted as the values for which ∆Kdaily = 0 with respect
to SQC downlink rates.

In Fig. 3(a)-(c) we plot the maximum tolerable fibre-
length permitted in a repeater chain and each WRN re-
quired to guarantee ∆Kdaily advantage over the single
satellite repeater. The critical fibre-length for a quan-
tum repeater chain operating at the ultimate limit is
d∗rep ≈ 215 km, which offers a lower-bound on repeater-
assisted, ground-based strategies. This can be extended
by quantum networks using multi-path routing strate-
gies, as WRNs are able to tolerate longer lossy channels
at the expense of greater resource demands. This is clear
from the results in Fig. 3, where extending the critical
separation by approximately 100 km requires a k = 16
regular network, for which d∗N ≈ 320 km.

We may also identify the minimum required WRN
nodal density, ρ∗N , for obtaining ground-based advantage
over a single satellite, plotted in Fig. 3(d)-(f). Analysis
of this property provides an appreciation of the resources
demanded by these fibre-networks. As similarly identi-
fied in Section IIID, while the WRNs with lower regular-
ity are constrained to shorter link-lengths, the required
nodal density at poorer end-to-end rates (low levels of
advantage) is smaller than that of better connected de-
signs. We find that the critical nodal densities ρ∗N are

of order 10−5 nodes per km2, e.g. for k = 6 we find that
ρ∗N ≈ 1.49×10−5, for k = 16 we gather ρ∗N ≈ 5.84×10−5

etc.

These are expensive values when put into the perspec-
tive of a global communication scenario. Let us take a
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näıve scenario from a practical point of view, but one that
is informative nonetheless. Consider quantum communi-
cation between distant end-users located in remote cities
across continental Europe (e.g. Paris to Moscow) whose
land surface area spans approximately A ≈ 1× 107 km2.
In terms of truly global communications this is relatively
local. We can choose to communicate between remote
cities using a satellite in orbit acting as a dynamic quan-
tum repeater. Alternatively, we can construct a quantum
fibre-network across the continent. In this scenario, for
an ideal k = 6 WR quantum fibre-network operating at
its ultimate flooding capacity to simply match the al-
ready achievable daily-rate of a single, sun-synchronous
satellite, would require at least n ≥ Aρ∗N ≈ 150 repeater
stations operating constantly for 24 hours. Clearly, a
network of this form operating at realistic rates, under
stricter physical conditions (considering thermal noise)
would demand even greater resources.

While the classical internet can exploit fibre-optic
links which are thousands of kilometres long, a fibre-
based quantum internet is severely limited by short link-
lengths, resulting in remarkably costly resources for tasks
that are already within reach of SQC. These results
strongly suggest that a future quantum internet will sig-
nificantly benefit from the use of SQC, and will be inte-
gral to the construction of global quantum communica-
tion networks.

V. CONCLUSION

In this work, we have investigated the optimal perfor-
mance of global, quantum communication networks to
characterise the ultimate limits of a fibre-based quan-
tum internet. This analysis is based on an underly-
ing network architecture that exploits weak-regularity
to construct powerful, highly-connected networks. Cru-
cially, these bounds allow us to benchmark the perfor-
mance of a global quantum network versus that of a
single sun-synchronous satellite acting as a dynamic re-
peater. The result of this comparison emphasises the
power of SQC, and vast network resources that are re-
quired to outperform a single satellite in orbit at global
distances. These findings strongly motivate the utili-
sation of ground-satellite connections within large-scale
quantum networks. It is clear that free-space ground-
satellite links will be integral to long-range quantum com-
munications, as their co-operation with ground-based in-
frastructure as dynamic repeaters will be invaluable.
This work introduces useful, analytical techniques for

the study of ideal quantum networks which can be read-
ily employed for future investigative paths. Indeed, the
study of hybrid fibre/satellite networks is a topic of im-
mediate interest; exploiting the power of SQC to enhance
(rather than compete with) ground-based networks. Fur-
thermore, the expansion of these methods to incorpo-
rate multiple satellites introduces the possibility of highly
transmissive satellite-satellite channels at high altitudes.
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Supplementary Material: Analytical Methods for High-Rate Global Quantum

Networks

In this supplementary material we provide detailed proofs for the results presented in the main paper, and discuss
in-depth some of the key mathematical tools utilised throughout this work. In Section I the formal definitions of
regular graphs and weakly-regular graphs are discussed, providing greater context and elaborating upon specific
definitions. In Section II we prove the main lemmas, theorems and corollaries utilised within the text allowing us
to derive single-edge threshold capacities for weakly-regular networks required to guarantee optimal performance.
We then apply these theorems in the context of bosonic lossy quantum channels. Finally, Section III develops the
relationship between maximum link-lengths and minimum nodal density through the concept of sparse constructions,
deriving a connection between optimal performance and the minimum nodal densities of a range of weakly-regular
structures.

I. WEAKLY-REGULAR NETWORKS (WRNS)

In this section we explicitly introduce the concept of weak-regularity and weakly-regular networks (WRNs) using
graph theoretic concepts. We provide finer context for the purposes of WRNs studied in the main text.

A. Graphs, Neighbour Sharing and Commonality

Consider an undirected, finite graphN = (P,E) consisting of n nodes in the node set P , and interconnected by edges
in the edge set E. Discussed and motivated in the main-text, such a graph underlies the description of a network
such that each edge (defined by an unordered pair (x,y) ∈ E) represents a communication channel Exy between
network repeaters/end-users at each node. The ability to perform communication on a network is characterised by
(i) the communication channels which compose the network, and (ii) the distribution of network nodes and edges
resulting in a topology. Here, we explicitly define some key network properties that contribute to its overall topology
and ultimately its end-to-end performance.
An essential network property is nodal degree, i.e. the number of nodes to which a given node is connected. Defining

the neighbourhood of a node x ∈ P as

Nx := {y ∈ P | {x,y) ∈ E}, (1)

then the degree of the node x is equal to the cardinality of its neighbourhood deg(x) := |Nx|. Hence, the node x has
exactly deg(x) neighbours. We can also define an edge-neighbourhood of x as all the edges which connect x to its
neighbours,

Ex := {(x,y) | y ∈ Nx}. (2)

Nodal degree, and its distribution across a network, is hugely influential on the overall performance of an architec-
ture. However, the degree alone does not give an indication of how a node x is connected to all of its neighbours.
One may ask; are the neighbours also highly connected to one another, or are each of the neighbours distant and
disconnected? Answering these questions can be very informative, and provide significant insight into the connectivity
and robustness of a network. For this reason, we define useful parameters that contribute to these features. Namely,
we utilise the concept of commonality.

Commonality is a pairwise nodal property which describes neighbour sharing between nodes. Given a pair of nodes
x,y ∈ P the commonality defines how many neighbours that x and y have in common. Neighbour sharing behaviour
may vary significantly depending on whether x and y are already connected (adjacent) and are perhaps close by;
or are disconnected (non-adjacent) and perhaps distant. Therefore, we provide the following pair of definitions of
commonality:

Definition 1 (Adjacent Commonality): The number of common neighbours shared by adjacent (connected) nodes.
Precisely, given that (x,y) ∈ E, the adjacent commonality between this pair of nodes is λ(x,y) := |Nx ∩Ny|, so that
λ(x,y) counts the number of common neighbours shared between the nodes x and y.

Definition 2 (Non-Adjacent Commonality): The number of common neighbours shared by non-adjacent (non-
directly-connected) nodes. Precisely, given that (x,y) /∈ E, the non-adjacent commonality is computed by µ(x,y) :=
|Nx ∩Ny|, so that µ(x,y) counts the number of common neighbours shared between the nodes x and y.
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(a) (b)

λ( , ) = 2

µ( , ) = 2

µ( , ) = 1

k = 6

. . .

...

...

... µ( , ) = 0

λ2 = {5, 4, 3, 2}∪4

λ3 = {5, 5, 5, 4, 4, 4, 4, 3}∪2

λ4 = {4, 8, 8, 8}∪4

λ1 = {4, 2, 2, 2}∪4

Figure 1. (a) A sub-graph from a (k, λ,µ) = (6, 2, {0, 1, 2})-weakly regular network. Considering the yellow node as an end-
user, the blue nodes thus represent the user neighbourhood, with a uniform adjacent commonality of λ = 2. The non-adjacent
commonality decreases as nodes increase in distance from the end-user. (b) A k = 16 weakly-regular network with inconsistent
adjacent commonality properties. This network is scalable so that a single network cells can be concatenated to construct a
larger k = 16 internally-WR network. For any node in the network, its λ will be one of those from the set Λ = {λ1,λ2,λ3,λ4}.
Each adjacent commonality multiset is colour coded to its corresponding node on the graph. Note that throughout this work
we employ a superscript union notation to describe the repeated union of a single set, e.g. {x}∪3 = {x}∪ {x}∪ {x} = {x, x, x},
etc.

B. Regular Graphs

Let us introduce the notion of regularity. Consider an undirected, finite graph N = (P,E) of n-nodes. A graph is
defined as k-regular if all nodes in the graph possess exactly the same degree k, i.e. the neighbourhood of any node
consists of strictly k nodes,

deg(x) = |Nx| = k, ∀x ∈ P. (3)

Regularity significantly simplifies the connective properties of network by assuming a consistency of nodal degree.
Clearly, in realistic communication networks there exist disparities of nodal degree throughout the network, as some
nodes will be highly connected and others less so. Nonetheless, understanding the ability to communicate on a regular
graph can help provide important information for more realistic structures. The class of k-regular graphs is very broad,
and more detailed classes can be defined.

1. Strongly Regular Graphs

Strongly Regular (SR) graphs satisfy strict connective properties. A graph N = (P,E) is SR if it has n-nodes
which are k-regular, its commonality properties are constant

λ(x,y) = λ, ∀x,y ∈ P s.t (x,y) ∈ E, (4)

µ(x,y) = µ, ∀x,y ∈ P s.t (x,y) /∈ E, (5)

and these parameters follow the relation

µ(n− k − 1) = k(k − λ− 1). (6)

SR graphs may be well connected, but their architectures are very strict; satisfying all of these constraints will typically
result in a network with a small number of nodes. Indeed, the parameters k, µ, λ inhibit the ability to use a large
number of nodes rendering them impractical for network design.

2. Weakly Regular Graphs

A more general class is that of Weakly-Regular (WR) graphs. Any regular graph that is not SR is technically
WR, and can be characterised by a more general set of connectivity properties. We may invite greater generality by
loosening the strict values of the adjacent/non-adjacent commonalities λ, µ for all nodes. Instead, we may permit
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nodes within the network to possess different commonality values for different pairs of nodes. To this end, we define
sets which contain all the potential values for the commonality properties; an adjacent commonality set and a non-
adjacent commonality set respectively,

λ := {λ1, . . . , λl}, µ := {µ1, . . . , µm}. (7)

These sets summarise all the non-degenerate values of λ(x,y) or µ(x,y) that are possible on a network. That is,

λ(x,y) ∈ λ, µ(x,y) ∈ µ, ∀x,y ∈ P. (8)

There is no restriction on the number of potential values that can be contained in λ or µ. Indeed, every graph (regular
or not) generate their own versions of these sets.
As a simple example, we illustrate a weakly-regular sub-graph from a larger network in Fig. 1. Clearly, the degree

of the network is k = 6, and the commonality properties are also illustrated by considering adjacent and non-adjacent
nodes with respect to a root node. Provided that the regularity in Fig. 1 is consistent throughout the network, it can
be shown that the adjacent commonality is always λ = 2 for any pair of nodes and the non-adjacent commonality can
be µ ∈ µ = {0, 1, 2}.

3. Useful Parameterisation of Weakly-Regular Graphs

In complete generality, a graph can possess unique commonality values between any pair of nodes, leading to a
vast collection of possible values in λ and µ, with little to no structure. However, for various architectures, such as
WRNs, this will not be true and there may exist a level of consistency which simplifies their analytical treatments.
Here, we introduce a more useful and intuitive representation of WRNs. Consider a node x on a k-WR graph. We
can define k element multiset (a modified set which may contain multiple copies of the same element) which contains
all the information about neighbour sharing between the node x and each of its k neighbours,

λx := {λ(x,y1), . . . , λ(x,yk)} = {λ(x,y) | y ∈ Nx}. (9)

Hence, λx describes a “local” adjacent commonality description, bespoke to the node x.
All nodes on any graph (regular or not) possess an adjacent commonality multiset λx which describes neighbour

sharing qualities with respect to their neighbourhoods, so there exists a unique λx for all x ∈ P . Therefore we
can summarise the neighbour sharing properties of an entire network N by collecting all of the possible adjacent
commonality multisets contained within it into a superset

Λ := {λx1
,λx2

, . . . ,λxn
} = {λx | x ∈ P}. (10)

Hence, for any node x in a network, the adjacent commonality multiset of this node can be found in Λ. Note that we
now define Λ as a strict set, not a multiset. In many cases of interest, such as WRNs with high levels of symmetry, the
adjacent commonalities λx may be highly degenerate across the network, i.e. many nodes possess similar neighbour
sharing qualities. Consequently, since Λ is a strict set it contains only the non-degenerate λx multisets. Here we
state a formal definition:

Definition 3 (Adjacent Commonality Superset): Any graph N = (P,E) possesses an adjacent commonality superset
Λ := {λx | x ∈ P} containing all the possible, non-degenerate adjacent commonality multisets λx which describe the
neighbour sharing properties of connected nodes.

For many of the architectures that we consider in this work, Λ only contains one acceptable adjacent commonality
multiset, Λ = {λ}. This is evident in Fig. 1(a) where every pair of adjacent nodes always share exactly two neighbours.
In general, this may occur when there are high levels of symmetry/small k regularity in the network structure.
However, this is not compulsory. Flexibility in Λ can allow us to describe more complex designs with higher nodal
degrees. For instance, Fig. 1(b) depicts a k = 16 regular network which may be a portion of a larger network. All
nodes satisfy k = 16, but there are four unique adjacent commonality multisets Λ = {λ1,λ2,λ3,λ4} for any network
node. As we reveal in the main-text, it is vital to understand the graphical properties of WRNs in order to properly
characterise end-to-end performance for embedded end-users.

In contrast, it’s not overly useful to define an analogous language for the non-adjacent commonality properties of a
WR graph, µ. A node-specific non-adjacent commonality object µx would collect the number of shared neighbours
between x and all nodes on the network outside of its neighbourhood. For large-scale networks this is a potentially
huge number of nodes and for the most part will not give valuable information. Hence, in this work we will define
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WR graphs according to the properties (n, k,Λ,µ) along with the definitions and discussions in this section. This
provides us with the most effective language to investigate this interesting graph class.

In the context of large-scale quantum networks, some aspects of WR architectures still need to be addressed.
Namely, there are properties that are strictly defined by the parameters n, k,Λ and µ which require some further
discussion in order to qualify the WRN structures investigated in our work. This leads to a further sub-categorisation
of weak-regularity into two key formats; genuine and internal weak-regularity.

C. Genuine Weak-Regularity

We define what it means for a network to be genuinely-WR.

Definition 4 (Genuine Weak-Regularity): Consider a network N = (P,E) which is (n, k,Λ,µ)-weakly-regular. This
network is Genuinely-WR if there are absolutely no violations of these connectivity properties for any node x ∈ P
within the network.

While this may seem like a trivial definition, it will become apparent in subsequent sections why it is necessary.
Genuine weak-regularity can be readily satisfied but is sometimes quite restrictive. Indeed, a WRN defined within a
two-dimensional spatial area may lead to some undesirable characteristics, such as extremely long edges required to
satisfy regularity for all nodes; ultimately undermining the integrity of the network.

Nonetheless, genuine weak-regularity conditions can be easily satisfied by considering closed networks embedded on
a sphere (or other appropriate closed, three-dimensional objects). Global quantum networks, in which we consider a
network that spans the Earth may be appropriately and ideally modelled via genuinely-WR quantum networks. This
is illustrated in Fig. 2(a) where a network can be defined on the surface of a three-dimensional sphere.

D. Internal Weak Regularity

As mentioned, defining regularity conditions on a two-dimensional plane can lead to unwanted features, such as
extremely long edges used to “close” the network and satisfy all regularity conditions. Genuine weak-regularity avoids
these features by considering closed networks embedded on some 3 dimensional surface. This may make sense for
networks which span a planet, but for smaller areas this is not practical.

Hence, we may provide an alternative model of network connectivity. It is possible to define a network that satisfies
the WR connectivity properties within a network boundary. That is, one can construct a WRN such that there exists
a set of network nodes and edges that form a boundary

Pbound = {p1, . . . ,pm, . . .}, (11)

Ebound = {(x,y) ∈ E | x,y ∈ Pbound}, (12)

within which all other nodes satisfy some form of weakly-regularity. That is, there exists a sub-network within this
boundary Nint = (Pint, Eint) according to the node and edge sets Pint := P \ Pbound, Eint := E \ Ebound. The total
network model N is clearly not genuinely WR since the boundary nodes x ∈ Pbound will violate the weak-regularity
conditions. Nonetheless, the internal network Nint will satisfy these conditions, providing a useful architecture which
can be readily defined over two-dimensional regions.

Definition 5 (Internal Weak-Regularity): Consider a network N = (P,E). This network is defined as Internally-WR
if there exists a network boundary Pbound ⊂ P , Ebound ⊂ E such that the sub-network Nint := (P \Pbound, E \Ebound)
satisfies a form of (n, k,Λ,µ) weak-regularity.

Fig. 2 provides a useful illustration of the difference between genuinely-WR and internally-WR networks. One of the
most useful features of this network class is that they are easy to construct, and easy to scale. It is straightforward to
construct a regular network cell, which when concatenated with many other cells results in an internally-WR network.
Such network cells can be seen in Fig. 2(a) of the main-text. This concatenation process makes it easy to consider
large-scale WRNs with open boundaries.
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(a) Genuinely WR, (b) Internally WR

Internal Network

Pbound

Closed Network

Figure 2. Distinction between (a) Genuine weak-regularity and (b) Internal weak-regularity. Genuinely WR networks can be
embedded on a closed, three-dimensional surface such as a sphere in order to maintain regularity and avoid boundary effects.
Internally WR networks satisfy weak-regularity within some nodal boundary Pbound, allowing us to investigate open networks
which are defined within some two-dimensional area.

E. Simplification of Notation

For the purposes of our work, it is possible to simplify the notation we use to describe relevant WR structures. Since
we are investigating large-scale network structures, it is not desirable to precisely define the number of nodes n, but
allow n to be encoded into other properties, e.g. nodal density, maximum link length, etc. This can be achieved, given
the crucial assumption that there are enough network nodes in so that our analysis is unaffected by boundary effects
or sparsity. The need for this assumption is different depending on whether we consider internal weak-regularity or
genuine weak-regularity.

• Genuine weak-regularity : By definition, we do not have any issue with boundary effects in this setting since the
network is effectively closed, and all nodes are unquestionably k-regular. Consequently, we require a sufficient
number of nodes in order to construct the closed network and ensure that there exist two end-user nodes which
are not directly connected. This is not a large number of nodes and can be satisfied easily, given a particular
architecture.

• Internal weak-regularity : In this setting, we assume that end-users nodes that we select always fall within the
outer boundary of nodes, and we only consider nodes within this boundary. At the very least, we require that
there are enough nodes n within this boundary such that there exist two end-user nodes which are not directly
connected (as this would defeat the purpose of investigating end-to-end network protocols). In general, this is
a geometric packing problem specific to the weakly-regular architecture we are studying.

Henceforth, these assumptions are implicitly made within each of our WRN models. This allows us to omit the
precise number of nodes n from key theory throughout our work and derive general results which apply to a broad
range of network structures. The number of nodes and nodal density are revisited later in our studies in order to
provide adequate insight to the resource requirements of WRNs. Finally, we provide one further simplification by
removing detailed reference to the possible non-adjacent-commonalities within the network, described by µ. The set
µ is important for the characterisation of short-range connective structures, detailing how many shared neighbours
two non-connected nodes may possess. For large networks, the vast majority of non-adjacent nodes will simply share
no neighbours, µ = 0. This is especially true for networks which obey distance constrained connectivity rules. We
find that our subsequent analyses do not require its consistent usage, therefore it can be omitted for the sake of clarity
(unless otherwise specified).
Following the implicit assumptions for the necessary number of nodes required to describe a WRN and the ability to

ignore the non-adjacent commonalities, we can compactly characterise a class of WR architectures via the parameters:
(k,Λ).

II. OPTIMAL PERFORMANCE OF WEAKLY-REGULAR NETWORKS

The key mathematical tool we develop in this paper is the ability to accurately and analytically derive conditions
for the optimal performance of quantum WRNs. This requires graph theoretic arguments and a characterisation of
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minimum network cuts. In this section we elucidate these arguments, allowing us to formally state and prove theory
utilised in the main-text.

A. Network Cuts

An important graph-theoretic concept for investigating network performance is that of cuts and cut-sets. Consider
a network N = (P,E) with two remote end-users a, b ∈ P . An end-user pair can be represented as a set of two unique
user nodes, i = {a, b}. This allows us to simplify notation in many settings. We define a cut C as a bipartition of all
network nodes P into two disjoint subsets of nodes (Pa, Pb) such that the end-users become completely disconnected,

a ∈ Pb and b ∈ Pb, where Pa ∩ Pb = ∅. A cut C generates an associated cut-set; a collection of network edges C̃
which when removed cause the partitioning. Precisely, a cut-set is defined by

C̃ = {(x,y) ∈ E | a ∈ Pa, b ∈ Pb}. (13)

Under the action of a cut, a network is successfully partitioned

N = (P,E)
Cut: C−−−−→ (P,E \ C̃) = (Pa ∪ Pb, E \ C̃), (14)

so that there no longer exists a path between a and b. Network cuts play a key role in the derivation of end-to-end
network rates. Many network optimisation tasks can be reduced to an optimisation over all cuts with respect to
single-edge/multi-edge properties.

As discussed in the main text, any valid network cut can be associated with a multi-edge capacity Cm(C) calculated
by the sum of all the single-edge capacities in the cut-set,

Cm(C) =
∑

(x,y)∈C̃

Cxy, (15)

where Cxy = C(Exy) is the single-edge capacity associated with the channel between nodes x, y. A flooding capacity
is given by the network-cut between the user-pair which minimises this multi-edge capacity,

Cm(i,N ) = min
C
Cm(C) = min

C

∑

(x,y)∈C̃

Cxy. (16)

B. Motivation

As discussed in the main-text, solving Eq. (16) for a general network and capacity distribution requires a numerical
treatment via the max-flow min-cut theorem. However, for any network we can always identify at least one valid cut
via user-node isolation, i.e. cutting all the edges in the neighbourhood of one of the end-user nodes, Ea or Eb. This
cut totally disconnects an end-user node from the network, resulting in a successful partition. We call the multi-edge
capacity associated with this kind of cut as the min-neighbourhood capacity,

Cm(i,N ) ≤ CmNi
:= min

j∈{a,b}

∑

(x,y)∈Ej

Cxy. (17)

The min-neighbourhood capacity is always at least an upper-bound on the end-to-end flooding capacity. It is
a strong indicator of a well connected and thus high-performance network. Networks which are highly connected
contain many end-to-end routes between any pair of network nodes. The greater the number of end-to-end routes
between an end-user pair, the more difficult it is to partition them via a cut-set, i.e. it requires more and more edges
to disconnect them. As discussed in the main-text, this initiates a relationship between cut-set cardinality, |C̃|, and
distance from an end-user. Performing cuts with edges further away from a user node requires the collection of many
more edges to consolidate the partition. The further from the user nodes we begin the cut, the greater the number
of potential end-to-end paths we must restrict (since we have permitted a larger flow from the user node) and thus
the more edges we must collect. We call this phenomenon network cut growth. Once again, for general architectures
and topologies it is extremely difficult to investigate the concept of network cut growth and would require numerical
treatment. However, WRNs are analytically friendly and an ideal candidate for studying this concept.

Our approach is based on the distinction between two kinds of network cuts; user-node isolation, and
network-bulk cuts. Let us formally define the notion of a network-bulk:
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Definition 6 Consider a network N = (P,E) and an end-user pair i = {a, b} who wish to communicate. We define
a network-bulk with respect to this end-user pair as the sub-network N ′ = (P ′, E′) which contains all the edges and
nodes which are not directly connected to the end-user nodes. That is, the node and edge sets satisfy,

P ′ := {x | x ∈ P \ {a, b}} , E′ := {(x,y) | x ∈ P \ (Ea ∪ Eb)} . (18)

In a large-scale network the network-bulk N ′ constitutes the majority of the architecture. A network-bulk cut can
then be considered as a network-cut C ′ which is performed by exclusively collecting edges from the network-bulk
rather than the user-neighbourhoods. By our previous arguments, when a network is well connected, cuts performed
further away from either end-user refer to collections of edges in the network bulk.

This leads to the primary motivation of our work: Via the intuition of network cut growth, we wish to derive
a relationship between WR networks, user-node isolation and network-bulk cuts. We wish to show that in highly-
connected architectures (such as WRNs), cut growth causes cuts in the network-bulk to be unlikely candidates for
the minimum cut. As a result, this allows us to identify conditions for which the upper-bound in Eq. (16) is saturated
and elucidate network properties for which optimal performance is guaranteed.

C. Network-Bulk Cuts

In this section, we derive some useful lemmas which help us to understand network cut growth and network-bulk
cuts.

Lemma 1 Select two nodes on a genuinely-WR quantum network N = (P,E) that represent end-users, a, b ∈ P , and

demand they that they do not share an edge or neighbour. The cut-set C̃ which contains the fewest number of edges
collects k edges.

Proof. Menger’s theorem states that for a finite, undirected graph the size of the minimum cut-set is equal to the
maximum number of disjoint paths that can be found between any pair of vertices [1, 2]. Here, we are considering a
(k,Λ) weakly-regular graph with enough nodes to locate a pair of end-users which do not share an edge or neighbour.
Every disjoint path will have to use one of the edges from the neighbourhood of an end-user, Na and Nb. After k
disjoint paths, all the edges in the neighbourhoods of the end-user nodes will have already been used by one of these
paths. Consequently, no more disjoint paths can be found, as the end-users can find no route to the network-bulk.
Hence, the smallest cut-set cardinality will always equal k.

Lemma 2 Consider a (k,Λ)-genuinely-WR quantum network N = (P,E) such that Λ = {λ}. Select two nodes that

represent end-users, a, b ∈ P , and demand that they do not share an edge or neighbour. For any cut-set C̃ that is
restricted to edges in the network-bulk e ∈ E′,

if

k
∑

j=1

λj ≤ k(k − 2) =⇒ |C̃| ≥ k. (19)

If λj = λ, ∀j then the condition holds if λ ≤ k − 2.

Proof. For a genuine (k, {λ})-regular network there will always exist a cut-set with cardinality |C̃iso| = k, achieved
by isolating the neighbourhoods of either of the end-user nodes. By Lemma 1, we also know that this is the minimum
cut-set cardinality. Meanwhile, a network cut which is limited to collecting edges on the network-bulk is unable to
directly disconnect the neighbourhoods of a or b (Na and Nb respectively). Hence, any cut which is performed on
the network-bulk has to restrict flow from not just the end-users, but each of its neighbours. That is, any alternative
cut-set will have to cut the unique edges in the neighbourhoods of the a/b’s neighbouring nodes.
Let us consider the cut which restricts flow from all of the neighbouring nodes of either end-user. This cut-set will

be either of the following:

C̃a =
⋃

x∈Na

{(x,y) | y ∈ Nx \ (Na ∪Nb ∪ {a, b})}, (20)

C̃b =
⋃

x∈Nb

{(x,y) | y ∈ Nx \ (Na ∪Nb ∪ {a, b})}. (21)

What are the cardinalities of these cut-sets? Thanks to network regularity this is easy to derive. Our goal is to restrict
flow from each of the neighbours of a or b. By weak regularity, these neighbours will possess k edges; they will use
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one edge to connect directly to a or b, and λj nodes will be connected to other neighbours of a or b (by definition of
adjacent commonality). As a result there will only be (k − λj − 1) effective edges that permit logical flow outside of
the end-user neighbour (to the rest of the network). By summing over all of the neighbours in either neighbourhood
each of the new cut-set cardinalities are then

|C̃a/b| =
k
∑

j=1

(k − λj − 1). (22)

When will this quantity be greater than |C̃iso|? This is easy to determine and retrieves the condition stated in the
lemma,

k
∑

j=1

(k − λj − 1) ≥ k =⇒
k
∑

j=1

λj ≤ k(k − 2). (23)

If this condition holds, then we can always write |C̃a/b| ≥ k as required. Any cut which is not C̃iso or C̃a/b will
necessarily permit flow into wider parts of the network. This will always increase the number of disjoint paths from
a to b within the network, since the network is weakly-regular and connectivity properties are consistent throughout
the network. It will therefore have a larger cut-set cardinality.

Lemma 2 serves as a critical tool in our analyses. It relates analytical properties of a WRN with properties of cuts
performed on its network-bulk. In abstract terms, it posits weak-regularity conditions for which we can be certain
that a WRN undergoes network cut growth.
While Lemma 2 has been formalised in the context of a WRN with consistent adjacent commonality properties

(i.e. Λ = {λ} has only one multiset) it can be easily extended to account for multiple possible multisets. For this
reason we propose the following definition.

Definition 7 (Minimum Adjacent Commonality): Given a (k,Λ)-WR graph, the minimum adjacent commonality
multiset λ∗ ∈ Λ is that which collects the fewest edges on a network-bulk cut,

λ∗ = argmin
λ∈Λ

∑

λ∈λ

(λ− k − 1). (24)

The minimum adjacent commonality multiset is a characteristic of any WRN. It identifies the network nodes which
possess the smallest network-bulk cuts. Ultimately, if Lemma 2 is satisfied for the minimum adjacent commonality
multiset λ∗, then it holds for all possible nodes on the network.

Lemma 3 Select two nodes on a genuinely (k,Λ)-WR quantum network N = (P,E) that represent end-users, a, b ∈
P , and demand they that they do not share an edge or neighbour. For any cut-set C̃ that is restricted to edges in the
network-bulk e ∈ E′, if

∑

λ∈λ∗ λ ≤ k(k − 2) it follows that |C̃| ≥ k.

Proof. Since there is now variation in λ from node to node, the network-bulk cut that is associated with λ∗ collects
the least number of edges (by definition). Then any other node with a different λ ∈ Λ must necessarily collect more
edges than this. Given this consideration, the proof then follows directly from Lemma 2.

D. Network-Bulk Cuts on Internally-WRNs

Proposition 1 Select two nodes on an internally-WR quantum network N = (P,E) that represent end-users, a, b ∈
P , and demand they that they do not share an edge. There exists some minimum number of network nodes nmin for
which the the results of Lemma 2/3 applies to N .

This proposition is well motivated, and can be proven for a number of different WR architectures. Open boundary
edges add the complication of a potential cut C that utilises the boundary to find a smaller cut-set than that used
in Lemma 2. However, it is always possible to construct a sufficiently large network so that a pair of end-user nodes
can always be found for which Lemma 2 is satisfied. We describe these end-user nodes as deeply-embedded. It is
possible to provide a general characterisation of nmin by identifying the minimum number of nodes for which there
exists a cut-set C̃ ′′ containing boundary edges e ∈ Ebound that has a smaller cardinality than the network-bulk cut in
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(a) (b)

(c) (d)

Figure 3. Minimum node WRNs for a strict satisfaction of internal regularity for (a) honeycomb network, (b) hexagonal
network, (c) Manhattan k = 8 network and (d) Manhattan k = 16 network. Each case resembles the smallest WRN for which
there exist a pair of end-user nodes which do not share an edge or a neighbour, and possess minimum cardinality network-bulk
cuts which are unaffected by the open boundary.

Eq. (22), i.e. |C̃ ′′| < |C̃a/b|. Indeed this can be achieved, but such generality is not particularly useful in this paper,
and we leave it to future works.
For now, we focus on WRN structures for which determining nmin is a basic geometric problem. The quantity

nmin is the minimum number of nodes required to locate two end-users which do not share an edge or a neighbour,
so that Lemma 2 is not compromised by the network boundary. In Fig. 3 we provide visual proofs of the minimum
number of nodes required to satisfy internal-WR for the structures utilised in this paper. In each case the red regions
of the network describes boundary region, while the white region resembles the internal network which is WR for the
end-user nodes (which are coloured yellow). The blue dotted line is the network-bulk cut which collects the number of
edges described in Lemma 2. The green cut is the smallest cut that exploits the boundary edges in order to reduce the
cut-set size. The removal of any node on each network will give rise to a smaller cut than the blue cut by exploiting
the boundary edges.
As an example, consider Fig. 3(c). The network-bulk cut according to Lemma 2 for genuinely-WRNs will collect

32 edges (illustrated by the blue dotted line). However, the existence of the open boundary allows for different cuts
which may compromise this result. The green dotted line depicts the smallest cut that would not be available on a
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genuinely-WR version of this network. It collects 33 edges. There does not exist any other network-bulk cut that can
collect fewer edges. The minimum number of nodes required in each case:

k = 3, λ∗ = {0}∪3 → nmin = 54,

k = 6, λ∗ = {2}∪6 → nmin = 89,

k = 8, λ∗ = {2, 4}∪4 → nmin = 110,

k = 16, λ∗ = {4, 8, 8, 8}∪4 → nmin = 197.

(25)

In general, we are interested in large-scale networks with many more nodes than any of these values n ≫ nmin, so
clearly the investigation of internally-WR graphs is well justified. When the neighbour sharing condition is relaxed
for the end-users, this minimum number of nodes is reduced so that these constructions remain sufficient.

E. Threshold Capacities

With these lemmas in hand, we can present the key mathematical tools used throughout this paper and derive the
following threshold theorems.

Theorem 1 Consider a (k,Λ)-WR quantum network. Select an end-user pair i = {a, b}, and demand they are
sufficiently distant such that they do not share an edge or neighbour. Then there exists a threshold single-edge capacity
Cmin in the network, given by

Cmin :=
1

δ
CmNi

, (26)

where δ is a characteristic property of the network, δ :=
∑

λ∈λ∗ k − λ− 1, such that if all single-edge capacities in the
network satisfy this minimum threshold, Cxy ≥ Cmin, ∀ (x,y) ∈ E then flooding capacity is guaranteed to satisfy

2(k − 1)

δ
CmNi
≤ Cm(i,N ) ≤ CmNi

. (27)

Proof. Let us denote the (k,Λ)-WRNN = (P,E). The network possesses a large set of valid cuts, CN = {Cj}j , which
collects all of the valid network cuts Cj that can successfully partition the pair of end-users. We can simultaneously
define a set of cut-set cardinalities, i.e. if there exist M valid cuts, this is a M -element multi-set that counts the
number of edges contained in each of the valid network-cuts. More precisely, we can define this multiset

cN = {|C̃| | C̃ s.t C ∈ CN }. (28)

By Lemma 1, the minimum-cut-set cardinality for the WRN N is simply equal to its regularity, i.e. min(cN ) = k,
and can be achieved by isolating an end-user (cutting the edges within an end-user neighbourhood). Performing user-

node isolation we simply collect the edges from the user-neighbourhood C̃ = Ei to generate the min-neighbourhood
capacity,

CmNi
= min

j∈{a,b}

∑

(x,y)∈Ej

Cxy. (29)

Now let us consider any network-bulk cut C ′ and its corresponding cut-set C̃ ′ which is restricted to collecting edges
on the network-bulk N ′. These types of cuts cannot use edges from the end-user-neighbourhoods and will provide a
multi-edge capacity,

Cm(C ′) =
∑

(x,y)∈C̃′

Cxy. (30)

In order to ensure CmNi
is indeed the flooding capacity of the entire network, we must ensure that the minimum

network-bulk based cut is never a minimum-cut, so that Cm(C ′) ≥ CmNi
.

When restricted to performing cuts only on the network-bulk, the set of possible cuts will be different from CN ,
since now certain cuts are inaccessible. Instead, we may define a new set of network-cuts CN ′ which are restricted to
the network-bulk. This generates an analogous set of cut-set cardinalities

cN ′ = {|C̃| | C̃ s.t C ∈ CN ′}. (31)
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Using Lemma 1 we can determine the smallest network-bulk based cut on a (k,Λ)-WR network (with no boundary
effects). Since Λ = {λx | x ∈ P} may contain many different adjacent commonalities, it is always possible to lower-
bound the cardinality of the smallest network-bulk cut-set by using the minimum adjacent commonality multiset λ∗.
Then we can write,

min(cN ′) ≥
∑

λ∈λ∗

(k − λ− 1) = δ. (32)

This corresponds to the minimum number of edges that must be cut from the neighbours of the neighbours of the
minimum end-user (e.g. the green cut-set in Fig. 4). This generates C̃ ′ as the cut-set restricted to the network-bulk
with minimum cardinality.
In order to ensure that the flooding capacity is equal to the min-neighbourhood capacity, we want to make sure

that this network-bulk cut never generates a multi-edge capacity smaller than CmNi
. That is, we wish to ensure that

min
C′∈CN′

Cm(C ′) ≥ CmNi
. (33)

Minimising Cm(C ′) is achieved by setting each edge in the network-bulk to its minimum value Cmin and performing
the cut which collects the fewest number of edges, such that

min(cN ′) · min
(x,y)∈C̃′

Cxy = min(cN ′) · Cmin ≥ CmNi
. (34)

Subsequently we can derive a minimum threshold capacity for any edge in the network,

Cxy ≥ Cmin =
CmNi

∑

λ∈λ∗(k − λ− 1)
=

1

δ
CmNi

, ∀(x,y) ∈ E, (35)

which ensures that Eq. (33) is always upheld. Imposing this threshold constraint ensures that any cut restricted to
the network-bulk will generate a multi-edge capacity that is greater than or equal to the min-neighbourhood capacity.
As a result, no cut performed exclusively on the network-bulk can ever undermine the flooding capacity.

There is now only one issue; we must identify if there exists any possible hybrid cut that might undermine the
flooding capacity being equal to the min-neighbourhood capacity. That is, is there a cut that can collect a mixture of
edges contained in the user-neighbourhood and the network-bulk? Unfortunately there is, and it must be considered.
Let us take a worst-case scenario where all of the edges in a network-bulk are of minimum threshold capacity Cmin.
Furthermore, let’s consider that the min-neighbourhood capacity CmNi

is generated by a user-neighbourhood in which
has (k − 1) edges of capacity Cmin and one edge with capacity CmNi

− (k − 1)Cmin. That is,

CmNi
= (k − 1)Cmin +

[

CmNi
− (k − 1)Cmin

]

. (36)

This is a worst-case situation in which one neighbourhood edge contains the majority of the min-neighbourhood
capacity. In this scenario, it is possible to cut the (k− 1) edges in the neighbourhood which have the threshold value,
and then to cut and additional (k− 1) edges in the network-bulk which are connected to the largest capacity edge in
the neighbourhood instead of this neighbourhood edge. This results in a hybrid cut C ′′ which generates a multi-edge
capacity

Cm(C ′′) ≥ 2(k − 1)Cmin =
2(k − 1)

δ
CmNi

. (37)

This is an absolute worst-case scenario for the network design, placing a lower-bound on the end-to-end flooding
capacity.
Consequently, provided that Cxy ≥ Cmin, ∀(x,y) ∈ E then the flooding capacity always satisfies

2(k − 1)

δ
CmNi
≤ Cm(i,N ) ≤ CmNi

. (38)

as required. This reveals a single-edge threshold condition for all edges in the network so to ensure that end-to-end
performance is guaranteed within tight bounds.

Theorem 1 therefore allows us to place tight performance bounds on the flooding capacity of a quantum WRN.
Using only the connectivity properties of the architecture itself, and a desired end-to-end performance, we can identify
a single-edge capacity constraint for all network edges. This is extremely useful, and a key result in this work.

It is also possible to identify what additional constraints are necessary to not just guarantee a tight window of
performance, but guarantee exact, optimal performance. This is achieved in the following theorem.
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Figure 4. Cut-set cardinality with respect to increasing distance from user-node on a honeycomb lattice. We show some
example cuts on a honeycomb network of increasing cut-set dimension. The further one moves from a user-node a, the more
edges that must be cut due to k-regularity. C̃1 gives the neighbourhood cut-set Ea, C̃2 gives the smallest cut-set when limited
to network-body edges E′, and C̃3 gives a wider cut example.

Theorem 2 Consider a (k,Λ)-WR quantum network. Select an end-user pair i = {a, b}, and demand they are
sufficiently distant such that they do not share an edge or neighbour. Then there exists the threshold single-edge
capacity C′min in the network bulk, and another for the user-connected edges Cimin given by

C′min :=
1

δ
CmNi

, Cimin :=

(

1

k − 1
− 1

δ

)

CmNi
, (39)

such that if all single-edge capacities in the network satisfy their minimum thresholds, Cxy ≥ C′min, ∀ (x,y) ∈ E′ and
Cxy ≥ Cimin, ∀ (x,y) ∈ Ea ∪ Eb then flooding capacity is guaranteed to satisfy

Cm(i,N ) = CmNi
. (40)

Proof. By Theorem 1 we know that if all edges satisfy Cxy ≥ C′min = CmNi
/δ, for all (x,y) ∈ E, then the flooding

capacity satisfies Eq. (49). If we want to avoid the worst-case lower-bound it is possible to enforce an additional,
slightly stricter constraint on the end-user connected edges, which we label Cimin. If we consider the hybrid cut C ′′

scenario as in the previous theorem where (k−1) edges from the user-neighbourhood are collected and have minimum
capacity Cimin along with (k− 1) network-bulk edges with capacity C′min in order to consolidate the end-user partition.
This results in a possible multi-edge capacity

Cm(C ′′) ≥ (k − 1)C′min + (k − 1)Cimin =
(k − 1)

δ
CmNi

+ (k − 1)Cimin. (41)

To ensure that Cm(C ′′) ≥ CmNi
we must then demand that

(k − 1)

δ
CmNi

+ (k − 1)Cimin ≥ CmNi
=⇒ Cimin ≥

(

1

k − 1
− 1

δ

)

CmNi
. (42)

Therefore, if we demand that all edges in the user-neighbourhoods satisfy Cxy ≥ Cimin, then the worst-case scenario
which generates the lower-bound in Theorem 1 disappears and becomes equivalent to the min-neighbourhood capacity.
That is, the inequalities become

CmNi
≤ Cm(i,N ) ≤ CmNi

=⇒ Cm(i,N ) = CmNi
, (43)

as required. We find that Cimin ≥ C′min if k ≤ δ
2 + 1, which is satisfied in all of our example architectures.
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F. Neighbour Sharing End-Users

So far we have considered end-user pairs that are not directly connected and do not share common neighbours. This
is appropriate assumption since we are studying global quantum communications over very long distances; it is not
interesting to consider short range users separated by single links. Furthermore, it allows for much clearer intuition
surrounding increasing cut-set dimension with respect to cuts on the network-bulk as shown in Fig. 4. This assumption
does not compromise the generality of our arguments, as we show in the following corollary that Theorems 1 and 2
hold even when end-user nodes share a neighbour.

Corollary 1 (Neighbour Sharing): Consider a (k,Λ)-WR quantum network and an end-user pair i = {a, b} within
the network that do not share an edge, and possess a min-neighbourhood capacity CmNi

. Even if the end-user nodes
share a neighbour, Theorems 1 and 2 hold.

Proof. Consider the (k,Λ)-WR network and assume that the end-user pair i = {a, b} are not directly connected,
but share a neighbour. The number of common neighbours that these non-adjacent nodes share is defined by the
non-adjacent commonality, µ(a, b) > 0. The previous analyses do not directly apply since cuts restricted to the
network-bulk will not be able to partition the two users. This is true because there will exist clear paths along the
edges connected to the common neighbours of a and b. Hence, a valid network-cut of these end-users requires one to
collect µ(a, b) edges from a user-neighbourhood.
Nonetheless, our results still hold. Let us locate a network-cut that uses the minimum number of user-connected

edges possible. This can be considered as a modification to the network-bulk cut which is necessary due to neighbour-
sharing. This cut C ′ still collects at least

∑

λ∈λ∗(k−λ−1) edges, but now µ(a, b) of those edges are actually contained
in one of the user-neighbourhoods. In a worst-case scenario, one may assume that the user-connected edges which are
necessarily cut possess the minimum single-edge capacity in the user-neighbourhoods, defined as

Cimin = min
j∈{a,b}

min
(x,y)∈Ej

Cxy. (44)

Let all edges in the network obey a threshold capacity Cmin = CmNi
/δ as motivated by Theorem 1 for non-neighbour

sharing end-users. Now, the network-cut C ′ which collects the fewest number of edges from the user-neighbourhood
will generate a multi-edge capacity,

Cm(C ′) ≥ δCmin + µ(a, b)(Cimin − Cmin). (45)

However, we already know that Cimin = Cmin since we stated that all edges in the network obey the same minimum
threshold. Therefore,

Cm(C ′) ≥ δCmin = CmNi
. (46)

as required. Therefore, neighbour sharing does undermine the previous threshold theorems. Indeed, introducing
a stricter condition on the user-connected edges (as we do in Theorem 2) only makes this result stronger, since
Cimin ≥ Cmin will only increase the multi-edge capacity in Eq. (45).

G. Bosonic Lossy Weakly-Regular Networks

When considering fibre-based networks, point-to-point links are described by bosonic pure-loss (lossy) channels.
A lossy channel L with transmissivity η ∈ (0, 1) is a phase-insensitive Gaussian quantum channel, which transforms
input quadratures x̂ = (q̂, p̂)T according to x̂ 7→ √ηx̂ +

√
1− η x̂env (where the environment is in a vacuum state)

describing the interaction of bosonic mode with a zero-temperature bath [3].
For lossy quantum networks, the most important property is channel length, or from a network perspective, inter-

nodal separation. For a given edge (x,y) ∈ E connecting two users in a network, the inter-nodal separation is simply
the distance dxy between them. All two-way assisted quantum and private capacities of the lossy channel are precisely
known via the PLOB bound [4],

CL(dxy) = − log2
(

1− 10−γdxy
)

, (47)

where the inter-nodal separation is related to the transmissivity via ηxy = 10−γdxy . For current, state of the art
fibre-optics the loss rate is γ = 0.02 per km (which equates to a loss rate of 0.2 dB/km). Since these separations
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directly dictate the channel quality between nodes they must be precisely engineered and distributed in order to
guarantee strong end-to-end performance.
The direct application of Theorem 1 to bosonic lossy quantum networks allows us to translate the notion of

threshold capacities into something more physical. Indeed, since the capacity of pure-loss channels is known exactly,
it is possible to translate the threshold capacity into a maximum inter-nodal separation.

Corollary 2 Consider a (k,Λ)-WR quantum network which is connected by bosonic lossy channels. Select an end-
user pair i = {a, b} within the network that do not share an edge, and possess a min-neighbourhood capacity CmNi

.
Then, there exists a maximum inter-nodal separation for all edges within the network,

dmax
N = − 1

γ
log10

(

1− 2−
1

δ
Cm

Ni

)

, (48)

for which the flooding capacity satisfies

2(k − 1)

δ
CmNi
≤ Cm(i,N ) ≤ CmNi

. (49)

If ∃ dxy < dmax
N , (x,y) ∈ E, this remains an upper-bound on the optimal network performance, Cm(i,N ) ≤ CmNi

.

Proof. Consider a valid pair of end-users i = {a, b} embedded within a (k,Λ)-WR quantum network. Then as
before, there exists a threshold capacity Cmin = 1

δCmNi
that can be enforced to ensure the flooding capacity between

these users is bounded by their min-neighbourhood capacity, CmNi
. Supplanting the PLOB bound into the capacity

condition in Theorem 1,

CL(dxy) ≥ Cmin, ∀(x,y) ∈ E, (50)

this readily translates to,

dxy ≤ −
1

γ
log10

(

1− 2−
1

δ
Cm

Ni

)

, ∀(x,y) ∈ E. (51)

Therefore the threshold capacity becomes an upper-bound on the maximum link-length permitted within the network.
We can thus define this maximum length,

dmax
N = − 1

γ
log10

(

1− 2−
1

δ
Cm

Ni

)

, (52)

which when satisfied ensures that 2(k − 1)CmNi
/δ ≤ Cm(i,N ) ≤ CmNi

.
Now suppose that there exists a channel within the network-bulk that violate this max-bulk separation,

i.e. ∃ dxy > dmax
N ′ for (x,y) ∈ E′. This violates the threshold capacity condition from Theorem 1 meaning that the

minimum-cut in the network is not guaranteed to satisfy the performance bounds. However, if the minimum-cut
undergoes a transition due to the introduction of poor quality channels in the network-bulk, it cannot improve the
network flooding capacity; it can only deteriorate network performance. Therefore the min-neighbourhood capacity
remains an upper-bound on the optimal network performance, Cm(i,N ) ≤ CmNi

, as before.

In order to achieve a stricter performance guarantee, we can apply Theorem 2 to bosonic lossy channels and derive
slightly stricter constraints on user-connected channels.

Corollary 3 Consider a (k,Λ)-WR quantum network which is connected by bosonic lossy channels. Select an end-
user pair i = {a, b} within the network that do not share an edge, and possess a min-neighbourhood capacity CmNi

.
Then, there exists a maximum link-length in the network-bulk

dmax
N = − 1

γ
log10

(

1− 2−
1

δ
Cm

Ni

)

, (53)

and a maximum link-length for all the user-connected edges,

dmax
Ni

= − 1

γ
log10

(

1− 2−(
1

k−1
− 1

δ )C
m

Ni

)

≤ dmax
N , (54)

which when satisfied guarantee that the flooding capacity is equal to the min-neighbourhood capacity,

Cm(i,N ) = CmNi
. (55)

If ∃ dmax
Ni

< dxy ≤ dmax
N , (x,y) ∈ Ea ∪Eb, we regain Theorem 2. If ∃ dxy > dmax

N , (x,y) ∈ E, then the performance
guarantee is violated, but this remains an upper-bound on the optimal network performance, Cm(i,N ) ≤ CmNi

.



27

Proof. This is a specification of Theorem 2 to bosonic lossy channels where the edges in the neighbourhoods of Alice
a and Bob b may possess their own, stricter constraint in order to completely guarantee optimal performance. The
proof follows directly by supplementing the PLOB bound into the threshold capacity expressions.

III. NODAL DENSITIES AND BOSONIC LOSSY WEAKLY-REGULAR NETWORKS

A. Sparse Constructions

Nodal density is defined as the number of nodes n per unit area of the network,

ρN := n/A (56)

where A is some area in which the network is defined. This is a crucial measure of network resources, especially for
quantum networks where there is a very high cost of constructing quantum devices at every node. In many network
settings, it is desirable to minimise the nodal density necessary to promise strong end-to-end performance. For this
reason, it is also useful to define a minimum nodal density. For a class of network, N = {Nj}j , such that all instances
N ∈ N are constrained to some implicit structure, the minimum nodal density describes how it can be constructed
in the sparsest way possible. It refers to a limiting scenario in which the network is least dense, and that all other
instances of the network topology will possess more nodes per unit area. This is summarised below in a general
definition:

Definition 8 (Sparse Construction): Consider a class of network N = {Nj}j which imposes a fixed, single-edge
distance constraint on its networks N = (P,E) ∈ N so that

dxy ≤ dmax
N for all (x,y) ∈ E. (57)

The sparse construction is an instance of this class which minimises its network nodal density,

ρmin
N = min

N∈N

ρN = min
N∈N

n

A
, (58)

where ρmin
N is the minimum permitted nodal density of a network N ∈ N.

Clearly, for very general classes of distance-constrained networks this minimisation is extremely difficult. However,
for analytical classes such as WRNs, this becomes rather easy and reduces to a geometric packing problem.

Finally, to provide simplifications in subsequent arguments, we make the following proposition.

Proposition 2 For a class of single-edge distance constrained networks N ∈ N, such that dxy ≤ dmax
N for all (x,y) ∈

E, then the minimum nodal density can always be expressed as

ρmin
N ∝ (dmax

N )−2 = ξ(dmax
N )−2, (59)

such that ξ is a quantity which characterises the network class N.

It is always possible to express the min-density as proportional to the inverse squared value of the maximum inter-
nodal separation in the network. This is obviously true for any measure of area since ρ ∝ A−1 and A ∝ d2 where d
is some distance measure. Yet, for what follows we find that it is useful to closely relate dmax

N and ρmin
N in this way.

B. Sparse Constructions of Weakly-Regular Networks

In this section we endeavour to lower-bound the min-nodal densities for the classes of WRN.

1. Honeycomb Network

Our model of a honeycomb network (k = 3 and λ∗ = {0}∪3) is the following: Consider a single, initial hexagon
consistent of n-nodes connected by 6 edges. Let us call this the r = 1 ring of the network. To construct a larger
network, we proceed by adding further hexagons concentrically around the initial shape. Each edge of the r = 1 ring
is used as an edge of a hexagon in the r = 2 ring. We can continue to create a larger and larger network structure
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by concentrically connecting rings of hexagons to the previous one. As each ring is added, there will be 6r hexagons
added to the overall structure. See Fig. 3(a) as an example.

For any fixed number of rings r we can identify the number of nodes within the network. The number of unique
nodes added with the addition of each new ring follows a recursive equation

ñ1 = 6, ñ2 = 12, , . . . , ñr = 24(r − 1)− ñr−1. (60)

It is simple to solve this set of recursive equations so that ñr takes the form,

ñr = 6(2r − 1). (61)

As a result, given an r-ring honeycomb network structure, the total number of nodes will be

nhc(r) =

r
∑

k=1

6(2k − 1) = −6r + 12

r
∑

k=1

k = 6r2. (62)

The minimum number of nodes required to locate a pair of non-edge sharing end-users within an internal boundary
is found at r = 2. Hence the minimum number of nodes we must consider is simply nhc(2) = 24.

We may also use this relationship in order to determine the minimum nodal-density ρmin of a honeycomb network
when the maximum permitted fibre-length is dmax

N . Since this is the maximum permitted length and a honeycomb
lattice can form a regular tiling, then ρmin is satisfied when every edge in the network is exactly dmax

N . Hence, given
an r-ring network, the maximum area it will span is

Amax
hc (r, dmax

N ) =
3
√
3 [1 + 3r(r + 1)] dmax

N
2

2
. (63)

Hence, an r-ring minimum nodal density can be computed by

ρmin(r, d
max
N ) =

nhc(r)

Amax
hc (r, dmax

N )
. (64)

By taking the asymptotic limit of r → ∞ we can more accurately capture a lower-bound on the nodal density of
a honeycomb network which satisfies this fibre-length constraint (as a larger network will permit a more accurate
averaging process). As a result, we may compute

ρmin
N ≥ lim

r→∞
ρmin(r, d

max
N ) =

4

3
√
3 dmax

N
2

(65)

as a lower-bound on the nodal-density of a weakly-regular honeycomb network which satisfies a maximum inter-nodal
separation. Hence the characteristic quantity of honeycomb networks satisfies ξ ≥ 4/(3

√
3).

2. Hexagonal Network

A class of hexagonal network (k = 6 and λ∗ = {2}∪6) follows the same logic as the honeycomb structure, just with
additional nodes located within every hexagon (see Fig. 3(b)). As a result, we can immediately write

ñr = 6(2r − 1) + 6(r − 1) = 6(3r − 2). (66)

Then, in an r-ring hexagonal structure the total number of nodes is given by,

nhex(r) = 7 + 6

r
∑

k=2

(3k − 2) = 1 + 3r(3r − 1). (67)

hence the minimum number of nodes required for internal WR is nhex(2) = 31. Meanwhile, the maximum area
spanned by an r-ring hexagonal network is equal to that of the honeycomb network, Amax

hex = Amax
hc . Thus, defining

ρhex(r, d
max
N ) :=

nhex(r)

Amax
hex (r, dmax

N )
, (68)

we can easily compute a lower-bound on the nodal density as before

ρmin
N ≥ lim

r→∞
ρhex(r, d

max
N ) =

2√
3 dmax

N
2
. (69)

Hence the characteristic quantity of hexagonal networks satisfies ξ ≥ 2/
√
3.
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3. Manhattan-Inspired Networks

Consider a class of WRN such that k = 8 and λ∗ = {2, 4}∪4, as depicted in Fig. 3(c). To construct this network, we
can simply concatenate a cell (consisting of 9 nodes) into an r × r grid which can be easily evaluated. For a network
which is arranged into a r-length square grid there will exist r2 network cells. In order to maximise the area spanned
by each network cell, we assign the longest possible edge in the cell to be of length dmax

N . For the k = 8 network cell,
this means that the diagonal edges in each square must be of length dmax

N . Hence, the area of the total 9 node cell will

be 1
2d

max
N

2. In an r-ring network this results in a total area of 1
2 (rd

max
N )2. Furthermore, the total number of nodes

will be given by,

nmh:8(r) = (r + 1)2, (70)

which can be obtained by simply counting the number of nodes on each horizontal/vertical row of the grid. We can
thus define the function,

ρmh:8(r, d
max
N ) :=

(r + 1)2

1
2 (rd

max
N )2

. (71)

As a result, a lower-bound on the minimum nodal density can be readily computed

ρmin
N ≥ lim

r→∞
ρmh:8(r, d

max
N ) =

2

dmax
N

2 . (72)

Therefore the characteristic quantity is lower-bounded by ξ ≥ 2.
A similar Manhattan-like class can be constructed such that k = 16 and λ∗ = {4, 8, 8, 8}∪4, as depicted in Fig. 3(d).

Using this network cell to construct a larger network, we must constrain the longest edge in the network cell to be of
length dmax

N . This causes us to constrain the diagonal edge from central nodes on the boundary of the cell to connected
nodes at the opposite corner. The maximum area spanned by a network cell is then 4

3d
2
N . If we again consider an

r × r cell square grid network, then that the total area is Amax(r) =
4
3r

2dmax
N

2. Via a counting argument, the total
number of nodes in an r-radius network will be

n(r) = (4r + 1)(r + 1) + 3r(r + 1) + r2 = (7r + 1)(r + 1) + r2. (73)

As a result, we can define the minimum nodal density function,

ρmh:16(r, d
max
N ) :=

(7r + 1)(r + 1) + r2

4
3 (rd

max
N )2

. (74)

Finally, the lower-bound can be given

ρmin
N ≥ lim

r→∞
ρmh:16(r, d

max
N ) =

6

dmax
N

2 . (75)

Hence the characteristic quantity can be lower-bounded by ξ ≥ 6.

C. Nodal Density and End-to-End Performance

Theorem 3 Consider a (k,Λ)-WR quantum network N = (P,E) which is connected by bosonic lossy channels. Select
an end-user pair i = {a, b} within the network that do not share an edge, and a desired min-neighbourhood capacity
CmNi

. In order to guarantee optimal performance, there exists a minimum nodal density within the network,

ρmin
N = −ξγ2

[

log10

(

1− 2−
1

δ
Cm

Ni

)]−2

, (76)

where ξ is characteristic of the WR architecture being considered.

Proof. In Corollaries 2 and 3, a global fibre-length constraints are placed on the network in order to guarantee a
particular flooding capacity via user-node isolation. Using Corollary 2, if all edges (x,y) ∈ E satisfy an maximum
link-length constraint,

dmax
N = − 1

γ
log10

(

1− 2−
1

δ
Cm

Ni

)

, (77)
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then the flooding capacity is guaranteed to satisfy 2(k − 1)CmNi
/δ ≤ Cm(i,N ) ≤ CmNi

. If we apply the additional
constraint for user-connected edges such that

dmax
Ni

= − 1

γ
log10

(

1− 2−(
1

k−1
− 1

δ )C
m

Ni

)

, (78)

then we can guarantee that Cm(i,N ) = CmNi
.

These link-length constraints result in a minimum nodal density for the entire network which is easy to investigate
via the appropriate sparse construction. Using Eq. (59) we can directly write

ρmin
N = ξ(dmax

N )−2 = ξγ2
[

log10

(

1− 2−
1

δ
Cm

Ni

)]−2

, (79)

where the characteristic quantity, ξ is derived from the sparse construction. This offers a lower-bound on the necessary
nodal density required to guarantee a particular flooding capacity.
Summarising, in order for the flooding capacity between a and b will be equal to the min-neighbourhood capacity

Cm(i,N ) = CmNi
, the nodal density must (at least) satisfy the lower-bound ρN ≥ ρmin

N .

The tightness of this lower-bound depends on how ξ is derived. Ideally, one would be able to take into the
consideration the stricter constraint dmax

Ni
required to guarantee Cm(i,N ) = CmNi

with equality. Solving a sparse
construction with multiple edge constraints is not straightforward, hence one may need to use a lower-bound for ξ,
as we have in this work. This nonetheless delivers informative bounds on the nodal density required for optimal
performance.

D. Critical Nodal Density

Following recent works which have investigated critical network resources required for effective end-to-end
performance on quantum networks, we define a critical nodal density ρcrit as the network density required to achieve
an end-to-end rate of 1 bit per network use. For bosonic lossy networks constructed in a weakly-regular structure,
we can derive this value analytically.

Corollary 4 Consider a (k,Λ)-WR quantum network N = (P,E) which is connected by bosonic lossy channels. The
critical nodal-density of the network is lower-bounded by

ρcritN ≥ −ξγ2
[

log10

(

1− 2−
1

δ

)]−2

, (80)

where ξ is characteristic of the WR architecture being considered.

In Eq. (80), recall that γ is the fibre-loss rate which takes a typical value of γ ≈ 0.02, and δ is defined in Eq. (32)
as before. For WRNs explored in this paper we can readily compute their critical nodal densities:

ρcrithc &

√
3

5625

[

log10

(

1− 2−1/6
)]−2

≈ 3.33× 10−4 nodes per km2,

ρcrithex &

√
3

3750

[

log10

(

1− 2−1/18
)]−2

≈ 2.28× 10−4 nodes per km2,

ρcritmh:8 &
1

1250

[

log10

(

1− 2−1/32
)]−2

≈ 2.87× 10−4 nodes per km2,

ρcritmh:16 &
3

1250

[

log10

(

1− 2−1/128
)]−2

≈ 4.67× 10−4 nodes per km2.

(81)

The critical density does not necessarily decrease with respect to nodal degree; while the Manhattan-inspired networks
have larger regular degrees (k = 8, 16) than the hexagonal network (k = 6), the critical density of the hexagonal
network remains smaller. This is reasonably intuitive, since there is clearly a tradeoff between performance, nodal
degree and nodal density.
Importantly, we notice that the minimum required nodal density is of the order ∼ 10−4 nodes per km2 which

corroborates the results of Ref. [5] for which the critical nodal density is studied for more general class of random
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Waxman networks. Accurate assessments of this kind are crucial to ensure that effective and high-performance
quantum networks are constructed in the future.
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