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Self-testing and Semi-Device Independent protocols are becoming the preferred choice for quantum technolo-
gies, being able to certify their quantum nature with few assumptions and simple experimental implementa-
tions. In particular for Quantum Random Number Generators the possibility of monitoring in real time the
entropy of the source only by measuring the input/output statistics is a characteristic that no other classical
system could provide. The cost of this new possibility is not necessarily increased complexity and reduced
performance. Indeed, here we show that with a simple optical setup consisting of commercially available com-
ponents, a high bit generation rate can be achieved. We manage to certify 145.5 MHz of quantum random
bit generation rate.

I. INTRODUCTION

Quantum random number generators have been a de-
veloping topic in the past two decades. The interest of
these devices resides in the fact that the randomness of
the output string can be proven thanks to the intrin-
sic nature of quantum mechanics and does not need a
stochastic model in order to evaluate the amount entropy
the experiment can produce.

However, while there exist many examples of quantum
random number generators (QRNGs) that exploit many
different quantum phenomena1–6, the challenge resides
into proving that the randomness produced has, actu-
ally, a quantum origin. To do so, the device must be
completely characterized in order to separate all possi-
ble sources of classical noise that could be foreseen by a
malicious party. This first class of QRNGs is often re-
ferred as Device Dependent QRNG since their behaviour
is strongly related to the characterization of the device.

A different approach is instead given by the Device In-
dependent approach7–9. In this case it is possible to cer-
tify the randomness of the output in the most paranoid
scenario in which the device itself is built by an adversary.
While this approach is interesting and gives the highest
level of security for a QRNG device, it has itself some
drawbacks. First of all, the experiment relies still on some
assumptions that must be verified, such as the space-like
separation of the two measurement sites, but the great-
est roadblock toward applications is the complexity of the
devices and their low throughput rate, which is orders of
magnitude lower than for standard DD-QRNG.

For this reason, recently a new approach has been in-
vestigated, the Semi-Device Independent or self-testing
QRNG10–20. The idea is, with few assumptions on the
device, implement a QRNG as simple as the existing com-
mercial devices with high degree of security. Recently, a
couple of different approaches have been proposed using
assumptions on the dimension of the produced quantum
states, on their overlap or on their energy.

In this work, we develop a new QRNG using an energy
assumption featuring a simple and practical implemen-

tation based on homodyne measurement with a perfor-
mance of hundreds of certified Mbits/s. Note that a sim-
ilar approach based on a heterodyne measurement has
been demonstrated independently21.

II. SCHEME

As in a previous experiment22 the security framework
is based on recent theoretical work23,24. The device can
be modelled as a prepare and measure scenario. The
source prepares one of two quantum states in an optical
signal depending on a binary input x and sends them
to a measurement device that outputs a binary value b.
The prepared state and the measurement may depend
on a correlated random variable λ. The probability of
each output conditioned on the input value can be then
written as:

p(b|x) =
∑

λ

p(λ) Tr[ρλxM
λ
b ], (1)

where ρλx is the quantum state prepared by the source and
Mλ

b is the POVM element corresponding to the output
b with x, b ∈ {0, 1}. In order to certify the quantum
randomness in output b and separate it from classical
noise represented by the classical variable λ we make use
of the analysis presented in Ref.24.

Without any constraint on the prepared state and
without any additional assumptions, the measured in-
put output probabilities (correlated classically by an un-
known classical hidden variable) could be easily described
by a deterministic model. In our case, the two states can
be arbitrarily chosen but their energy must be limited.
This assumption is referred as ”average energy” assump-
tion, since the quantity to be bounded is the following:

∑

λ,x

p(λ) Tr[ρλxN ] ≤ ω , (2)

which represents the upper bound on the average energy
(normalized with respect to the lowest photon energy of
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the optical signal) transmitted between the source and
the measurement, N in this formula represent the photon
number operator and ω the bound chosen. The normal-
ized energy is in this way given by the average number
of photon transmitted in each signal.

Van Himbeeck et al.23 showed that for a fixed value ω
the set of all possible quantum correlations is larger than
the set of deterministic correlations. Furthermore in the
following work24 it was proven that if an input/output
distribution belongs to the former set but not to the lat-
ter then genuine randomness can be certified. In order
to quantify the entropy produced by the input/output
statistics of the experiment, the authors developed a
semi-definite program (SDP) that returns a lower bound
on the conditional Shannon Entropy H(B|X,Λ). This
bound can be used as witness to certify the amount of
genuine quantum randomness. This witness corresponds
to a linear function γ[p] − ζ[ω] that depends only on
the input/output probabilities p and the average energy
bound ω. The witness defined before can be then used
for a semi-device independent protocol where an entropy
threshold h is fixed beforehand and the previously de-
fined witness is tailored over the expected behaviour of
the device. After running the experiment n times, we
check that the linear witness is greater than the thresh-
old h:

γ[f ] − ζ[ω] ≥ h, (3)

where the witness is evaluated with the experimental in-
put/output frequencies f measured from the experiment
input/output results.

If the measured data passes the test in Eq. 3, the ran-
domness contained by the output sequence is certified to
be24:

Hǫ′

min(B|X,Λ) ≥ n

(

h− c

√

log(ǫ/2)
n − d log(ǫ/2)

n

)

. (4)

where Hǫ′

min(B|X,Λ) is the worst-case conditional
smooth min-entropy and can be interpreted as the
amount of bits that a strong extractor can output from
the raw bit sequence generated by the experiment (See
Ref.22,24 for more details).

III. IMPLEMENTATION

For the implementation we used the Binary Phase
Shift- Keying (BPSK) scheme where the source prepares
two coherent states with the same average photon num-
ber and a π phase difference, i.e. |α〉 and | − α〉. By
choosing either state with probability 1/2 the average
energy bound ω must be greater than |α|2. This choice
is motivated by the fact that implementing such a source
is easy and can allow for high repetition rates. Within,
all measurement strategies we need to determine the one
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FIG. 1. Extractable randomness per bit with respect to the
average photon number of the input state, using the BPSK
encoding scheme. The continuous line (BLUE) corresponds to
a measurement strategy that reaches the Helstrom limit, the
dashed-dotted line (RED) to a perfect homodyne detection
scheme and the dashed line (yellow) to an homodyne detection
with added white noise (pnoise = 0.39 see Eq. 5).

FIG. 2. Quadrature distribution of two coherent states | −α〉
and |α〉. The maximum of the two distribution is, respectively,
in the negative part of the graph and in the positive part. The
best strategy to discriminate between the two state is using
the sign of the quadrature.

that can discriminate the two produced state in the best
way. Fig. 1 shows the comparison of different strategies.
The best strategy is given by the min-error discrimina-
tion measurement that allows to achieve the Helstrom
limit. However, a perfect homodyne measurement, in
which the two states are distinguished with respect to
the sign of their quadrature (see the graphical represen-
tation in Fig. 2), does not fall far behind, not even when
noise is take into consideration. This given a practical
solution even for the measurement itself.

This scheme is implemented as shown in Fig. 3. We
generate the two desired states of light by modulating
a coherent state with a phase modulator and we im-
plement a homodyne measurement in order to project
the states into the chosen quadrature. The setup is
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FIG. 3. The experimental setup corresponds to a CW Laser
at 1550 nm that injects light into a MZI. The input port
is a PBS in order to modulate the amount of energy going
into each arm of the interferometer. The top arm, going into
the Prepare stage, correspond to the state preparation where
the light is modulated by a phase modulator and the average
energy is measured by a system of BS, attenuator and linear
detector. The bottom arm corresponds to the Local Oscillator
of the homodyne measurement, the fiber is wrapped around a
piezo in order to stabilize the interferometer phase. The mea-
surement is carried out with two balanced linear detectors.

completely fibered, it is composed by a continuous-wave
(CW) laser at telecommunication wavelength (1550nm)
which injects light into a balanced Mach-Zehnder inter-
ferometer (MZI). The input port of the MZI consist of an
optical system of polarization controller (PC) and fiber
polarization beam splitter (PBS) to to adjust the power
going into each arm of the MZI. As it is shown in Fig. 3
the lower arm of the interferometer corresponds to the
local oscillator of the homodyne measurement, and the
upper MZI arm to the preparation stage of the experi-
ment. In this part the states are modulated and attenu-
ated to the energy value required by the energy assump-
tion taken in the protocol. A set of 50/50 beam splitter,
linear photo-diode and attenuator allows to monitor in
real time the average mean photon number of the states
produced by the preparation stage. In order to obtain
this value, we divide the power measured during a run of
the experiment for the number of signal exchanged dur-
ing this time. The result is then multiplied by the lowest
signal photon energy in the spectral band (this gives an
upper bound on the mean photon number of our signal).
This puts us in the worst case scenario where a duty cycle
of 100% is considered. We would like to stress that these
three components (beam splitter, attenuator and linear
detector) are the only part of the experiment that must
be trusted and characterized. Indeed the main assump-
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FIG. 4. Amount of entropy per bits per generated pulse vs
the average mean photon number. The average energy bound
is chosen equal to the mean photon number to obtain the
maximum achievable entropy. The dots corresponds to the
experimental measured values, the dashed line corresponds to
the theoretical model used to simulate the device behaviour.

tion of the scheme can be defined as the energy of the
pulses (mean photon number) going out of the prepara-
tion stage. The phase modulator is controlled by a binary
input sent by a Field Programmable Gate Array (FPGA)
at a repetition rate of 1.25 Gbits/s.

The prepared states are then recombined with the
LO by a set of two PBSs and PC (that serve the pur-
pose of a variable beam splitter) in order to balance the
power transmitted to the balanced photo-diode (Thor-
labs PDB480C-AC). The analog signal coming from the
homodyne detector is discriminated between positive and
negatives values. Which corresponds to the discrimina-
tion between positive and negative quadrature values.
The binary output b, generated in this way, is then col-
lected by the FPGA. Electrical delay lines are used in
order to synchronize the input (x) and output (b). More-
over the discrimination is triggered by a clock signal sent
by the FPGA and controlled in such a way that the dis-
crimination windows is optimized to obtain the best dis-
crimination. To stabilize the phase on the interferometer,
a digital optimization is set-up over the correlation mea-
sured. A feedback signal is sent to a piezo-electric cylin-
der over which 2 m of fiber are wrapped. The stability
of the interferometer is then achieved without the need
of an additional source of light. Passive stability of the
set-up could be achieved by shortening the arms of the
interferometer (currently of 6 m each) or by integrating
the scheme in a photonic circuit.

Input and output are collected by the FPGA and for-
warded to an offline PC that evaluates the conditional
probabilities p(b|x) and that calculates the extraction
rate certified by the semi-device independent protocol.
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FIG. 5. Measured mean photon number vs time. The points
correspond to the verified mean photon number measured in
the experiment. The solid line is the energy bound. As it can
be seen the assumption of our experiment is never violated.
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FIG. 6. Amount of entropy per bits per generated pulse vs
time. Each point in the figure corresponds to a 1 s measure-
ment. The solid line corresponds to the threshold h and each
point above (blue) is a successful measurement whilst each
point below this line (red) correspond to a failure.

IV. RESULTS

First we measure the dependence of maximum ex-
tractable randomness with respect to the chosen energy
bound (expressed in the mean photon number of the pre-
pared pulses). As shown in Fig. 4 the amount of ex-
tractable randomness has a maximum around 10−3 to
10−2 photon per pulse. This value is the result of a trade
off between a small enough energy in order to obtain a
uniform probability distribution, but high enough energy
in order to be able to distinguish between the two input
values without being dominated by electrical noise.

In order to estimate the amount of unwanted ”clas-
sical” or not trusted noise in the experiment a simple
model has been used to approximate the experimentally
measured data points. The conditional probabilities have
been modelled as follows:

p(b|x) = (1 − pnoise)p
id(b|x) + pnoise

1

2
, (5)

where pid(b|x) corresponds to the ideal homodyne mea-
surement with no added noise and perfect state prepara-
tion and pnoise is an arbitrary parameter used as a figure
of merit in the modelling (in the experiment this value
is pnoise = 0.39). This model corresponds to a system
that works as expected in an ideal way with probabil-
ity (1− pnoise) and with probability pnoise it will output
a values completely uncorrelated with the input. This
probability represents all possible imperfection of the ex-
periment, like state preparation flaws, electrical noise in
the detection scheme, etc... However the only purpose
of this value for our protocol is to be a figure of merit
for the experiment, since it never appears as a parameter
in the security proof. This represent the advantage of
the self-testing approach, in fact with the sole analysis
of the input and output statistics plus few reasonable as-
sumption it is possible to certify the amount of entropy
generated without the complete characterization of the
device. In a completely device dependent scenario the
probability pnoise should be perfectly characterized and
calculated a priory and then monitored through the all
functioning of the experiment in order to certify the gen-
uine randomness of the output.

Once the optimal energy bound has been estimated, we
carried out a longer measurement of 1 hour in order to
test the stability and resilience of the experiment. Follow-
ing the semi-DI protocol presented before it was chosen a
value for the threshold h which represent the asymptotic
extractable entropy. Each second the input/output fre-
quencies are estimated and the assumption is verified. As
it can be seen from Fig. 5 the measured power was never
higher than the fixed threshold. The operating mean
photon number chosen is around 5× 10−3 by optimizing
the entropy per bit and by verifying that the correlation
generated were sufficient for the feedback stabilization
loop to work. Fig. 6 shows the entropy as a function of
the time. For each point it is verified that the entropy
generated is higher than the previously fixed threshold.
If this condition is verified the extraction ratio is given
by Eq. 4 otherwise the protocol must abort. The choice
of the threshold value comes with a trade-off between the
amount of extractable bits per pulse generated and the
amount of successful rounds in the experiment. In or-
der to maximize the average rate of certified random bits
throughout the whole experiment it was chose a thresh-
old value of h = 0.12 to which corresponded a probability
of successful rounds of 97%. This two values allow the ex-
periment to certify a repetition rate of genuine quantum
bits of 145.5 MHz.
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V. CONCLUSION

The QRNG presented in this work is a simple yet per-
formant implementation of the semi-DI protocol based
on energy bounds. We achieved a random bit rate of
145.5 MHz for a measurement during 1h. The advantage
of the system not only relies in its high speed, but also
in the straight forward implementation, which is highly
compatible with a possible integrated optics implemen-
tation.
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