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ABSTRACT

Elimination-by-aspects and generalised extreme value offer competing
paradigms for the representation of a common behaviour, that of individual
discrete choice. Observing certain consistencies in their mathematical
structure, several eminent authors have commented on the degree of
equivalence between the two paradigms. Most contributions to this debate
have, however, been less than definitive. = More fundamentally, the
contributions lack consensus. We advance the debate considerably by
establishing formal mathematical conditions under which three-alternative
tree models from the two paradigms are exactly equivalent. We then extend
our analysis to consider more general models, showing that equivalence can

be established for general tree models, but not for cross-nested models.

Keywords: elimination-by-aspects, hierarchical elimination-by-aspects,
random utility model, generalised extreme value, nested logit, recursive

nested extreme value

1. INTRODUCTION

This paper considers the relationship - in particular, the existence of a formal

mathematical equivalence - between two alternative paradigms for the
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representation of individual discrete choice. An understanding of individual
discrete choice is pertinent to many of the behavioural sciences, although we
restrict attention here to the disciplinary interests of microeconomics and
mathematical psychology. Despite sharing common origins in the literature
of psychophysics, the paradigms that now prevail in the two disciplines are
well-developed and distinct. That they differ, in fundamental respects,
should perhaps come as no surprise. Microeconomics and mathematical
psychology may well have interest in the same behavioural observations, but
they do so with substantive differences in their scientific philosophy and

analytical focus.

In conducting economic analysis of individual discrete choice, convention is
to apply the Random Utility Model (RUM)), first proposed by Marschak (1960)
and Block and Marschak (1960). RUM offers an apparatus for attending to
one (or both) of the principal needs of the working economist. First, to elicit
the monetary value of factors that influence individual choice. Second, to
forecast behaviour - in terms of the aggregation of discrete choices across a
population of individuals - in scenarios that differ from those observed. In
this paper we emphasise the latter. Finally, for purposes of implementation, it
is useful to equip RUM with additional theory. A popular such
implementation is the Generalised Extreme Value (GEV) model of McFadden

(1978, 1981); this will be adopted in what follows.
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The focus of mathematical psychology, in contrast, is more on understanding
the cognitive processes underlying individual behaviour. A consequence,
perhaps inevitably, is that consensus around a generic paradigm is less
evident than in economics; rather there exists a diverse range of paradigms
specific to context. This paper focuses on one such context, that of cognitive
processing in ‘complex’ discrete choice tasks. Complexity has attracted
significant attention in the behavioural science literature, wherein Herbert
Simon’s contributions (e.g. 1955, 1959, 1989, 1990) have achieved seminal
status. For our chosen context, we focus further on one (albeit well known)
model of discrete choice from mathematical psychology, namely Elimination-
By-Aspects (EBA). EBA, which was proposed by Tversky (1972a, 1972b),
offers a simplifying heuristic for complex tasks, conceptualising discrete
choice as a process of sequentially eliminating alternatives according to

criteria of acceptability, until a single ‘chosen” alternative remains.

Although they differ fundamentally in their paradigmatic basis, both EBA
and GEV adopt a probabilistic notion of choice, and represent the choice set as
a ‘preference tree’, with subsets of similar alternatives nested together. In this
way, both models relax the property of independence from irrelevant
alternatives (IIA), which would require that for any two alternatives, the ratio

of their choice probabilities is unaffected by the presence or absence of any
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other alternatives in the choice set (Debreu, 1960). This has prompted several
eminent authors - both in economics and in mathematical psychology - to
make observations regarding the degree of ‘equivalence’ between EBA and
GEV (Tversky and Sattath, 1979; McFadden, 1981; Small, 1987; Vovsha, 1997;
Train, 2003). Since these observations show significant inconsistencies,
however, it would appear that some, if not all, must be incorrect. That
notwithstanding, a characteristic shared by most of these works is an absence

of clear reasoning behind their respective assertions.

Recent work by Daly and Bierlaire (2005) has introduced a more general GEV
model, known as recursive nested EV (RNEV) or network EV. This gives the
potential for greater equivalence between EBA and the GEV family. The
contribution of our paper is to establish the conditions under which the
probability statements of EBA and RNEV are equivalent, thereby offering a
more definitive result than previous researchers. The importance of this work
is that our interpretation of behaviour will differ under each of the two
paradigms. It is necessary, therefore, to design experiments that reveal which,
if either, of the paradigms offers the correct representation of behaviour. If,
however, the models developed from the two paradigms yield
indistinguishable predictions of behaviour under specific circumstances, then
we cannot expect experiments conducted under those circumstances to

inform their discrimination. Discrimination must, in this case, be left to other
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means of experiment; in particular, means that are not reliant on the

probability statement.

2. STOCHASTIC MODEL OF DISCRETE CHOICE

Our interest in choice is restricted to the particular context of discrete choice
by an individual, whereby the number of alternatives in the choice set is
finite, alternatives are mutually exclusive, and the choice set is exhaustive.
Further, we restrict attention to choice under certain outcomes. While this is a
considerable restriction, choice with certainty is at least the first step to

developing a model of choice with uncertainty.

This paper does not seek to offer a comprehensive account of theories of
discrete choice; such needs are attended to elsewhere in the literature (e.g.
Marschak et al., 1963; Luce et al., 1965; Restle and Greeno, 1970; McFadden,
1981; Suppes et al., 1989). Rather we employ as our starting point a general,
and uncontroversial, form of discrete choice model defined by Marschak et al.

(1963) as the ‘stochastic model’. Formally:



Let T be the universal set of discrete choice alternatives, and let S= {:L..., J} be
a subset Sc T that constitutes the offered or ‘choice’ set of J alternatives. A
stochastic model specifies, for each choice set S and each alternative i € S, the

probability P(i|S) that an individual will choose i from S. Under any such

model, it must be true that 0< P({|S)<1 and ¥ P(i[S)=1 forall i and all S.

ieS

We make three observations in relation to the stochastic model. First, it is
based on the concept of a single individual making independent repeated
choices, i.e. choice probability can be conceptually based on the relative
frequency of choices by an individual in repeated experiments. Second, the
source of randomness is unspecified; it may be associated with incomplete
information on the part of the analyst about the preferences of the consumer,
or with intrinsically random behaviour, or with both. Third, randomness
permits apparent ‘inconsistencies” in choice, which might imply some degree

of variation in the underlying preferences of the individual.

The following sections consider two model forms - GEV and EBA - that can be

considered special cases of the stochastic model.

3. GENERALISED EXTREME VALUE



RUM was first proposed in Marschak (1960) and Block and Marschak (1960)
as a development of Thurstone’s (1927) Law of Comparative Judgement.
Perhaps unsurprisingly, given these origins, RUM takes a nod towards
psychophysical theory, in the sense that the model accommodates the
possibility that behaviour may not always be ‘consistent’. In economic
parlance, this means that the repeated choices of an individual may imply
variability in the underlying preference ordering. Moreover, RUM can be
considered a stochastic analogue of the more conventional microeconomic
analysis of individual choice (e.g. Debreu, 1954). Marschak et al. (1963)

provided the following definition of RUM:

A stochastic model is said to be a random utility model if there exists a

random vector (U,,..,U ) such that, for each choice set S and all i € S:
P(ilS)=Pru, >U, foral jes}.
A consequence of this definition [they also note] is that under any random

utility model:

PriUu, =U,j=0 foral j=i.



To interpret, for any choice set, an individual can rank alternatives in terms of
their utility; this ranking is however random and may change between

replications.

In implementing RUM, microeconomics has shown heavy reliance on a subset
of RUM derived from McFadden’s (1978, 1981) GEV model. Prompted by the
interest of economists in aggregate behaviour, McFadden re-interpreted RUM
as representative, not of an individual engaged in repeated independent
discrete choice tasks, but of a population of decision-makers with explicitly
varying tastes, each facing a single discrete choice task. McFadden (1981)
argued that the two interpretations are formally equivalent, i.e. that the
probability of a choice made by a specific individual in (conceptually)
repeated experiments also applies to the probability of that choice made by a

randomly chosen individual in an extensive population.

Let U, =V, +¢&;, where V, is deterministic utility, and & is a random variable.

Following McFadden (1978), GEV is based on a function G=G(Y,,..,Y,),

where Y, =exp(V,). Let G, =0G/dY, . If G satisfies a series of properties then

a GEV model is given by:
N Y.G
P(i) =2k 1
()=-5 (1)



This model has a mean utility given by V =logG+y where y is Euler’s
constant. The properties are as follows:
(a) G20 for all positive values of Y;, forall i € S.
(b) G is homogenous of degree one.
(c) G—>ow as Y, > forany i
(d) The cross partial derivatives of G switch sign in a particular way,
specifically: G, >0 for all i, G;=0G;/oY;<0 for all j=i,
Gy = 0G; /0Y, >0 for any distinct 7, j and k, and so on for higher order

cross partial derivatives.

A few comments are appropriate. First, an oversight is apparent in
McFadden’s property (a); with reference to (1) and the mean utility result, it is
clear that G must be positive. Second, with reference to property (b), G may
actually be homogenous of degree x>0 (Ben-Akiva and Lerman, 1985). Our
third comment concerns ease of implementation, since while properties (a),
(b) and (c) are reasonably straightforward to verify, property (d) is not (see

Daly and Bierlaire, 2005).

3.1 Tree models
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GEV models with particular properties can be derived through appropriate
specification of the G function. A popular form is tree or nested logit (NL),
which groups related alternatives in mutually exclusive ‘nests” across a series
of ‘levels’. Consider the derivation of the simplest possible form of NL,

consisting of only two levels, from GEV. Specify a G function:

o3| zewlr.|

where the choice set S={l....,J} is partitioned into M non-overlapping subsets
or nests R, < S, m=1..,M . The probability of choosing alternative i from S

is given by:
P([s)= P(R,)x P([R,)

where the marginal probability of choosing nest R, is given by:

Zeo)
Hzeots)

heR,

P(R,)=

11



and the conditional probability of choosing alternative i from nest R, is given

where g is the dissimilarity parameter relating to nest R,. Consistency with
RUM requires that O< g, <1 for all y,,. In the limiting case where x., =1 for
all R,, NL collapses to the multinomial logit (MNL) model, which is

characterised by IIA.

Although the above relates to the simple case, it can be readily extended to
more than two levels. An alternative generalisation is to relax the constraint
that nests are mutually exclusive. The latter yields the cross-nested logit
(CNL) model, first suggested (albeit somewhat vaguely) by McFadden (1978).
CNL allows alternatives to belong to more than one nest, potentially with
different ‘degrees’” of membership, although the model is restricted to two

levels.

3.2 General cross-nested models
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RNEYV and its network interpretation have been derived by Daly and Bierlaire
(2005). The network interpretation allows an analyst to draw an arbitrary
cross-nesting structure, emanating from a single ‘root’ and with any number
of levels but without cycles, and to calculate the conditional choice
probabilities by logit functions at each node in the network. Daly and
Bierlaire showed that this structure is consistent with McFadden’s GEV
requirements and is therefore consistent with RUM. RNEV generalises NL
because it allows cross-nesting and generalises CNL because it allows
multiple levels. The Daly and Bierlaire proof that RNEV is consistent with
GEV can thus be used to prove that these special cases are also consistent with

RUM.

Formally, the RNEV model can be defined by a recursive relationship at each

node b of a single root (i.e. connected), non-cyclic network:
Va
eXpVb = Zaewcc(b)ﬂ'ba eXP 4y, /

where succ(b) is the set of immediate successors to b in the network; A and u
are sets of positive parameters with s, > u,, if aesucc(b). Daly and Bierlaire
showed that expV, is a GEV G function, where r is the single root of the

network, defined over the functions expV, for the elementary nodes (i.e. those
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that have no successors) which form the alternatives in the model. The

conditional choice probabilities in this model are given by:

\Y/
Ava €XP 1 %
P(ab)= Ha

V,
Za’esucc(b)j’ba’ EXP ey, % )

i.e. the standard logit probabilities with the addition of the inclusion
parameters A. The marginal probability of choice for each alternative can
then be calculated as the sum of the choice probabilities for each of the paths
connecting the root to that alternative, where the path choice probabilities are
calculated as the products of the conditional probabilities at each node on the

path (including the root).

4. ELIMINATION-BY-ASPECTS

An alternative paradigm, commonly attributed to Simon (e.g. 1959), is that
individual decision-makers, instead of seeking to utility-maximise, are more
inclined to use simplifying heuristics, achieving ‘approximate’ solution by
means of ‘modest’ computational effort. A number of formal mathematical

models based on this idea have been proposed; such models are often based
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on some form of attribute-based sequential elimination. See Manrai (1995) for

a useful review.

4.1 General cross-nested models

One of the better-known elimination models is EBA, which was proposed by
Tversky (1972a, 1972b). According to EBA, each alternative is conceptualised

’

as a collection of aspects ...that denote all valued attributes of the options
including quantitative attributes (e.g., price, quality) and nominal attributes (e.g.,
automatic transmission on a car, fried rice on a menu)’ (Tversky and Sattath, 1979
p543). Choice is modelled as a sequential elimination process whereby an
aspect is selected, with probability proportional to its ‘value’ or “utility” to the
decision-maker, and all alternatives not possessing the aspect are eliminated.
(It is clear that continuous attributes must be expressed as 0/1 indicators (e.g.
by formulating a series of thresholds) to incorporate them in the model). This

process is repeated until only one alternative remains. The model can be

formalised following Tversky and Sattath:

Again let S={L..,J} be the choice set of alternatives. Let each i in S be
associated with a finite non-empty set i’ = {a, ...} of aspects of i. If aspect

is an element of i’, alternative 7 is said to ‘include” . Let S be the set of
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aspects that are included in at least one alternative in S, i.e.
S'= {a|a ei’for somei € S}. Forany o in S, let R, = {i €Sae i'} denote the

subset of alternatives that include « .

A family of choice probabilities P(i|S), for each choice set S and all i €S, is

EBA if there exists a non-negative scale u on S’ such that:

P(i[S)= e ———~— )

The recursive formula (2) is thus a weighted sum of the probabilities of
selecting i from aspect-based subsets of S, where the weights are interpreted
as aspect-specific utility or value. Note that - in common with RNEV - there is

no requirement that the subsets be non-overlapping.

To facilitate discussion, and without loss of generality, the following
simplifying properties of aspects and alternatives can be assumed to be part
of the EBA definition:
I. eliminate from consideration all aspects which are not possessed by any
alternative (this is just making sure the individual does not require an

aspect that is not available);

16



II. eliminate from consideration all aspects that are possessed by all
alternatives (these do not help in making a choice);

III. eliminate cases where a single alternative possesses all of the aspects (it
would always be chosen);

IV. consider any two or more aspects which are possessed by exactly the
same set of alternatives as effectively forming a single aspect, since they
always apply together;

V. consider as indistinguishable any alternatives that possess the same set

of aspects.

In case IV, when aspects o; and «, are considered together as o, we can

write:

u(e)=ule)+uler,)

and this gives the same probabilities as (2) because R, =R, =R, and so:

R, )=u@)P([R,)

R, )+ u(e, )Pl

u(e )P(i

Moreover, equation (2) can be seen to be an extension of the following

equation, which is always true:

17



Pli/s)= £ P(R.[S)P(IR,)

acei’

where P(Ra |S), the probability that choice will be in R, given thatitisin S, is

defined by the specific conditional probability:

PR.IS)= zﬂjii)(ﬂ)

Tversky (1972a) derived the following properties of EBA probabilities.
» Regularity asserts that the choice probability of specific alternatives
cannot be increased through enlargement of the choice set.
» Multiplicative inequality asserts that the probability of choosing i from
{i, j,k} cannot be less than the probability of choosing i from both {i, j}
and {i,k} in two independent choices.
» Moderate stochastic transitivity is a generalisation of the transitivity

axiom of microeconomic theory.

Tversky (1972a) presented the above properties as ‘estimation-free’ tests of
EBA, meaning that they can be applied to choice outcomes without a

necessity to estimate parameters. It is however important to note that, while

18



necessary to determine consistency with EBA, the above properties are not
sufficient. Indeed, it can be shown that NL is characterised by the same three
properties of regularity, multiplicative inequality and moderate stochastic

transitivity.

4.2 Tree models

Tversky and Sattath (1979) proposed the PRETREE model as a special case of
EBA. PRETREE imposes a restriction on the choice set such that subsets of
alternatives sharing aspects form a hierarchical structure. Two alternative but
entirely equivalent interpretations of PRETREE were proposed, Elimination-

By-Tree (EBT) and Hierarchical Elimination-By-Aspects (HEBA).

Extending the above analysis of EBA, we now consider PRETREE more
formally, focussing on the HEBA interpretation. Let R, be the set of
alternatives in S that include the link «, ie. R, = {i € S|a € i'}. Define a| g if
B follows directly from «. Let u(a) be the length (or utility) of a, and let
W(a) be the total length of all links that follow from «, including . If T" is

atreeand ScT, theset S = {i'i S S} is referred to as a ‘sub-tree’. Finally, for

R, cR,, let P(Rﬁ, Ra) be the probability that an alternative chosen from R, is

also an element of R, i.e. P(Rﬁ,Ra): > P(i|Ra).

ieRy
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A family of choice probabilities P(i|S), for each choice set S and all i €S, is

HEBA if there exists a tree T with measure U such that the following three
conditions hold:

1. If 7|# and pla then P(R,,R )=P(R,,R, JP(R,,R ).

2. If y|fand yla then: E(Ra’Ry; = W(a), provided P(Rﬂ, Ry);t 0.

W)

3. The above conditions also hold for any sub-tree S of T , with the

induced structure on S'.

Since it is a special case of EBA, the properties of regularity, moderate
stochastic transitivity and multiplicative inequality apply also to HEBA.
Tversky and Sattath (1979) presented two further properties, namely the
trinary and quarternary conditions, as specific to HEBA. Indeed, they
asserted that: ‘...the trinary and the quarternary conditions are not only necessary
but are also sufficient to ensure the representation of binary choice probabilities as a
[PRETREE]" (p551). Since we will refer to the trinary condition in subsequent

discussion, we define it formally:

The trinary condition states that any three alternatives that form a sub-tree

{i,ik, eg R, ={i,j}, Ry = {k} in HEBA, satisfy the condition:

20



where strict inequality (equality) in the hypothesis implies strict inequality
(equality) in the result. The quarternary condition applies, in analogous
fashion, to the four-alternative case; for reasons of brevity, we refer readers to

the definition in Tversky and Sattath (1979).

5. EQUIVALENCE BETWEEN EBA AND GEV

Although they differ fundamentally in their paradigmatic basis, HEBA and
NL show significant commonality in the following respects. First, both are
special cases of the common generic framework offered by the stochastic
model. Second, both represent the choice problem as a ‘preference tree’, with
mutually exclusive subsets of alternatives defined on the basis of covariance
or similarity. Third, the two models share common properties; for example,
both HEBA and NL are characterised by regularity, moderate stochastic
transitivity and multiplicative inequality. These characteristics - in particular
it would seem the second - have led several eminent authors to make

comment on the existence of equivalence between HEBA and NL.
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Tversky and Sattath (1979) asserted; ‘Although the nested logit model does not
coincide with pretree, the two models are sufficiently close that the former may be
regarded as a random utility counterpart of the latter’ (p567); but offered no
further insight. McFadden (1981) presented a more detailed analysis. For a
preference tree consisting of three alternatives, multinomial choice
probabilities were derived analytically from binary choice probabilities for
three models: NL, HEBA and multinomial probit (MNP). McFadden
compared the multinomial choice probabilities forecast by the three models
for given binary choice probabilities, finding that the multinomial choice
probabilities forecast by NL, HEBA and MNP were, not only intuitively
plausible, but extremely close to each other. He concluded that “...at least for
simple preference trees...these models are for all practical purposes indistinguishable’
(p236). Researchers now understand the relationship of MNP to GEV models
better and extensive analytical and simulation testing has illuminated the
comparatively small but sometimes significant differences between MNP and

NL (Whelan et al., 2002).

Extending the analysis, it is insightful to also consider the degree of
equivalence between EBA and CNL, which generalise HEBA and NL
respectively to accommodate a ‘cross-nested’ structure. Again, a number of
authors have made observations. Small (1987) asserted that ordered GEV

(OGEV), which is a special case of CNL, is: “...an example of A. Tversky’s
22



“elimination by aspect” class of choice models’ (p414). Vovsha (1997) noted:
"...within the cross-nested framework...choice can be conditionally made from several
marginal nests reflecting different attraction focuses...From this point of view the
cross-nested structure comes close to the elimination-by-aspects theory’ (p9).
Unfortunately, neither Tversky nor Vovsha elaborated on these comments,
but perhaps even less transparent is the contribution of Train (2003), who
asserted: ‘With positive [log sum parameter|, the nested logit approaches the

“elimination by aspects” model of Tversky (1972) as [log sum parameter] — 0’

(p93).

In the subsequent analysis we establish formal conditions under which EBA
and GEV are equivalent. Our initial investigation is restricted to HEBA and
NL, and requires two stages of analysis. First, we establish equivalence, in a
mathematical sense, between the full set of choice probabilities of HEBA and
NL. While necessary to establish formal equivalence, this is not however
sufficient. ~For this, a second stage is required of verifying that the
equivalence, as established, does not violate the internal conditions of either

HEBA or NL (i.e. both models remain valid according to their own rules).

Implicit in the above is consistency in the level of aggregation at which the
two models are represented. HEBA in its most basic form is a model of

repeated choices by a single individual; this contrasts with NL, which
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typically relies on a single choice from each of a sample of individuals. In the
context of our investigation of equivalence, consistency of aggregation level is
achieved through deference to Tversky and Sattath’s (1979) re-interpretation
of HEBA as an aggregate model. Having investigated equivalence between

HEBA and NL, we extend the analysis to EBA and RNEV.

Before proceeding, it is worth noting that Tversky (1972a) presented a much-
neglected proof that EBA is RUM. This result is based on a re-interpretation
of EBA as a ranking model. ‘Standard EBA’ establishes, at each stage of the
choice process, a partition between acceptable and unacceptable alternatives.
‘Ranking EBA’” extends this partitioning to the unacceptable alternatives as
well as to the acceptable alternatives. Having established a complete ranking
of alternatives, a utility vector is assigned to this ranking, and consistency

with RUM established.

Our own investigation differs from Tversky’s in the following respects. First,
we focus both on the GEV subset of RUM as opposed to RUM generally, and
on Standard EBA as opposed to Ranking EBA. Second, we consider
equivalence, which is considerably stronger than consistency. Moreover,
Tversky’s proof that EBA is RUM could, in principle, be extended to any

choice model that is able to derive a complete preference ordering. Whilst
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demonstrating the generality of RUM, the proof does not necessarily inform

our own investigation.

5.1 Equivalence between HEBA and NL

Following McFadden (1981), consider the simplest possible form of HEBA;
that is, a choice between three alternatives, two of which show some degree of
similarity. More formally, consider a choice from the set S={i, j,k}, where i,

j and k are characterised by unique aspects ¢;, «; and «,, respectively, and

i and ] share a common aspect ¢; which is not possessed by k.

Create two subsets of S, the first containing the two alternatives i and j that

share «;

ij7’

and the second containing the remaining alternative k:

In this two-level model, under both HEBA and NL specifications of this

problem, choice probability can be written as follows:
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P(ils)= PR, PliR, )

Ps)=PR, )

Moreover, the choice problem under consideration, whether specified as
HEBA or as NL, can be defined completely by either of the two marginal
probabilities and either of the two conditional probabilities. That is, a choice

model for this situation has just two effective degrees of freedom.

Consider first HEBA. Following Tversky and Sattath (1979), the marginal

probability of choosing the subset R, is given by:

= u(agi )+ u(aj )+ u(aij )+ ‘u(ak) 3)

(4)

For HEBA to hold, distinct from the Luce model (Luce, 1959), it is necessary

that u(aij)> 0. Similarly, for alternatives i, j and k to exist as distinct

alternatives, it must be the case that u(e, ), u(a j ), u(e, )> 0.
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Now consider identification, where two transformations are relevant:

HI.

H2.

Define u'(an): 7u(an) for all n. The factor y cancels out in (3) and (4), so

that the entire model is unchanged.

Define u(a,)=g¢u(e,) for n=i,j. With u(e,) held constant, the model

remains unchanged if we define:

u”(aij )= u(aij J+c

provided that:

u(ozi )+ u(aj )+ u(ocij ): U"((Zi )+ u”(aj )+ u"(ocij ): gzﬁu(ozi )+ ¢u(a]- )+ u(aij )+ C

i.e.

c=(1- ¢)[u(ai )+ u(aj )J

We must have u"(aij)> 0, but if ¢<1 it is always positive and no

problems arise, so that the model is once again unchanged.
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This discussion reveals that HEBA is inherently over-specified in two distinct
ways. Given that the four variables u(e, ), u(a j ), u(e, ) and u(aij) are defined,

there are, as already noted, two effective degrees of freedom. HEBA cannot,

therefore, be estimated without imposing two appropriate constraints.

An important observation is that (3) and (4) also yield the probabilities of
choice in reduced choice sets, by considering these as limiting cases when

individual aspect weights becomes zero. For example, if u(e, )= 0 in (3), then

P(Raij )= 1 and (4) gives the probability of choosing i from the reduced choice

set {i,i}. Similarly, if ul#,)=0 in (4), then P[[R, )=1 and (3) gives the

probability of choosing i from the reduced choice set {i,k}. Thus the
probability equations for the three-alternative case yield the relevant

probability equations for each of the three possible binary choice subsets.

The properties established for the three-alternative case, such as the excess
degrees of freedom H1 and H2, then extend to these binary cases. Note

however that if u(aij )= 0 then u(aij) becomes irrelevant by property I;
similarly, if u(a,)=0 then u(a j) and u(aij) can be combined by property IV.
In binary choice subsets, therefore, there is always one redundant degree of

freedom.
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For the same choice problem, we now write the analogous NL probabilities of

choice:

o {V (aij b u Iog[expv (a% n eXpV (a % }}

P(Ra” )= exp{v(a” )+ u Iog[expv(a% * eXpV(a% }} +epV(e)

()

ex V()
Ra.,)z i A _ (6)

If we again consider identification, it is apparent that NL is over-specified in
three distinct ways, since:
N1. The addition of a constant to all the elementary utilities has no effect
on probability.
N2. The addition of a constant to V(z,) and V(aij) has no effect on
probability.
N3. The multiplying of u# by a factor has no effect on probability,

provided that the lower level utilities are adjusted appropriately.

It is important to note that properties N1 and N2 are analogous to HEBA,

whereas property N3 is specific to NL. Obviously, the introduction of the
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above brings three additional degrees of freedom to NL. Here, we see that the

five variables used in defining the model (V(g;, ), V(a j ), V(a,), V(aij) and u)

are again reduced to two degrees of freedom by the constraint imposed.

In a similar manner to before, the NL probabilities of choice for reduced
choice sets can be derived from (5) and (6) by considering the form these
equations take when individual utility weights tend to minus infinity. For
example, if V(a, ) = —o in (5), then P(Ra )—) 1 and (6) gives the probability of

ij

choosing i from the reduced choice set {i, j}. Similarly, if V(a j )—> —o0 in (6),

then P(i R, )—) 1 and (5) gives the probability of choosing i from the reduced

choice set {i,k}.

In order to establish equivalence between HEBA and NL, a first and necessary
requirement is that the choice probabilities of HEBA and NL are equivalent
not only for the complete choice set, but for each and every choice subset
thereof. For the three-alternative case, equivalence must therefore hold for
the complete choice set {i, j,k}, as well as for the binary subsets {i,j}, {i,k}
and {j,k}. As the preceding discussion has demonstrated, however, the
probability statements applying to any of the reduced choice sets exist as
limiting cases of the probability statements applying to the complete choice

set; hence our earlier comment that HEBA and NL can be defined completely
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by either of the two marginal probabilities and either of the two conditional
probabilities. Moreover, our interest in establishing equivalence between
HEBA and NL for all choice subsets of the three-alternative case amounts to a
requirement that there exists simultaneous equivalence between both (3) and

(5) and (4) and (6).

This requirement can be established in a number of ways, because of the
excess degrees of freedom in the two models. A simple equivalence is
obtained through the solution of a simultaneous equation problem consisting

of four equations, as follows:

expv(“% = u(er;) (7)

expv(a % = u(a j ) 8)

expV(e,) = (e, ) )

exp{\/(aij )+ MW, } = expW; + U(“ij ) (10)
where W, = Iog[expv(“% + expv(a% } = Iog[u(ozi )+ ula j )]

Solving the equation system (7) to (10) in terms of V(¢,), V(a j), V(e,) and
V(aij ), we arrive at the following;:
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V(e,)= ploglu(e )]
V(aj)zulog[u(aj)J
Ve, )= Iog[u(ak )]

V(e )= loglexpW, +ule; )|- 1w, (11)

Substituting these expressions for u(e, ), u(a j ), u(e, ), u(aij) into (3) and (4),
and V(ai), V(aj), V(ak), V(aij) into (5) and (6), or indeed into any limiting

case of these probabilities, one can confirm the equivalence between NL and

HEBA, whatever the value of u'. This flexibility with respect to u

corresponds to the additional degree of over-specification of NL indicated

above. However, note that V(aij) depends on both u(e;) and u(a j) unless

u(aij )= 0 and i =1, when we get V(aij )= 0 (i.e. the Luce model).

The equivalence can also be set up in the opposite direction, deriving u(e, ),
u(a j) and u(ak) straightforwardly from the correspondingV ’s as in (7) to (9)

and setting:

uler; )= explv oy ) + 1 |- expWw (12)

1 Adding the caveat that NL must remain internally consistent - discussion of this follows.
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This is not, however, the end of the story, since we must consider whether the
above equivalence violates the internal conditions of either HEBA or NL. For
the equivalence to work within the terms of HEBA, all aspect weights must be

positive. It is clear from (7) to (9) that this always holds for u(ozi ), u(aj) and

u(e, ). The case of u(ozij ) is less straightforward, since it requires that:

expv(aij )> [expV\/u ]1‘” (13)

With reference to over-specification N2, however, it is clear that the addition

of a sufficiently large constant to V(aij) and V(a,) will ensure that (13) is

always satisfied.

Turning to NL, the issue of internal validity rests on consistency with RUM.

Perusal of (11), which is expanded below as (14), reveals that although V(aij )
is a component of the utility of alternative i, it is a function of u(a j ), which
itself depends on attributes of alternative j. Similarly, V(ozij ) forms part of the

utility of alternative j, but depends partly on attributes of alternative i.

Ve, )=loglu(er; )+ ule; )+ uley; )| #loglu(e; )+ uler, )| (14)
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Since u(e,) and u(a j) will necessarily be significantly different from zero for

compliance with HEBA, the implication is that the utility of one nested
alternative will be a function of the attributes of other alternatives in the same

nest. Moreover, even if 0< x <1, consistency with RUM is not ensured.

Consider, however, the limiting case where:

V(“i )_>V(0’i )+V(a“- )
V(ai)ﬁv(“i)jLV(aij)

V(aij)zo

such that (12) now simplifies to:

0< u(aij )= exp{yWij }— expW,

which holds provided O<ux <1 (i.e. NL does not collapse to MNL) and

W, <0, which again can be ensured by subtracting a sufficiently large

constant from V(e ), V(a j ) and V(a, ).



All that now remains is to verify that HEBA can always be adjusted to ensure

that V(aij)zo. With reference to identification issue H2, the relevant

transformation is:

u(aij ) u(aij J+c,

u(e,) and u(aj) multiplied by factor ¢ with C:(l—(zﬁ)eXpWij. With this

transformation, (11) changes to:

V(aij )= |°9[U(0‘ij )+ C+gexpW, ]_ :U(Wij )dj

= loglu(ez; )+ expW, |- (W, +log )

which can be zero for an appropriate choice of ¢. Thus by exploiting the

redundant degrees of freedom of HEBA, it is possible to ensure that the RUM-

violating term is always zero.

We conclude that it is always possible, in the three-alternative case, to specify a valid

NL that is equivalent to a HEBA, and vice versa.
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Before turning to the more general case with larger numbers of alternatives, it
is useful to set our apparently simple finding in the context of the
fundamental papers on GEV and HEBA. McFadden (1981), a key paper in
establishing the GEV model, also considered the three-alternative comparison
between HEBA and GEV but failed to arrive at any conclusive result on their
equivalence. Tversky and Sattath (1979), again an influential contribution to
the literature, acknowledged the similarity between HEBA and GEV, but

/

appeared to rule out the possibility of equivalence: “...the nested logit model
does not coincide with pretree...” (p567). We have thus improved considerably

on the clarity of McFadden’s result, and shown that Tversky and Sattath’s

assertion was incorrect.

5.2 Equivalence between EBA and RNEV

The equivalence established between HEBA and NL suggests that there may
also be equivalence between EBA and RNEV, an equivalence which can be
investigated now that the RNEV model is available as a GEV counterpart to
EBA. In each case cross-nested network structures with an indefinite number
of levels can be constructed to represent the models, with conditional choice
probabilities of transition between successive nodes until a single alternative

is reached.
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However, the situation is complicated and there are limits to the equivalence
that can be achieved. To keep the discussion clear, we assume that the
simplifying properties I to V in section 4.1 above apply to the aspects and
alternatives in an EBA model and consider how an RNEV model can be

constructed which might be equivalent to it.

If there are n aspects, define the ‘index set” N over the aspects, i.e. the set of

all possible combinations of aspects. Note that |N|=2", providing we allow

the set ® which contains no aspects. Define X c N to be the set of
combinations of aspects which are possessed by some alternatives. Note that
X contains more than ®, because of simplifying property I, and X is less
than N because of simplifying property V, but that X certainly contains @,

because there is no aspect that is possessed by all the alternatives (simplifying

property II).

Every subset of alternatives has a well-defined set of aspects which all
members of the set possess (this set of aspects may be ®). Every set of
aspects in X has at least one corresponding set of alternatives, because of the
definition of X, but there may be several sets of alternatives that possess a
given set of aspects. We can associate with each element of X the largest set

of alternatives that possess the relevant set of aspects — this largest set
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contains all the alternatives that possess these aspects — thus obtaining a one-
to-one correspondence between X and a subset of the index set of

alternatives.

A network can be defined connecting the elements of X. A link is defined
from element X to element y if y represents the addition of a single aspect to
X. This network is not circular because each successive link adds another
element to the set of aspects. It is connected, because every element X (other
than @) has at least one predecessor formed by removing an aspect from the
set of aspects at X and this predecessor is a member of X because all of the
alternatives possessing the set at X also possess the set at X minus one aspect.
Thus the network fits the specification for RNEV required by Daly and

Bierlaire (2005) and @ is its root.

Moreover, choice in the network represents exactly the EBA model. Each
selection of an aspect will move to a new element in X and may (or may not)
reduce the number of alternatives that are still open for consideration.
Selection of an aspect at any stage that would mean that no alternatives
possess the required set (i.e. would take us outside X)) is prohibited by the
rules of EBA. Eventually, because alternatives each possess a unique set of
aspects, we arrive at a point where only one alternative is acceptable and the

process is complete.
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It appears that there is considerable similarity between the EBA and RNEV
models in terms of their structure and because of the simple form of the
conditional choice probability at each stage in the process. It is therefore

reasonable to enquire as to the full extent of that equivalence.

Because RNEV is at each stage a GEV model, the conditional choice

probability at each stage is given by McFadden’s GEV formula:

where G is the utility function at each node and is itself given by the RNEV

formula (Daly and Bierlaire, 2005):
Hyx
G, = Z/IXZ,GZAZ’

for some positive constants A2 and u, and x4 is the constant in the

homogeneity property of the GEV model.
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To complete RNEV, for each node x in the network defined over the set X

we must define the constants p, > ¢, >0, where z is any successor of x, and
for each link xz in the network we must define the constants A, >0. With

these constants we then obtain:

0G, /0G, _ lXZG:%Z
(/U*Gx) Z/Ixz'G:%ZY

P(4x)=G,

since  is given in this case by:

*_Hy
/A

The formula for P(Z|X) is clearly the basic logit form. To achieve equivalence

with EBA, these conditional choice probabilities must be exactly proportional
to the importance of the attribute that is included in z and not in x, which

can be achieved if (and only if):

y) G% o [Tu(e,; ) (15)

Xz =z ]
iez



where the product is over all of the aspects possessed by the alternative. If
this proportionality applied, the conditional choice probabilities would then

be given by:

Hu(ai ) u(a

_ i _ u(a,)
=5 o) sule)

Z ieZ

where «a,, is the aspect possessed by z and not by X, because each successor

Z of x possesses exactly one such aspect. These conditional probabilities are

exactly what is required to give the unconditional probabilities of equation

Q).

Thus equivalence between EBA and RNEV depends on specifying G, ¢ and
A in an RNEV model to achieve the proportionality (15). For example, if we

could arrange that:

1

*r)

z

and that at each node z in the network, we had a function:
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G, =M,

iez

where X is the predecessor node of the alternative, then we would satisty the
proportionality requirement for the choice probabilities and also obtain at

each node:

T Sy
211 (ufer )} @)
Z iez ZHU ai Hx
Sulae) e

the final simplification being possible because the aspects possessed by each
z are different but each just one more than those possessed by x. Thus the

form of the function could be maintained throughout the network.

The propagation of the G functions can be proved formally by induction,
once the elementary alternatives have been defined to have a function of the
required form. However, the form specified for 4 is obviously not a constant
as is required in the RNEV specification. The issue is then whether and how

this problem can be solved.
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One approach is to view the 4’s as being defined in the base situation and not
subject to change if the weights of the aspects should change in a future
situation. Forecasting and interpretation in EBA is in any case not clearly

defined. However this approach is not entirely satisfactory.

A second approach is to consider the A’s as defining an additional utility

component at each node, along the lines of V(aij) introduced in equation (5)

above. The problem with this approach is that an additional utility
component of this type does not form part of the RNEV specification and, as
in the NL case, prevents the model from being truly utility-maximising, since
the utility of one alternative then depends on characteristics of other

alternatives.

A final approach, as applied in the simple NL case of section 5.1, is to
‘demote’ the utility component corresponding to the 4’s to the lowest level of
the choice structure and incorporate it in the utility of the elementary
alternatives. This approach exploits redundant degrees of freedom in EBA.
To implement this approach, we have to incorporate the 4 value at x in the
utility of all its successors z. The problem here is then that, because of the
potential cross-nesting, the utility of z must incorporate A values from all its

predecessors, while a different successor z' of x may be incorporating A



values from a different set of predecessors. Taking in values from different
sets of predecessors would in general then destroy the proportionality which

is required for full consistency with EBA.

Thus a valid RNEV model can be constructed that is fully consistent with an
EBA model if and only if there is no cross-nesting, i.e. when there is a unique
set of predecessors for each node — a tree model. Note that the values of the
1’s are not relevant to this discussion, as was the case in the discussion of the
simple NL case above. The similarity between alternatives represented by u
is of a different type to the similarity represented in EBA. We conclude that
complete equivalence between EBA and RNEV can be established in a fully
satisfactory way only for tree models. For cross-nested models, equivalence
can be achieved but only at the expense of unsatisfactory features in the

models, such as a failure to adhere fully to RUM.

6. SUMMARY AND CONCLUSIONS

The discussion above has demonstrated that tree models (i.e. HEBA and NL)
are formally equivalent for the three-alternative case. Equivalence exists in

the sense that the mathematical formulae for choice probability are identical



in the two models, whilst each model remains valid in respect of its own

internal conditions.  For larger tree models equivalence can also be

established.

For general cross-nested models (i.e. EBA and RNEV models), however,
equivalence can be established, but only at the cost of breaching the internal
conditions of the models. For example, the RNEV equivalent of EBA can be
specified, but this may require the utility functions of the RNEV to include
terms that breach RUM. In principle, given a data set, the significance of
these terms in influencing behaviour can be tested, so that the validity of
RNEV can be established. A failure of this test - i.e. the finding that a utility-
breaching term was significant - would indicate that EBA was more
appropriate (or that a different RNEV specification was required). In many
cases, however, identification of the most appropriate model specification for
representing a given set of observed choices may be ambiguous, i.e. both

paradigms give fits to the data which are closely comparable.

Our analysis of EBA and GEV equivalence represents a considerable advance
in the clarity with which conditions for equivalence can be given. We finish
by drawing some implications from our work, focussing on the respective
interests of microeconomics and mathematical psychology, as identified in

section 1.



In seeking to understand the cognitive process underlying individual discrete
choice, mathematical psychology has interest in the discrimination between
EBA and GEV. Tversky and Sattath (1979) devoted considerable attention to
the application of HEBA, similarly interested in discriminating between
HEBA and the Luce model. Their approach consisted of two complementary
activities, as follows. First, maximum likelihood estimation of both the HEBA
and Luce models, and their comparison via a likelihood ratio test. Second,
estimation-free comparison of the models via the trinary condition. Since
both activities rely on the probability statement, however, it is necessary to
issue qualification in the light of our own work. Hence, either activity carries
validity as a means of identifying the Luce model, but neither activity is
capable of discriminating between HEBA and NL. Moreover, our work places
significant doubt on the validity of using choice probability (or any derivative
thereof, such as log-likelihood or ‘testable’ properties including regularity,
multiplicative inequality, moderate stochastic transitivity, or the trinary and
quarternary conditions) as the basis for discriminating between EBA and
GEV. Since none of the properties are sufficient, discrimination is left to other

means, which will have to be established by further research.

In simple tree models, and more general models by approximation, the

description of EBA and GEV behaviour will lead to the same probability
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statement and hence to an equally good explanation of observed behaviour.
Not only does this mean that observed behaviour can be equally well
explained by either paradigm, but also it means that both types of behaviour
can be indistinguishably mixed in the same observations. Some people may
be choosing by elimination procedures, others may be carefully maximising
utility: they cannot be distinguished. Most interestingly, people may be using
mixed strategies, for example, reducing the choice set to reasonable
dimensions by elimination strategies, then choosing to maximise utility in the
reduced choice set. This possibility has been suggested, in a simple way

requiring strong assumptions, by Swait (2001).

Turning to microeconomics, we consider the practical need to value and
forecast. Economic valuations are typically derived from RUM as the ratio of
utility coefficients (or more correctly, the ratio of marginal utilities); this ratio
has behavioural interpretation in economics as ‘marginal rate of substitution’.
The result that EBA and GEV are substantially equivalent (in particular the
possibility that GEV could be an equivalent representation of ‘true’
underlying EBA behaviour) perhaps confuses this interpretation. In short,
where the true behaviour is EBA, do the economic concepts of marginal rate
of substitution and value remain valid? A similar point applies to forecasting
which, in RUM, typically involves the extrapolation of utility to attribute

combinations not covered by existing data. Without understanding of the
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underlying decision process, however, it would seem impossible to specify, in
any meaningful way, which parts of the models will or will not change in the

forecast scenario.

It thus becomes clear that, whether the disciplinary interest is in
microeconomics or mathematical psychology, equivalence between EBA and
GEV brings a potential for serious error in model interpretation and
application. Discrimination between EBA and GEV is essential, but recourse

to the probability statement offers little insight in this regard.
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