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Abstract. We provide a novel approach to synthesize controllers for
nonlinear continuous dynamical systems with control against safety prop-
erties. The controllers are based on neural networks (NNs). To certify
the safety property we utilize barrier functions, which are represented by
NNs as well. We train the controller-NN and barrier-NN simultaneously,
achieving a verification-in-the-loop synthesis. We provide a prototype
tool nncontroller with a number of case studies. The experiment results
confirm the feasibility and efficacy of our approach.

Keywords: Continuous dynamical systems; Controller synthesis; Neural net-
works; Safety verification; Barrier certificates

1 Introduction

Controller design and synthesis is one of the most fundamental problems in con-
trol theory. In recent years, especially with the boom of deep learning, there
has been considerable research activities in the use of neural networks (NNs) for
control of nonlinear systems [24,10]. NNs feature the versatile representational
ability of nonlinear maps and fast computation, making them an ideal candidate
for sophisticated control tasks [27]. Typical examples include self-driving cars,
drones, and smart cities. It is noteworthy that many of these applications are
safety-critical systems, where safety refers to, in a basic form, that the system
cannot reach a dangerous or unwanted state. For control systems in a multitude
of Cyber-Physical-System domains, designing safe controllers which can guar-
antee safety behaviors of the controlled systems is of paramount importance
[32,3,33,12,38,5,6,43,17,39].

Typically, when a controller is given, formal verification is required to certify
its safety. Our previous work [44] has dealt with the verification of continuous
dynamical systems by the aid of neural networks. In a nutshell, we follow a
deductive verification methodology therein by synthesizing a barrier function,
the existence of which suffices to show the safety of the controlled dynamical
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system. The crux was to use neural networks to represent the barrier functions,
spurred by the well-known universal approximation theorem [22] which assures
the expressibility of NNs.

It is imperative to realize that verification or certification of an existing con-
troller does not lend itself to effective and efficient construction of controllers,
which is the main focus of the current work. Following a correctness-by-design
methodology, we aim to synthesize controllers which can guarantee that the con-
trolled system is safe. This question is considerably more challenging and perhaps
more interesting from a system engineering perspective. To this end we adopt a
data-driven approach for the design of controllers which are to be represented
as an NN. A key issue of controller synthesis is to provide a formal guarantee
of the quality for the obtained controller, of which safety is arguably the most
fundamental. A common practice is to first come up with a controller and then
to verify it against desired properties. An interesting innovation of our work
is, however, to integrate the synthesis and verification in a unified, data-driven
framework, which is enabled by our earlier work by using NNs as a certifica-
tion mechanism. At a high level, our approach for the controller synthesis will
produce two neural networks simultaneously, i.e., one is used to represent the
controller (henceforth referred to as controller-NN), and the other is used to rep-
resent the barrier function (henceforth referred to as barrier-NN). The synergy
of the two NNs, supported by an additional verification procedure to make sure
the learned barrier-NN is indeed a barrier certificate, provides the desired safety
guarantee for the synthesized controller.

Our method follows a data-driven framework in the sense that both NNs
are trained from datasets. For that purpose, we generate training sets and pro-
pose specifically designed loss functions which are the key towards application of
standard learning algorithms for NNs. In terms of the learned NN controllers, we
find that they usually respect safety constraints, but may exhibit poor perfor-
mance in terms of, e.g., stability. To further improve the synthesized controllers,
we propose a number of approaches such as imposing a larger safety region,
stability-aware loss functions, and bounded control inputs (via the Hardtanh
activation function).

In general, the advantages of our approach are threefold: (1) the approach
is data-driven, requiring considerably less control theory expertise; (2) the ap-
proach can support non-linear control systems and safety properties, owing to
the representation power of neural networks; and (3) the approach can achieve
verification-in-the-loop synthesis, owing to the co-synthesis of controller and bar-
rier functions, which can be seamlessly integrated to provide a correctness-by-
design controller as well as its certification.

The main contributions of the paper are summarized as follows:

– We put forward a learning-based framework to synthesize controllers as well
as the associated safety certification. This is largely a data-driven approach,
with little prior knowledge required, and enjoys great flexibility to effectively
handle nonlinear (beyond polynomial) dynamics of ODEs.
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– We instantiate the framework by using new class of activation functions.
Moreover, we demonstrate how to generate training set, and to construct loss
functions of neural networks. We also provide practical methods to formally
verify the learnt barrier certificates represented as neural networks.

– We carry out proof-of-concept case studies to showcase the efficacy of the
approach.

1.1 Related Work

Our work on learning and verifying NN controllers with barrier certificates is
closely related to two categories of research, i.e. safety critical control by machine
learning and formal verification of neural networks. Note that the discussions
below are necessarily non-exhaustive as a reasonably detailed discussion requires
an independent survey.

Safety Critical Control by Machine Learning. Research work in this category has
been emerging in the past years. They differ in: (1) the overall learning frame-
work, e.g. reinforcement learning (RL) or supervised learning; (2) the component
to be learned (especially by NN), e.g., the system model, the feedback control
policy, or the safety certificate; (3) the kind of safety certificate, e.g., control
Lyapunov function (CLF) or control barrier function (CBF) [2]. A verification-
in-the-loop RL algorithm was proposed in [8] to learn safe NN controllers for
known system dynamics using CBFs; an end-to-end safe RL architecture was
developed by combining model-free RL control, model-based CBF control, and
model learning in [5]; CLFs and CBFs are integrated into the episodic learn-
ing framework and RL framework with an emphasis on model uncertainties in
[37,38,6]; CBFs are integrated with imitation learning to train safe NN con-
trollers in [43]. For all the above work, CLFs or CBFs are assumed to be given,
at least in a parametric form. For CLFs or CBFs synthesis, a demonstrator-
learner-verifier framework was proposed in [31] to learn polynomial CLFs for
polynomial nonlinear dynamical systems; a special type of neural network was
designed in [33] as candidates for learning Lyapunov functions; a supervised
learning approach was proposed in [4] to learn neural network Lyapunov func-
tions and linear control policies; data-driven model predictive control (MPC)
exploiting neural Lyapunov function and neural network dynamics model was
proposed in [12,26]. For multi-agent systems, barrier function has recently been
applied for safe policy synthesis on POMDP models [1]. The computer science
community has dealt with the issue of safe controller learning in different ways
from above: for example, a logical-proof based approach was proposed in [14]
towards safe RL; a synthesis framework capable of synthesizing deterministic
programs from neural network policies was proposed in [45] and so formal ver-
ification techniques for traditional software systems can be applied. Compared
with these works, our approach has the following features which make it unique:

– controller and safety certificate are both represented and learned by NNs of
general structure; no prior knowledge or initial guess is required;
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– training data generation is based on state space sampling, and therefore
trajectory simulation is not needed;

– although the method is based on known dynamics, we believe it is possible to
extend it with dynamics learning by introducing the third NN representing
system dynamics [25].

Formal Verification of Neural Networks. This has attracted considerable re-
search efforts in recent years, and the general problem is NP-hard [20]. A large
body of research focuses on the robustness issue of neural networks. In par-
ticular, given an input subject to (adversarial) perturbations, one intends to
determine whether the output of the neural network (e.g., the classification
result) is invariant to these perturbations. Essentially, this is to estimate the
output range of a given neural network on a compact set. There are now a
wide range of methods including constraint-solving based approaches [20], opti-
mization based approaches [13,41,42], abstract interpretation based approaches
[29,23], etc. Furthermore, recently work has been done for verification of control
systems with neural network components [11,18,36,9,39]. The main technique is
reachability analysis of the closed-loop system, either by finite-state abstraction
[36], or by interval-(or other abstract domain)-based reachable set approximation
[11,18,39]. Usually reachable set computation can only verify safety up to a finite
time horizon, and the approximation error of reachable set may explode. Con-
trarily, we adopt the deductive approach based on barrier certificate, following
and improving the line of work in [40].

1.2 Outline

The rest of this paper is organized as follows: some preliminary knowledge is
provided in Section 2 for self-containedness; the main steps of our approach
is presented in Section 3 with a running example for demonstration; various
improvements of the synthesized controllers are discussed in Section 4; imple-
mentation and experiment details are given in Section 5; the paper is concluded
by Section 6. We note that a preliminary version is accepted by SETTA 2020 as
a short paper under the same title.

2 Preliminaries

Throughout this paper, R denotes the set of real numbers. For any natural
number n, let [n] = {1, · · · , n}.

2.1 Constrained Continuous Dynamical System

A continuous dynamical system is modeled by a system of first-order ordinary
differential equations (ODEs) ẋ = f(x), where

– x = (x1, x2, . . . , xn)
T ∈ R

n is a column vector, ẋ denotes the derivative of x
with respect to the time variable t, and
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– f(x) : Ω → R
n is a vector field f(x) = (f1(x), · · · , fn(x))

T defined on an
open subset Ω ⊆ R

n.

We assume that f satisfies the local Lipschitz condition, which ensures that, given
x = x0, there exists a time T > 0 and a unique time trajectory x(t) : [0, T ) → R

n

such that x(0) = x0. In the sequel, the trajectory is denoted by x(t,x0).
A constrained continuous dynamical systems (CCDS) is represented by Γ =

(f , XD, XI , XU ), where

– f : Ω → R
n is the vector field,

– XD ⊆ Ω is an evolution constraint (or system domain),
– XI ⊆ XD, and
– XU ⊆ XD.

For CCDSs, the following problem is widely investigated in safety critical appli-
cations.

Definition 1 (Safety Verification). A CCDS Γ = (f , XD, XI , XU ) is safe if
∀x0 ∈ XI and ∀t ≥ 0,x(t,x0) ∈ XD implies x(t,x0) /∈ XU , i.e., the system
never reaches XU from XI .

2.2 Controlled CCDS

In this paper, we consider controlled CCDS Γ = (f , XD, XI , XU ) with continuous
dynamics defined by {

ẋ = f(x,u)
u = g(x)

, (1)

where x ∈ R
n, u ∈ U ⊆ R

m are the feedback control inputs, and f : Rn+m → R
n

and g : Rn → R
m are locally Lipschitz continuous. The problem we considered

in this paper is defined as follows.

Definition 2 (Safe Controller Synthesis). Given a controlled CCDS Γ =
(f , XD, XI , XU ) with f defined by (1), design a locally continuous feedback control
law g such that the closed-loop system Γ with f = f(x,g(x)) is safe, i.e. the
system never reaches XU from XI under control u = g(x).

2.3 Barrier Certificate

Given a system Γ , a barrier certificate is a real-valued function B(x) over the
states of the system satisfying the condition that B(x) ≤ 0 for any reachable
state x and B(x) > 0 for any state in the unsafe set XU . If such a function
B(x) exists, one can easily deduce that the system can not reach a state in the
unsafe set from the initial set [28,30]. In this paper, we will certify the safety of
a synthesized controller by generating barrier certificates.

There are several different formulations of barrier certificates without explicit
reference to the solutions of the ODEs [28,21,7,35]. we will adopt what are called
strict barrier certificate [34] conditions.
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Theorem 1 (Strict barrier certificate). Given a system Γ = (f , XD, XI , XU ),
if there exists a continuously differentiable function B : XD → R s.t.

1. B(x) ≤ 0 for ∀x ∈ XI

2. B(x) > 0 for ∀x ∈ XU

3. LfB(x) < 0 for all x ∈ XD s.t. B(x) = 0,

then the system Γ is safe, and such B is a barrier certificate.

Note that in the above third condition, LfB is the Lie derivative of B w.r.t. f ,
that is, the inner product of f and the gradient of B:

LfB(x) = (∇B) · f(x) =
n∑

i=1

(
∂B

∂xi

(x) · fi(x)

)
. (2)

2.4 Neural Networks

In this paper, both the synthesized control law g and the barrier certificate B
are represented by (feed-forward artificial) neural networks (NNs). We introduce
some basic notions here. A typical NN consists of a number of interconnected
neurons which are organized in a layered structure. Each neuron is a single
processing element that responds to the weighted inputs received from other
neurons (cf. Fig. 1.)

Fig. 1. The structure of a multilayer feed-forward artificial neural network

In general, an NN represents a function N (x) on the input x and can be
represented as a composition of its layers. We normally reserve 0 and L for the
indices of the input and the output layer respectively, and all of the other layers
in between are hidden layers. In this paper, we use superscripts to index layer-

specific variables. In particular, the layer l comprises neurons n
(l)
i for i ∈ [d(l)],

where d(l) is the dimension of the layer l. Neuron n
(l−1)
j of the layer l − 1 is

connected with neuron n
(l)
i of layer l by a directed edge with weight w

(l)
ij ∈

R. Each neuron n
(l)
i of layer l ∈ [L] is associated with a bias b

(l)
i ∈ R and

an activation function a
(l)
i : R → R. Usually the neurons in the same layer



Learning Safe Neural Network Controllers with Barrier Certificates 7

has identical activation functions, denoted by a(l). Commonly used activation
functions include ReLU (rectified linear unit, i.e., max(0, x) for x ∈ R), sigmoid,
hyperbolic tangent, etc.

Denote the input vector to the NN by x ∈ R
d(0)

. Let the output vector of
the l-th layer be x(l). Then x(0) = x. We introduce the vector variable z(l) to
denote the input vector to the l-th layer for l ∈ [L]. Thus the forward propagation
equations of an NN can be defined as





x(0) = x
z(l) = W(l) · x(l−1) + b(l) for l ∈ [L]
x(l) = a(l)(z(l)) for l ∈ [L]
y = N (x) = x(L)

, (3)

whereW(l) is a matrix of dimension d(l)×d(l−1), b(l) is a d(l)-dimensional column
vector, and a(l) is taken as an element-wise function for a vector input.

Training of NN is usually through backward propagation, during which the
parameters W’s and b’s are learned through an optimization algorithm (e.g.,
stochastic gradient descent, SGD for short) applied on the training set [15].

3 Methodology

The framework of our safe controller learning approach is demonstrated in Fig. 2.
Given a controlled CCDS Γ = (f , XD, XI , XU ), the basic idea of the proposed

Fig. 2. The framework of safe neural network controller synthesis

approach is to represent the controller function g as well as the safety certificate
function B by two NNs, i.e. Nc and Nb respectively. Then we formulate the
barrier certificate conditions as per Theorem 1 w.r.t. Nb and the closed-loop
dynamics f(x,Nc(x)) into a loss function, and then train the two NNs together
on a generated training data set until the loss is decreased to 0. The result-
ing two NNs are the controller and barrier certificate candidates. To overcome
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the limitations of data-driven approach, formal verification (SMT solver in this
paper) is performed on the synthesized candidates to show that the barrier cer-
tificate conditions are indeed satisfied. The blue (solid), red (dashed), and green
(dotted) arrows in Fig. 2 shows the information flow of forward propagation,
backward propagation, and formal verification, respectively. Next, before giving
more detailed steps of our approach, we first introduce a running example.

Example 1 (Dubins’ Car [40,8]). The control objective is to steer a car with
constant velocity 1 to track a path, here the X-axis in the postive direction.
The states of the car are the x, y position and the driving direction θ, which
can be transformed to the distance error de and angle error θe between the
current position and the target path (see Fig. 3). The controlled CCDS Γ =
(f , XD, XI , XU ) is:

f :

[
ḋe
θ̇e

]
=

[
sin(θe)
−u

]
, where u is the scalar control input

– XD: {(de, θe) ∈ R
2| − 6 ≤ de ≤ 6,−7π/10 ≤ θe ≤ 7π/10};

– XI : {(de, θe) ∈ R
2| − 1 ≤ de ≤ 1,−π/16 ≤ θe ≤ π/16};

– XU : the complement of {(de, θe) ∈ R
2| − 5 ≤ de ≤ 5,−π/2 ≤ θe ≤ π/2} in

XD.

Figure 4 shows 50 simulated trajectories on the x-y plane from random initial
states in XI using our learned NN controller u. The two red horizontal lines
are the safety upper and lower bounds (±5) for y (the same bounds as de). In
the rest of this paper, we will use Example 1 to demonstrate our safe controller
synthesis approach.

3.1 The Structure of Nc and Nb

Fig. 3. States of Dubins’ car:
de = y, θe =

π

2
− θ

Fig. 4. Simulated car trajectories with learned NN
controller

We first fix the structure of Nc and Nb as follows, assuming that in the
controlled CCDS Γ , x and u are of n and m dimension respectively, e.g. n =
2,m = 1 for Example 1.
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– Input layer has n neurons for both Nc and Nb;
– Output layer has m neurons for Nc and one single neuron for Nb;
– Hidden layer: there is no restriction on the number of hidden layers or the

number of neurons in each hidden layer; for Example 1, the structures are
fixed as: Nc has one hidden layer with 5 neurons, and Nb has one hidden
layer with 10 neurons;

– Activation function: considering the inherent requirement of local Lips-
chitz continuity for Nc and the inherent requirement of differentiability for
Nb, and considering the simplicity of formal verification, we adopt ReLU,
i.e. a(x) = max(0, x), and Bent-ReLU [44], i.e.,

a(x) = 0.5 · x+
√
0.25 · x2 + 0.0001 (4)

as activation functions for hidden layers of Nc and Nb respectively (the
Lipschitz continuity of ReLU is by [19]); the activation function of the output
layer is the identity map for both Nc and Nb.

3.2 Training Data Generation

In our training algorithm, training data are generated by sampling points from
the domain XD, initial set XI , and unsafe region XU of the considered system
Γ . No simulation of the continuous dynamics is needed. The simplest sampling
method is to grid the super-rectangles bounding XD, XI , XU with a fixed mesh
size, and then filter out those points not satisfying the constraints of XD, XI ,
XU . For example, we generate a mesh with 28×28 points fromXD for Example 1.
The obtained three finite data sets are denoted by SD, SI , and SU .

3.3 Loss Function Encoding

Given SI , SU , and SD, the loss function for training Nc and Nb can be expressed
as

L(SD, SI , SU ) = c1 ·
∑

x∈SI

L1(x) + c2 ·
∑

x∈SU

L2(x) + c3 ·
∑

x∈SD

L3(x) (5)

with

L1(x) = ReLU(Nb(x) + ε1) for x ∈ SI ,
L2(x) = ReLU(−Nb(x) + ε2) for x ∈ SU ,
L3(x) = ReLU

(
LfNb(x) + ε3

)
for x ∈ {x ∈ SD : |Nb(x)| ≤ ε4}

(6)

denoting the sub-loss functions encoding the three conditions of Theorem 1,
and c1, c2, c3 the three positive constant weight coefficients for the sub-losses
L1, L2, L3 respectively. The basic idea is to impose a positive (resp., zero) penalty
to those sampled points that violate (resp., satisfy) barrier certificate conditions.
The ε1, ε2, ε3 in (6) are three small non-negative tolerances, the role of which is
to get the non-sampled points around the sampled data to have zero loss as well.
The ε4 in (6) is a small positive constant characterizing a narrow belt region
around the zero-level set of Nb, since we cannot sample data on the level set
exactly. Note that in the above expression L3, f is f(x,Nc(x)).
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3.4 The Training Process

We adopt a modified SGD optimization technique for training the two NNs
Nc and Nb. That is, we partition the training data sets SD, SI , SU into mini-
batches and shuffle the list of batches to gain some randomness effect, rather
than shuffling the whole training data set. For each mini-batch of data, the loss
is calculated according to (5) and the the weights and biases of the two NNs
are updated by a gradient descent step through backward propagation. To start
the training, we must first specify the ε1 to ε4 in the loss function, as well as
hyper-parameters such as number of restarts nrestart, number of epoches nepoch,
number of mini-batches nbatch, and learning rate lr, etc. For Example 1, we set
nrestart = 5, nepoch = 100, nbatch = 4096 and lr = 0.1. The choices of ε1 to ε4
will be presented in the following subsection. The training process terminates
when the loss is decreased to 0 on all mini-batches or the number of restarts
exceeds nrestart.

3.5 Formal Verification

The rigorousness of the NNs resulted from 0 training loss is not guaranteed since
our approach is data-driven, that is, the three conditions in Theorem 1 are not
necessarily satisfied by Nc and Nb. Therefore we resort to formal verification to
guarantee the correctness our synthesized controllers. To preform the verifica-
tion, we replace f and B in the conditions of Theorem 1 by f(x,Nc(x)) and Nb,
and try to show that the negation of the conjunction of the three conditions, i.e.

∃x.x ∈ XI ∧Nb(x) > 0
∨ ∃x.x ∈ XU ∧Nb(x) ≤ 0
∨ ∃x.x ∈ XD ∧Nb(x) = 0 ∧ Lf(x,Nc(x))Nb(x) ≥ 0

(7)

is UNSATISFIABLE. Due to the high degree of nonlinearity in f and Nb of (7),
its satisfiability is resolved by the interval-propagation based nonlinear SMT
solver iSAT3.4 To speed up the verification process, we compute piece-wise lin-
ear approximations (with interval error bounds) of Bent-ReLU function and its
derivative, and replace their occurrences in Nb and LfNb by the linear approx-
imations. As a result, there are three issues that may affect the efficiency and
effectiveness of formal verification:

– The tolerances chosen for loss function encoding in (5) and (6);
– The piece-wise linear approximation error of Bent-ReLU function and its

derivative;
– The interval splitting width for iSAT3.

For the third issue, we usually set the minimal splitting width option --msw to
0.001 for iSAT3. The first and second issues are addressed in the following two
paragraphs.

4 https://projects.informatik.uni-freiburg.de/projects/isat3/
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Fig. 5. Learned and verified NN controller and barrier certificate for Example 1: the
inner (green) and outer (red) shaded areas are the initial and unsafe regions, black
arrows in the white area are the closed-loop vector fields f(x,Nc(x)), and the blue
curve surrounding the inner shaded box is the zero-level set of Nb

Pre-training and Fine-tuning. The success of synthesis and formal verification
heavily relies on the choices of the four constants ε1 to ε4 in (5) and (6). Gen-
erally, small tolerances are preferred for faster training, while larger tolerances
are preferred for formal verification to compensate for the errors caused by ac-
tivation function linearization and interval arithmetic computation. In practice,
we adopt a pre-training and fine-tuning combination strategy. That is, we start
with small positive ε4 and zero ε1 to ε3 to perform the initial training. If the
pre-trained NNs failed formal verification, they are iteratively refined by grad-
ually increasing the tolerances. For Example 1, the first controller and barrier
certificate are synthesized with ε4 = 0.01 and ε1 = ε2 = ε3 = 0, for which for-
mal verification fails, while the fine-tuned controller and barrier certificate are
successfully verified when ε3 was increased to 0.01 (see Fig. 5).

(a) Negative LfB with large |LfB| (b) Negative LfB

‖∇B‖·‖f‖
with

large |LfB|
‖∇B‖·‖f‖

Fig. 6. The sign of normalized Lie derivative is robust to Bent-ReLU linearization
errors
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Adding Normalized Lie Derivative in Loss Encoding. Larger tolerances in the
loss function (5) and (6) are not always useful for formal verification. To see
this, consider checking unsatisfiability of the third condition of (7). Noting that
LfB = ∇B · f = ‖∇B‖‖f‖ cos θ∇B,f , where ‖ · ‖ denotes the Euclidean norm and
θ∇B,f denotes the angle between∇B and f , Fig. 6(a) illustrates a situation that a
point x on the zero-level set of a barrier candidate B has negative Lie derivative,
since θ∇B,f is slightly larger than π

2 at x. Moreover, it can be concluded that
LfB(x) < −ε3 for very large ε3 since ‖f‖ is large. However, formal verification of
the negative Lie derivative condition would be very hard at x, where ∇B has a
large approximation error due to linearization. For instance, if the approximated
∇B(x) ranges from ∇̃B to ∇B, then formal verification becomes impossible
since θ∇B,f <

π
2 which makes the Lie derivative positive. The reason for such a

phenomenon is that negative LfB does not necessarily force the span angle of
∇B and f to be large, so the sign of LfB is not robust to approximation noises
of ∇B. The problem can be resolved by introducing additional sub-loss function
specifying normalized Lie derivative into the loss function (5) as follows:

L4(x) = ReLU
( LfNb(x)
‖∇Nb‖·‖f‖

+ ε5
)
, for x ∈ {x ∈ SD : |Nb(x)| ≤ ε4} (8)

where ε4 are defined in (6) and ε5 is a non-negative constant. By (8), if a barrier
certificate is synthesized with zero L4 value and enough large ε5, then the angle
between∇Nb and f would be large enough to tolerant large approximation errors
of gradient (cf. Fig. 6(b)).

Fig. 7. Simulations of Dubins’ car from (−1,−0.19) with different NN controllers for
comparison of stability performance

4 Improvement of the Learned Controllers

The controller synthesized and verified in the last section is guaranteed to be
safe. However, it may perform poorly regarding properties such as stability. As an
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illustration, we simulate the Dubins’ car system from initial state de = −1, θe =
−0.19 using the NN controller corresponding to Fig. 5. The changes of de and
θe within 60 time units are shown in Fig. 7 by ∗-marked dashed (de) or solid
(θe) lines. It is obvious that the car has a large distance error although it is still
within safety bounds (±5). We therefore propose a series of ways to improve the
performance of synthesized controllers in this section.

4.1 Larger Safety Margin

The first improvement is to gradually increase the safety margin specified by the
ε2 constant in the loss function (5) and (6) by iterative fine-tuning. For example,
when ε2 is increased to 0.8, a NN controller Nc and the corresponding barrier
Nb are synthesized and shown in Fig. 8. The simulation performance of Nc is
shown in Fig. 7 by ◦-marked dashed (de) or solid (θe) lines. It is obvious that
distance error is reduced compared to the controller of Fig. 5.

Fig. 8. NN controller learned and verified for Example 1 with larger safety margin:
ε1 = 0.02, ε2 = 0.8, ε3 = 0.01, ε4 = 0.05; the inner (green) and outer (red) shaded
areas are the initial and unsafe regions, black arrows in the white area are the closed-
loop vector fields f(x,Nc(x)), and the blue curve surrounding the inner shaded box is
the zero-level set of Nb

4.2 Asymptotic Stability

Figure 7 shows that using the NN controller with larger safety margin, the
distance error of the Dubins’ car stabilizes at a value larger than 0.5, which is
not desirable. To further reduce the distance error in the long time, we introduce
additional loss terms into the loss function to express asymptotic-stability-like
properties. Suppose that xo is an expected equilibrium point of the system, that
is, f(xo,Nc(xo)) = 0. For example, the system in Example 1 is expected to
stabilize with 0 distance and angle errors and so xo is (0, 0). Then we define the
sub-loss functions for asymptotic stability as:

L5(x) = ReLU
(
− ‖f(x,Nc(x))‖+ ε6

)
for x ∈ {x ∈ SD : ‖x− xo‖ > ε7} ,

L6(x) = ReLU
(
‖f(x,Nc(x))‖ − ε8

)
for x = xo

(9)
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where ε6, ε7, ε8 are three small non-negative constants. The basic idea of L5, L6

is to impose such constraints that the closed-loop vector field f(x,Nc(x)) has
negligible norm at the asymptotically stable point xo, and strictly positive norm
outside a neighborhood of xo with radius ε7. By choosing ε7 = 0.1, ε6 = 0.05,
ε8 = 0.001 we obtain a fine-tuned Nc whose simulation performance is shown
in Fig. 7 by �-marked dashed (de) or solid (θe) lines, which demonstrate good
asymptotic stability property. We also fix ε8 = 0.001, ε6 = 0.05 and compare
the performances of Nc obtained from different ε7 values. The simulation results
are shown in Fig. 9. It can be roughly concluded that decreasing ε7 will have
an effect of increasing the overshoot and decreasing the settling time of the
simulated traces. An intuitive explanation of such effects is that by L5, shrinking
ε7 increases ‖f‖ near xo, and thus trajectories approaches xo quickly but may
overshoot.

Fig. 9. Comparison of NN controllers learned using L5 and L6 losses with ε6 = 0.05,
ε8 = 0.001 for Example 1: all simulations are from initial state (−1,−0.19); dashed
and solid lines represent de and θe traces respectively; simulations corresponding to
controllers learned with ε7 = 0.3, 0.1, 0.05 are marked by ∗, ◦, and � respectively

Comparison with LQR Controllers. To further evaluate the performance of syn-
thesized NN controllers, we linearize the Dubins’ car system near xo = (0, 0)
and then compute the classic LQR (linear quadratic regulator [16]) controllers
for the linearized system. Preliminary experiment shows that for fixed Q and R
matrices in the LQR controller computation, by tuning the values of ε6 and ε7,
we can obtain NN controllers with comparable performances to LQR controllers
(cf. Fig. 10).

Remark 1. NNs controllers are in principle much more expressive than linear
controllers such as LQR, and so it is interesting to investigate better ways of
loss function encoding and controller tuning to gain superior NN controllers to
linear controllers (e.g. LQR) in future.
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Fig. 10. Simulation of NN and LQR controllers with initial state (−1,−0.19) for Ex-
ample 1: the NN controller is synthesized with ε6 = ε7 = 0.05, ε8 = 0.001, and the LQR
controller is synthesized with Q the 2-dimensional identity matrix and R = 1; dashed
and solid lines represent de and θe traces respectively, and traces simulated with LQR
and NN controllers are marked by ∗ and ◦ respectively

4.3 Bounded Control Inputs

In practice, the control input u to system (1) cannot take arbitrary values but
are bounded within a compact set U . Therefore it is necessary to consider how to
synthesize bounded NN controllers for practical applications. Actually this can
be achieved simply by replacing the identity activation function in the output
layer ofNc (cf. Section 3.1) by any activation with bounded range, say hyperbolic
tangent function. For ease of formal verification, we adopt a piece-wise linear
activation Hardtanh for the output layer of Nc, that is,

a(L)(x) = c ·max
(
− 1,min(1, x)

)

with c a positive constant, which restricts the output of Nc to be within [−c, c]
for each dimension. For Example 1, by choosing c = 3 we learned a bounded NN
controller as shown in Fig. 11(b). In our experiment, the Hardtanh activation
can either be applied in the pre-training or fine-tuning process.

5 Implementation and Experiments

Given a controlled CCDS Γ = (f , XD, XI , XU ) and generated training data set
SD, SI , SU , in the most general form, the loss function we adopted for training
safe NN controllers is:

L(SD, SI , SU ) = c1
∑

x∈SI

L1(x)+c2
∑

x∈SU

L2(x)+
∑

x∈SD

(
c3L3(x)+c4L4(x)+c5L5(x)

)
+c6L6(xo)

(10)
where xo is the equilibrium point, L1, L2, L3, L4, L5, L6 are defined in (6), (8) and
(9), c1, c2, c3 are defined in (5), and c4, c5, c6 are non-negative constant sub-loss
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(a) Unbounded NN controller (b) Bounded NN controller

Fig. 11. Plotting of surfaces of unbound or bounded NN controllers for Example 1 over
XD

weights. Thus there are totally 6 sub-loss weights denoted by c = (c1, c2, . . . , c6)
for short; besides, there are 8 tolerances in (10) denoted by ε = (ε1, ε2, . . . , ε8)
for short. Our implementation and experiments are conducted based on (10) and
related notations.

5.1 The Training Algorithm

The main algorithm for training a safe NN controller is presented in Algorithm 1,
which can be explained as follows:

Algorithm 1 Safe NN-Controller Training Algorithm

Input: Γ = (f , XD, XI , XU ), nrestart, nepoch, nbatch, lr, c, εεε;
Output: Nc, Nb;
1: Nc, Nb = nn construct(Γ );
2: data gen(Γ );
3: for i = 1 to nrestart do
4: initialize(Nc, Nb);
5: for j = 1 to nepoch do
6: Lepoch = 0;
7: for k = 1 to nbatch do
8: Lepoch += compute batch loss(c, εεε);
9: update(Nc, Nb, lr);
10: end for
11: if decide success(Lepoch) then
12: return Nc, Nb;
13: end if
14: end for
15: end for

– nrestart, nepoch, nbatch and lr are hyper-parameters for training (cf. Section 3.4);
in all our case studies, nrestart and nbatch are fixed at 5 and 4096 respectively;
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– nn construct() in Line 1 is to construct the structure of Nc and Nb (cf.
Section 3.1); in all our case studies, Nc has one hidden layer with 5 neurons,
and Nb has one hidden layer with 10 neurons;

– data gen() in Line 2 is to generate batches of training data (cf. Section 3.2);
– initialize() in Line 4 is to initialize weights and biases of Nc and Nb by

Gaussian distribution;
– compute batch loss() in Line 8 is to compute the loss value on each batch of

data using the input c, εεε
(
cf. Section 3.3 and (10)

)
;

– update() in Line 9 is to update Nc and Nb using gradient descent with step-
size lr;

– decide success() in Line 11 is to decide the termination condition, which
involves checking whether the epoch loss Lepoch reaches 0.

We have implemented a prototype tool nncontroller5 based on the Pytorch6

platform. Given a problem description and a set of user-specified parameters
(cf. Algorithm 1), nncontroller automatically learns a safe NN controller with a
NN barrier certificate, and generate script files as the input to iSAT3 for formal
verification. We have applied nncontroller to a number of cases in the literature
[40,8,45]. All experiments are performed on a laptop workstation running Ubuntu
18.04 with Intel i7-8550u CPU and 32GB memory. The details of cases studies
are presented in the following sub-section.

5.2 Experiment Results

In addition to the running example, we have synthesized and verified NN con-
trollers using nncontroller for the following cases.

Example 2 (Inverted Pendulum [45]). The controlled CCDS Γ = (f , XD, XI , XU )
is:

f :

[
θ̇
ω̇

]
=

[
ω

g
l
(θ − θ3

6 ) + 1
ml2

u

]
,

where m = 1 and l = 1 denote the pendulum mass and length respectively,
g = 9.8 is the gravitational acceleration, u is the scalar control input maintaining
the pendulum upright, and

– XD: {θ, ω) ∈ R
2| − π/2 ≤ θ ≤ π/2, −π/2 ≤ ω ≤ π/2};

– XI : {θ, ω) ∈ R
2| − π/9 ≤ θ ≤ π/9, −π/9 ≤ ω ≤ π/9};

– XU : the complement of {θ, ω) ∈ R
2| − π/6 ≤ θ ≤ π/6, −π/6 ≤ ω ≤ π/6} in

XD.

Example 3 (Duffing Oscillator [45]). The controlled CCDS Γ = (f , XD, XI , XU )
is:

f :

[
ẋ
ẏ

]
=

[
y

−0.6y − x− x3 + u

]
,

where u is the scalar control input that regulates the system’s trajectories to
(0, 0), and

5 Publically available at: https://github.com/zhaohj2017/FAoC-tool
6 https://pytorch.org/
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(a) The bicycle model (b) The academic 3D
model

Fig. 12. Learned and verified NN controllers and barriers for Example 4 and 5: for
both cases, the innermost cube (green) represents the initial set, the outermost cube
(pink) represents the system domain, and the space between the outermost and the
middle cube (grey) is the unsafe region; the irregular surface (yellow) surrounding
the innermost cube is the zero-level set of synthesized NN barrier; the curves (blue)
approaching the origin are simulated system trajectories

– XD: {x, y) ∈ R
2| − 6 ≤ x ≤ 6, −6 ≤ y ≤ 6};

– XI : {x, y) ∈ R
2| − 2.5 ≤ x ≤ 2.5, −2 ≤ y ≤ 2};

– XU : the complement of {x, y) ∈ R
2| − 5 ≤ x ≤ 5, −5 ≤ y ≤ 5} in XD.

Example 4 (Bicycle Steering [8]). The control objective is to balance a bicycle.
The states of the bicycle are (x1, x2, x3) which denote the tilt angle, the angular
velocity of tilt, and the handle bar angle with body respectively. The controlled
CCDS Γ = (f , XD, XI , XU ) is:

f :



ẋ1

ẋ2

ẋ3


 =




x2
ml
J
(g sinx1 +

v2

b
cosx1 tanx3)

0


+




0
amlv
Jb

· cos x1

cos2x3

1


u ,

where u is the scalar control input, m = 20 is the mass, l = 1 is the height,

b = 1 is the wheel base, J = mb2

3 is the moment of inertia, v = 10 is the velocity,
g = 10 is the acceleration of gravity, a = 0.5, and

– XD: {(x1, x2, x3) ∈ R
3|−2.2 ≤ x1 ≤ 2.2,−2.2 ≤ x2 ≤ 2.2,−2.2 ≤ x3 ≤ 2.2};

– XI : {(x1, x2, x3) ∈ R
3| − 0.2 ≤ x1 ≤ 0.2,−0.2 ≤ x2 ≤ 0.2,−0.2 ≤ x3 ≤ 0.2};

– XU : the complement of {(x1, x2, x3) ∈ R
3| − 2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2,−2 ≤

x3 ≤ 2} in XD.

By introducing ũ such that u = ũ cos2x3 − 20 cosx3 sinx3, the original f is
transformed equivalently into

f̃ :



ẋ1

ẋ2

ẋ3


 =




x2

30 sinx1 + 15ũ cosx1

ũ cos2x3 − 20 cosx3 sinx3


 .
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A NN controller representing ũ was learned and verified for the transformed
system (f̃ , XD, XI , XU ) (cf. Fig. 12(a)).

Example 5 (Academic 3D [8]). The controlled CCDS Γ = (f , XD, XI , XU ) is:

f :



ẋ1

ẋ2

ẋ3


 =



x3 + 8x2

−x2 + x3

−x3 − x2
1


+



0
0
1


u , where u is the scalar control input

– XD: {(x1, x2, x3) ∈ R
3|−2.2 ≤ x1 ≤ 2.2,−2.2 ≤ x2 ≤ 2.2,−2.2 ≤ x3 ≤ 2.2};

– XI : {(x1, x2, x3) ∈ R
3| − 0.2 ≤ x1 ≤ 0.2,−0.2 ≤ x2 ≤ 0.2,−0.2 ≤ x3 ≤ 0.2};

– XU : the complement of {(x1, x2, x3) ∈ R
3| − 2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2,−2 ≤

x3 ≤ 2} in XD.

A NN controller was successfully learned and verified for Γ (cf. Fig. 12(b)).

Table 1. Key parameters for pre-training and fine-tuning by nncontroller (cf. Algo-
rithm 1 and Remark 2)

E.g. ne lr c εεε cv εεεv

1 100 0.1 (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.01, ·, ·, ·, ·) (1, 1, 1, 0, 0, 0) (0, 0, 0.01, 0.01, ·, ·, ·, ·)
2 100 0.1 (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.01, ·, ·, ·, ·) (1, 1, 1, 0, 0, 0) (0.01, 0, 0.02, 0.01, ·, ·, ·, ·)
3 100 0.01 0.1 (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.05, ·, ·, ·, ·) (1, 1, 1, 0, 0, 0) (0, 0, 0, 0.05, ·, ·, ·, ·)
4 200 0.01 0.2 (1, 1, 0.1, 0.1, 0, 0) (0, 0, 0, 0.02, 0, ·, ·, ·) (1, 1, 0.1, 0.1, 0.01, 0.01) (0,0,0.35,0.02,0.35,0.1,0.1,0.01)

5 200 0.01 0.2 (1, 1, 0.1, 0.1, 0, 0) (0, 0, 0, 0.02, 0, ·, ·, ·) (1, 1, 0.1, 0.1, 0.01, 0.01) (0.01,0.01,0.15,0.02,0.1,0.1,0.2,0.01)

Table 2. Time costs of synthesis and verification by nncontroller and iSAT3 (cf. Re-
mark 3)

E.g.
run 1 run 2 run 3 run 4 run 5 learning

avg. cost
verification
costtime nr time nr time nr time nr time nr

1 21.11 0 15.04 0 14.98 0 65.25 0 15.37 0 26.35 8.27

2 478.29 1 168.75 0 292.96 0 111.55 0 43.89 0 219.09 15.24

3 60.59 0 72.47 0 64.64 0 48.08 0 851.49 1 219.45 4.71

4 752.63 1 1528.07 2 499.83 0 122.64 0 924.41 1 765.52 1344.50

5 240.94 0 301.22 0 2522.14 3 1001.66 1 390.25 0 891.24 6070.83

The key parameters used by nncontroller for our experiments are summarized
in Table 1, and the time costs of synthesis and verification by nncontroller and
iSAT3 are summarized in Table 2.

Remark 2. In Table 1, ne is a shorthand for nepoch, · means the corresponding
parameter is not applicable,  means we adopt a self-adaptive learning rate
scheduling strategy, and the superscript v means that the weight coefficients cv

and parameters εεεv are for the fine-tuned controllers, which are formally verified.
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Remark 3. In Table 2, all time costs are measured in seconds; the time cost of
NN controller training is not deterministic since the NN models are initialized
randomly and the batches of training data are shuffled during the training pro-
cess, and therefore we record the time costs of 5 separate runs of the training
algorithm and compute the averaged cost; nr denotes how many times we restart
the algorithm when no NN controller is learned within the specified number of
training epochs, i.e. nepoch; the last column corresponds to time costs of for-
mal verification for the NN controllers and barriers obtained with the cv and εεεv

parameters in Table 1 for each case.

Remark 4. Comparison of time costs of our experiment with related work such
as [8,45] is not straightforward since we train two NNs simultaneously, while [8]
requires user-provided barrier functions and [45] requires pre-trained NN con-
trollers as their inputs. However, considering the number of layers and neurons
(we use one hidden layer with 5 neurons and ReLU activations for Nc uniformly),
it can be asserted that our synthesized NN controllers have much simpler struc-
ture than [8,45].

6 Conclusion

We have proposed a new approach to synthesize neural network controllers for
nonlinear continuous dynamical systems with control against safety properties.
Our approach features in verification-in-the-loop synthesis: we simultaneously
train the controller and its certificate, which we use barrier functions, represented
by an NN as well. We have provided a prototype tool nncontroller with a number
of case studies. The experiment results have confirmed the feasibility and efficacy
of our approach.

Future work includes experimenting on different sampling and training strate-
gies to reduce the data set size and to improve the training efficiency, as well dif-
ferent verification methods/tools other than interval SMT solvers. We anticipate
that these would potentially further improve the scalability of our approach. We
also plan to extend our approach to other properties such as reachability coupled
with cost/reward based optimality as what has been done in optimal control.
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