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BOUNDED ORBITS OF DIAGONALIZABLE FLOWS ON FINITE

VOLUME QUOTIENTS OF PRODUCTS OF SL2(R)

JINPENG AN, ANISH GHOSH, LIFAN GUAN, AND TUE LY

Abstract. We prove a number field analogue of W. M. Schmidt’s conjecture on the

intersection of weighted badly approximable vectors and use this to prove an instance of

a conjecture of An, Guan and Kleinbock [4]. Namely, let G := SL2(R) × · · · × SL2(R)

and Γ be a lattice in G. We show that the set of points on G/Γ whose forward orbits

under a one parameter Ad-semisimple subsemigroup of G are bounded, form a hyperplane

absolute winning set.

1. Introduction

Let G be a Lie group. We will say that g ∈ G is Ad-semisimple if Adg is diagonalizable

over C and Ad-diagonalizable if Adg is diagonalizable over R. In this paper, we prove the

following theorem that verifies some cases of [4, Conjecture 7.1]:

Theorem 1.1. Let G = SL2(R)× · · · × SL2(R) be a finite product of copies of SL2(R) and

let Γ be a lattice subgroup of G. Then for any one parameter Ad-semisimple subsemigroup

F+ = {gt : t ≥ 0} of G, the set

E(F+) := {x ∈ G/Γ : F+x is bounded}

is Hyperplane Absolute Winning (HAW).

The action of a subsemigroup as in Theorem 1.1 on the finite volume homogeneous

space G/Γ is ergodic and as a consequence, the set E(F+) has zero (Haar) measure. One

consequence of the HAW property proved in Theorem 1.1 is that it nevertheless has full

Hausdorff dimension. In fact, the HAW property is much richer and HAW sets exhibit

many more interesting properties in addition to being of full Hausdorff dimension. The

conjecture of An, Guan and Kleinbock predicts that E(F+) is HAW for G any Lie group, Γ

any lattice in G and F+ any Ad-diagonalizable subsemigroup of G. In the same paper, this

conjecture is verified for G = SL3(R) and Γ = SL3(Z). This type of result goes back to the

work of S. G. Dani [10], from whose work the AGK conjecture can be verified for real rank

1 Lie groups. As observed by Dani, the study of bounded orbits of diagonalizable flows on

homogeneous spaces is intimately related to the study of badly approximable numbers or

matrices. This connection will also be important in the present work. In particular, along

the way to proving the main theorem, we will prove (cf. Proposition 3.5 below) a number

2000 Mathematics Subject Classification. 11J83, 11K60, 11L07.
An is supported by an NSFC grant.
Ghosh is supported by a UGC grant and a CEFIPRA grant.
Guan is supported by EPSRC grant EP/J018260/1.

1



2 JINPENG AN, ANISH GHOSH, LIFAN GUAN, AND TUE LY

field analogue of W. M. Schmidt’s [23] celebrated conjecture on intersections of weighted

badly approximable vectors. We believe this result to be of independent interest.

Following Dani’s influential paper, there have been significant advances both in the

understanding of bounded orbits of diagonalizable flows on homogeneous spaces, as well

as in the study of badly approximable numbers and vectors. On the homogeneous side,

we mention the conjectures of Margulis, resolved by Kleinbock and Margulis [15], the

work of Kleinbock [13], Kleinbock-Weiss [16, 17] and An-Guan-Kleinbock [4]. On the

number theoretic side, we mention conjectures of W. M. Schmidt, resolved by Badziahin,

Pollington and Velani [5] and their subsequent strengthening in different contexts, by An

[1, 2], Beresnevich [6] and An, Beresnevich and Velani [3]. We refer the reader to these

works for the history of the problems as well as a more comprehensive list of results and

references. Pertinent to the present work is the paper [11] of Einsiedler, Ghosh and Lytle

where some special cases of Theorem 1.1 were established, namely the cases

(1) G = SL2(R)× · · · × SL2(R),Γ = SL2(OK) and {F+ = gt : t ≥ 0} where

gt :=

((

et 0

0 e−t

)

, . . . ,

(

et 0

0 e−t

))

.

In [11], E(F+) was shown to be winning for Schmidt’s game. In fact, a more gen-

eral result, involving points in C1 curves whose forward orbits are bounded, was

proved. In [14], it was subsequently shown that the set E(F+) is winning for a

stronger version of Schmidt’s game.

(2) In [11], the case of K a real quadratic field, G = SL2(R) × SL2(R), Γ = SL2(OK)

and {F+ = gt : t ≥ 0} where

gt :=

((

erσ1t 0

0 e−rσ1t

)

,

(

erσ2t 0

0 e−rσ2t

))

was also considered. Here rσi
≥ 0 and rσ1 + rσ2 = 1.

In §2 we record preliminaries on the hyperplane absolute game and the hyperplane potential

game. These are variants of the classical game introduced by W. M. Schmidt [21]. The

subsequent two sections are devoted to the proof of a special case of Theorem 1.1, namely

when Γ = SL2(OK) where K is a totally real field of degree d over Q, OK is its ring of

integers and Γ is a lattice in G = SL2(R) × · · · × SL2(R) via the Galois embedding. This

particular case of our theorem is connected to Diophantine approximation of vectors in Rd

by rationals in the number field K. Indeed, this case is the generalisation of the result of

[11] in (2) above. This case forms the bulk of our paper and is intimately connected to the

number field analogue of Schmidt’s conjecture mentioned above. We use a transference

(“the Dani correspondence”) to relate this case to the HAW property of certain vectors

badly approximable by rationals in K and prove this latter property. Finally we use the

structure theory of Lie groups and Margulis arithmeticity theorem to conclude the proof

of Theorem 1.1. We conclude the introduction with some remarks:
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(1) Let G be a Lie group, Γ be a lattice in G and F+ = {gt : t ≥ 0} a one-parameter

diagonalizable subsemigroup of G. Consider the expanding horospherical subgroup

of G relative to F , namely

H(F+) := {h ∈ G : lim
t→+∞

g−1
t hgt = e}.

In [4, Theorem 1.3], it is shown that for G = SL3(R) and Γ = SL3(Z) and any

Λ ∈ G/Γ, the set

{h ∈ H : hΛ ∈ E(F+)}

is HAW on H. They further conjecture the same statement for arbitrary Lie groups

and lattices. This conjecture can also be proved in the setting of the present paper

by adapting the technique of [4].

(2) It is plausible that the method of proof developed in the present paper can be used

to deal with the case where G consists of products of SL2(R) and SL2(C). Indeed

the main argument would then be carried out with an arbitrary number field rather

than a totally real number field.

(3) Proposition 3.5 below, i.e. the number field analogue of Schmidt’s conjecture, can

be formulated for arbitrary number fields rather than just totally real ones. The

proof is identical to the one presented here; we have restricted ourselves to totally

real fields for notational ease.

(4) In Theorem 4.2 in his thesis [18], the last named author proved a more general

version of Proposition 3.1 below. Specifically, the notion of winning used is slightly

more general and a higher dimensional analogue of Bad(K, r) (defined below) is

considered. This result can be used to verify [4, Conjecture 7.1] in some more cases,

namely for certain Ad-semisimple one parameter flows on some special quotients

of products of SLn(R).

Acknowledgements. This work was initiated during a visit by Ghosh to Peking Uni-

versity. He is very grateful to the host for the invitation and the hospitality. Subsequent

progress was made during a visit by the first three authors to Oberwolfach. We would like

to thank the MFO for the excellent working conditions and V. Beresnevich and S. Velani

for the invitation.

2. Preliminaries on Schmidt games

In this section, we will recall definitions of certain recent variants of Schmidt games,

namely, the hyperplane absolute game and the hyperplane potential game. We follow the

exposition in [4]. They are both variants of the (α, β)-game introduced by Schmidt in [21].

Since we do not make a direct use of the (α, β)-game in this paper, we omit its definition

here and refer the interested reader to [21, 22]. Instead, we list here some nice properties

of the α-winning sets:

(1) If the game is played on a Riemannian manifold, then any α-winning set is thick.

(2) The intersection of countably many α-winning sets is α-winning.
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2.1. Hyperplane absolute game. The hyperplane absolute game was introduced in [8].

It is played on a Euclidean space Rd. Given a hyperplane L and a δ > 0, we denote by

L(δ) the δ-neighborhood of L, i.e.,

L(δ) := {x ∈ Rd : dist(x, L) < δ}.

For β ∈ (0, 13), the β-hyperplane absolute game is defined as follows. Bob starts by choosing

a closed ball B0 ⊂ Rd of radius ρ0. In the i-th turn, Bob chooses a closed ball Bi with

radius ρi, and then Alice chooses a hyperplane neighborhood L
(δi)
i with δi ≤ βρi. Then in

the (i + 1)-th turn, Bob chooses a closed ball Bi+1 ⊂ Bi \ L
(δi)
i of radius ρi+1 ≥ βρi. By

this process there is a nested sequence of closed balls

B0 ⊇ B1 ⊇ B2 ⊇ · · · .

We say that a subset S ⊂ Rd is β-hyperplane absolute winning (β-HAW for short) if no

matter how Bob plays, Alice can ensure that

∞
⋂

i=0

Bi ∩ S 6= ∅.

We say S is hyperplane absolute winning (HAW for short) if it is β-HAW for any β ∈ (0, 13).

We have the following lemma collecting the basic properties of β-HAW subsets and HAW

subsets of Rd ([8], [17]):

Lemma 2.1. (1) A HAW subset is always 1
2-winning.

(2) Given β, β′ ∈ (0, 13 ), if β ≥ β′, then any β′-HAW set is β-HAW.

(3) A countable intersection of HAW sets is again HAW.

(4) Let ϕ : Rd → Rd be a C1 diffeomorphism. If S is a HAW set, then so is ϕ(S).

The notion of HAW was extended to subsets of C1 manifolds in [17]. This is done in

two steps. First, one defines the hyperplane absolute game on an open subset W ⊂ Rd.

It is defined just as the hyperplane absolute game on Rd, except for requiring that Bob’s

first move B0 be contained in W . Now, let M be a d-dimensional C1 manifold, and let

{(Uα, φα)} be a C1 atlas on M . A subset S ⊂ M is said to be HAW on M if for each α,

φα(S ∩Uα) is HAW on φα(Uα). The definition is independent of the choice of atlas by the

property (4) listed above. We have the following lemma that collects the basic properties

of HAW subsets of a C1 manifold (cf. [17]).

Lemma 2.2. (1) HAW subsets of a C1 manifold are thick.

(2) A countable intersection of HAW subsets of a C1 manifold is again HAW.

(3) Let φ : M → N be a diffeomorphism between C1 manifolds, and let S ⊂ M be a

HAW subset of M . Then φ(S) is a HAW subset of N .

(4) Let M be a C1 manifold with an open cover {Uα}. Then, a subset S ⊂M is HAW

on M if and only if S ∩ Uα is HAW on Uα for each α.

(5) Let M1,M2 be C1 manifolds, and let Si ⊂ Mi (i = 1, 2) be HAW subsets of Mi.

Then S1 × S2 is a HAW subset of M1 ×M2.

Indeed, everything except (5) is proved in [17]. So we provide a proof of (5) here.
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Proof of Lemma 2.2 (5). In view of (3) and (4) of Lemma 2.2, (5) is a direct consequence

of the following claim:

Let Ui (i = 1, 2) be Euclidean opens and Si ⊂ Ui be β
2-HAW. Then S1 × S2 is β-HAW.

(2.1)

Let B2i be the closed ball of radius ρ2i chosen by Bob at the 2i-th turn of a β-hyperplane

absolute game. Take closed balls Vi ⊂ U1 (resp. Wi ⊂ U2) of radius ρ2i such that B2i ⊂

Vi ×Wi. Since Si ⊂ Ui are β
2-HAW, we are given hyperplane neighborhoods L

(δi,1)
i,1 ⊂ U1

and L
(δi,2)
i,2 ⊂ U2 with δi,1, δi,2 ≤ β2ρi according to the winning strategy. By choosing

hyperplane neighborhoods L
(δi,1)
i,1 ×U2 (resp. U1 ×L

(δi,2)
i,2 ) at the 2i-th turn (resp. (2i+1)-

th turn), Alice can make sure that

B2i+2 ⊂ Vi ×Wi \
(

L
(δi,1)
i,1 × U2 ∪ U1 × L

(δi,2)
i,2

)

.

By this process, we can make sure that the outcome point is contained in S1 × S2. Hence

claim (2.1) is proved. �

2.2. Hyperplane potential game. The hyperplane potential game was introduced in

[12] and also defines a class of subsets of Rd called hyperplane potential winning (HPW for

short) sets. The following lemma allows one to prove the HAW property of a set S ⊂ Rd

by showing that it is winning for the hyperplane potential game. And this is exactly the

game we will use in this paper.

Lemma 2.3. (cf. [12, Theorem C.8]) A subset S of Rd is HPW if and only if it is HAW.

The hyperplane potential game involves two parameters β ∈ (0, 1) and γ > 0. Bob starts

the game by choosing a closed ball B0 ⊂ Rd of radius ρ0. In the i-th turn, Bob chooses

a closed ball Bi of radius ρi, and then Alice chooses a countable family of hyperplane

neighborhoods {L
(δi,k)
i,k : k ∈ N} such that

∞
∑

k=1

δγi,k ≤ (βρi)
γ .

Then in the (i+ 1)-th turn, Bob chooses a closed ball Bi+1 ⊂ Bi of radius ρi+1 ≥ βρi. By

this process there is a nested sequence of closed balls

B0 ⊇ B1 ⊇ B2 ⊇ · · · .

We say a subset S ⊂ Rd is (β, γ)-hyperplane potential winning ((β, γ)-HPW for short) if

no matter how Bob plays, Alice can ensure that

∞
⋂

i=0

Bi ∩
(

S ∪
∞
⋃

i=0

∞
⋃

k=1

L
(δi,k)
i,k

)

6= ∅.

We say S is hyperplane potential winning (HPW for short) if it is (β, γ)-HPW for any

β ∈ (0, 1) and γ > 0.
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3. a special case

This and the next section are devoted to prove a special case of Theorem 1.1. We begin

by introducing some notation. Let K be a totally real field of degree d over Q, OK its ring

of integers, and S be the set of field embeddings K →֒ R. Then we have |S| = d. Set

θ : K →
∏

σ∈S

R, θ(p) = (σ(p))σ∈S .

Let ResK/Q denote Weil’s restriction of scalar’s functor. It is well known ([7, Theorem 7.8])

that the group ResK/QSL2(Z) is a lattice in ResK/QSL2(R). The latter coincides with the

product of d copies of SL2(R). For simplicity, in this section and the next, we set

G = ResK/QSL2(R) =
∏

σ∈S

SL2(R), Γ = ResK/QSL2(Z).

It follows from the definition that the subgroup ResK/QSL2(Z) coincides with the subgroup

θ(SL2(OK)), where θ is the map defined by θ(g) = (σ(g))σ∈S . Now we are ready to state

the following special case of Theorem 1.1.

Proposition 3.1. Let r ∈ Rd be a real vector with rσ ≥ 0 for σ ∈ S and
∑

σ∈S rσ = 1, set

gr(t) :=

((

erσt 0

0 e−rσt

))

σ∈S

(3.1)

and F+
r

= {gr(t) : t ≥ 0}, then the set

E(F+
r
) := {x ∈ G/Γ : F+

r
x is bounded }

is HAW.

We will fix r in this and the next section. Set

S1 = {σ ∈ S : rσ > 0}, and S2 = S \ S1.

Assume |S1| = d1, |S2| = d2. Choose and fix ω ∈ S with rω = r, where

r = max
σ∈S

rσ.

Define a weighted norm, called the r-norm, on
∏

σ∈S R by

‖x‖r = max
σ∈S1

|xσ|
1
rσ .

Definition 3.2. Say a vector x = (xσ)σ∈S ∈
∏

σ∈S R is (K, r)-badly approximable if

inf
q∈OK\{0}

p∈OK

max

{

max
σ∈S1

‖q‖rσ
r
|σ(q)xσ + σ(p)|,max

σ∈S2

max{|σ(q)xσ + σ(p)|, |σ(q)|}

}

> 0.

The set of (K, r)-badly approximable vectors is denoted as Bad(K, r).

Remark 3.3. The notation of (K, r)-badly approximable vector is the weighted case of

K-badly approximable vector introduced in [11].
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Denote the expanding horospherical subgroup of the semigroup F+
r

as H = H(F+
r
).

Then it can be easily seen that H can be identified with
∏

σ∈S R through the map:

u :
∏

σ∈S

R →
∏

σ∈S

SL2(R), u((xσ)σ∈S) =

((

1 xσ

0 1

))

σ∈S

Then we have the following correspondence between (K, r)-badly approximable vector

and bounded F+
r

trajectories known in the literature as the “Dani” correspondence.

Proposition 3.4. A vector x = (xσ)σ∈S is (K, r)-badly approximable if and only if the

trajectory F+
r
u(x)Γ is bounded in G/Γ. In other words,

Bad(K, r) = u−1
(

π−1(E(F+
r
)) ∩H

)

, (3.2)

where π denotes the projection G→ G/Γ.

Proof. For simplicity, denote the elements in S as {σ1, . . . , σd} and the weights rσi
as ri.

Without loss of generality, we may assume that ri > 0 for 1 ≤ i ≤ d1 and ri = 0 for

d1 < i ≤ d. It is easily seen that D
− 1

2d
K θ(OK) forms a unimodular lattice of Rd, where DK

is the discriminant of K. Write the lattice D
− 1

2d
K θ(OK)×D

− 1
2d

K θ(OK) ⊂ R2d simply as LK .

Then define a homomorphism ψ : G→ SL2d(R) by

ψ(g)ij =







































ai, if 1 ≤ i = j ≤ d,

bi, if 1 ≤ i = j − d ≤ d,

ci−d, if 1 ≤ i− d = j ≤ d,

di−d, if d+ 1 ≤ i = j ≤ 2d,

0, otherwise,

where g =

((

ai bi

ci di

))

1≤i≤d

. (3.3)

Now we claim that

{g ∈ G : ψ(g)LK = LK} = Γ (3.4)

Let g be as in (3.3). At first, we focus on the study of (ψ(g))1 =

(

a1 b1

c1 d1

)

. If ψ(g)LK =

LK , it follows that a1σ1(k) + b1σ1(k
′), c1σ1(k) + d1σ1(k

′) ∈ σ1(OK) for all k, k′ ∈ OK . By

choosing k or k′ to be 0, we can show that fσ1(OK) = σ1(OK) for f = a1, b1, c1, d1. Hence

it follows from the definition of OK that the matrix (ψ(g))1 has all its entries in σ1(OK).

Consequently,

(ψ(g))1 ∈M2×2(σ1(OK)) ∩ SL2(R) = σ1(SL2(OK)).

Then since an element in SL2(R) is uniquely determined by its action on R2, it follows that,

if ψ(g)LK = LK , then (ψ(g))i = σiσ
−1
1

(

(ψ(g))1
)

. This shows that ψ(g) ∈ θ(SL2(OK)) = Γ,

hence proves claim (3.4).

As Γ is a lattice in G, in view of claim (3.4) and [20, Theorem 1.13], we find that the

embedding

φ : G/Γ → SL2d(R)/SL2d(Z), φ(gΓ) = ψ(g)LK
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is a proper map. Note that here we use the fact that the space SL2d(R)/SL2d(Z) is the

space of unimodular lattices in R2d implicity. Hence it follows that:

F+
r
u(x)Γ is bounded in G/Γ ⇐⇒ ψ(F+

r
u(x))LK is bounded in SL2d(R)/SL2d(Z).

(3.5)

Note that we have

ψ(gr(t)) = diag(er1t, . . . , erdt, e−r1t, . . . , e−rdt),

and

ψ(u(x)) =

(

Id diag(x)

Id

)

, where diag(x) = diag(x1, . . . , xd).

In view of Mahler’s criterion and (3.5), we have

F+
r
u(x)Γ is bounded in G/Γ

⇐⇒ ψ(F+
r
u(x))LK is bounded in SL2d(R)/SL2d(Z)

⇐⇒ inf
p,q∈OK

inf
t>0

max







max
1≤i≤d1

max{erit|σi(q)xi + σi(p)|, e
−rit|σi(q)|},

max
d1<i≤d

max{|σi(q)xi + σi(p)|, |σi(q)|}







> 0

⇐⇒ inf
q∈OK\{0}

p∈OK

inf
t>0

max











max
1≤i≤d1

max{et|σi(q)xi + σi(p)|
1
ri , e−t|σi(q)|

1
ri },

max
d1<i≤d

max{|σi(q)xi + σi(p)|, |σi(q)|}











> 0

⇐⇒ inf
q∈OK\{0}

p∈OK

inf
t>0

max











max{max
1≤i≤d

et|σi(q)xi + σi(p)|
1
ri , e−t‖q‖r},

max
d1<i≤d

max{|σi(q)xi + σi(p)|, |σi(q)|}











> 0

⇐⇒ inf
q∈OK\{0}

p∈OK

max











‖q‖r

(

max
1≤i≤d

|σi(q)xi + σi(p)|
1
ri

)

,

max
d1<i≤d

max{|σi(q)xi + σi(p)|, |σi(q)|}











> 0

⇐⇒ inf
q∈OK\{0}

p∈OK

max







max
1≤i≤d

‖q‖ri
r
|σi(q)xi + σi(p)|,

max
d1<i≤d

max{|σi(q)xi + σi(p)|, |σi(q)|}







> 0.

This completes the proof. �

Now we are ready to state the following Proposition which establishes a number field

analogue of W. M. Schmidt’s conjecture. The proof of the Proposition is postponed to the

next section.

Proposition 3.5. Bad(K, r) is HAW.

Proof of Proposition 3.1 modulo Proposition 3.5. Write

P :=
∏

σ∈S

((

∗ 0

∗ ∗

))

σ∈S

.
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As for any p ∈ P the set {Ad(g)p : g ∈ F+
r
} is bounded, we have

Λ ∈ E(F+
r
) ⇐⇒ pΛ ∈ E(F+

r
) ∀p ∈ P. (3.6)

We claim that

π(PH) = G/Γ. (3.7)

Indeed, according to the Bruhat decomposition, the set PH is Zariski open in G. Suppose

to the contrary that gΓ /∈ π(PH) for some g ∈ G, then we will have Γ ∩ g−1PH = ∅. This

contradicts the Borel density theorem, hence proves our claim.

To prove E(F+
r
) is HAW, it suffices to prove that for any Λ ∈ G/Γ, there exists a

neighborhood Ω of Λ in G/Γ such that the set E(F+
r
) ∩ Ω is HAW. In view of (3.7), we

can find b0 ∈ P and u0 ∈ H such that b0u0Γ = Λ. Then choose a neighborhood ΩP (resp.

ΩH) of p0 (resp. u0) in P (resp. H) small enough that the map φ : ΩP ×ΩH → G/Γ is an

homeomorphism onto its image Ω. Hence we are reduced to proving that the set

φ−1(E(F+
r
) ∩ Ω) = {(p, u) ∈ ΩP × ΩH : puΓ ∈ E(F+

r
)}

is HAW. In view of (3.6), the set defined above coincides with

ΩP ×
(

π−1(E(F+
r
)) ∩ ΩH

)

(3.8)

And the HAW property of the set (3.8) follows from (3.2) and Lemma 3.5. �

4. Proof of Proposition 3.5

First we introduce another formulation of the set Bad(K, r). For ε > 0, set

OK(r, ε) = {q ∈ OK \ {0} : max
σ∈S2

|σ(q)| ≤ ε}.

For (p, q) ∈ OK ×OK(r, ε), define

∆ε(p, q) =
∏

σ∈S1

[

σ(p)

σ(q)
±

ε

|σ(q)|‖q‖rσr

]

×
∏

σ∈S2

[

σ(p)

σ(q)
±

ε

|σ(q)|

]

⊂
∏

σ∈S

R,

where [A±B] denotes the interval [A−B,A+B] ⊂ R. Then set

Badε(K, r) :=
∏

σ∈S

R \
⋃

(p,q)∈OK×OK(r,ε)

∆ε(p, q). (4.1)

It is not hard to check:

Lemma 4.1.

Bad(K, r) =
⋃

ε>0

Badε(K, r).

Proof. It suffices to show that the set of vectors x = (xσ)σ∈S ∈
∏

σ∈S R satisfying

inf
q∈OK\{0}

p∈OK

max

{

max
σ∈S1

‖q‖rσ
r
|σ(q)xσ + σ(p)|,max

σ∈S2

max{|σ(q)xσ + σ(p)|, |σ(q)|}

}

> ε (4.2)
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coincides with Badε(K, r). By definition of OK(r, ǫ), the equation (4.2) is equivalent to

the following

inf
q∈OK(r,ε)

p∈OK

max

{

max
σ∈S1

‖q‖rσ
r
|σ(q)xσ + σ(p)|,max

σ∈S2

|σ(q)xσ + σ(p)|

}

> ε. (4.3)

Now we are reduced to show the set of vectors x = (xσ)σ∈S ∈
∏

σ∈S R satisfying (4.3)

coincides with Badε(K, r), which is straightforward to verify, and hence omitted. �

To prove the set Bad(K, r) is HAW, it suffices to prove that it is (β, γ)-hyperplane

potential winning for any β ∈ (0, 1), γ > 0. We choose and fix a pair of such (β, γ) in this

section. Furthermore, we denote the ball chosen by Bob in the first round of the game by

B0. By letting Alice making empty moves at the first rounds and relabeling the index, we

may assume ρ0 = ρ(B0) < 1 without loss of generality. Choose and fix R > 0 satisfying

d

Rγ − 1
≤

(

β2

2

)γ

. (4.4)

Then set

ε =
1

4
ρ0R

−4d and Hn = ερ−1
0 Rn (n ≥ 1). (4.5)

Now for n ≥ 0, we define a class of closed balls Bn as

Bn := {B ⊂ B0 : βR
−nρ0 < ρ(B) ≤ R−nρ0}.

We are going to define a subdivision of OK(r, ε). To begin, we shall need the following

height function:

H : OK(r, ε) → R, H(q) = max
σ∈S1

|σ(q)|‖q‖rσ
r
.

We have the following lemma controlling the size of H(q) and ‖q‖r.

Lemma 4.2. For all q ∈ OK(r, ε), there holds

1 ≤ ‖q‖
1
d
r ≤ H(q) ≤ ‖q‖2r

r
. (4.6)

Proof. For the second inequality in (4.6), we have

H(q)d1 ≥
∏

σ∈S1

|σ(q)|‖q‖rσ
r

≥





∏

σ∈S2

σ(q)





−1

|N(q)|‖q‖r ≥ ‖q‖r.

The third inequality in (4.6) is a direct consequence of the following estimate

|σ(q)| ≤ ‖q‖rσ
r
, for all σ ∈ S1, (4.7)

which is easy to check by the definition of ‖q‖r. Finally, according to (4.7), we have

‖q‖r ≥
∏

σ∈S1

|σ(q)| ≥





∏

σ∈S2

σ(q)





−1

|N(q)| ≥ 1.

This gives the first inequality. �



BOUNDED ORBITS ON HOMOGENEOUS SPACES 11

Now we can define the subdivision of OK(r, ε). Set

Pn = {q ∈ OK(r, ε) : Hn ≤ H(q) < Hn+1},

and

Pn,k = {q ∈ Pn : HnR
(4k−4)d ≤ ‖q‖2r

r
< HnR

4kd}.

In view of (4.6) and the trivial estimate H1 < 1, we have

OK(r, ε) =
⋃

n≥0

Pn.

The following lemma is important.

Lemma 4.3.

OK(r, ε) =
⋃

n≥0

⋃

k≥1

Pn+k,k.

Proof. To prove this lemma, it is equivalent to prove that

Pn,k = ∅ for all k ≥ n. (4.8)

Assuming the contrary that there is q ∈ Pn,k for some k ≥ n, then we have

‖q‖2
r
≥ ‖q‖2r

r
≥ HnR

(4n−4)d > H2d
n+1

by (4.5). This contradicts (4.6), hence proves (4.8). �

We shall need the following lemma:

Lemma 4.4. Let B ∈ Bn. Then for any k ≥ 1, the map F : OK ×OK(r, ε) → K∗ defined

by

F (p, q) =
p

q

is constant on the set

Pn+k,k(B) := {(p, q) : q ∈ Pn+k,k and ∆ε(p, q) ∩B 6= ∅}.

Proof. For any B ∈ Bn and q ∈ Pn+k,k, we have

ρ(B) ≤
Rk+1ε

H(q)
(4.9)

by (4.5). Suppose the contrary that we have two pairs (p1, q1) and (p2, q2) with

p1
q1

6=
p2
q2

(4.10)

satisfying

∆ε(p1, q1) ∩B 6= ∅ and ∆ε(p2, q2) ∩B 6= ∅. (4.11)

Then it follows (4.10) that
∣

∣

∣

∣

∣

∏

σ∈S

(

σ(p1)

σ(q1)
−
σ(p2)

σ(q2)

)

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

N(p1q2 − p2q1)

N(q1q2)

∣

∣

∣

∣

≥
1

|N(q1q2)|
. (4.12)



12 JINPENG AN, ANISH GHOSH, LIFAN GUAN, AND TUE LY

Now we claim that we can also prove the following inequality
∣

∣

∣

∣

∣

∏

σ∈S

(

σ(p1)

σ(q1)
−
σ(p2)

σ(q2)

)

∣

∣

∣

∣

∣

<
1

|N(q1q2)|
, (4.13)

which contradicts (4.12), hence completes the proof of the lemma. Indeed it follows from

(4.11) and the definition of ∆ε(p, q) that, for all σ ∈ S1, we have
∣

∣

∣

∣

σ(p1)

σ(q1)
−
σ(p2)

σ(q2)

∣

∣

∣

∣

≤
ε

|σ(q1)|‖q1‖
rσ
r

+
ε

|σ(q2)|‖q2‖
rσ
r

+ 2ρ(B). (4.14)

In view of (4.9) and (4.14), we have
∣

∣

∣

∣

∣

∣

∏

σ∈S1

(

σ(p1)

σ(q1)
−
σ(p2)

σ(q2)

)

∣

∣

∣

∣

∣

∣

≤
∏

σ∈S1

(

ε

|σ(q1)|‖q1‖
rσ
r

+
ε

|σ(q2)|‖q2‖
rσ
r

+ 2ρ(B)

)

≤
∏

σ∈S1

(

ε

|σ(q1)|‖q1‖
rσ
r

+
ε

|σ(q2)|‖q2‖
rσ
r

+
2Rk+1ε

max{H(q1),H(q2)}

)

≤ (Rk+1 + 1)d
∏

σ∈S1

ε

|σ(q1q2)|

(

|σ(q1)|

‖q2‖
rσ
r

+
|σ(q2)|

‖q1‖
rσ
r

)

≤ 2dRdk+d εd

|
∏

σ∈S1
σ(q1q2)|

∏

σ∈S1

R4rσd

(

|σ(q1)|

‖q1‖
rσ
r

+
|σ(q2)|

‖q2‖
rσ
r

)

≤ 22d−1Rdk+5dεd
1

|
∏

σ∈S1
σ(q1q2)|

(

|ω(q1)|

‖q1‖rr
+

|ω(q2)|

‖q2‖rr

)

≤ 22d−1Rdk+5dεd
1

|
∏

σ∈S1
σ(q1q2)|

(

|H(q1)|

‖q1‖2rr
+

|H(q2)|

‖q2‖2rr

)

≤ 22dRdk+5dR−(4k−4)dεd
1

|
∏

σ∈S1
σ(q1q2)|

<
1

|
∏

σ∈S1
σ(q1q2)|

. (4.15)

On the other hand, it follows from (4.11) and the definition of ∆ε(p, q) that, for all σ ∈ S2,

we have
∣

∣

∣

∣

σ(p1)

σ(q1)
−
σ(p2)

σ(q2)

∣

∣

∣

∣

≤
ε

|σ(q1)
+

ε

|σ(q2)|
+ 2ρ(B). (4.16)

In view of (4.16) and the assumption ρ0 < 1, we have
∣

∣

∣

∣

∣

∣

∏

σ∈S2

(

σ(p1)

σ(q1)
−
σ(p2)

σ(q2)

)

∣

∣

∣

∣

∣

∣

≤
∏

σ∈S2

(

ε

|σ(q1)|
+

ε

|σ(q2)|
+ 2ρ(B)

)

≤
∏

σ∈S2

4ε2

|σ(q1q2)|
<

1
∏

σ∈S2
|σ(q1q2)|

. (4.17)

Note that we have used the fact that |σ(q)| ≤ ε for σ ∈ S2 and q ∈ OK(r, ε) and an

elementary inequality saying that 4ab ≥ a + b + 2 for a, b ≥ 1. Now (4.13) follows from

(4.15) and (4.17). Hence our proof is completed. �
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Now we are in a position to prove Proposition 3.5.

Proof of Lemma 3.5. For any B ∈ Bn and k ≥ 1, denote the unique point given by Lemma

4.4 as

s(k,B) = (sσ(k,B))σ∈S .

Then it follows from Lemma 4.4 and the definition of Pn+k,k that
⋃

(p,q)∈Pn+k,k

∆ε(p, q) ∩B ⊂
⋃

τ∈S

Eτ (k,B)(R
−n−kρ0),

where the hyperplane Eτ (k,B) is defined as

Eτ (k,B) := {x ∈
∏

σ∈S

R : xτ = sτ (k,B)}. (4.18)

As those Bn are mutually disjoint, hence for each i ≥ 0 there exists at most one n ≥ 0

with Bi ∈ Bn. According to the definition of (β, γ)-hyperplane potential game, we have

ρi+1 ≥ βρi. In view of [4, Remark 2.4], we may assume that ρ0 → 0. Hence for each n ≥ 0,

there exists an i ≥ 0 with Bi ∈ Bn. Let i(n) denote the smallest i with Bi ∈ Bn. Then,

the map n 7→ i(n) is an injective one from Z≥0 to Z≥0. Let Alice play according to the

following strategy: each time after Bob chooses a closed ball Bi, if i = i(n) for some n ≥ 0,

then Alice chooses the family of hyperplane neighborhoods

{Eτ (k,Bi(n))
(R−n−kρ0) : τ ∈ S, k ∈ N}.

where Eτ (k,Bi(n)) is the hyperplane given by (4.18). Otherwise Alice makes an empty

move. Since Bi(n) ∈ Bn, ρi(n) > βR−nρ0. Then, (4.4) implies that

∞
∑

τ∈S,k=1

(R−n−kρ0)
γ = d(R−nρ0)

γ(Rγ − 1)−1 ≤

(

ρi
β

)γ (β2

2

)γ

< (βρi)
γ .

Hence Alice’s move is legal. Then we have

∞
⋂

i=0

Bi =
∞
⋂

i=0

Bi ∩
(

Bad(K, r) ∪
⋃

(p,q)∈OK×OK(r,ǫ)

∆ε(p, q)
)

=

∞
⋂

i=0

Bi ∩
(

Bad(K, r) ∪
∞
⋃

n=0

∞
⋃

k=1

⋃

q∈Pn+k,k

⋃

p∈OK

∆ε(p, q)
)

⊂ Bad(K, r) ∪
(

∞
⋃

n=0

∞
⋃

k=1

⋃

q∈Pn+k,k

⋃

p∈OK

∆ε(p, q) ∩Bi(n)

)

= Bad(K, r) ∪
(

∞
⋃

n=0

∞
⋃

k=1

⋃

(p.q)∈Pn+k,k(Bi(n))

∆ε(p, q) ∩Bi(n)

)

⊂ Bad(K, r) ∪
(

∞
⋃

n=0

∞
⋃

k=1

⋃

τ∈S

Eτ (k,Bi(n))
(R−n−kρ0)

)

.
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Thus the unique point x∞ ∈
⋂∞

i=0Bi lies in

Bad(K, r) ∪
(

∞
⋃

n=0

∞
⋃

k=1

⋃

τ∈S

Eτ (k,Bi(n))
(R−n−kρ0)

)

.

Hence, Alice wins. �

5. Proof of the main theorem

We shall need the following simple observation.

Lemma 5.1. Let Γ and Γ′ be lattices in G such that Γ is commensurable with Γ′. Then

for any subsemigroup F+ of G, there holds

E(F+) is HAW on G/Γ ⇐⇒ E(F+) is HAW on G/Γ′.

Proof. As Γ,Γ′ are commensurable with each other, the group Γ′′ = Γ ∩ Γ′ is of finite

index in both Γ and Γ′, and hence is a lattice subgroup of G. By replacing Γ′ with Γ′′,

the proof of the lemma can be reduced to the case when Γ′ ⊂ Γ. In this case, the natural

projection map π : G/Γ 7→ G/Γ′ is a finite covering map. Now the lemma follows from

Lemma 2.2. �

Proof of Theorem 1.1. Let G be a product of copies of SL2(R) and Γ a lattice. Then

according to [20], the lattice Γ is commensurable with Γ1×· · ·×Γk, where Γi (1 ≤ i ≤ k) is

an irreducible lattice in Gi (1 ≤ i ≤ k). In view of Lemma 5.1, we are reduced to consider

the case when Γ = Γ1×· · ·×Γk. Moreover, since an orbit is bounded on G/Γ if and only if

its projection is bounded on each Gi/Γi, we are reduced to consider the case when Γ itself

is irreducible and not cocompact by applying Lemma 2.2 (5). Now there are two cases:

Case 1. Suppose G = SL2(R). Then it follows essentially from [10], although not stated

explicitly there.

Case 2. Suppose G is a product of more than two copies of SL2(R). Then it follows

from Margulis arithmeticity theorem [19, Chapter IX, Theorem 1.9A] that this Γ is arith-

metic, i.e., Γ is commensurable with G(Z) with G a Q-simple semisimple group. Then

G = ResK/QG
′ with G′ a K-form of SL2 for some totally real field K. Since Γ is not

cocompact, we have G′ is K-isotropic. Hence G′ = SL2 and Γ is commensurable with

ResK/QSL2(Z). And in view of the Lemma 2.2 and Proposition 3.1, what remains is to

check that any one-parameter Ad-semisimple subsemigroup F+ is conjugate to some F+
r
,

which is straightforward. �
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