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Abstract

We obtain the conductance of a system of electrons connected to leads, within time-dependent density-

functional theory, using a direct relation between the conductance and the density response function. Cor-

rections to the non-interacting conductance appear as a consequence of the functional form of the exchange-

correlation kernel at small frequencies and wavevectors. The simple adiabatic local-density approximation

and non-local density-terms in the kernel both give rise to significant corrections in general. In the homoge-

neous electron gas, the former correction remains significant, and leads to a failure of linear-response theory

for densities below a critical value.

PACS numbers: 73.63.-b, 71.15.Mb, 73.40.Jn, 05.60.Gg
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Time-dependent density-functional theory extends the domain of ab-initio calculations to sys-

tems carrying a current, but relies on the accuracy of the exchange-correlation energy functional of

the electron density (at present and past times), which in practice has to be approximated. Impres-

sive success has been achieved within the non-equilibrium Green’s function formulation using the

simple ground-state density-functional exchange-correlation potential in a self-consistent formula-

tion1,2 (gDFT). However, limitations of the latter approximation were recently identified3,4,5,6,7,8.

For instance, gDFT’s omission of the derivative-discontinuity in the exchange-correlation energy

functional was found responsible for serious errors in transport calculation through localized res-

onant levels4,5. Improvements through an unrestricted gDFT formulation have been argued to

describe properly some aspects of the Coulomb blockade in quantum junctions6. At this level of

the theory the exchange-correlation potential of the equilibrium system, vxc, is responsible for the

electron interaction effects.

In a further theoretical development, Na Sai et al.3 identified a dynamical correction to the re-

sistance of a quantum junction stemming from the contribution of the exchange-correlation elec-

tric field to the overall drop in the total potential, as reflected in the exchange-correlation kernel

fxc. They estimated the correction within time-dependent current-density functional theory9 (TD-

CDFT) and showed that it has its origin in the non-local density-dependence of the functional.

The very applicability of time-dependent density-functional theory (TDDFT) to the problem of

quantum transport in the long-time limit has been discussed in depth by G. Stefanucci and C.-O.

Almbladh7 and by M. Di Ventra and T. Todorov8.

Several authors have proposed alternative treatments that avoid the complexities of the

exchange-correlation kernels of TD(C)DFT, either by using the usual gDFT approach in com-

bination with a model self-energy within the central region10, or by treating the central region

with the configuration integration method11 while approximating the non-equilibrium distribution

of the electrons.

In this paper we address the class of corrections to the linear-response conductance that arise

from the exchange-correlation kernel and potential in TDDFT. A kernel must give a satisfactory

description of the linear-response regime if it is to be of use in more general quantum conduc-

tance calculations. Apart from the ultra-non-local contribution found by Sai et al.3, we identify a

new correction to the conductance that already appears within the adiabatic local-density approx-

imation (ALDA), and gives a significant increase in the conductance even for the homogeneous

electron gas. By using an expression for the conductance in real space, we can explore both the
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ALDA correction and the correction of Sai et al. for homogeneous and inhomogeneous systems,

in relation to the gDFT conductance.

The central concept in our approach12 is the identification of the conductance G as the strength

of the Drude singularity of the conductivity tensor in reciprocal space24,

lim
ω→0

σzz(q,q′,K⊥ = 0;ω) = 2πGδ(q)δ(q′), (1)

where we consider a geometry where z is the direction of the current flow, q a reciprocal vector

in that direction, and for simplicity we assume that the system is translationally invariant along

the x,y directions and K⊥ is a wavevector reciprocal to R⊥ = (x,y) , i.e. we consider an ideal

interface. The conductance G is then a conductance per unit area of the interface. The limit

ω → 0 must be taken from the upper half of the complex frequency plane ω = ℜ {ω}+ iα ,α > 0

as the last step in the calculation. This order of limits – first an infinitely long system (i.e. q

continuous), and only then ω → 0 – is essential, for otherwise different and even divergent results

are obtained, arising from the incorrect “piling-up” of charge at the ends of the system14. The

unambiguous evaluation of a finite conductance for an infinite dissipationless system is facilitated

by the adiabatic switching-on of an external electric field, characterized by a finite drop in potential

∆V ext , that can conveniently25 be represented as the field

Eext
z (z, t) = −

∆V ext

π
c/α

(c/α )2 + z2
e−iωt , (2)

for the time interval t ∈ (−∞,0). c is a constant with units of velocity and α > 0 controls the speed

of switching on the field.

Through Eq. (1) we can relate the conductance to the non-local conductivity for small ω. In

turn, the conductivity is simply related to the irreducible polarization12,1326

σzz(q,q′,K⊥ = 0;ω) =
iω
qq′

χ irr(q,q′;ω). (3)

The polarization is conveniently calculated via the density response function calculation within

TDDFT (although other possibilities exist, such as TDCDFT or many-body perturbation theory).

The polarization function satisfies the Dyson equation

χ irr(q,q′;ω) = χ0(q,q′;ω)+
∫

dq′′dq′′′χ0(q,q′′;ω) fxc(q
′′,q′′′;ω)χ irr(q′′′,q′;ω), (4)
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where χ0(q,q′;ω) is the non-interacting Kohn-Sham density response function. The above two

equations give the conductance of an interacting electronic system: for a given kernel fxc one

needs to invert the Dyson equation (4) and substitute the result into Eq. (3).

However, we can gain insight by multiplying Eq. (4) by iω/(qq′) and taking the limit ω → 0.

Clearly, the resulting left-hand-side is singular in q, with the strength being directly the conduc-

tance of the interacting system, G. The strength of the first term on the right-hand-side of (4)

multiplied by the same factor gives the conductance of the non-interacting Kohn-Sham system,

G0. The difference between these two conductances, i.e. the correction due to the exchange-

correlation kernel, is then nonzero only if the last term in Eq. (4) also leads to a singular form.

This observation can be used to deduce the aspects of the kernel that do influence the conductance,

since the general character of χ for small ω is well known.

The most obvious choice, making use of the character of χ0/ir ∼ qq′, is f
(a)
xc (q,q′;ω) =

− iω
qq′

A(q,q′;ω) where A(q,q′;ω) → A = A(q = 0,q′ = 0) 6= 0 for ω → 0. The resulting con-

ductance then takes the form

G = G0 −G0AG =
G0

1+AG0
. (5)

From the above expression we see that A represents some part of the dynamical resistance per

unit area and, in fact, it is equivalent to the correction identified by Na Sai et al.3. It can be

shown14 that a purely longitudinal exchange-correlation electric field used in their treatment9,15

within TDCDFT is equivalent to a contribution to the TDDFT kernel of the asymptotic form for

small q,q′

f
(a)
xc (q,q′;ω) ≈−

iω
qq′

∫

dz
4η
3

(

∂zn(z)

n(z)2

)2

= −
iω
qq′

A (6)

where n(z) is the number of electrons per unit cross-sectional area and η is the dynamical viscosity

of a homogeneous electron gas9. We should note that for homogeneous systems A = 0 since

∂zn(z) = 0. This is important since the functional form f
(a)
xc given above and the limiting process

would not lead to a finite result for a homogeneous system.

However, the form above does not exhaust all the possibilities. Most surprisingly, the con-

ductance is also affected by a local-density term f
(b)
xc (q,q′;ω) = f

(b)
xc (q− q′;ω) → B(ω)δ(q−

q′),B(ω) → B 6= 0 for ω → 0, which, Fourier-transforming f
(b)
xc to real space, naturally appears
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within the adiabatic LDA16 in an extended system,

f
(b)
xc (r,r′) = f ALDA

xc [n0(r)]δ(r− r′) (7)

f ALDA
xc [n0] = d2(n0εxc(n

0))/dn2. (8)

(Here εxc(n
0) is the exchange-correlation energy per particle of a homogeneous electron gas (HEG)

of density n0). To exhibit this case let us consider the 1D HEG where the algebra becomes partic-

ularly simple, and we will assume that the kernel B1D = f 1D
xc [n0] exists even for this non-Fermi-

liquid system. (For 2D and 3D cases, where this fact is generally accepted, the analogous steps

lead to technically more demanding formulas and only some of the results can be obtained analyt-

ically. However, we will demonstrate numerically that the qualitative general picture is identical

to that described below for the 1D situation.)

The non-interacting response of the 1D gas, χ0
1D, for q << kF , has the simple form

χ0
1D(q,q′;ω) ≈−

2

πkF

k2
Fq2

k2
F q2 −ω2

×δ(q−q′). (9)

When f
(b)
xc is combined with this in the Dyson equation (4), a renormalization of the conductivity

results,

σ1D(q,q′;ω) ≈
2kF

π
−iω

(1+ 2B1D
πkF

)k2
Fq2 −ω2

×δ(q−q′), (10)

which, using Eq. (1), gives the conductance

G1D =
G0

1D
√

1+ 2B1D
πkF

(11)

Typically (i.e. in 2D and 3D) the adiabatic kernel (8) is negative and decreasing function of the

density and eventually as a certain critical density (characterized by kF,c given by 2
πkF

B1D(kF,c) =

−1) is approached, the conductance shows a singular increase. This transition corresponds to the

known instability of the HEG against arbitrarily small fluctuations in the total potential13, signified

by the appearance of a pole in the upper half of the complex plane of the irreducible density

response χ irr. For densities beyond the transition, linear-response theory is therefore inapplicable.

The situation in 3D gas is qualitatively similar. For q << qF the non-interacting response has

the form (ω = iα ,α > 0)

χ0(q, iα ) = −
kF

π2

(

1−
α

qkF
arctan

kFq

α

)

, (12)
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FIG. 1: (Color-online) Dependence of the conductance per area of the Kohn-Sham gas in 3D, G0, and the

real and imaginary parts of the full conductance within the ALDA, (G(b)), on the density parameter, rs. The

ALDA correction is significant within the physically relevant region 2 . rs < rs,c.

from which, by means of Eqs. (1) and (4), we obtain the conductance per unit area of the Kohn-

Sham gas G0 =
k2

F

4π2 . The critical density at which the instability occurs can be found from the

appearance of poles of the the irreducible response function in the upper half of the complex plane,

which leads to the criterion B(kF,c) ≤− π2

kF,c
. The form of the correction to the conductance in 3D

cannot be obtained analytically, so we show in Figure 1 our numerical results, which qualitatively

resemble the 1D case. We see that the ALDA correction leads to a systematic increase in the

conductance. We stress that this correction is a direct consequence of the proper order of limits

performed in Eq. 4. From this it also follows that this correction would not be present within the

static gDFT calculations based on the NEGF formulation but would appear within a direct time-

evolution approach17,18 if the ALDA is employed. (A minor difference in 3D is that beyond the

critical rs,c the formally defined conductance retains a nonzero real part, whereas in 1D it is pure

imaginary.)

We briefly discuss a third form of the exchange-correlation kernel, f
(c)
xc (q,q′;ω) =

ω2

q2 C(q,ω)δ(q− q′), C(q,ω) → C 6= 0 for ω,q → 0. It can be shown that this form of fre-

quency dependence in the kernel also changes the final conductance. This kernel is similar to the

one used by Botti et al.19 and Reining et al.20 for bulk insulators and semiconductors characterized

by a finite gap in the electronic density of states at the Fermi energy. In their estimate, which lead

to significant improvement in the electron energy-loss spectra and optical absorption spectra, the

coefficient C ∼ ωg where ωg is the effective energy gap. This suggests that f
(c)
xc = 0 will be zero,

or small, in a metallic system.
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In order to explore the relevance of these conductance corrections for inhomogeneous systems

we consider the metal-vacuum-metal case of two jellium surfaces separated by a distance d. In this

case the parameter B has been evaluated using Eq. (8) and the Perdew-Zunger21 parametrization

of the quantum Monte Carlo correlation energy of the HEG22. The parameter A is obtained from

Eq. (6), and its contribution to the conductance follows from Eq. (5).

In our calculations we employ two jellium slabs of thickness L and density given by rs. The

calculation of χ0(z,z′; iα ) is performed at the self-consistent LDA level 23. Subsequently we

invert the Dyson equation, Eq. (4), in real space and thereby calculate the irreducible response

χ irr(z,z′; iα ). For the final step we employ an integral form of Eq. (1)

G = − lim
α→0+

α
∫

dqdq′

2π
χ irr(q,q′; iα )

qq′
, (13)

where we have used the identity (3). Direct implementation of this expression in reciprocal space is

numerically rather cumbersome, since χ irr is, in practice, calculated for a finite (periodic) supercell

for which the region with q,q′ << 1 is poorly described. This problem can be circumvented by

re-expressing G in a real-space form,

G = − lim
α→0+

α
∫ ∞

0
dz

∫ 0

−∞
dz′χ irr(z,z′; iα ), (14)

which is obtained from (13) by utilizing the fact that the 1/qq′ singularity is only apparent since

χ(q,q′) ∼ qq′ for small q,q′. Extrapolation to zero frequency (from ω ∼ 0.01 Ha << EF ) is

done in parallel with extrapolation of the thickness of the slabs L to infinity. Further details of

the calculation will be published elsewhere14. The quality of the numerical procedure can be

judged from the correct exponential decrease in the Kohn-Sham conductance over several orders

of magnitude shown in Fig. 2.

The resulting dependence of the conductance on the vacuum width is shown in Fig. 2, for a

representative jellium density rs = 3 a.u. (Au). For small vacuum widths d, the correction due

to the ALDA kernel f
(b)
xc clearly dominates; for larger widths (d ∼ 6−8 a.u.) f

(a)
xc and f

(b)
xc shift

the Kohn-Sham conductance in opposite directions and to some extent cancel each other. We

should note that unlike the use of a global value for the viscosity in the original work by Sai3, we

have used the local viscosity η [kF(z)] in Eq. (6), determined by the local density, which leads to

suppression of the non-local corrections for d & 2a.u.14

In conclusion, we have presented a unified formalism, based on the singular character of re-

sponse functions, to address the conductance of a general system of interacting electrons. We have
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FIG. 2: (Color-online) The Kohn-Sham conductance G0 (upper panel) and the corrected conductances G

(shown relative to G0) (lower panel), as a function of the vacuum width d. The corrections due to the

non-local (a) and ALDA (b) kernels have opposing signs.

explicitly identified three different contributions to the dynamical resistance: (a) the non-local con-

tribution3 parametrized by the dynamical viscosity of the homogeneous electron gas, effective only

for inhomogeneous systems, (b) a local contribution parametrized by the adiabatic LDA exchange-

correlation kernel, and (c) an ultra-non-local contribution that, from presently available estimates,

is not important for metallic systems. These three forms are unlikely to exhaust all the possibilities,

and our theoretical framework remains applicable for further analysis based on many-body pertur-

bation theory to obtain additional relevant contributions to the exchange-correlation kernel or local

field factor. In the homogeneous electron gas, we have found that the conductance diverges as the

critical density rs,c is approached, beyond which the gas is unstable. For practical calculations,

our formalism can readily benefit from available computer codes for ab-initio calculations in real

materials that can generate density-density response functions. We have shown the importance of

the non-vanishing corrections for the conductance of a model inhomogeneous system.
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