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Reach unified channel characteristics for the

transverse advection-dispersion equation

Fred Sonnenwald and Ian Guymer

Abstract Transverse dispersion is of interest in natural watercourses, especially near

outfalls. The application of simple analytical solutions to the transverse advection-

dispersion equation in these scenarios, however, is challenging due to variations in

channel characteristics. Thus, a new method has been developed for averaging reach

characteristics to account for longitudinal variability when using analytical solutions

to the advection-dispersion equation by combining travel time and length weighting.

The new ‘reach unification’ approach incorporates the characteristics (such as veloc-

ity, width, or dispersion coefficient) of each different sub-reach into to the equivalent

single reach values needed to make a direct downstream prediction. To demonstrate

reach unification, synthetic concentration profiles from a continuous injection into a

simplified rectangular channel with three sub-reaches of varying velocity, depth, and

friction, have been generated using finite difference modelling. The characteristics

of these sub-reaches when combined with reach unification made perfect down-

stream analytical predictions, confirming the approach. The use of the streamtube

model to represent changes in channel width is investigated. It is also shown that

reach unification is of significant benefit to the inverse problem, analysing recorded

concentration profiles to estimate the dispersion coefficient and relating it to reach

characteristics.
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1 Introduction

Mixing, the description of the transport and spread of solutes, can be described by

the three-dimensional Advection-Dispersion Equation (ADE):

∂c

∂ t
+u

∂c

∂x
+ v

∂c

∂y
+w

∂c

∂ z
= Dx

∂ 2c

∂x2
+Dy

∂ 2c

∂y2
+Dz

∂ 2c

∂ z2
(1)

where c is concentration, t is time, u, v, and w are the velocity components in the

longitudinal (x), transverse (y), and vertical (z) directions, and Dx, Dy, and Dz are

the dispersion coefficients in those same directions (Fischer et al, 1979). In simple

systems, such as pipes, this is often simplified into a one-dimensional (1D) equation

in the direction of flow, e.g., Taylor (1954). While this simplification is also often

made in natural watercourses over long distances, local mixing conditions tend to be

sufficiently complex to warrant a more detailed description over shorter distances.

The mixing of a point pollution source can generally be divided into three regions:

the near-field, where primarily vertical mixing is of interest, the mid-field, where

primarily transverse mixing is of interest, and the far-field, where primarily longitu-

dinal mixing is of interest (Rutherford, 1994).

This study focuses on the mid-field mixing region, i.e., transverse mixing. The

mid-field is primarily of interest shortly downstream from outfalls, before complete

cross-sectional mixing has occurred. Descriptions of mixing are needed in this re-

gion to help ensure nominally acceptable levels of outfall pollutants become suffi-

ciently dilute to not cause undue damage to the watercourse (Yotsukura and Cobb,

1972). This can occur both in the form of biochemical (Riechel et al, 2016) or ther-

mal pollution (Kalinowska and Rowiński, 2012). In the far-field, the rate of trans-

verse dispersion affects the rate of longitudinal dispersion (Fischer et al, 1979).

The complexity of describing mixing in the mid-field, and in watercourses in

general, is derived from not only changes in channel cross-section, but also due to

associated changes in roughness and velocities. These can be considered together

within the two-dimensional (2D) depth-averaged ADE:

h(y)u(y)
∂c(x,y)

∂x
=

∂

∂y

[

h(y)Dy(y)
∂c(x,y)

∂y

]

(2)

where h is depth (West et al, 2021). This approach has been used to describe com-

plex transverse mixing conditions. West et al (2021) created a Finite Difference

Model (FDM) of dispersion in the shear layer adjacent to bankside vegetation using

Eq. 2. This model was used to identify the transverse variation of Dy by fitting to

concentration data collected using a laser-induced fluorescence camera system in

partially vegetated channel flow.

While detailed mixing descriptions of complex flow situations can be provided

by numerical modelling or advanced instrumentation, in practice results are often

obtained through manual sampling at or moving the same instrument(s) to multiple

measurement locations (e.g., Boxall and Guymer, 2003). Such methods are practical
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and in line with that are simpler analytical solutions to the ADE (Rutherford, 1994).

For a continuous injection, Eq. 1 simplifies to the 1D transverse ADE:

u
∂c

∂x
= Dy

∂ 2c

∂y2
(3)

One analytical solution to this is given by the 1D transverse ADE routing solution:

c(x2,y) =
∫ ∞

λ=−∞

c(x1,λ )
√

4πDyt̄
exp

[

−
(λ − y−Vt̄)2

4Dyt̄

]

dλ (4)

where x1 and x2 are upstream and downstream measurement locations respectively,

t̄ = (x2 − x1)/U is travel time, and U and V (0 in theory) are mean streamwise and

transverse velocities (Stovin et al, 2022). Eq. 4 applies to uniform conditions only.

Another simplified approach for cross-sectionally varying velocity and bathymetry

is given by Yotsukura and Sayre (1976). The cumulative discharge or ‘streamtube’

model, accounts for changes in channel cross-section by transforming transverse

distance coordinates to equivalent increases in cumulative discharge q, equalling 0

at the left bank and total discharge Q at the right bank (Rutherford, 1994). Thus,

a wide and shallow flow may be equated to a narrow deep flow by ‘stretching’ or

‘squeezing’ the flow field cross-section to a uniform depth, straightening stream-

tubes. The solution to a continuous injection at q0 is given by

c(x,q) =
m

√

4πDqx
exp

(

−
(q−q0)

2

4Dqx

)

(5)

where m is injection flow rate,

Dq = ψH2UDy (6)

is the transformed transverse dispersion in streamtube coordinates,

ψ =
1

B

∫ B

y=0

(

h

H

)2
u

U
dy (7)

is a shape factor, B is channel breadth, and H is mean depth (Rutherford, 1994).

In a rectangular channel with uniform velocity, the shape factor will take a value

of 1. A reflecting boundary condition at the channel bank may be achieved using

the method of images and an equivalent routing solution of Eq. 5 to Eq. 4 can be

derived.

Although the streamtube model may account for changes in cross-section, it does

not account for other longitudinal changes, such as changes in roughness or other

characteristics that may influence transverse mixing. Somlyódy (1982) further re-

fines the streamtube model, presenting a “mass streamline” line model that better

accounts for longitudinal variations, but at the cost of significantly increased model

complexity. Alternatively, Rutherford (1994) suggests that, whether applying Eqs. 4
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or 5, longitudinal variations in transverse dispersion may be accounted for using

distance, or length, weighted averaging.

To investigate averaging channel characteristics for longitudinal dispersion, Son-

nenwald et al (2023) substituted the 1D longitudinal ADE routing solution into itself

and found the single Dx, U , and t̄ needed to be equivalent to two or more routings

carried out in series. This combining of multiple routings into a single routing, or

multiple sub-reaches into a single reach, led to the ‘reach unification’ approach.

Taking velocity as travel time weighted (U = ∑
N
i=1 Uit̄i/∑

N
i=1 t̄i), Dx was found to

be:

Dx =

(

∑
N
i=1 Uit̄i

)2
∑

N
i=1

(

Dx,it̄i ∏
N
j=1, j 6=i U

2
j

)

(

∏
N
i=1 U2

i

)(

∑
N
i=1 t̄3

i

) (8)

and by assuming Dx = αU , the relationship for all other characteristics α (depth,

etc.) was found to be:

α =U
∑

N
i=1 αit̄i/Ui

∑
N
i=1 t̄i

(9)

where i and j are the ith and jth routing, and N is the number of routings or sub-

reaches.

Equations 8-9 show that different averaging treatments are required for different

components of the 1D longitudinal ADE. This result calls into question the length

weighted averaging proposed by Rutherford (1994) for transverse dispersion. There-

fore, this study aims to provide an appropriate method for averaging reach charac-

teristics to simplify the application of the ADE for transverse mixing.

2 Methodology

Herein the new reach unification averaging approach is derived for the transverse

ADE and the creation of synthetic data for validation using numerical modelling

data is explained.

2.1 Transverse reach unified averaging derivation

A single reach may be made up of many sub-reaches, e.g., Fig. 1. If an injection is

made upstream of sub-reach A at location 0, the dye passes through sub-reaches A,

B, and C. If monitoring of transverse concentration distributions is conducted at the

end of each sub-reach at locations a, b, and c, then the transverse dispersion coeffi-

cient in sub-reach A, Dy,A, can be calculated from the increase in transverse variance

of the recorded concentration profile between 0 and a, Dy,B as the increase in trans-

verse variance between b and a, etc. This approach to finding dispersion coefficient

is referred to as the method of moments (Rutherford, 1994). A downstream predic-
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0 a b c

Sub-reach A
Dy,A

Sub-reach B
Dy,B

Sub-reach C
Dy,C

Fig. 1 Example reach.

tion at a may be made with Eq. 4 using the initial injection, Dy,A, and the travel time.

This prediction can be substituted as the upstream concentration distribution in Eq. 4

with Dy,B and the travel time to make a prediction at b, etc. A prediction at c would

therefore consist of some combination of the transverse dispersion coefficients Dy,A,

Dy,B, and Dy,C.

Although Sonnenwald et al (2023) conceptualised this approach by substituting

the routing solution into itself, SG Wallis (2022 personal communication) suggested

a simpler derivation should be possible by directly manipulating the method of mo-

ments variances. This has been done here for the transverse dispersion coefficient.

The method of moments solution to obtaining the transverse dispersion coefficient

is:

Dy =
U

2

(

σ2
2 −σ2

1

)

(x2 − x1)
(10)

where σ2
1 and σ2

2 are the spatial variances of the transverse concentration profile at

locations x1 and x2 (Rutherford, 1994). (For the example reach in Fig. 1, using σ2
a ,

σ2
b , a, and b in Eq. 10 would give Dy,B.)

Re-arranging and simplifying Eq. 10, downstream variance can be predicted as a

function of the upstream variance and the dispersion coefficient:

σ2
2 = 2t̄Dy +σ2

1 (11)

Considering two sub-reaches and substituting the downstream variance as the up-

stream variance for the downstream sub-reach:

σ2
3 = 2t̄2Dy2 +2t̄1Dy1 +σ2

1 (12)

This can be re-arranged and substituted into Eq. 10 to find Dy for the reach. Sim-

plified and generalised, this gives the reach unified transverse dispersion coefficient

as:

Dy =
∑

N
i=1 Dy,it̄i

∑
N
i=1 t̄i

(13)

Eq. 13 shows that for the transverse ADE, the transverse dispersion coefficient is

travel time weighted, as opposed to length weighted, as suggested by Rutherford

(1994, Sect. 3.4.4.2). By substituting in Dy = αU , i.e., dispersion as a function of

some parameter multiplied by velocity (Taylor, 1954; Fischer et al, 1979), it follows

that channel characteristics should be length weighted:
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α =
∑

N
i=1 αi∆xi

∑
N
i=1 ∆xi

(14)

where ∆xi is the sub-reach length (i.e., xi−xi−1). If a property does not scale linearly

with Dy, then a substitution for α should be made and Eq. 14 updated accordingly.

For example, in the case of Dy = β 2U then β 2 should be substituted for α and

β 2
i for αi. Note that the transverse ADE reach unified characteristics are calculated

differently to the longitudinal ADE.

2.2 Synthetic concentration data

The West et al (2021) finite difference model of the 2D depth-averaged ADE has

been used to generate synthetic concentration data for testing reach unification. The

FDM model uses a central scheme for dispersion and an upwind scheme for ad-

vection. It consists of a series of equations forming a tri-diagonal matrix, which

is solved using the ‘double sweep’ algorithm. Transverse boundary conditions are

reflective. West et al (2021) validated the FDM against analytical solutions to the

ADE.

For validating reach unification, the FDM was used to generate synthetic con-

centration data for 100 rectangular channels consisting of three sub-reaches. For the

example reach, channel characteristics are given in Table 1 with a uniform channel

width of 6 m and flow rate of 3 m3s−1. Sub-reach transverse dispersion coefficient

was taken as:

Dy = 0.13U
√

f/8 (15)

where f is a friction factor (after Boxall and Guymer, 2003). A mid-channel injec-

tion was used.

The channel characteristics of the remaining 99 channels were randomised. Sub-

reach length was picked between 5 and 500 m, U between 0.01 and 1 ms−1, H

between 0.5 and 50 m (ensuring continuity with Q = 5 m3s−1), and f between

0.001 and 0.5. The width of the random channels was manipulated to simulate an

infinitely far away transverse boundary in order to make direct comparisons to Eq. 4

without the need for the method of images.

Table 1 Example sub-reach characteristics and reach unified (+) characteristics

Sub-reach Length (m) U (ms−1) t̄ (s) H (m) f Dy (m2s−1)

A 5 0.500 10 1 0.01 2.3×10−3

B 10 0.250 40 2 0.05 2.6×10−3

C 15 0.125 120 4 0.10 1.8×10−3

A+B 15 0.300 50 1.67 0.03 2.5×10−3

A+B+C 30 0.177 170 2.83 0.06 2.0×10−3
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The concentration profiles generated by the FDM were treated as the ‘known’

result (e.g., a laboratory measurement) and compared to predictions made using

Eq. 4 and the reach unified Dy. This comparison was made using the R2
t correlation

measure:

R2
t = 1−

∑
n
i=1(ĉi − ci)

2

∑
n
i=1 c2

i

(16)

where ĉ is predicted concentration and n is the number of points in the concentration

profile. An R2
t of 1 indicates perfect agreement and R2

t ≤ 0 indicates no agreement

(Young et al, 1980).

3 Results and discussion

Figure 2 shows the finite difference model concentration profiles for the channel

described in Table 1 compared to the concentration profiles calculated directly using

the routing solution (Eq. 4) and the reach unified Dy. The R2
t values comparing the

FDM and predicted concentrations were both 1.000. If Dy were to be calculated

using a length weighted average, then concentrations at b would be very slightly

over-predicted, and at c slightly under-predicted.

Figure 3 compares the goodness-of-fit between predicted concentration profiles

made using reach unified Dy to those made using length weighted Dy for the 99

random channels. As suggested by the example reach results, the difference in the

predictions is small in many cases. Goodness-of-fit when using the length weighted

dispersion coefficient decreases with increased travel time, i.e., more time in the

flow.

-3 -2 -1 0 1 2 3

Transverse location (m)

0.0
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 [
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b predicted

c predicted

Fig. 2 Example reach concentration profiles (calculated using the FDM, solid lines) and reach

unified predictions (calculated using Eq. 4, dashed lines).
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Fig. 3 A box plot of R2
t

values comparing predictions

made using reach unified and

length weighted averaging

of Dy for random channels

at sections b and c. Middle

line indicates median, box

indicates interquartile range,

and whiskers indicate range.

b c b c

0.5

0.6

0.7

0.8

0.9

1.0

R
t2

Reach Unified Length Weighted

3.1 Accounting for changes in width

Reach unified values account for changes in channel properties, such as depth, ve-

locity, etc. This technically includes the effects of changes in width but does not

address the spreading of a solute caused by changes in bathymetry. If a channel in-

creases in width, becoming more shallow, the measured depth-averaged concentra-

tion profile would increase in width. While this could be ignored, and Eq. 4 applied

regardless, Dy at that point would no longer be linked directly to flow conditions.

Instead, this bulk spreading can be taken into account using the streamtube model

(Rutherford, 1994).

Considering the general form of Eq. 5, it stands to reason that reach unification

may have some application to the streamtube model to allow for a direct prediction

downstream of several different cross-sections. In Eq. 5, Dq takes the units m5s−2,

which is multiplied by the distance downstream. Following a similar reach unifica-

tion analysis as presented in Sect. 2.1 for Dq, length weighted averaging should be

applied:

Dq =
∑

N
i=1 Dq,i∆xi

∑
N
i=1 ∆xi

(17)

Using the FDM modified to adjust concentrations between sub-reaches using the

streamtube principle and investigating a channel of increasing width confirms this

result. The FDM also shows that reach unified Dq cannot be calculated directly from

reach unified characteristics and Eq. 6 and instead Dq for each sub-reach must be

calculated before reach unification.

The appearance of length weighted averaging for Dq in Eq. 5, as opposed to travel

time weighted averaging for Dy in Eq. 4 is of interest. Particularly, three different

solutions to the ADE, longitudinal routing, transverse routing, and the streamtube

solution, all have different equations of reach unification. (Recall that for longitu-

dinal routing it is a function of both travel time and velocity.) This result suggests

that, at least in the case of ADE solutions with an exponential function, the variables

inside the exponential (ignoring the distance/velocity square term and dispersion co-

efficient) indicate the type of averaging for reach unification.
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3.2 Relating observed dispersion coefficient to reach characteristics

Reach unification is of significant interest to the inverse problem. That is, as opposed

to knowing channel characteristics, calculating a dispersion coefficient, and making

a prediction, instead using concentration data to obtain a dispersion coefficient and

relating it to the channel characteristics. This challenge is one of the most widely

investigated in dispersion, and numerous studies have attempted to derive predictors

for the dispersion coefficient as a function of channel characteristics (e.g., Ruther-

ford, 1994; Guymer, 2002; Boxall and Guymer, 2003; Zeng and Huai, 2014). This

type of study is most often conducted for longitudinal dispersion and particularly

in rivers that may vary over significant distances. How channel characteristics are

distilled to a single value for comparison to experimentally derived dispersion coef-

ficient values could significantly affect derived relationships.

To illustrate the impact of reach unification on dispersion coefficient predictors,

the random channel characteristics have been used to re-derive the slope coefficient

of the Dy relationship used to create the data (0.1300 in Eq. 15). The slope coefficient

was best fit to the known Dy and the reach unified and length weighted channel

characteristics with the y-intercept forced to be 0, i.e., 0 dispersion at 0 velocity.

Fig. 4a-b compares Dy predicted using the new best-fit reach unified and length

weighted slope coefficients to the actual dispersion coefficient.

The original slope coefficient of 0.1300 was recovered when using reach unified

channel characteristics. Note that for reach unification, α =
√

f/8 and αi =
√

fi/8

in Eq. 14. Applying length weighted averaging gives a slope coefficient of 0.1047, a

reduction of 23%, and shows significant scatter. While it follows the same trend, if

only limited results were obtained, e.g., during fieldwork, a greater difference in the

slope coefficient, and hence predictor, might be obtained. Sonnenwald et al (2023)

show a similar result when comparing Dx over multiple sub-reaches averaged using

different methods to the known Dx.

To further investigate averaging method, Fig. 4c-d show the results of other com-

binations of travel time and length weighted averaging. Fig. 4c combines travel time

weighted averaging of U with length weighted averaging of f . Nearly the original

slope coefficient, 0.1260, is obtained, showing the travel time weighted averaging of

U to be critical. In contrast, Fig. 4d shows travel time weighted averaging of both U

and f . While a similar slope of 0.1373 is again obtained, there is significantly more

scatter. Both highlight the need for the appropriate averaging method to be applied

to each variable.

The results shown here may in part explain one of the sources of error that has

long plagued the mixing community when attempting to identify the dispersion co-

efficient predictors. Considering the need to, e.g., square a channel characteristic

before applying Eq. 14 to obtain the reach unified characteristic, it is clear that there

are implications for regression analysis when exponents are fit. Exponents should

ideally be fit before averaging, although the low scatter of Fig. 4c suggests that in a

first pass with exponents fit after reach unification, the correct functional form could

still be identified.
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4 Conclusions

The reach unification approach incorporates the characteristics (such as velocity,

width, or dispersion coefficient) of each varying sub-reach into to the equivalent

single reach values needed to make a direct downstream prediction when using sim-

plified solutions to the Advection-Dispersion Equation (ADE). In this paper it is

proposed, and shown, that reach unification is possible for the transverse ADE and

is different than for the longitudinal ADE.

Reach unification for the transverse ADE consists of travel time weighted aver-

aging of the transverse dispersion coefficient and longitudinal velocity, and length

weighted averaging of other channel characteristics. This was confirmed using a

finite difference model of the depth-averaged two-dimensional ADE to generate

synthetic concentration data of a channel with multiple sub-reaches of varying ve-
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Fig. 4 Comparison of the known Dy and Dy predicted using a reach unified, b length weighted, c

travel time weighted U and length weighted f , or d travel time weighted reach characteristics and,

for each, the slope coefficient best-fit between the known Dy and those channel characteristics.
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locity and roughness. These were predicted directly using reach unified dispersion

coefficients with perfect agreement.

To account for changes in bathymetry when investigating transverse dispersion,

reach unification can be combined with the streamtube model, in which case the

reach unified transformed transverse dispersion coefficient is length weighted. The

appropriate reach unification equations for the solution to the ADE of interest must

be used, be that longitudinal, transverse, streamtube, or otherwise, and these are

indicated by the variables in the solution.

Reach unification is of interest both when making predictions and when analysing

experimental results, e.g., when linking observed dispersion to channel characteris-

tics. The results show that if reach unification is applied, the original form of the

dispersion coefficient relationship used when generating the synthetic data can be

recovered. The use of incorrect averaging of channel characteristics, however, could

result in an incorrect functional form or inaccurate model coefficients being identi-

fied. Special care should be taken when conducting regression analysis.
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