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Transcriptomic and co-
expression network analyses
on diverse wheat landraces
identifies candidate master
regulators of the response
to early drought

Liam J. Barratt †, Isaac J. Reynolds †, Sara Franco Ortega

and Andrea L. Harper*

Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York,

York, United Kingdom

Introduction: Over four billion people around the world rely on bread wheat

(Triticum aestivum L.) as a major constituent of their diet. The changing climate,

however, threatens the food security of these people, with periods of intense

drought stress already causing widespread wheat yield losses. Much of the research

into the wheat drought response has centred on the response to drought events

later in development, during anthesis or grain filling. But as the timing of periods of

drought stress become increasingly unpredictable, amore complete understanding

of the response to drought during early development is also needed.

Methods: Here, we utilized the YoGI landrace panel to identify 10,199 genes

which were differentially expressed under early drought stress, before weighted

gene co-expression network analysis (WGCNA) was used to construct a co-

expression network and identify hub genes in modules particularly associated

with the early drought response.

Results: Of these hub genes, two stood out as novel candidate master

regulators of the early drought response – one as an activator (TaDHN4-D1;

TraesCS5D02G379200) and the other as a repressor (uncharacterised gene;

TraesCS3D02G361500).

Discussion: As well as appearing to coordinate the transcriptional early drought

response, we propose that these hub genes may be able to regulate the

physiological early drought response due to potential control over the

expression of members of gene families well-known for their involvement in the

drought response inmany plant species, namely dehydrins and aquaporins, as well

as other genes seemingly involved in key processes such as, stomatal opening,

stomatal closing, stomatal morphogenesis and stress hormone signalling.
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Introduction

Triticum aestivum L. (bread wheat) is relied upon by billions of

people as a primary source of both calories and protein (Pfeifer

et al., 2014; Food and Agriculture Organization of the United

Nations et al., 2018). As the global population continues to grow,

the number of livelihoods that will be dependent on the success of

wheat crop yields is staggering. To meet this demand, therefore, the

yields of key crops like wheat need to increase by at least 50% in the

coming decades (Godfray et al., 2010; Tilman et al., 2011; Ray et al.,

2013). The changing climate poses a major threat to this necessary

yield increase, however, with rising global temperatures leading to

the depletion of water supplies and periods of intense drought stress

(Hansen et al., 2006). Drier growth conditions paired with reduced

water supply is of particular concern for the agricultural sector, as it

accounts for between 80 and 90% of all freshwater usage, with cereal

crop cultivation alone accounting for 27% (Hoekstra and

Mekonnen, 2012; Ray et al., 2013; Dunn et al., 2019). In the

coming decades, climate change will cause changes in

precipitation patterns that may affect wheat-growing regions

especially severely, with recent work finding that up to 60% of the

current global wheat-growing area may face severe water scarcity by

the end of the century, compared to only 15% currently (Trnka

et al., 2019). As well as the threat that future drought events pose to

wheat crops, drought stress has been causing significant damage

around the world for the last few decades, with 161Mha of wheat

harvested areas experiencing yield loss through drought between

1983 and 2009, equating to an economic loss of $47 billion (Iizumi

et al., 2018; Kim et al., 2019). Therefore, the cultivation of drought

tolerant wheat varieties is of paramount importance, if global wheat

crops are to be protected against the effects of water shortage in a

climate where water supplies are becoming increasingly scarce.

In the present work we examined the effect of drought stress

exposure during early development on gene expression in spring

habit wheat landrace accessions. With spring wheat often being

sown during March in the Northern hemisphere, the present work

mimics drought stress events that occur during April once plants

have germinated and established in fields. Although much of the

work concerning the effect of drought stress on wheat growth

studies the perturbation’s effect on yield (Aprile et al., 2009;

Zhang et al., 2018; Kim et al., 2019; Qaseem et al., 2019; Senapati

et al., 2019; Abou-Elwafa and Shehzad, 2021; Lan et al., 2022; Wan

et al., 2022), periods of water shortage are becoming increasingly

common during the early stages of spring wheat growth, all around

the world. April 2022, for example, was an incredibly dry month for

many of the world’s largest wheat-producing countries, with almost

50% of the United States experiencing moderate to exceptional

drought (NOAA National Centers for Environmental Information,

2022b), whilst large parts of Europe (including major spring wheat-

producing nations such as the United Kingdom) experienced a drier

month than normal (NOAA National Centers for Environmental

Information, 2022a). The pressing nature of this threat to wheat

crops is perhaps reflected in the increasing amount of research into

the effect of drought stress on the early growth of wheat, over the

last few years (Guo et al., 2017; Sallam et al., 2018; Ahmed et al.,

2020; Ahmed et al., 2022; Mahpara et al., 2022; Nardino et al., 2022;

Sharma et al., 2022). These works largely identify tolerant cultivars

for use in breeding programs, but do not aim to understand the

genetic control of the drought response at this stage of development

– something that is relatively understudied, despite its importance

(Ajigboye et al., 2017; Mao et al., 2020; Vuković et al., 2022). The

need, therefore, to better understand the genetic control of the early

drought response in order to aid the production of drought tolerant

wheat varieties is already present, and likely to become more

pressing as temperatures increase and precipitation patterns

change over the coming decades.

Due to the sheer number of genes involved in complex

processes, such as the drought response, identifying those which

play the most pivotal roles can be difficult. The use of weighted gene

co-expression network analysis (WGCNA), however, identifies

groups of genes which are co-expressed across samples, from

which we can identify candidate master-regulators of these

groups of genes (Langfelder and Horvath, 2008; Langfelder and

Horvath, 2012). Such master-regulators of drought-responsive

genes, therefore, are likely to be those which play key roles in the

drought response. The approach has been utilized successfully to

identify “hub genes” in wheat encoding proteins such as

transcription factors, heat shock proteins (HSPs) and regulators

of stress hormone signaling (Lv et al., 2020; Du et al., 2022), which

act to determine a plant’s degree of drought tolerance via their

regulation of other drought-responsive genes. The present work

employs a similar approach, but is distinct from these works due to

its use of wheat landraces: genetically and phenotypically diverse

cultivars selected by local farmers to grow successfully in a vast

array of climates around the world (Zeven, 1998). We have

previously exemplified the genetic diversity of the YoGI landrace

panel, before utilizing it to identify candidate master-regulators, and

genetic markers, of basal early thermotolerance (Barratt et al.,

2023), but the present work represents a novel study into the use

of gene expression data from wheat landraces under drought stress,

to identify candidate master-regulators of the transcriptional early

drought response.

Materials and methods

Selection, growth, and sampling of plants

14 spring habit accessions with a range of drought tolerance

levels were used in the present work (Supplementary Data S1).

Genomic tile plots visualising the A, B, and D genomes for each

accession in the YoGI landrace panel (Barratt et al., 2023) were used

to exclude accessions with significant genomic dominance or

putative rearrangement, and to ensure all accessions used were

hexaploid. Seeds were sown in Levington Advance Seed & Modular

F2S compost mixed with Aggregate Industries Garside Sands 16/30

sand (80:20 ratio), treated with CaLypso insecticide (Bayer

CropScience Ltd., 0.083ml mixed with 100ml water, applied to each

liter of compost) and grown under long day (16/8h, 20°C/14°C)

glasshouse conditions.

Barratt et al. 10.3389/fpls.2023.1212559

Frontiers in Plant Science frontiersin.org02



Four replicates of each accession per group were watered

normally (twice-daily watering, average soil moisture content

(SMC) = 36.6%), until plants in the drought group reached

Zadoks’ growth scale 13 (GS13; Zadoks et al., 1974) whereby

stress was applied by withholding water for a ten-day period.

Normal watering then resumed for three-days to serve as a

recovery period. Four replicates of each accession were grown at

the same time, but not exposed to drought stress. All above-ground

tissue from plants was harvested 13 days after GS13, before biomass

was dried for two days at 70°C and weighed on a scale.

6cm of leaf tissue was collected from wheat seedlings upon

reaching GS13 and at the end of the drought period. Tissue was

collected individually for each sample, and immediately immersed

in liquid nitrogen to prevent nucleic acid degradation. Tissue

samples were stored at -80°C for later processing. At each

sampling stage, as well as after drought recovery (13 days after

GS13), SMC% was recorded using an ML3 Thetaprobe Soil

Moisture Sensor with an HH2 Moisture Meter (Delta-T Devices,

Cambridge, United Kingdom) to quantify the severity of the

drought stress treatment. The probe was inserted into the soil to

its full depth before moisture levels were recorded. Mean SMC% of

conditions, at each time point, were compared via two-sample

t-test.

RNA isolation and sequencing

Total RNA was extracted from ~100 mg of individual leaf tissue

samples using the E.Z.N.A Plant RNA Kit (Omega Bio-Tek, GA,

USA) including a DNase treatment, according to the

manufacturer’s protocol. RNA concentration was quantified

using a Qubit 4 Fluorometer (Life Technologies, CA, USA), while

RNA quality was assessed via both NanoDrop ND-1000

Spectrophotometer (Thermo-Fisher Scientific, MA, USA) and an

Agilent Technology 2100 Bioanalyzer (Agilent Technologies, CA,

USA). Samples with RNA Integrity Number (RIN) values greater

than seven were deemed acceptable for use in subsequent analysis.

Replicates were pooled into one sample per accession, per

treatment, at equimolar proportions. Samples were stored at -80°

C and shipped on dry ice to Novogene (Cambridge, United

Kingdom) for sequencing, using the Illumina Novaseq 6000

platform (Illumina, CA, USA) with a 150bp paired-end strategy.

Our experimental design included both technical and biological

replication. Prior to sequencing, we pooled RNA from 4 replicate

plants per accession, per condition (pre- or post-drought) to help

control the effect of the environment on the transcriptome, whilst

the different accessions provided biological replication for

each treatment.

Data processing, mapping, and
quality control

After sequencing, quality control was carried out using FastQC

(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw reads

were then filtered by trimming low quality sequences (average

Phred score < 15), trimming short length reads (< 36bp), and

clipping Illumina adapters using Trimmomatic v0.39 (Bolger

et al., 2014).

Salmon (Patro et al., 2017) was used to map reads to the IWGSC

Triticum aestivum v1.0 reference assembly (GCA Accession:

GCA_900519105.1) and the updated IWGSC Triticum aestivum

v1.1 gene model annotation. Reference genome and gene model

annotation files used can be found on the International Wheat

Genome Sequencing Consortium (IWGSC) website (https://

www.wheatgenome.org). Salmon’s mapping-based mode was used

to create an index from the reference genome, and then for

quantification of the trimmed reads. Salmon output files were

prepared for differential expression analysis using the R (version

4.1.2.; R R Core Team, 2021) package TxImport (version 1.24;

Soneson et al., 2015), generating a table containing transcript

abundance (TPM), counts, and length from the Salmon

quantification files.

Transcriptomic overview and differential
expression analysis

Transcriptome data were initially explored using Principal

Components Analysis (PCA) function of DESeq2 (version; 1.36.0;

Love et al., 2014). Differential expression analysis was performed on

the raw count data using the R package DESeq2. Genes with < 10

reads were filtered out before running DESeq2. An additive model

was used to identify differentially expressed genes (DEGs) between

pre- and post-drought samples. Expression fold changes were

shrunk using the R package “Ashr” (version; 2.2-54; Stephens,

2017) to account for variability in lowly expressed genes while

preserving large fold changes.

Only genes with a log2FoldChange greater/less than 1.5/-1.5 and

an FDR-adjusted (Benjamini andHochberg, 1995) p-value < 0.05 were

considered significantly differentially expressed and carried forward

for GO enrichment analysis. Differential expression contrasts were

visualised via volcano plots, made using the “ggplot2” package

(version 3.4.0; Wickham, 2009) in R.

DEG gene ontology term
enrichment analysis

To identify gene ontology (GO) terms significantly enriched

amongst upregulated and downregulated DEGs, identified via

DESeq2, GO enrichment analysis was conducted. Because GO

terms were only present for the IWGSC RefSeqv1.0 genome

annotation, we adopted an approach used previously (Borrill

et al., 2019; Andleeb et al., 2023), whereby GO terms are

transferred from the v1.0 annotation to the v1.1 annotation. This

approach transfers the GO terms only from genes which were >99%

identical across >90% of the sequence. The list of these genes can be

found in Andleeb et al. (2023). IWGSC v1.0 GO terms were

retrieved from: https://opendata.ear lham.ac.uk/wheat/

under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-

Transcr iptome-Landscape/data/TablesForExplorat ion/

Barratt et al. 10.3389/fpls.2023.1212559
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FunctionalAnnotation.rds. This RDS file was read in to R using the

readRDS() function (in base R), prior to analysis.

GO terms associated with upregulated and downregulated DEGs

were collated into two groups and submitted to the agriGO Singular

Enrichment Analysis tool (Du et al., 2010; Tian et al., 2017). A

Fisher’s exact test was performed for each DEG group with the GO

terms of all genes obtained after count filtering by DESeq2 serving as

background; 0.05 as the p-value threshold; Hochberg (FDR) as the

multi-test adjustment method (Benjamini and Hochberg, 1995), and

5 as the minimum number of mapping entries threshold. A GO term

was considered enriched when its FDR-adjusted p-value was < 0.05.

GO terms that were significantly enriched amongst upregulated and

downregulated genes, compared to the background, were obtained

for Biological Process (BP), Molecular Function (MF), and Cellular

Component (CC) categories, elucidating gene function and

localisation within these DEG groups.

Network construction and
module detection

TPM data obtained from leaf tissue samples taken before and

after drought stress exposure, described here, were used to construct

a single co-expression network in R (version 3.6.3), using the

WGCNA package (version 1.72-1; Langfelder and Horvath, 2008;

Langfelder and Horvath, 2012). 21,870 genes were removed due

to too many zero values, leaving 84,888 genes, from 28 samples

(14 accessions before and after drought stress) for network

construction. Blockwise network construction and module

detection was conducted using the blockwiseModules() function

according to its default parameters, with several exceptions:

network type = signed hybrid, maximum block size = 5000, soft

threshold power = 16 (the first power to exceed a scale-free topology

fit index of 0.9), minimum module size = 30, merge cut height =

0.25. The exportNetworkToCytoscape() function was used after

module detection to create edge and node files for module

visualization in Cytoscape. A threshold of 0.1 was used to filter

out weak connections between genes.

Module GO term enrichment analysis

The agriGO v2.0 Singular Enrichment Analysis tool (Du et al.,

2010; Tian et al., 2017) was used to identify gene ontology (GO) terms

significantly enriched in each module. To do this, GO terms of genes

in each module were compared to GO terms of all genes in the co-

expression network. The parameters used were the same as those

described for the DEG GO term enrichment analysis above. GO

terms used were also retrieved using the method described above.

DEG enrichment analysis

10,199 of the 84,888 genes included in the network were

deemed to be DEGs – equating to 12% of all genes. If DEGs were

distributed across modules accordingly to module size, we would

expect each module to contain this proportion of DEGs. To

determine whether the observed proportion of DEGs in each

module was significantly greater than this predicted proportion,

we used a one-proportion Z test. Modules were deemed to be

significantly enriched in DEGs if p < 0.05.

Network visualization and
hub identification

To identify hub genes, degree (connection) scores were calculated

for each gene within a module, either using the Cytoscape (version

3.9.1.; Shannon et al., 2003) network analyser tool (Assenov et al.,

2008), or by counting the number of connections to and from each

gene in the WGCNA edge file, using the table() function in R. The

script used to calculate degree scores in R is available on GitHub

(https://github.com/andreaharper/HarperLabScripts/). Cytoscape

was used to visualize modules, and for hub gene identification in

the majority of cases, however particularly large modules are often

difficult to load, view and analyze in Cytoscape. In these cases

(modules containing ~2000 genes or more), R was used to calculate

degree score in the same way as in Cytoscape (i.e. counting the

number of connections to and from each gene in the WGCNA edge

file). Those genes in a module with the highest degree scores (most

connections) were identified as the central hubs. In some cases,

however, multiple genes within a module shared the highest degree

score, whilst in other modules, the highest scoring genes were not

found to be differentially expressed under drought conditions. In

these cases, the highest-scoring DEG was identified as the module’s

hub gene, as these genes are both differentially expressed and well

connected within the module, and so are more likely to regulate the

transcriptional drought response, than a well-connected non-DEG.

Those modules found to be significantly enriched in the “response to

water” (GO:0009414) GO term (black and turquoise) were also

amongst the largest in the co-expression network. These modules,

therefore, likely contain genes involved in diverse processes – so,

to focus on the response to water, subnetworks were created

using genes annotated with the “response to water” (GO:0009414)

GO term within the module as guide genes. It was thought that

by only examining the connections to and from these genes, the

subsequently identified hub gene would be a better candidate

regulator of the drought response, than the hub gene of the entire,

much larger, module. As with the other modules, the most well-

connected DEG was identified as the hub gene in these subnetworks.

Results

Drought stress exposure

Drought stress was found to have a significant effect on plant

growth, as both fresh and dry weight differed significantly (t-test:

both p < 2.2e-16) between stressed and control plants (Figure 1A).

Soil Moisture Content (SMC%) was measured over the course of the

experiment (Figure 1B), with the drought stress treatment causing

SMC% values of the control and drought groups to differ

Barratt et al. 10.3389/fpls.2023.1212559
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significantly (p < 2.2e-16) ten days after Zadoks’ growth scale 13

(GS13; Zadoks et al., 1974). No significant difference was identified

between the two groups at GS13, before the start of the drought

period (p = 0.179). A significant difference in SMC% was observed

between the two groups at harvest (p = 0.0006), however. Although

statistically significant, the difference in SMC% between the groups

at harvest was slight, with average SMC% for both the control

(45.9%) and drought (49.5%) groups being within the expected

ranges for normal watering conditions. Data used to produce

Figures 1A, 1B are available in Supplementary Data S2.

Transcriptome sequencing, quantification,
and overview

921.6 Gb of raw data was generated as a result of sequencing with

the Illumina paired-end Novaseq 6000 platform. From 28 samples

(pooled RNA samples from 4 replicate plants, for each of the 14

accessions, before and after drought stress), 1.465 x 109 reads were

generated; an average of 97.3% and 92.6% of bases had a q-value of ≥

20 and ≥ 30, respectively, with an error probability of 0.03. GC content

of the reads ranged from 53.4% to 57.2%. Data quality was assessed

using FastQC, with data for each sample being deemed acceptable,

before pre-processing and then quantification with Salmon. Average

mapping rate across all samples was 61%. Raw sequence read data were

deposited in NCBI’s Gene Expression Omnibus (GSE225797).

Counts of all 28 samples were variance-stabilised using DESeq2

and analysed using principal component analysis (PCA, Figure 1C).

The clustering of the samples indicated that the variance within

each group was smaller than the variance between groups, however

there was more variance on PC2 after drought than before. PC1 and

PC2 accounted for 67.9% of the total variance; PC1 (which

explained 62.7% of the variation) was able to provide separation

between the samples taken before and after drought stress, while

B

C D

A

FIGURE 1

Drought treatment resulted in substantial differences across the panel in both phenotypic measurements and transcriptomic profiles. Ten days of

drought stress was found to significantly reduce (t-test: both p < 2.2e-16) average fresh weight by 42.9% and average dry weight by 34.8% (A), while

soil moisture content (SMC%) was significantly different at the end of the drought treatment (B). No significant difference was observed between

control and drought groups at the start of the drought period. ‘Harvest’ refers to the end of the 3-day recovery period after the end of the drought

period, where all above-ground biomass was harvested per individual. Asterisks (A, B) represent significance thresholds; ‘***’ represents p < 0.001.

‘N.S’ represents no significance. An initial exploration of samples and expression data suggested that samples before and after drought had distinct

transcriptional profiles (C, D). Principal component analysis (PCA) of variance-stabilised transcript counts from all 28 samples (C) showed clear

separation between the two groups on PC1, while differential expression analysis identified 10,199 DEGs with differing expression before and after

drought, visualised via a volcano plot (D). Dashed lines indicate DEG thresholds: vertical lines represent the log2FC thresholds of ±1.5, horizontal

lines represent the p-value threshold of 0.05. DEGs that meet the criteria are beyond these threshold lines, coloured in light blue. The x-axis

represents the log2FC, while the y-axis represents the negative log10 of the p-value for each gene.
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PC2 provided separation potentially relating to a spread of tolerance

phenotypes across the accessions, albeit explaining far less of the

overall variance than PC1.

Identification and functional analysis
of drought-responsive genes via
differential expression and gene
ontology enrichment analyses

To investigate the genes that responded to drought stress in

wheat leaves during early growth stages, we carried out differential

expression analysis between samples taken before and after drought

stress. Genes were deemed to be differentially expressed (DEGs)

when their FDR-adjusted p-value < 0.05, and their log2FoldChange

greater/less than 1.5/-1.5.

We identified a total of 10,199 DEGs; 6051 and 4148 with

significantly increased and decreased expression, respectively, in

response to drought (Figure 1D). Wide dispersion of the genes in

Figure 1D suggests a high level of difference in gene expression

between the two groups. Normalised expression data from DESeq2

and differential expression analysis results can be found in

Supplementary Data S3, S4, respectively.

To investigate gene function among DEGs, we conducted GO

enrichment analysis on both the upregulated and downregulated

genes. 231 GO terms were enriched amongst the upregulated genes,

while 258 GO terms were enriched amongst from downregulated

genes. Output from GO enrichment analyses can be found in

Supplementary Data S5, S6.

GO terms related to the stress response were enriched amongst

upregulated genes, such as; “response to water” (GO:0009415, FDR =

4.90e-27), “response to stress” (GO:0006950, FDR = 9.70e-11),

“response to abiotic stimulus” (GO:0009628, FDR = 9.50e-16), and

“response to oxidative stress” (GO:0006979, FDR = 0.0016). Other

enriched terms were related to cell wall maintenance (“cell wall

organization or biogenesis”, GO:1903338, FDR = 5.10e-07; “cell

wall biogenesis”, GO:0042546, FDR = 2.10e-05), and regulation of

gene expression and transcription (“regulation of RNA transcription,

DNA-templated”, GO:0006355, FDR = 5.00e-19; “regulation of gene

expression”, GO:0010468, FDR = 4.60e-18). The most significant

enriched GO term was “response water”, followed by “response to

acid chemical” (GO:0001101, FDR = 4.90e-27), and “oxidation-

reduction process” (GO:0055114, FDR = 1.70e-23).

By contrast, GO terms enriched amongst downregulated genes

were related to processes such as photosynthesis (“photosynthesis”,

GO:0015979, FDR = 3.10e-76; “thylakoid”, GO:0009579, FDR =

1.20e-72; “chloroplast”, GO:0009507, FDR = 3.70e-07), homeostasis

(“cellular homeostasis”, GO:0019725, FDR = 1.00e-11), and

substance transport (“transport”, GO:0006810, FDR = 0.0019).

Identifying stress-associated modules in
co-expression network

The co-expression network contained 84,888 genes, housed

within 81 modules (Supplementary Data S7). Mean module size

was 1048, whilst median module size was 165. Module size ranged

from 30 to 19,380 genes.

To identify modules associated with the drought response, we

conducted GO enrichment analysis on each module, using all the

genes included in network construction as background. We

expected that modules containing genes involved in regulating the

drought response would be enriched in stress-associated GO terms

such as “response to water” (GO:0009414), “response to stress”

(GO:0006950), or “response to abiotic stimulus” (GO:0009628).

10 of the 81 modules were significantly enriched in such GO

terms (Table 1), with the black and turquoise modules being

enriched in the GO term “response to water” (FDR = 4.8e-08 and

0.029, respectively).

To gain further insight into which modules may contain genes

particularly associated with the drought response, DEG enrichment

analysis was conducted. 10,199 genes (12% of the genes included in

the co-expression network) were deemed to be DEGs. If the number

of DEGs was distributed across modules according to size, we would

expect 12% of the genes in each module to be DEGs. We found that

17 modules contained a significantly higher proportion of DEGs

than expected (Table 2), and so represent groups of co-expressed

genes involved in the drought response – the hub genes of these

modules, therefore, are promising candidates for master-regulators

of the transcriptional drought response.

Combined, these analyses identified modules which were

particularly stress-associated, either as a result of the enrichment

of stress-associated GO terms, or the enrichment of DEGs. Only

TABLE 1 10 modules were significantly enriched in GO terms related to

the stress response, according to GO enrichment analysis by the AgriGO

v2.0 Singular Enrichment Analysis tool (Du et al., 2010; Tian et al., 2017).

Module Enriched GO Term

Black Response to Water (4.8E-08)

Blue Protein Phosphorylation (1.8E-110)

Response to Stress (3.5E-06)

Cyan Organonitrogen Compound Biosynthetic Process (5.3E-45)

Response to Heat (6.2E-05)

Darkolivegreen Protein Phosphorylation (6.3E-09)

Response to Oxidative Stress (0.0023)

Magenta Regulation of Multi-organism Process (8.7e-07)

Regulation of Response to Stress (8.7e-07)

Midnightblue Regulation of Primary Metabolic Process (0.046)

Trehalose Biosynthetic Process (0.046)

Purple Cellular Response to Stress (1.4e-06)

Salmon Carbohydrate Metabolic Process (5.9E-10)

Response to Oxidative Stress (0.031)

Tan Phenylpropanoid Metabolic Process (1.8E-06)

Response to Oxidative Stress (0.005)

Turquoise Cellular Localization (1.5E-55)

Response to Water (0.029)

The modules enriched in such GO terms are listed, as well as the most significantly-enriched

GO term, and the stress-associated GO term they were also enriched in, respectively. In the

instances where stress-associated GO terms were the most significantly enriched term in a

module, only that term is given. The FDR-adjusted Fisher exact test p-values associated with

each enriched GO term are given in brackets.
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hub genes from those modules listed in Tables 1, 2, therefore,

were examined further to determine whether they may be

promising candidate master-regulators of the transcriptional early

drought response.

Hub gene identification

The hub genes within those modules deemed to stress-

associated (Tables 1, 2) may act as master-regulators of the

transcriptional drought response, as they are significantly co-

expressed with many stress-associated and/or drought-responsive

genes. These hub genes (Table 3) seemingly play roles in diverse

processes, such as stress hormone signalling (TraesCS6A02G340100

and TraesCS4D02G325200) or the biotic stress response

(TraesCS5A02G052600 and TraesCSU02G171500). One hub gene,

meanwhile, was found to be drought-responsive in the present

work, but is likely a key actor in photosynthesis, and so is probably

required to aid growth and development under normal conditions

(TraesCS6D02G247400), whereas others were completely

uncharacterized and do not share sequence identity with any well

understood gene (TraesCS3D02G361500, TraesCS4D02G251500,

TraesCS4A02G212000, and TraesCS4A02G190700), making their

potential role as regulators of the drought response completely

novel. Modules which were particularly large likely contained genes

involved in diverse processes. Some of the largest modules were also

significantly enriched in the “response to water” (GO:0009414) GO

term, therefore to identify candidate master-regulators of processes

of interest (namely, the drought response) subnetworks were

created using genes annotated with this GO term as guide genes.

This was done for the black and turquoise modules, with the

subsequent subnetworks’ hub genes (TraesCS5D02G379200 and

TraesCS6D02G234700, respectively) being identified as dehydrins.

Hub genes in these stress-associated modules (Table 3) represent

valuable targets for further inquiry into the regulation of the

transcriptional drought response, and as targets for breeders in

for the production of drought tolerant varieties. However, two of

these hub genes, TraesCS5D02G379200 (TaDHN4-D1) and

TraesCS3D02G361500 (uncharacterised gene), were deemed to be

particularly promising candidates as master-regulators of both the

transcriptional and physiological drought responses, due to the likely

functions of the genes they were connected to in the co-expression

network. TraesCS5D02G379200may regulate the expression of a suite

of fellow dehydrins, as well as stress-responsive transcription factors

and genes which may affect stomatal dynamics – all of which show

significant up-regulation of expression under drought stress.

TraesCS3D02G361500 may also regulate the expression of genes

likely involved in controlling stomatal dynamics, as well as other

potentially guard cell-localized genes involved in stomatal

morphogenesis, and several aquaporins – however, unlike

TraesCS5D02G379200, the hub, and the genes it is connected to,

are downregulated significantly under drought stress.

TABLE 2 17 modules were significantly enriched in DEGs.

Module Number of Genes Observed Percentage of DEGs p-value Mean log2-Fold Change of DEGs

Bisque4 111 23 3.23E-04 2.99

Black 2184 21 2.22E-38 3.41

Brown 3396 69 0 -2.58

Darkolivegreen 312 49 1.91E-90 -2.62

Greenyellow 1516 20 5.37E-22 3.7

Ivory 136 71 1.91E-98 -2.76

Lightsteelblue1 163 24 1.40E-06 3.66

Mediumpurple3 165 21 0.0001 2.34

Orangered4 174 40 1.06E-30 2.87

Plum2 105 22 0.0009 2.89

Skyblue 624 27 1.54E-29 -2.85

Steelblue 512 19 3.31E-07 -2.97

Turquoise 19380 15 2.18E-32 3.1

Yellow 2709 25 6.42E-96 2.55

Darkviolet 41 22 0.025 -2.39

Grey60 1024 14 0.027 -2.72

Salmon 1433 15 9.10E-05 3.23

These modules contained a significantly higher proportion of DEGs than expected should the total number have been distributed across modules according to their size (12%). These modules are

listed, as well as the number of genes in each module, the proportion of these genes which were observed to be DEGs, the p-value result from the one-proportion Z-test, and the mean log2-fold

change values of the DEGs within each module.
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TABLE 3 Hub genes identified in stress-associated modules may be strong candidates for master-regulators of the drought response, based on their

high number of connections to other genes within stress-associated modules.

Hub Gene Module Log2FC BLAST Hit Putative
Function

Reference

TraesCS4D02G251500 Bisque4 1.99 Aegilops tauschii subsp. strangulata B3 domain-

containing protein Os03g0212300

Uncharacterized

TraesCS5D02G379200 Black 5.87 TaDHN4-D1 Drought tolerance

and drought response

(Hao et al., 2022)

TraesCS5D02G194500 Blue 2.04 Aegilops tauschii subsp. strangulata senescence-

induced receptor-like serine/threonine-protein

kinase

Senescence (Shin et al., 2019)

TraesCS6D02G247400 Brown -2.26 T. aestivum phosphoribulokinase, chloroplastic-like Calvin Cycle,

Response to salt

stress

(Xu et al., 2016; Yu et al.,

2020a)

TraesCS5A02G087200 Cyan -1.64 Triticum aestivum psbP domain-containing

protein 1, chloroplastic-like

Photosystem I

assembly factor

(Liu et al., 2012)

TraesCS5A02G052600 Darkolivegreen -3.28 Triticum aestivum probable glucan 1,3-beta-

glucosidase A

Response to fungal

pathogen

(Münch-Garthoff et al., 1997)

TraesCS2D02G127000 Darkviolet -2.02 Triticum aestivum quinone-oxidoreductase QR2-

like

Protection against

oxidative stress

(Greenshields et al., 2005)

TraesCS4A02G212000 Greenyellow 5.23 Triticum aestivum uncharacterized LOC123082151 Uncharacterized

TraesCS7A02G034500 Grey60 -3.76 TaGSTU6 Cold tolerance (Lv et al., 2022)

TraesCS3D02G361500 Ivory -3.75 T. aestivum uncharacterized LOC123079795 Uncharacterized

TraesCSU02G171500 Lightsteelblue1 2.97 Triticum aestivum esterase PIR7B-like Biotic stress response (Wäspi et al., 1998)

TraesCS2A02G129200 Magenta 1.67 Triticum aestivum cytochrome b561 and DOMON

domain-containing protein At5g47530-like

Electron transport (Asard et al., 2013)

TraesCS5A02G477300 Mediumpurple3 2.01 Triticum aestivum zinc finger protein ZAT8-like Regulation of

programmed cell

death

(Feng et al., 2023)

TraesCS3D02G144500 Midnightblue 3.3 Triticum aestivum protein RICE FLOWERING

LOCUS T 1-like

Flowering activator (Komiya et al., 2008; Komiya

et al., 2009; Ogiso-Tanaka

et al., 2013)

TraesCS6A02G340100 Orangered4 2.23 Triticum urartu ethylene-responsive transcription

factor ERF018-like

Regulation of

ethylene and ABA

signalling

(Chen et al., 2016)

TraesCS7D02G220700 Plum2 2.45 Triticum aestivum probable serine/threonine-

protein kinase PBL7

Regulation of

brassinosteroid

signalling

(Nolan et al., 2017)

TraesCS4A02G462000 Purple 1.5 Triticum aestivum noroxomaritidine synthase

2-like

Noroxomaritidine

synthesis

(Singh and Desgagné-Penix,

2017)

TraesCS2D02G224200 Salmon 10.36 Triticum aestivum isocitrate lyase Glucnoegenesis, Salt

tolerance

(Runquist and Kruger, 1999;

Yuenyong et al., 2019)

TraesCS1A02G314800 Skyblue -2.73 Triticum aestivum high molecular mass early light-

inducible protein HV58, chloroplastic-like

Cold tolerance (Lee et al., 2020)

TraesCS4A02G190700 Steelblue -1.84 Triticum aestivum uncharacterized LOC123082090 Uncharacterized

TraesCS2D02G518200 Tan 1.74 Triticum aestivum tryptophan decarboxylase 1-like Serotonin

biosynthesis

(Kang et al., 2009)

TraesCS6D02G234700 Turquoise 2.43 Triticum aestivum dehydrin COR410-like

(COR410)

Cold tolerance (Danyluk et al., 1994; Danyluk

et al., 1998)

TraesCS4D02G325200 Yellow 1.65 A. tauschii subsp. strangulata serine/threonine-

protein kinase BSK1-2

Regulation of

brassinosteroid

signalling

(Nolan et al., 2017)

Each hub gene’s module membership and log2FC are given, as well as their identity and putative function.
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Discussion

Utilizing landraces to future-proof
wheat crops

It is widely believed that landraces are an important genetic

resource available to breeders for the production of more climate-

resilient wheat varieties, thanks to their extensive phenotypic and

genetic diversity (Zeven, 1998; Reynolds et al., 2007; Corrado and

Rao, 2017; Schmidt et al., 2019; Cseh et al., 2021; Tehseen et al., 2022).

This diversity has been extensively exploited in grass crops such as rice

and barley, with many landrace accessions either being screened for

drought tolerance (Van Oosterom et al., 1993; Tardy et al., 1998;

Munasinghe et al., 2017; Dbira et al., 2018; Kumar et al., 2019; Mishra

et al., 2019; Boudiar et al., 2020; Sabouri et al., 2022; Bakhshi and

Shahmoradi, 2023), utilized to identify the genetic determinants of

drought tolerance (Yu et al., 2012; Fan et al., 2015; Reinert et al., 2016;

Hoang et al., 2019; Beena et al., 2021), or used to better understand the

drought response (Cantalapiedra et al., 2017; Khodaeiaminjan et al.,

2023).Wheat landraces, however, remain relatively underutilized in the

study of drought tolerance and the drought response (Dodig et al.,

2012; Lin et al., 2019; Naderi et al., 2020; Gómez-Espejo et al., 2022).

After highlighting both its extensive genetic diversity, and its usefulness

in the study of early thermotolerance (Barratt et al., 2023), here we

show the YoGI landrace panel can also be used to effectively study the

response to early drought stress, and aid the production of drought

tolerant wheat varieties.

The effect of drought stress on yield is well studied (Zhang et al.,

2018; Kim et al., 2019; Qaseem et al., 2019; Senapati et al., 2019; Abou-

Elwafa and Shehzad, 2021; Lan et al., 2022; Wan et al., 2022), but as the

climate continues to change, periods of water shortage coinciding with

the early growth stages of spring wheat crop growth are likely to

become more common around the world. There has already been

evidence of this, with major spring wheat-producing countries such as

the USA and the UK experiencing drier than average periods in the

months after spring wheat sowing (NOAA National Centers for

Environmental Information, 2022a; NOAA National Centers for

Environmental Information, 2022b). The majority of the work

examining the effect of drought stress on wheat seedling growth has

not aimed to identify regulators of the drought response during this

early stage of development, however (Guo et al., 2017; Sallam et al.,

2018; Ahmed et al., 2020; Ahmed et al., 2022; Mahpara et al., 2022;

Nardino et al., 2022; Sharma et al., 2022) – something that remains

relatively understudied (Ajigboye et al., 2017; Mao et al., 2020; Vuković

et al., 2022). The present work, therefore, takes a novel approach to

elucidate how the early drought response is transcriptionally controlled

in wheat landraces, and represents a promising step towards the

production of more drought tolerant varieties.

Drought stress causes substantial changes
in the wheat transcriptome

Our analysis demonstrates that the expression profiles of spring

wheat are vastly different before and after drought; over 10,000 genes

were differentially expressed between the two groups. GO term

enrichment analysis of DEGs indicated that growth and development

was deprioritized; DEGs annotated with photosynthesis-, and

chlorophyll-related GO terms were largely downregulated. Similarly,

there was widespread downregulation of genes annotated with

enriched Cellular Component GO terms such as “thylakoid”,

suggesting a reduction in light-dependent reactions. Photosynthetic

regulation is associated with both oxidative and drought stress

responses; stress-related changes in photosynthetic activity under

various environmental stress conditions have been identified in other

cereals such as rice (Gan et al., 2019; Yu et al., 2020b), as plants seek to

limit damage to critical components. Downregulation of genes involved

in photosynthesis under drought is common among grasses, with studies

in Miscanthus (De Vega et al., 2021), Brachypodium distachyon (Priest

et al., 2014), and rice (Liang et al., 2021) demonstrating similar trends.

Reduced photosynthetic activity can result in an excess of

absorbed light energy, inducing the generation of toxic reactive

oxygen species (ROS; Pospıśǐl, 2016). GO enrichment analyses

conducted on both up- and downregulated DEGs identified a

number of enriched GO terms (such as “response to oxidative

stress”) involved in both the production and mitigation of ROS and

other oxidative agents. Both up- and down-regulation of genes

involved in cellular oxidation and reduction has previously been

observed in other grasses, like rice (Sirohi et al., 2020). ROS

accumulation, while promoting immune responses and stomatal

guard cell closure (Song et al., 2014), can also cause oxidative

damage to DNA and photosynthetic machinery, potentially leading

to cell death (Huang et al., 2019; Ye et al., 2021). DEGs annotated

with such terms were primarily identified as peroxidases and

oxidases; their presence among both up- and downregulated

DEGs is likely due to their cellular localization, mediating ROS

accumulation in some tissues over others (Csiszár et al., 2012).

Our GO enrichment of the upregulated genes identified a

number of DEGs annotated with drought- and osmotic-stress

enriched GO terms. These genes included a variety of dehydrins

and other late embryogenesis abundant (LEA) genes, known key

actors in various abiotic stress responses in wheat (Kosová et al.,

2014; Hassan et al., 2015; Liu et al., 2019). Studies in species such as

B. distachyon and O. sativa were similarly able to identify an

upregulation of dehydrins (Smita et al., 2013; Sancho et al., 2022),

suggesting that this is a common response among grasses.

Downregulation of genes under the term “transport”, which

included genes involved in water transport processes, likely

facilitated the conservation of water for critical organelles and

guard cells, as well as mediating water loss by decreasing

membrane permeability (Maurel et al., 2008; Patel andMishra, 2021).

These trends in the expression of stress and growth-associated

genes indicate a shift towards stress-mitigation, often seen with

abiotic stresses such as harsh drought (Zhang et al., 2020).

TaDHN4 may regulate the expression of
dehydrins and drought tolerance genes
under drought stress

The black module was significantly enriched in DEGs (Table 2),

as well as the GO term “response to water” (FDR-adjusted p-value =
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4.8E-08, Table 1), suggesting the module houses genes which play

key roles in the drought response. Due to the size of the module

(2184 genes), it is likely to contain genes involved in various

processes besides the drought response. To focus on those genes

most likely to play a role in the drought response, a subnetwork was

created using the genes within the module which possessed the

significantly enriched GO term “response to water” as guide genes.

The subnetwork contained 1544 genes, and 6562 connections

between genes (Figure 2A).

The central hub gene was TraesCS5D02G379200, which

possessed the enriched GO term “response to water” and was

connected to 1222 other genes in both the full module (where it

had the sixth highest degree score) and the subnetwork. The gene

shares 100% sequence identity with Aegilops tauschii subsp.

strangulata dehydrin DHN2, but has been classed as TaDHN4-D1

in recent work (Hao et al., 2022). We found that expression of the

gene was upregulated significantly (log2FC = 5.87) after drought

stress (Figure 2B); consistent with the commonly observed

expression responses of dehydrins in response to drought stress

(Sun et al., 2021; Tiwari and Chakrabarty, 2021). TaDHN4 belongs

to the YSK2 sub-family of dehydrins (Wang et al., 2014), a sub-

family shown to increase stress tolerance when overexpressed in

Arabidopsis (Brini et al., 2007) and whose expression, consistent

with the present work, was most strongly upregulated in dehydrated

leaves of wheat seedlings (Wang et al., 2014). Four of the five most

well-connected genes in the subnetwork were homeologues, or

duplicates, of TaDHN4; TraesCS5D02G379200 (hub, TaDHN4-

D1), TraesCS5B02G372100 (TaDHN4-B1), TraesCS5B02G372200

(TaDHN4-B2) and TraesCS5A02G369900 (TaDHN4-A2) –

suggesting both that all homeologues share similar expression

responses, and that there is likely functional redundancy amongst

the homeologues, meaning they may all play roles in regulating the

drought response.

Further support for the hypothesis that the hub gene may act as

a master-regulator of the drought response comes from the genes it

is connected to in the subnetwork. We found that the hub was

connected to 220 DEGs in the subnetwork, 62.3% of all DEGs

within it. Amongst these DEGs were several other members of the

B

C D

A

FIGURE 2

Drought-associated modules house candidate master-regulators of the early drought response. To focus on genes likely involved in the drought

response within the large black module, a subnetwork was created (A), whereas the ivory module (C) was small enough to be analysed in its entirety.

The hub genes within the black subnetwork (TraesCS5D02G379200) and ivory module (TraesCS3D02G361500) are highlighted in yellow and

enlarged. Expression of TraesCS5D02G379200 (B) was found to be significantly upregulated (log2FC = 5.87) in response to drought stress, whereas

TraesCS3D02G361500 (D) expression was significantly downregulated (log2FC = -3.75).
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dehydrin family, besides the hub’s homeologues and duplicates to

which it was also connected: TraesCS5B02G426800 (log2FC = 9.89)

encodes T. aestivum dehydrin Rab15-like, whilst TraesCS6A

02G350600 (log2FC = 8.39) is T.aestivum dehydrin DHN3-like.

The hub gene is also connected to other genes with different

functions related to the drought response: TraesCS2D02G364500

(log2FC = 8.83), and its homeologue TraesCS2A02G367700,

are T. aestivum chromosome D caleosin (Clo10) – a member of

another drought-responsive gene family thought to be involved in

the drought response, via action on stomatal aperture and

transpiration (Aubert et al., 2010; Kim et al., 2011). The hub may

also have far-reaching effects on global gene expression, due to its

connection to drought-responsive transcription factors such as

TaNAC29, TraesCS2A02G367700 (log2FC = 7.32), which has been

shown to increase drought and salinity tolerance when expressed in

Arabidopsis (Huang et al., 2015). The hub’s connection to drought-

responsive genes with these kinds of functions further suggests that

it may act as a master-regulator of the drought response.

Dehydrins act as molecular chaperones to maintain protein

structure and functional folding under stressful cellular conditions,

so the hub gene’s ability to regulate gene expression may not be

immediately apparent. Recent evidence, however, suggests that

there are multiple potential mechanisms by which dehydrins can

control the expression of other genes. This can occur as a result of

their chaperone activity, protecting transcription factors and other

transcriptional regulators from damage by cellular stress, ensuring

their function and subsequent effect on gene expression is

maintained (Tiwari and Chakrabarty, 2021). There is also

emerging evidence that dehydrins themselves may act as

transcription factors, with rice lines overexpressing OsDhn-

Rab16D showing increased expression of ABA signalling and

stress-responsive genes (Tiwari et al., 2019). Dehydrins may also

effect gene expression by binding directly to DNA and protecting it

from damage by ROS during stress events; this is not a commonly-

observed role played by dehydrins, however, only being reported in

grape and citrus (Hara et al., 2009; Boddington and Graether, 2019).

Each of these roles would rely on the hub gene protein being

localized in the nucleus, but, according to recent work, the hub gene

appears to be localized to the cytoplasm (Hao et al., 2022). In the

present work, we have seen evidence that the hub gene dehydrin

may act to control the expression of other drought-responsive

dehydrins, as well as several other stress-responsive genes which

seemingly play roles in the drought response, suggesting either the

hub gene may in fact be localized to the nucleus under drought

stress, or that the protection it provides transcriptional regulators in

the cytoplasm is sufficient to allow them to act functionally once

translocated to the nucleus.

Uncharacterized hub gene potentially
controls stomatal dynamics, water
movement and stress hormone signaling
under drought stress

The ivory module (Figure 2C) was identified as drought-

associated, as it was significantly enriched in DEGs (Table 2). The

most well-connected gene in the module was TraesCS3D02G3

61500, with its homeologues (TraesCS3A02G368600 and

TraesCS3B02G400100) also amongst the top five most well-

connected genes in the module. Expression of the hub gene, T.

aestivum uncharacterized LOC123079795, was found to be

downregulated under drought stress (log2FC = -3.75, Figure 2D),

suggesting the gene may play a repressive role during the

transcriptional and physiological drought responses.

35 of the 41 genes the hub was connected to were also DEGs, all of

which were downregulated under drought stress, with several having

functions related to the drought response. TraesCS1A02G070200

(log2FC = -4.79) is T. aestivum jasmonate-induced oxygenase 1-like,

and also shared some sequence identity (69%) to a large region of its

Arabidopsis namesake, and orthologue (identified using Ensembl

Plants; Yates et al., 2022), AtJOX1. The gene is a negative regulator

of jasmonic acid (JA) signaling, conducting hydroxylation of JA,

inactivating it in the signaling pathway (Caarls et al., 2017). JA is

known to accumulate in plant cells during drought stress and increase

tolerance to drought stress in wheat (Wasternack, 2014; Ali and Baek,

2020; Wang et al., 2021). JA has also been shown to act in unison with

ABA to control stomatal closure in Arabidopsis (Hossain et al., 2011),

suggesting the hub gene may be able to determine stomatal aperture

via control over TraesCS1A02G070200 expression, and subsequently,

JA signaling.

The hub gene is also connected to several other DEGs

potentially involved in regulating stomatal opening. AtAO1

plays a role in programmed cell death via its production of

reactive oxygen species, as well as a role in protoxylem

differentiation in root tissue (Møller and McPherson, 1998;

Ghuge et al., 2015a; Ghuge et al., 2015b), and is the Arabidopsis

orthologue (identified using Ensembl Plants; Yates et al., 2022) of

TraesCS4B02G282700 (log2FC = -4.61) which encodes T.

aestivum primary amine oxidase 1-like. As well as this, AtAO1

expression was found to be both induced by methyl-jasmonate,

and localized in guard cells, and other tissues involved in

regulating water homeostasis – leading the authors to suggest

that the gene may play a key role in regulating stomatal closure

(Ghuge et al., 2015b). Previous work suggests AtAO1 promotes

stomatal closure, however here we see TraesCS4B02G282700

expression being downregulated under drought stress,

suggesting it may act to repress stomatal closure in wheat.

TraesCS4A02G398700 (log2FC = -4.2) was also connected to the

hub gene, and similarly may play role in stomatal dynamics. The

gene is T. aestivum GDSL esterase/lipase APG-like, whilst also

sharing sequence identity (66%) with large regions of AtGGL19, a

gene found to be expressed in Arabidopsis guard, pavement and

mesophyll cells, whose expression was also downregulated under

drought stress, suggesting the gene may play a role in stomatal

closure (Xiao et al., 2021). These observations, paired with the

downregulation of TraesCS4A02G398700 under drought stress,

suggest the gene may act to repress stomatal closure.

TraesCS1B02G176000 was another downregulated DEG (log2FC

= -3.96) connected to the hub gene, and encodes T. aestivum

cytokinin dehydrogenase 3-like. The gene appears to also be

involved in stomatal biology, as a result of its inactivation of

cytokinins. However, overexpression of TraesCS1B02G176000’s
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Arabidopsis namesake, AtCKX3, improved drought tolerance in

tomato and Arabidopsis thanks to reduced transpiration, likely

from reduced leaf area and stomatal density (Werner et al., 2010;

Farber et al., 2016). The downregulation of TraesCS1B02G176000

in the present work, however, suggests it may act to increase water

loss, unlike its Arabidopsis namesake. Despite the gene’s name,

TraesCS1B02G176000 showed the highest level of sequence

identity to AtCKX6 – a guard cell-localized gene with a potential

role in stomatal morphogenesis (Werner et al., 2003). Because of

this, and its downregulation under drought stress in the present

work, we suggest that TraesCS1B02G176000 may play a positive

role in stomatal morphogenesis, as reducing the production of

stomata under drought stress is likely to limit the amount of water

loss via transpiration (Bertolino et al., 2019).

Two genes involved in water transport were also connected to

the hub. TraesCS4D02G024400, T. aestivum protein NRT1/PTR

FAMILY 8.3-like, was downregulated under drought stress

(log2FC = -3.34) and shares sequence identity (63%) with a large

region of its namesake, AtNPF8.3. The gene appears to play a role in

water uptake in germinating Arabidopsis seeds, as knockout mutant

seeds showed a 17% lower water content compared to WT (Choi

et al., 2020). TraesCS4B02G310900 (log2FC = -1.74) also appears to

be involved in water transport, as it is T. aestivum aquaporin TIP1-

1-like, but shares marginally more sequence identity with AtTIP2

(73%) than AtTIP1 (72%). The downregulation of these genes under

drought stress in the present work, paired with their membership of

a module containing so many potential guard cell-localized genes,

suggests that these genes may act to control guard cell turgidity, via

their control of water movement in and out of the cells. When guard

cells are turgid, stomata are open, whilst flaccid guard cells cause

stomata to close – suggesting that the downregulation of these water

uptake genes in response to drought stress may be a mechanism to

cause stomatal closure, and prevent excess moisture loss under

water shortage. Recent work has shed light on the relationship

between water uptake proteins, such as aquaporins, and stomatal

dynamics (Grondin et al., 2015; Ding and Chaumont, 2020a; Ding

and Chaumont, 2020b; Cui et al., 2021), suggesting the hub may act

to reduce water loss via its downregulation of these water uptake

genes under drought stress.

Here, we present the YoGI landrace panel as a valuable resource

for the study of the transcriptional control of the drought response,

and useful tool for breeders in the development of climate-resilient

wheat varieties. We identified thousands of genes differentially

expressed before and after exposure to drought stress during early

development. The use of co-expression network analysis allowed us

to identify several hub genes which may act as master-regulators of

the transcriptional early drought response. Two very promising

candidate hub genes, however, may act to coordinate both the

transcriptional and physiological early drought responses, as they

potentially control the drought-responsive expression of stress-

associated genes such as dehydrins, aquaporins and genes

involved in stomatal dynamics. Further work is required,

however, to make the link between the potential action of these

hub genes on drought-responsive gene expression, and the

physiological drought response.
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Gómez-Espejo, A. L., Sansaloni, C. P., Burgueño, J., Toledo, F. H., Benavides-
Mendoza, A., and Reyes-Valdés, M. H. (2022). Worldwide selection footprints for
drought and heat in bread wheat (Triticum aestivum l.). Plants 11, 2289. doi: 10.3390/
plants11172289

Greenshields, D. L., Liu, G., Selvaraj, G., and Wei, Y. (2005). Differential regulation
of wheat quinone reductases in response to powdery mildew infection. Planta 222, 867–
875. doi: 10.1007/s00425-005-0029-7

Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., and Maurel, C.
(2015). Aquaporins contribute to ABA-triggered stomatal closure through OST1-
mediated phosphorylation. Plant Cell 27, 1945–1954. doi: 10.1105/tpc.15.00421

Guo, Q., Wang, Y., Zhang, H., Qu, G., Wang, T., Sun, Q., et al. (2017). Alleviation of
adverse effects of drought stress on wheat seed germination using atmospheric
dielectric barrier discharge plasma treatment. Sci. Rep. 7, 16680. doi: 10.1038/s41598-
017-16944-8

Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., and Medina-Elizade, M. (2006).
Global temperature change. Proc. Natl. Acad. Sci. U. S. A. 103, 14288–14293.
doi: 10.1073/pnas.0606291103

Hao, Y., Hao, M., Cui, Y., Kong, L., and Wang, H. (2022). Genome-wide survey of
the dehydrin genes in bread wheat (Triticum aestivum l.) and its relatives:
identification, evolution and expression profiling under various abiotic stresses. BMC
Genomics 23, 73. doi: 10.1186/s12864-022-08317-x

Hara, M., Shinoda, Y., Tanaka, Y., and Kuboi, T. (2009). DNA Binding of citrus
dehydrin promoted by zinc ion. Plant Cell Environ. 32, 532–541. doi: 10.1111/j.1365-
3040.2009.01947.x

Hassan, N. M., El-Bastawisy, Z. M., El-Sayed, A. K., Ebeed, H. T., and Nemat Alla, M.
M. (2015). Roles of dehydrin genes in wheat tolerance to drought stress. J. Advert. Res.
6, 179–188. doi: 10.1016/j.jare.2013.11.004

Hoang, G. T., Van Dinh, L., Nguyen, T. T., Ta, N. K., Gathignol, F., Mai, C. D., et al.
(2019). Genome-wide association study of a panel of Vietnamese rice landraces reveals
new QTLs for tolerance to water deficit during the vegetative phase. Rice 12, 4.
doi: 10.1186/s12284-018-0258-6

Hoekstra, A. Y., and Mekonnen, M. M. (2012). The water footprint of humanity.
Proc. Natl. Acad. Sci. U. S. A. 109, 3232–3237. doi: 10.1073/pnas.1109936109

Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., and Murata, Y.
(2011). Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal
closure in arabidopsis. Plant Physiol. 156, 430–438. doi: 10.1104/pp.111.172254

Huang, H., Ullah, F., Zhou, D.-X., Yi, M., and Zhao, Y. (2019). Mechanisms of ROS
regulation of plant development and stress responses. Front. Plant Sci. 10. doi: 10.3389/
fpls.2019.00800

Huang, Q., Wang, Y., Li, B., Chang, J., Chen, M., Li, K., et al. (2015). TaNAC29, a
NAC transcription factor from wheat, enhances salt and drought tolerance in
transgenic arabidopsis. BMC Plant Biol. 15, 268. doi: 10.1186/s12870-015-0644-9

Iizumi, T., Kotoku, M., Kim, W., West, P. C., Gerber, J. S., and Brown, M. E. (2018).
Uncertainties of potentials and recent changes in global yields of major crops resulting
from census- and satellite-based yield datasets at multiple resolutions. PloS One 13,
e0203809. doi: 10.1371/journal.pone.0203809

Kang, K., Kim, Y.-S., Park, S., and Back, K. (2009). Senescence-induced serotonin
biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol. 150, 1380–
1393. doi: 10.1104/pp.109.138552

Khodaeiaminjan, M., Knoch, D., Ndella Thiaw, M. R., Marchetti, C. F., Korı̌ńková,
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