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Abstract—Motion planning (MP) plays an important role in
robotics. In this extended abstract, we provide a short discussion
on different categories of MP methods. And there remains a
challenge for MP in dynamic environments. We also discuss
learning-based MP in dynamic environments.

Index Terms—Motion planning, Dynamic environment, Ma-
chine learning

I. INTRODUCTION

Motion planning (MP) is increasingly important nowadays,

since it plays a central role in robot motion. A well-performed

MP algorithm should better guarantee properties like com-

pleteness, optimality, computation efficiency, and insensitivity

to environments [1], especially the first two. The most common

architecture for a motion planner is a hierarchical design made

with a global planner, in charge of generating global way-

points, and a local planner, in charge of generating commands

for robots based on the situation of the surroundings.

To achieve such goals, numerous MP methods have been

developed through past efforts in academia and industry.

Generally, we can classify them into classical approaches

and learning-based approaches, based on whether they use

machine learning (ML) methods in the MP process or not.

For example, classical methods can include Sampling-based

MP (SBMP), Optimization-based MP (OBMP), Graph-search

MP (GSMP) and Reaction-based MP (RBMP). And typical

learning-based methods include Deep Learning (DL), Deep

Reinforcement Learning (DRL) and Unsupervised Learning

(UL). Each of them has its own pros and cons, which are

given in Table II. In recent years, learning-based methods have

become increasingly popular.

Although MP has been investigated for a long time, MP in

dynamic environments remains a challenge that needs to be

solved. Both classical and learning-based methods have limi-

tations in dynamic environment settings, especially if there are

some other complicated features. In the next section, a detailed

introduction to dynamic environments and the limitations of

MP methods in such settings will be given.

II. MP IN DYNAMIC ENVIRONMENTS

When we mention dynamic environments, we mean that

the elements are moving in position with time, and that can

TABLE I
COMPARISON AMONG TYPES OF CLASSICAL MP MODELS

Methods Advantages Disadvantages

GSMP Could guarantee
completeness and
optimality

1. Require explicit repre-
sentations of the envi-
ronment

2. Suffer from dimension
curse when facing
high-dimension state
space

RBMP React in real-time with
dynamic environments 1. Usually stuck at local

optimum
2. Require explicit repre-

sentations of the envi-
ronment

3. Perform not well in
cluttered environments

SBMP
1. Plan both locally and

globally
2. Good at handling

complex environments
3. Not require explicit

representations of the
environment

1. Just guarantee asymp-
totic optimality and
probabilistic complete-
ness

2. High computation cost
3. Trap space problem

OBMP
1. Good at obstacle

avoidance and
smoothing trajectories

2. Could take some
criteria like energy
consumption into
consideration

3. Not require explicit
representations of the
environment

1. Tend to stuck at local
optimum

2. Require the effort of an
expert

3. Require explicitly rep-
resent the environment

include moving obstacles and moving goals. In this extended

abstract, we mainly focus on the situation of moving obstacles.

Since the environment is changing with time, planning in

real-time is necessary to realize MP in dynamic environments.

However, it is very challenging to reach this goal. Gener-

ally, MP in a dynamic environment is NP-hard, indicating



TABLE II
COMPARISON AMONG TYPES OF MACHINE LEARNING MODELS FOR MP

Methods Advantages Disadvantages

DL
1. Strong adaptability
2. End-to-end usage

space
3. Not require explicit

representations of the
environment

4. Real-time planning

Just one-step prediction

DRL
1. Making sequential

decisions
2. Other similar benefits

in DL

1. Sparse reward problem
2. Hard to converge
3. Reward shaping is

challenging

UL
1. Take uncertainty and

noise into
consideration

2. Not require explicit
representations of the
environment

3. Real-time planning

Have difficulty in avoiding
obstacles

it is computationally expensive [2]. Moreover, for many MP

models, especially the classical ones, rapid re-planning is

indispensable due to the changing surroundings, but it will

consume a lot of computational resources to do this [3].

Among the classical MP methods, SBMP is more powerful

since its high efficiency compared with GSMP and does not

require an explicit representation of the environment, and it

can guarantee a certain degree of optimum, compared with

local planning approaches like RBMP. So it is commonly used

in manipulation tasks in dynamic environments, but it still

struggles in such situations.

Learning-based MP methods are more applicable in dy-

namic environments, they are trained offline thus their compu-

tation consumption is offloaded when being set to online usage

[4]. They also have strong generality in different environments.

Moreover, they still work in unknown or partially known

environments. The usage of learning-based MP can be roughly

classified into two categories, end-to-end usage, referring to

using only ML models to do MP, and hybrid usage, referring

to combining ML models and classical planners.

A. End-to-end Learning-based MP

The most attractive motivation for end-to-end ML-based

MP models is to save engineering efforts. Also, the powerful

data processing capability makes such models could directly

process high-dimensional inputs.

For example, Wang et al. [5] applied a two-stream DQN to

separately deal with navigation and obstacle avoidance for a

mobile robot in a dynamic environment. Johnson et al. [6]

also applied a hierarchical structure, with neural networks

processing the input costmap and mapping it into the latent

space, then the planning network generates the next state.

B. Hybrid Learning-based MP

End-to-end models have limitations. They are limited in

long-horizon tasks: DL does not incorporate temporal infor-

mation and thus can only generate one-step prediction; DRL

suffers from high cost when search space is large [7] [8].

Moreover, specifying goals in end-to-end settings is proved to

be challenging [9]. Thus, hybrid approaches might be better.

Patel et al. [10] used DWA to make the trajectory generated

by DRL kinodynamic feasible. Want et al. [?] combined

RRT
∗ with GMR to increase the sampling efficiency. So we

can see, in this model, each of chosen models can make up

for another one’s disadvantage.

III. CONCLUSIONS

In this extended abstract, we introduced the comparisons

between commonly used MP methods, and provided an

overview of the application of learning-based MP in dynamic

environments, which remains a challenge in the research of

MP. The state-of-the-art approaches are commonly applying

hybrid method combining DRL and classical methods, to make

use of both of their benefits. And in this way, we believe hybrid

models with more stability, and timely responding capability

is still needed.
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