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Abstract. Decision support systems with Artificial intelligence (AI)
and specifically Machine Learning (ML) components present many chal-
lenges when assuring trust in operational performance, particularly in
a safety-critical domain such as healthcare. During operation the Hu-
man in/on The Loop (HTL) may need assistance in determining when
to trust the ML output and when to override it, particularly to pre-
vent hazardous situations. In this paper, we consider how issues with
training data shortfalls can cause varying safety performance in ML.
We present a case study using an ML-based clinical decision support
system for Type-2 diabetes related co-morbidity prediction (DCP). The
DCP ML component is trained using real patient data, but the data was
taken from a very large live database gathered over many years, and
the records vary in distribution and completeness. Research developing
similar clinical predictor systems describe different methods to compen-
sate for training data shortfalls, but concentrate only on fixing the data
to maximise the ML performance without considering a system safety
perspective. This means the impact of the ML’s varying performance is
not fully understood at the system level. Further, methods such as data
imputation can introduce a further risk of bias which is not addressed.
This paper combines the use of ML data shortfall compensation mea-
sures with exploratory safety analysis to ensure all means of reducing
risk are considered. We demonstrate that together these provide a richer
picture allowing more effective identification and mitigation of risks from
training data shortfalls.

Keywords: Machine Learning · Training Data · Medical device safety.

1 Introduction

Safety-related decision support systems incorporating Artificial intelligence (AI)
and specifically Machine Learning (ML) components are increasingly being de-
veloped and deployed [18]. These can have many potential benefits, such as
providing faster and richer computational support to complex tasks. However,
developing a robust and fit-for-purpose ML algorithm is reliant on good training
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data, which reflects the required task. Even with a robust training regime, poor
data will influence the performance, and safety of the output from the ML. Given
that comprehensive verification of ML across all operating scenarios is typically
impossible, these errors may be undetected until it is too late.

During operation the Human In/On The Loop (HTL) working with the sys-
tem may need assistance in determining when to trust the ML output and when
to override it, particularly in cases where there is a safety related outcome. For
example, clinical advisory systems typically have a workflow allowing the clin-
ician to override the output, but it may not be clear what the limitations or
strengths are of the ML components, making it difficult to trust or ignore cer-
tain predictions [22]. This is particularly problematic where there is a difference
of opinion between the ML predictor and clinician. Whilst there is research into
the impact of different methods to manage training data shortfalls, these con-
centrate on maximising the ML performance with respect to certain metrics,
and do not considering the different risks of varying performance at the system
level. Thus the safety impact of data shortfalls is not well understood, nor are
all means of reducing risk explored. We argue that taking a systems perspective
is necessary for safety critical environments.

In this paper we examine how issues with training datasets, and means to
compensate for them, can impact on safety performance. We combine the use
of training data shortfall compensation methods and exploratory safety analysis
to ensure all means of reducing risk are considered. We apply this combina-
tion to a diabetes comorbidity predictor (DCP), implemented using ML, used
to support clinical decision making. The DCP is trained using a dataset which
contains the real clinical records of the patients taken from the Connected Brad-
ford database [21]. The dataset consists of over 42,000 rows of data for Type-2
diabetic patients from different backgrounds and over 14,000 different types of
clinical records (features). Since the dataset records are obtained from differ-
ent care centres, this causes differences in recorded data. When patients do not
attend their visits regularly there can be changes/deficiencies in the recorded
laboratory results, which causes the dataset to have a great number of missing
values. This makes it critical to conduct systematic safety analysis to prevent
and mitigate for misleading outcomes in the manner of patient safety.

This paper is laid out as follows. In section 2 we describe this real world
problem in more detail and describe some related work used to develop our
approach. In section 3 we describe the case study, training data issues and safety
analysis. We discuss our results and findings in section 4, and finally in section
5 we present our conclusions.

2 ML training data and safety

Increasingly, safety-critical systems with machine learning components are being
developed and deployed [8]. Examples include autonomous cars (with or with-
out a safety driver), drones, medical diagnosis systems and agricultural robots.
There are many different approaches to machine learning, including supervised,
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semi-supervised and unsupervised training methods and models such as neural
networks or decision trees. However, a core requirement for each is a set of valid
training data which is pre-processed to tailor it for the task and model. For a
safety-critical system, poor quality training data can lead to latent faults which
can lead to hazardous behaviour. This is illustrated in Figure 1. The top chain
of elements indicates the ML training and system integration process. The lower
row indicates how the error can propagate throughout the training lifecycle. A
training data shortfall can mean the ML doesn’t have complete or correct per-
formance with respect to the system requirements. This may not be picked up
in verification, as performing complete verification of ML is impossible in all but
the most trivial cases. The same issue will affect testing during system integra-
tion but it may also be difficult to control the test space (e.g., real world testing
of a drone cannot be done in controlled weather conditions), which means a
latent failure could lead to a hazard during operation.

Fig. 1. Causal chain of failure events from training data shortfalls

Consider the following examples. A classifier for an autonomous vehicle object
detection system is trained using supervised learning. This uses a labelled set
of training data, including images marked with labelled boxes. This data set
includes a number of examples of dogs, but even though the training examples
are properly labeled and framed, they only show dogs from a side view. The
object detector may then fail to detect a dog facing forwards, contributing to
a collision. A similar issue contributed to the fatal autonomous vehicle crash in
Tempe, Arizona, 2018 [16], where a bicycle was not consistently recognised from
the side, and the autonomous driving controller was unable to predict the path of
the pedestrian pushing it quickly enough. Another example, would be a decision
component determining whether an unmanned drone should return to base if
the conditions are unfavourable may be trained using semi-supervised learning.
For this, each training sample is marked as safe or unsafe, and contains a series
of atmospheric readings on waypoints for the planned path. The ML training
process is designed to allow it to look for patterns in the readings/predictions
which can be matched to either safe or unsafe. However, the training set has very
few samples where the temperature dipped below zero celcius, where icing could
be a problem, and each of these samples contained very different sets of other
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readings making it hard to generalise. Therefore the ML might incorrectly decide
it was safe to continue when in fact there was a severe risk the physical systems
of the drone would fail and it would crash e.g., due to ice and low temperature
impacting battery power.

When looking for shortfalls we need to consider the source of the data as
this may impact on the types encountered. In some situations, the training data
can be entirely user generated, such as when simulation software is used. The
advantage of this approach is that the data scientist or engineer will have a very
high degree of control over the data generated, but it may not be realistic without
careful modelling and analysis. However, the opposite approach may be taken,
where an off-the-shelf dataset is acquired and curated for the ML training. Real-
world sampling will help assure the validity of the data, but the disadvantage
is that there are likely to be missing cases or bias to certain situations, or even
deliberate data poisoning. Our analysis considers both the normal case for data,
where the sample may be valid but overall distribution introduces bias, and the
failure case, where the sample may be corrupted in some way.

2.1 Methods for managing data shortfalls

As noted previously there are different types of data shortfalls which may vary
depending on the way the training data has been gathered and curated. For
example, there are issues of missing data, poorly labelled data, data validity
and data distribution [8]. These may be intrinsically linked, for example, if we
compensate for missing data using data imputation methods we must ensure
the generated data is valid. In this section we examine related literature on
data imputation, concentrating on papers where it has been applied to similar
prediction problems such as diabetes [7, 11] and Covid-19 [4].

There are different types of data imputation methods to deal with the missing
values, and these methods have been used for different domains. In [23][7] the
authors take means of the full set of a particular feature to fill the missing
values. However, only taking the average of the entire column and replacing the
missing values with the average of the column may lead some bias or misleading
outcomes. An issue with both these papers is that they focus purely on the
ML performance indicators, and do not consider risk mitigation from a system
safety perspective. Maximising the performance may not be required if other
risk mitigation measures, such as explainability and transparency [13], are used.

In [5], the authors use kNN Imputation method to deal with the missing
values in their dataset. In [1], four different imputation methods (case deletion,
mean imputation, median imputation, and kNN Imputation) have been applied
to compare these methods. Then, the authors concluded that the kNN Imputa-
tion performs better providing a better Mean Squared Error (MSE) value to deal
with the missing values. In [24], multiple imputation methods have been com-
pared, and it has been concluded that kNN Imputation has better than mean
and median imputation methods. kNN imputation looks for similar cases and
nearest neighbours, thus reduces bias from extreme outlying values or overall



Safety of AI-based Clinical Decision Support Systems 5

distribution. Again, the authors concentrate on ML fitness in isolation of the
whole system.

An alternative method is described in [3][4][14] where the authors use the
Bag Imputation method to fill the missing values in the dataset. This is a more
sophisticated, and computer intensive, nearest neighbour method which uses
additional ML to predict missing values, and to avoid overfitting and bias in
the dataset [11]. Because we have a large amount of missing values and aim
to prevent bias, we have decided to investigate bag imputation as a way to
compensate for missing values in our dataset.

2.2 Safety data analysis method

We argue that a system safety perspective is necessary to ensure that the risks
associated with data shortfalls are methodically understood. By this we mean
considering the impact on the effectiveness of the ML, and then considering how
or if this might affect performance at the system level in combination with other
information and actors. We also consider other activities during the training
process which might reduce the risk. Further, we need to identify and assess the
additional risks that using data imputation may introduce.

In Figure 1 we show the ML training and operation lifecycle. There are
opportunities to reduce risk at every stage, including controls on how training
data is selected, adding specific verification/integration tests for known issues,
and how information is presented to the operator, e.g., using explainability, so
that they are given a richer picture for individual decisions.

To support the system safety perspective we need an exploratory safety anal-
ysis technique which could be effective in identifying types of data shortfall, such
as for particular clinical features of importance and how they could propagate.
Therefore, we considered bottom-up/inductive analysis safety analysis methods
rather than top-down/deductive techniques e.g., Fault Tree Analysis. We argue
that by concentrating on the data issues as a starting point we can understand
their causal impact more holistically.

Typical inductive safety analysis methods include Failure Modes and Ef-
fects Analysis (FMEA)[12], and HAZard and OPerability Studies (Hazops)[15].
Hazops uses particular guidewords, e.g., more, less, early, to provide general cat-
egories of failures to engineers performing the analysis. It was originally used
in the chemical processing industry but has been successfully used for computer
based analysis, both on data flows (such as training data to ML training) and on
control flows. On the other hand FMEA is more traditionally applied to physi-
cal system safety so we did not consider it further. In [19, 15] the authors have
successfully used Hazops to identify safety issues in systems with ML. An alter-
native version to Hazops is Software Hazard Analysis and Resolution in Design
(SHARD) [12] is demonstrated in [9] for a medical decision support system. We
note the findings in [15] that SHARD is better suited for scalar data, and given
that we are interested in data quantities, using a Hazops type approach may be
more meaningful. Therefore, we used Hazops guidewords for our approach.
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To summarise, training data shortfalls can lead to latent faults in an ML
system which can in turn lead to hazardous behaviour. Whilst there are many
methods to manage training data shortfalls, they can themselves introduce fur-
ther issues such as bias. It may be impossible to train the ML effectively without
their use when we are dealing with real-world data. The approach for our case
study uses a combination of ML data shortfall compensation methods and ex-
ploratory Hazop style system safety analysis to identify and consider means to
reduce these risks.

3 Case study: ML-based clinical decision support system

for Type II diabetes-related co-morbidity prediction

In this section we describe a clinical case study which uses our approach of
combining ML data shortfall compensation methods and safety analysis. For
this we used training data which contains real clinical patient data from the
Connecting Bradford database [21]. The dataset consists of over 42,000 rows
for patients with type 2 diabetes mellitus from different backgrounds and over
14,000 different types of clinical records (features). Type 2 diabetes is a life-
long health condition and is the most common type of diabetes in the world.
This health condition may cause the level of sugar (glucose) in the blood to
become very high, and if not managed properly, it may progress by causing
serious comorbidities [2]. When Type-2 diabetes progress, this causes numerous
different comorbidities affecting the heart, brain, kidney, and other diseases.

The most frequently recorded disease/condition in our dataset is hyperten-
sion. It is known that hypertension is the precursor of the other potential dis-
eases, and having both Type-2 diabetes and hypertension are synergistically
dangerous. Hence, this is very critical to make a proper prediction for the risk
level of having hypertension. High or low-risk thresholds are calculated using
the National Institute for Health Care Excellence (NICE) guidelines used by
clinicians [20].

The decision support system is designed to provide a clinician with an inde-
pendent prediction of whether a patient is at high or low risk of hypertension
(e.g., in the next six months), and hence support their decision of whether inter-
vention is required. The clinical workflow is summarised in Figure 2. The DCP
will use the most recent patient data set provided as input. It will provide a pre-
diction as to whether the patient is at high or low risk of hypertension, as well as
explanation of the prediction. Additionally, the clinician will gather information
through discussion with the patient. We discuss provision of contextual infor-
mation later in the paper, as there are issues of patient confidentiality. In this
paper we are specifically considering hypertension which increases the risk of
other comorbidities, however the general safety analysis principles discussed can
apply to any of the predictions training pathways. Our future work will consider
other co-morbidity predictions.

The hazards related to the system are



Safety of AI-based Clinical Decision Support Systems 7

Fig. 2. Clinical workflow using DCP

– false positive where a patient is categorised as high risk and given inter-
vention that they do not require, possibly including medication with harm-
ful side effects. For hypertension treatment may range from recommended
lifestyle changes to specific medication. Common medications can have a
range of minor side-effects (dizziness, headache, cough) to much more severe
effects (e.g., angio-oedema). The clinician using the DCP would be making
the decision of which medication to administer, and there is no requirement
on the DCP to recommend treatment.

– false negative where a patient is categorised as low risk and no treatment is
provided, leading to the condition not being managed. For hypertension this
would mean medication specifically not being provided, potentially putting
the patient at risk of severe outcomes such as heart attacks or stroke.

Classical risk analysis expects a combination of severity and likelihood to deter-
mine tolerability. Risk severity will depend on the particular comorbidity and
potential outcomes of the false positive and false negative clinical decisions. In
the case of hypertension, there is a potentially catastrophic outcome of heart
attack and death if it is not treated. Calculating the likelihood of an incorrect
prediction will require an understanding of the ML’s performance for that par-
ticular comorbidity, but we note that there may be certain groups or individual
patients where the predictions are less or more reliable. This may be due to
weaknesses in the training data used or issues with specific information about
an individual patient. An additional consideration is that the clinical decision
may be influenced by other predictions from the DCP. As it is infeasible to as-
sess likelihood of incorrect prediction for each individual patient, or to calculate
overall likelihood with accuracy, we instead consider means to reduce the risk as
far as possible at each stage of development and use.

3.1 The DCP training data

As noted, the training dataset consists of over 42,000 rows with 14,000 variables
(features). A row represents a visit of the Type-2 diabetic patient and each
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feature represents the observations or test results gained during the visits. Some
of the patients have been attending for many years so have many rows in the
database, whereas newer patients only have a few rows. We need to consider
whether too many samples from the same patient would introduce bias.

Data shortfalls will impact on training effectiveness, but not all of the features
will impact safety any may be irrelevant or of low importance. Given the large
number of features in the database (14,000) it is infeasible to perform safety
analysis for each of them. Further, using ML across the 14,000 would have a
very high calculation cost, and may not be meaningful. Hence we need to reduce
this set to be be more meaningful.

Since the record types differ according to the different sites, or if patients
were not able to attend their appointments regularly, we have a large amount
of missing values in our dataset (typically over more than half for each feature).
We need to compensate for this during training, using data imputation, in order
to train the ML. It is of note that missing data may itself be significant (see
section 4) however understanding the varying reasons for missing data, which
could be clinically significant or simply due to different reporting practice across
multiple clinics, would be difficult to infer without guidance, and lead to more
uncertainty in the quality of outputs of the DCP.

An additional problem we cannot compensate for is that there may be groups
of patients which are completely missing, e.g. from certain age groups or back-
grounds. Also, we cannot compensate for validity issues, as whilst we can run
some simple sanity checks e.g. for negative values for BMI, the issue of plausible
but wrong data remains. Training data issues are illustrated in Figure 3.

Fig. 3. Training data issues

The systematic data pre-processing techniques applied for our study are
shown in Figure 4. First, a data frame has been prepared from the stored data.
We have determined the most 20 frequent which are related to Type 2 diabetes
FOIs and use these as a sub-set.

All the patients have been filtered by Type-2 diabetes, and duplicated or
mistyped records have been deleted. When it has been ensured that we have
unique records for each patient, the records are checked for the missing values. To
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fill all the missing values, we have used bag imputation method (see section 2.1)
incorporated in the R-Studio suite, as it reduces the risk of bias, and overfitting
by predicting the missing values using ML. After dealing with all the missing
values, we have normalized the dataset to fit all the values between 0 and 1 and
to prevent from bias caused by the variation of the features. After finishing all
the filtering and the necessary data pre-processing steps, the training dataset
has been trained by the ML model.

Fig. 4. Work-flow of the ML-based Type-2 Diabetes Progression Prediction

After training the ML model, the feature importance of each variable has
been calculated. Figure 5 shows us each variable’s weighted importance levels to
predict the output. This provides us some level of explainability of the model and
also helps us to have a better understanding of the reasons behind of the model’s
predictions. Further, it allows us to focus the exploratory safety analysis on the
FOIs. In order to ensure the validity at this stage, these FOIs were reviewed to
confirm that they are plausible. Body Mass Index (BMI) is considered a good
predictor, and was our highest FOI, so we have concentrated on that for this
paper. Some of the other FOIs may be caused by hypertension, rather than being
predictive. Note that the FOIs were gathered using an ensemble of different ML
methods (including neural networks and random forests [17]), and future work
is looking at comparing these individually.

3.2 Hazop Analysis

In this section we present an extract of the exploratory safety analysis of the
FOIs as identified in in the previous section and shown in Figure 5. We have
used a hazops style analysis (see 2.2) to consider how shortfalls in the training
dataset could lead to hazards on output if not mitigated for each FOI, or groups
of FOIs. The ”flow” was interpreted as the flow of data into the ML training
process. We used standard Hazop guidewords as inspiration for possible issues.
We note that additional guidewords may be needed to capture unusual data
shortfalls, although we did not identify any in this analysis. Some examples of
how we interpret the guidewords are as follows.
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Fig. 5. Feature Importance Levels

– More - indicates a bias in the data, e.g., over representation of particular
patient group in the dataset

– No or Not - FOI or set of FOIs are missing
– Less - fewer examples of FOI than are desirable for good performance are

present
– Early/Before - indicates that a FOI may be present but out of date with

respect to the co-morbidity presenting itself
– Late/After - indicates that a FOI is present, but the overall patient data

sample might be late in progression of the co-morbidity and hence not a
useful predictor

– Part of - indicates missing data which needs to be compensated for
– Reverse - opposite diagnosis provided (i.e., False positive/negative)
– Instead - indicates the wrong FOI being used
– As well as - no interpretation

In Table 1 we show an extract of our analysis considering BMI as FOI,
as this is the most critical. We list the guideword, identified deviation in the
training data set, possible causes, effect on system safety and means to mitigate
the deviation. Note that this analysis focuses on training data only, it may be
useful to do a similar analysis for problems on the data used for an actual
prediction as part of the overall safety assurance case, e.g. when there is no FOI
in the patient record. The analysis has uncovered a number of risk mitigation
measures which could be used, where practical, to reduce the risk of a latent
failure caused by shortfalls in the training data leading to an incorrect prediction.
These include technical approaches to data imputation and data sampling, but
also manual data review, and explanations provided to the clinician. We have
also included the discussion that the clinician would have with the patient as a
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mitigation (Figure 2) to emphasise that the ML decision is not used in isolation
of other independent data sources. From the analysis we have a much richer
understanding of risks and their mitigations.

Table 1. Extract of Hazop analysis of BMI FOI in Training Data

GuidewordDeviation Cause Effect Mitigation

No or not Samples for eth-
nic group not in-
cluded in train-
ing data (TD)

No/limited pa-
tients of ethnic
group were pa-
tients

ML not trained or
verified adequately
for ethnic group
with higher genetic
risk of hypertension

Manual review of
DB by expert, show
clinician prototypi-
cal examples, pa-
tient discussion

Part of Partially missing
BMI in TD sam-
ples

BMI not consis-
tently recorded

ML performance
biased based on the
data imputation
method used, leads
to poor performance
for high or low BMI
patients

Use bag imputation
for TD records to
reduce bias, recom-
mend collection of
BMI for future TD,
show clinician proto-
type examples, pa-
tient discussion

More Over represen-
tation in TD
of high BMI
patients

Most patients
examined had
high BMI

Prediction biased to-
wards patients with
high BMI, meaning
patients with low
BMI have less accu-
rate predictions

Manual review of
DB by expert, train-
ing samples picked
across all ranges,
show clinician pro-
totype examples,
patient discussion

More Over representa-
tion in TD of cer-
tain ethnic group

Over diagnosis
by trained ML
for patients of
other ethnic
groups

TD dominated by
ethnic group with
genetic disposition
to hyper tension

Manual review of
DB by expert, show
clinician prototype
examples, patient
discussion

Early/
Before
and More

BMI data is
out of date and
training patients
have changed
BMI by time of
diagnosis

DB not kept up
to date, TD sam-
pled from wrong
part of patient
history

ML underestimates
likelihood of hyper-
tension

TD selected from
samples near to
hypertension diag-
nosis, manual review
of DB by expert,
patient discussion

Instead BMI value no
longer highest
FOI for some
FOI distribution

Performance
outlier from ML

Wrong prediction
for hypertension

Show clinician FOI
from training and
for each prediction
at point of use, pa-
tient discussion
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4 Discussion

In the previous section we presented a case study combining system safety anal-
ysis with ML data shortfall compensation measures. In this section we discuss
the findings in more depth.

It was infeasible to review all the potential features in the training data as
there were over 14,000 of these. This meant that performing safety analysis prior
on the data prior to pre-processing was not possible. Instead, it was necessary
to reduce the set to 20 FOIs. The initial ML training (using data imputation to
manage missing values) was performed to prioritise features and focus the safety
analysis. However, it may be the case that training the ML using a much larger
set of features would uncover a link or pattern of causes of hypertension which
had not been considered previously. This is an avenue for further research.

When undertaking the safety analysis (Table 1) we suggested a number of risk
mitigation methods which require further thought. One method for reducing the
risks is a manual review of the patient database, for example to look for missing
ethnic groups of patients or ensure up to date records have been kept. In practice
this may be difficult to do effectively given the size of the database and some
automation would be needed.

Another operational mitigation is to show the clinician similar patients from
the TD to the one which the predictor has been applied to (i.e., prototypical
examples as described in [10]). This would allow the clinician to review similar
cases, their progression, and provides context to a particular prediction. How-
ever, the raw training data cannot be presented to the clinician for reasons of
patient confidentiality and would need to be anonymised or obfuscated in some
way. An avenue for further research is to consider whether using methods such
as k-anonymise [6] would reduce the effectiveness such that this isn’t a useful
mitigation/explainability method for DCP.

Finally, it was noted by our clinical expert that missing data can be an
important indicator of an underlying problem, for example if the patient was
ill with another condition they may not have attended the clinic. In our clinical
workflow (Figure 2) we see this can potentially be considered via discussion with
the patient. Another consideration is the progression of the comorbidity in the
patient and whether this can improve predictive performance. Both cases may
require a different and more complex ML model and training regime.

5 Conclusions

In this paper we have demonstrated that using a combination of ML data short-
fall compensation measures, and exploratory safety analysis provides an effective
method for the identification and mitigation of risks from training data short-
falls for a DCP. This takes a whole system perspective on risk identification and
mitigation that is not found in similar literature in the area.

We have identified a number of avenues for further work including applying
this methodology to an expanded predictor with multiple comorbidities (e.g.,
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for brain diseases). Another is to review performance of different ML models
with respect to bias from the different data imputation methods whilst balanc-
ing optimal performance against risk mitigations. Additional issues raised by
the case study included balancing patient confidentialy with explainability, and
wider contextual issues such as the clinical importance of missing data in the
training data.
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